
        

Citation for published version:
Gee, AM, Robinson, F & Yuan, W 2017, 'A superconducting magnetic energy storage-emulator/battery
supported dynamic voltage restorer', IEEE Transactions on Energy Conversion, vol. 32, no. 1, 7567599, pp. 55-
64. https://doi.org/10.1109/TEC.2016.2609403

DOI:
10.1109/TEC.2016.2609403

Publication date:
2017

Document Version
Peer reviewed version

Link to publication

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
users, including reprinting/ republishing this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this
work in other works.

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 26. Aug. 2022

https://doi.org/10.1109/TEC.2016.2609403
https://doi.org/10.1109/TEC.2016.2609403
https://researchportal.bath.ac.uk/en/publications/db0d534a-95c5-40d7-a5ba-1a319652a623


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1 

 
Abstract— This study examines the use of superconducting 

magnetic and battery hybrid energy storage to compensate grid 

voltage fluctuations. The superconducting magnetic energy 

storage system (SMES) has been emulated by a high current 

inductor to investigate a system employing both SMES and 

battery energy storage experimentally. The design of the 

laboratory prototype is described in detail, which consists of a 

series-connected three phase voltage source inverter used to 

regulate AC voltage, and two bidirectional DC/DC converters 

used to control energy storage system charge and discharge. ‘DC 

bus level signaling’ and ‘voltage droop control’ have been used to 

automatically control power from the magnetic energy storage 

system during short-duration, high power voltage sags, while the 

battery is used to provide power during longer-term, low power 

under-voltages.  

Energy storage system hybridisation is shown to be 

advantageous by reducing battery peak power demand compared 

with a battery-only system, and by improving long term voltage 

support capability compared with a SMES-only system. 

Consequently, the SMES/battery hybrid DVR can support both 

short term high-power voltage sags and long term undervoltages 

with significantly reduced superconducting material cost 

compared with a SMES-based system. 

 

Index Terms-- Dynamic Voltage Restorer (DVR), Energy 

Storage Integration, Sag, Superconducting Magnetic Energy 

Storage, Battery. 

I. INTRODUCTION 

HE improvement of power quality is an important 

objective for electrical utilities and industrial and 

commercial consumers. Highly intermittent distributed 

generation, rapidly changing loads, and direct-off-line power 

electronic systems all contribute to reduced power quality 

causing equipment downtime, overload and failure leading to 

lost revenue [1].  

 Voltage disturbance is a common problem and under-

voltage conditions have been seen to occur more frequently 

than overvoltage conditions [2]. Short-term under-voltage sags 
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are defined in IEEE Std. 1159-1995 [3] as a decrease to 

between 0.1 and 0.9 p.u. (per unit) r.m.s voltage for durations 

of 0.5 cycles to 1 min. They occur more frequently than long-

term under-voltages with significant costs to industry [4]. 

Long-term under-voltage events are defined as a measured 

voltage less than 0.8-0.9 p.u. r.m.s voltage, lasting longer than 

one minute [3] and can lead to load shedding and potentially 

to voltage collapse [5]. The study below presents a means by 

which both short-term and long-term voltage fluctuations can 

be mitigated at the load using short-term magnetic energy 

storage and long-term battery energy storage. 

II. LITERATURE REVIEW 

Methods to mitigate long-term voltage disturbance, such as 

load disconnection [6] or modification of loads for greater 

low-voltage ride-through capability may be impractical [7]. 

Alternatively, supply voltage can be stabilised by tap changing 

transformers, uninterruptable power supplies (UPS), shunt-

connected compensators, or dynamic voltage restorer (DVR) 

systems. Tap changing transformers have been shown to suffer 

from a slow response time and can only output discrete 

voltage levels [8]. UPS systems provide the complete voltage 

waveform during a power failure and may prove costly and 

unnecessary in the event of partial voltage sags. A DVR is a 

series-connected device capable of voltage compensation with 

fast response time by injecting a voltage in series with the 

supply.  

DVR systems can be self-supporting by using power from 

the grid to mitigate disturbances [9]. Alternatively, DVR 

systems can use energy storage to provide power during 

compensation such as capacitors [10] for short-term storage or 

batteries [11] for longer-term storage. Nielsen and Blaabjerg 

[12] have shown that capacitor-supported DVR systems can 

suffer from relatively poor performance for severe and long 

duration sags. A recent study has shown that an ultra-capacitor 

based DVR [13] can be used to mitigate short-term voltage 

sags lasting less than one minute. Wang and Venkataramanan 

[14] have shown that flywheels are a viable short-term energy 

storage technology for use with voltage restorer systems both 

experimentally and by simulation. Kim et al. [15] have 

described a 3 MJ/750 kVA SMES-based DVR system and 

shown experimental results confirming that SMES is suitable 

for the compensation of short-term voltage sags. Shi et al. [16] 

have used a system-level simulation to also show that SMES 
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energy storage is capable of compensating voltage sags lasting 

100ms. 

Short-term voltage compensation alone may not be 

sufficient to protect a sensitive load as both long-term [5], [17] 

and short-term [2-4] voltage stability has been shown to 

present a problem for many consumers. For this reason, this 

study considers the use of SMES/battery hybrid energy 

storage to compensate long and short-term voltage 

fluctuations. Woong et al. [18] have also considered a 

SMES/battery hybrid and shown it is viable for smoothing of 

renewable energy generator output power and can result in 

reduced energy storage system capacity and prolonged battery 

life. Li et al. [19] have shown that a SMES/battery energy 

storage system can improve battery lifetime in electric buses. 

Deng et.al. [20] have presented a SMES/battery hybrid system 

for reducing peak grid power in an electric vehicle charging 

station. Nie et al. have also presented a SMES/battery hybrid 

system and shown its feasibility in dealing with long term and 

short term charge/discharge events in a wave energy 

conversion system [21]. This study extends previous 

simulation-based SMES/battery hybrid system studies [18-21] 

by considering the hardware implementation of a 

SMES/battery energy storage system. The design is shown to 

be capable of interfacing SMES and battery energy storage 

systems and controlling their power sharing to support a three 

phase load, during both long-term and short-term voltage sags. 

This has benefits in terms of improved long-term voltage 

support capability and reduced costs compared with a purely 

SMES-based system. Additional benefits include reduced 

battery power rating requirement and an improvement in 

expected battery life compared with a battery-only system. 

III.  METHODOLOGY 

Fig. 1 shows the DVR system considered. The SMES has 
been emulated by a 15mH, 100A inductor. During a voltage 
error a three-phase inverter is used to generate the 
compensation voltage at the primary of the injection 
transformers (T1-T3) so that the load voltage remains close to 
nominal. DC/DC converters are used to interface the battery 
and SMES-emulator to the DC bus. An auxiliary supply (Aux. 
Supply) is used to support the DC bus during standby 
operation and charge the energy storage devices. The auxiliary 
supply is disconnected and the energy storage devices provide 
the necessary power for the inverter to support the load during 
a voltage error. 

A. DVR Control 

The objective of the DVR control system is to minimise 
supply voltage variations at the load terminals. This is 
achieved by generating a compensating voltage at the series 
injection transformer terminals. The phasor diagram in Fig. 
2(a) shows various DVR voltage control techniques. ‘In phase 
compensation’ causes the compensating voltage to be in phase 
with the incoming supply voltage and has been shown to result 
in the lowest DVR power rating [22]. ‘Pre-sag compensation’ 
preserves the phase of the incoming supply at the time a sag 
occurs which can be beneficial in protecting loads that are 
sensitive to phase disturbances. ‘Energy optimal’ control is 
used to minimise DVR energy storage requirement by 
injecting a voltage in quadrature to the load current. ‘In phase 
compensation’ and ‘Pre-sag compensation’ have been 
considered in this study. The control scheme was  
implemented in the synchronous reference frame as shown in 
Fig. 2(b) by converting three phase AC quantities to 
equivalent two phase quantities: 
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Figure 1. Hybrid energy storage DVR system configuration. 

 
Figure 2. Vector diagram of DVR control strategies [1] Udvr1: ‘In 
phase compensation’. Udvr2 ‘Pre-sag compensation’. Udvr3: ‘Energy 
optimal control’. (b) DVR control system. 
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where Vsa,b,c, Vsa,b, Vsd,q are the supply voltages and θpll is the 

estimated supply phase angle. 
A phase-locked loop (PLL) was used to determine the phase 

angle θpll of the incoming supply based on an algorithm which 
is robust in the presence of harmonics, non-symmetry and 
transients [23]. Fig. 3 shows a Simulink implementation of the 
PLL algorithm. This algorithm minimises the sine of the phase 
error term causing the control system to be non-linear. For this 
reason, the PI controller gains were tuned empirically. The 
PLL algorithm requires the cosine and sine of the incoming 
supply angle as inputs which can be obtained geometrically 
using the orthogonal reference frame voltages from (1) as: 
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The PLL controller can be tuned to preserve the phase of 
the incoming supply before a sag event with phase jump or, 
alternatively, the PLL can be made to track the phase of the 
incoming supply during a sag with phase-jump. Consequently, 
by changing the PLL gains the system can be controlled to 
provide ‘in phase’ or ‘pre-sag’ compensation. Fig. 4 illustrates 
the results of tuning the PI controller in this way. 

To detect the presence of a voltage error, the following 

inequality  was used [24], [25]: 

    thresholdqsqs,dd VVVVV  2
,

2
**  (5) 

where Vs,d,q is the measured load voltage and V*d,q is the 

desired nominal voltage in the synchronous reference frame. 

Inequality (5) was also used to trigger the disconnection of the 

DC bus auxilliary power supply (see Fig. 1).  

The compensation voltage Vrefd,q is determined, based on the 

error between the desired nominal voltage and the supply 

voltage: 

qdqdqrefd VVV ,,, *   (6) 

The PWM phase reference voltages Vrefa,b,c were generated by 

transforming the required compensation voltage to the rotating 

three phase reference frame: 























 














refq

refd

pllpll

pllpll

ref

ref

V

V

V

V







cossin

sincos
 (7) 
























































ref

ref

refc

refb

refa

V

V
k

V

V

V

31

31

0

31

31

32

2

3
 (8) 

The injection voltages, Vref_a,b,c, were multiplied by a feed-

forward constant, k to compensate for losses within the power 

stage. 

Sine-wave pulse width modulation (SPWM) or space vector 

modulation (SVM) were considered for generating the inverter 

output voltage. SVM is advantageous due to better utilisation 

of the DC bus voltage and which allows deeper sag 

compensation. However, SPWM allows the possibility to 

mitigiate unbalanced faults so this technique was implemented 

in this study. The inverter control was implemented using a 

Texas Instruments F28069 32-bit micro-controller by 

discretisation of the control and PLL algorithms. The inverter 

system parameters are listed in the Appendix, Table AI.   

 

 
Figure 3. Simulink implementation of PLL algorithm where ω0 is the 
fundamental output frequency in rad/s. 

 
Figure 4. Simulated PLL Algorithm results: (a) Simulated voltage sag 
with phase jump (b) Phase jump angle (c) Blue trace: supply phase 
angle. Red trace: PLL output: ‘Pre-sag compensation’ with controller 
gains: kp = 0.5, ki = 5, (d) Blue trace: supply phase angle. Red trace: PLL 
output: ‘In phase compensation’ with controller gains kp = 200, ki = 50. 
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B. Energy Storage top-Level Control 

The objective of the top-level energy storage control 

strategy was to control the charge/discharge of each energy 

storage device. A current vs. voltage active droop 

characteristic was chosen as this strategy has been shown to 

provide good stability and active power sharing [26]. The 

converter reference currents are based solely on the level of 

the DC bus voltage which is advantageous as high-bandwidth 

communication between the three different converters is not 

necessary. The charge or discharge priority of an energy 

storage device can be adjusted raising or lowering its nominal 

DC bus voltage using a technique known as “DC bus 
signaling” [27]. The system was configured to prioritise the 

SMES-emulator to charge/discharge before the battery. By 

always prioritising the short term energy storage, battery 

power cycling is reduced which can improve battery lifetime 

[19].  

The current droop characteristic for each device is shown in 

Fig. 5, and is made up of three regions of operation. When the 

DC voltage is above voltage level Vh(x) (where x refers to 

energy storage system 1 or 2) or below below Vl(x),, the 

converter current is limited to Imax(x) or -Imax(x). In between Vh(x) 

and Vl(x), current is controlled based on the linear current vs. 

voltage relationship: 

  xbusnomx kVVI   (9) 

where kx is a droop coefficient (A/V) and Ix is the energy 

storage converter reference current. 

C. SMES-Emulator System 

To reduce costs and be able to evaluate a SMES-battery 

hybrid DVR control platform, the SMES device was emulated 

by using a 15mH iron-core inductor in this study. The SMES 

converter was based on the asymmetric H-bridge 

configuration shown in Fig. 6. This converter was rated at up 

to 220A continuous current using forced air cooling. During 

charge, Q2 is held ON and Q1 is modulated whereas during 

discharge Q1 is held off and Q2 is modulated. The 

relationship between DC bus current, inductor current and 

duty ratio, is given by (12) and (13) for charge and discharge, 

respectively [16].  

1DII smescsmes   (10) 

)1( 2DII smescsmes   (11) 

For active current droop control according to (9), the desired 
converter output current Icsmes is given by (12). 

  smessmesnombuscsmes kVVI _   (12) 

where ksmes is the gradient of the droop controller and Vnom_smes 

is the nominal voltage of the droop controller. 

The required duty ratio can be determined by substituting 

Eq. (10) during charge or (11) during discharge into (12) and 

solving for duty ratio in real time. This allows the SMES-

inductor to be charged or discharged by simply raising or 

lowering the DC bus voltage relative to the nominal Vnom_smes. 

The controller was implemented using a 16-bit microcontroller 

(PIC24HJ128GP502) with a switching frequency of 500Hz. 

This low switching frequency was chosen to allow for extreme 

(>>90% and <<10%) duty ratio operation without causing 

overly narrow gate pulses. When operating at 100A nominal 

current, conduction losses could be reduced significantly by 

the use of low on-state resistance MOSFETs as opposed to 

IGBTs in this system. This is expected not to be the case for 

larger systems, operating at significantly higher nominal 

currents and voltage ratings. 

D. Battery System 

A bidirectional synchronous-buck converter rated at 40A 

output current with hysteresis current control was used to 

control battery current. This topology has been previously 

reported for use with interfacing an ultra-capacitor energy 

storage system to the DC bus in DVR application [13]. 

However, the proposed system differs from previous studies  

[13] in that a variable-frequency hysteresis current control has 

been used. This is advantageous as it features cycle-by-cycle 

current limiting, making it tolerant to short circuit faults. Also, 

the proposed technique is shown below to be globally stable 

over the operating range whereas typical current mode control 

techniques described previously [13] require slope 

compensation to ensure global stability [28]. Further 

advantages include good dynamic current-tracking capability, 

and robust performance despite variation and uncertainty in 

operating conditions [29]. 

Assuming lossless, ideal components, the inductor current 

in Fig. 7 is given by (13). 

 
Figure 6. SMES DC/DC converter. 

 

 
Figure 5. Energy storage systems active current droop control. 
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uVuV
dt

dI
L batbus

L   (13) 

where u is a gate drive signal and Vbat and Vbus are battery and 

DC bus voltages.  

Sliding-mode control theory may be used to describe the 

current regulation strategy [30]. The objective in this case is to 

regulate the inductor IL, such that it tracks the command 

reference current I*. A function σ = 0 can be defined as 

follows [30]: 

*IIL   (14) 

A switching control law which satisfies (15) such that σ and 
its time derivative have opposite signs ensures the system will 
converge to the state σ = 0 [30] and consequently IL = I*. 

0:0       (15) 

A switching control law which satisfies (15) is defined by 
(16), where h is a small constant hysteresis band lying 
symmetrically about the set-point value. 
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If Vbus is greater than Vbat, then condition (15) is met, so this 

becomes an operational requirement. 

For active current droop control according to (9), the 

following relationship can be written: 

  batbatnombuscbat kVVI _  (17) 

where Icbat is the battery DC/DC converter reference current 

and kbat is the gradient of the battery converter droop 

characteristic and Vnom_bat is the nominal voltage of the battery 

converter droop controller. 

The average current delivered to the DC bus can then be 

estimated, based on an ideal conversion ratio as follows:  

bus

bat
cbatt

V

V
II *  (18) 

To achieve active current droop control, the inductor current 

reference I* is set as follows: 

 
bat

bus
batbatnombus

V

V
kVVI _* 

 
(19) 

E. Energy Storage System Sizing 

DC bus signaling has been used to control the 

charge/discharge of the SMES-emulator system during short-

term voltage voltage-sags whereas the battery is used to 

mitigate longer-term voltage variations. Consequently, the 

sizing of the short-term and long-term energy storage systems 

can be treated separately. The inductive energy storage 

requirement is sized to mitigate short-term voltage sags 

whereas the battery system is sized to mitigate long-term 

under-voltages. The specific sag-depth and duration can be 

determined by measurement [31] or by simulation. Once the 

load power, depth of sag and sag duration are known, the 

SMES energy-storage requirement can be determined as has 

been previously reported [16]. The technique below extends 

this method [16] by including the inverter losses in the 

analysis. 

While the DVR system is supporting the load voltage at its 

nominal value, the real power provided by the DVR to the 

load can be written: 
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Assuming a sinusoidal current waveform, the losses in each 

IGBT and diode in the inverter, can be estimated based on 

previously reported loss models [32], [33]. Conduction loss in 

each IGBT is given by: 
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where M = modulation index, Rce = IGBT on-state resistance, 
Vce0 = IGBT forward voltage drop. Icm = IGBT forward current 
and φ = power factor angle. 
Conduction loss in each parallel diode is given by: 
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where Rf = diode on-state resistance, Vf0 = IGBT forward 
voltage drop. Icm = diode current. The equivalent on-state 
resistance of the IGBT (Rce) and diode (Rf) were determined 
by linear interpolation of datasheet values [34]. M, φ, and Icm 
can be found from the dq-axis components of the load current 
and required compensation voltage. 

Switching loss in the IGBT and parallel diode can be 
determined as follows [32]. 
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Figure 7. Battery DC/DC converter. 
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where Vdc is the commutation voltage, Vdc_ref is the reference 
voltage at which the switching loss energies are given, 
Eon(Icm), Eoff(Icm) and ERR(Icm)  are IGBT turn-on,  turn-off and 
diode reverse-recovery energies as a function of forward 
current [34]. The total inverter losses can then be estimated as: 

 swdswicdcilossinv PPPPP  6_  (25) 

If a voltage disturbance has duration Tsag, then the capacity 

requirement of the energy storage systems connected to the 

DC bus can be found from (20) and (25) as follows. 

  saglossinvsagsag TPPE _  (26) 

For a given long-term under-voltage, the required discharge 

power provided by the DVR can be found from (20). The 

DVR energy can then be determined using the procedure 

shown in (21) – (26).   

F. Experimental Setup 

In order to verify the performance of the proposed DVR, a 
hardware prototype was constructed. The battery was a 48V, 
75Ah sealed lead acid type and the SMES-emulator was 
15mH/100A iron-core inductor. The nominal AC bus voltage 
was set to 120Vac using a step down transformer. The load 
was configured as a 1.4kW star-connected resistor. 

A simple laboratory sag generator was developed using 
solid-state relays to simulate faults to ground as shown in Fig. 
8. System voltage measurements using isolating amplifiers 
were logged together with the battery and SMES-inductor 
currents using hall-effect current probes. The lead-acid battery 
was maintained at a full state of charge at the beginning of 
each experiment. To prevent battery overcharge, the maximum 
battery charge current was limited to a low value of ~800mA 
during stand-by operation. The DC bus voltage was 

maintained at 160Vdc during standby operation using the 
auxiliary supply.  

The short-term energy storage system capacity was 

estimated to support a sag to 35% of nominal voltage lasting 

approximately 100ms using (26). The battery bank was sized 

based on available lead acid batteries. Energy storage device 

parameters are given in the Appendix, Tables AII and AIII. 

The experimental set-up is shown in Figs. 8 and 9. 

IV. RESULTS 

Initially a three-phase voltage sag to 35% of nominal volt-

age, lasting 100ms was used to demonstrate the response of 

the DVR and energy storage systems. From Fig. 10 it can be 

seen that the hybrid DVR system mitigates the voltage sag 

effectively during the sag event. The battery is discharged 

momentarily at -1.45A at the end of the sag when the inductor 

energy has been depleted.  

The SMES-emulator was then removed from the system and 

the test was repeated. The system response to the same three-

phase sag with only battery energy storage is shown in Fig. 11. 

As the DC bus voltage falls below 140Vdc (the battery system 

nominal voltage) the battery is discharged to support the DC 

bus. The peak battery current is 21.13A in this case and the 

DVR system can be seen to effectively mitigate the voltage 

sag. Fig. 12 shows an oscilloscope trace of the DVR injection 

voltage and supply voltage during a three phase sag.  

To demonstrate the system performance during a long-term 
under-voltage, the experimental system was configured for a 
three-phase under-voltage dropping to 80% of nominal lasting 
2s. The results are shown in Fig. 13. Initially, the SMES 
system can be seen to support the DC bus. As the voltage error 
lasts longer than the SMES-emulator can support the bus 
voltage, at time = 0.4s the DC bus voltage falls to below 
140Vdc and the battery energy storage system automatically 
discharges.  

 
Figure 8. Experimental Set-up.  

Figure 9. Laboratory Setup. 
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The battery then provides the necessary power to support 
the load for the remainder of the under-voltage condition. At 
Time = 2.1s the under-voltage event has finished and the DC 
bus auxiliary supply reconnects. The battery and SMES-
emulator energy storage systems are then re-charged. While 2s 
may not be considered a long-term under-voltage, this 
duration was chosen in order to be able to see the interaction 
between the energy storage systems clearly. The system 
response reaches a stable operating point after approximately 
0.6s which could be maintained to support the load until the 
battery bank is depleted. 

V.    DISCUSSION 

By use of the SMES-emulator hybrid system, the peak 

battery current response during a three-phase sag to 35% of 

nominal was reduced to 1.45A from 21.13A compared with 

the battery-only system. This reduction in battery peak current 

can have significant benefits in terms of improved battery life, 

which is negatively affected by discharge current magnitude 

[35].  

From Fig. 13, it can be seen that the long-term under-
voltage performance of the system has been improved by the 
introduction of battery energy storage. One of the main 
shortcomings limiting the usage of SMES systems is the high 
cost of the superconducting material [36]. By integrating a 
battery, the hybrid DVR can be of significantly reduced cost 
compared with a SMES only DVR and still be capable of 
compensating a variety of short-term sags and long-term 
under-voltages. In order to estimate the potential scale of the 
cost reduction, the prototype system used in this study has 
been considered. The SMES-inductor was emulated to give L= 
15mH at 100A DC. The energy capacity of an equivalent 
SMES can be calculated:  

)(75
2

2

_ J
LI

E SMESHESS   (27) 

 
Figure 10. Hybrid System Experimental results: 0.1s Three phase sag to 
35% of nominal voltage. (a) Supply voltages (b) Load voltages (c) DC 
Link Voltage (d) Battery Current (e) SMES-inductor current. 

 
Figure 11. Battery System Experimental results: 0.1s Three phase sag to 
35% of nominal voltage. (a) Supply voltages (b) Load voltages (c) DC 
Link Voltage (d) Battery Current. 
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Without battery storage, the SMES needs to be able to 
compensate long-term undervoltages. The nominal supply dq-
axis voltage has no quadrature component, so the direct axis 
voltage Vd_nom is the peak voltage in the experimental system, 
169.7V. During a sag with no phase jump, the supply voltage 
falls to Vd_sag which is 80% of Vd_nom or 135.8V. Two cases of 
sag duration have been considered; a sag lasting two seconds 
and a sag lasting two minutes. The energy required by the 
DVR inverter during the two second sag was found to be 638J 
from (20)-(26), whereas the energy required to support the two 
minute sag was found to be 38251J based on IGBT module 
loss parameters given in [37]. The design procedure described 
in [38] was then used to estimate the superconducting material 
requirement assuming a working temperature of 50K. The coil 
design for the different cases and overall superconducting 
material cost based on the price of 2G HTS (high temperature 
superconductor) of $400/kA-m [39] is given in Table 1. A 
complete techno-economic analysis of the benefits of the 
hybrid system is beyond the scope of this work but the 
simplified calculation above shows that a significant reduction 
in superconducting material cost can be achieved by 
hybridisation with a battery. This would be offset by the 
additional cost the battery system but worsened by the cost of 
SMES refrigeration equipment which are not included in the 
analysis. 

VI.    CONCLUSIONS 

The performance a novel hybrid DVR system topology has 

been assessed experimentally and shown to effectively provide 

voltage compensation for short-term sags and long-term 

under-voltages. A prototype system has been developed which 

demonstrates an effective method of interfacing SMES and 

battery energy storage systems to support a three phase load.  

The system has been shown to autonomously prioritise the use 

of the short-term energy storage system to support the load 

during deep, short-term voltage sags and a battery for lower 

depth, long-term under-voltages. This can have benefits in 

terms of improved voltage support capability and reduced 

costs compared with a SMES-based system. Additional 

benefits include reduced battery power rating requirement and 

an expected improvement in battery life compared with a 

battery-only system due to reduced battery power cycling and 

peak discharge power. 

 
 
Figure 12. Hybrid System Experimental results: 0.14s Three phase sag to 
35% of nominal voltage. Cyan trace: DVR phase-a injection voltage 
(100V/div). Yellow trace: Phase-a supply voltage (100V/div.). Injection 
transformer boost ratio: 2:1. 

TABLE I 
SMES PARAMETERS 

Case Energ

Hybrid System 75
SMES- 

(2s) 
63

SMES-  
(2 minute) 

382

 
 

 
Figure 13. Hybrid System Experimental results: Long-term three phase 
undervoltage (a) RMS supply phase-voltage. (b) RMS load phase-
voltage (c) DC Bus Voltage (d) Battery Current (e) SMES-inductor 
current. 
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VII. APPENDIX 

TABLE AI 
INVERTER SYSTEM PARAMETERS 

Switching frequency 8kHz 
Injection transformer rating 6kVA 
Injection transformer boost ratio 2:1  
IGBT Modules [34] 2MBi100TA-060-50        
Filter inductance 3mH 
DC Bus capacitor 2 x 4700uF in series. 
PLL PI gains Kp = 200 Ki = 50 
Load nominal voltage 120Vac 
Aux. Supply LAB-SMS 5300 
Sag detect threshold: Vthreshold 0.1 

 
TABLE AII 

SMES-EMULATOR SYSTEM PARAMETERS 

Switching frequency 500Hz 
MOSFET (Q1, Q2) 2 in parallel in each leg. IXFN140N30P  
Diode (D1, D2) 2 in parallel in each leg. DSEI2X121-02A 
Inductor LSMES 15mH 
DC Bus capacitor 1.5mF 
Droop gain 0.65 A/V 
CR Snubber 3.3Ohm + 100nF 

 
TABLE AIII 

BATTERY SYSTEM PARAMETERS 

Battery voltage 48V (4x12V)  
Battery type Sealed lead acid 75Ah 
IGBT Module MG1502YS50  
Power Inductor 2 x 1.8mH in parallel 
Low side capacitor 4700µF 
DC Bus capacitor 6600µF 
Droop gain 0.45 A/V 
Maximum battery charge current 800mA 
Maximum battery discharge current 32A 
  

 
TABLE AIV 

EXPERIMENTAL SYSTEM PARAMETERS 

Load  1.4kW resistive  
Line impedance 5 , resistive 
Step-down transformer ratio 2:1 
Three phase sag fault impedance 3  resistive 
Single phase under-voltage fault impedance 25  resistive 
ADC card NI USB-6463 
Sample rate 10kHz 
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