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ABSTRACT: A small array composed of three monopole elements with very small element spacing 

on the order of 6 to /20 is considered for application in adaptive beamforming. The properties of 

this 3-port array are governed by strong mutual coupling. It is shown that for signal-to-noise 

maximization, it is not sufficient to adjust the weights to compensate for the effects of mutual 

coupling. The necessity for a RF-decoupling network (RF-DN) and its simple realization are shown. 

The array with closely spaced elements together with the RF-DN represents a superdirective antenna 

with a directivity of more than 10 dBi. It is shown that the required fractional frequency bandwidth 

and the available unloaded Q of the antenna and RF-DN structure determine the lower limit for the 

element spacing.  

 

Key words: Superdirective arrays, adaptive beamforming, mutual coupling 

 

1. INTRODUCTION 

The number of mutually orthogonal radiation patterns (MORPs) associated with an antenna array 

equals the number of its (operational) radiation elements, M. Adaptive digital beamforming with M-1 

degrees of freedom is based on a linear combination of these array-specific MORPs with variable 

complex-valued weights. A choice of element spacing substantially smaller than 2/  results in strong 

mutual coupling, which gives rise to severe frequency bandwidth and efficiency limitations [1]-[3]. 

 

This letter addresses these problems for a specific array composed of three identical monopole 

antennas with an array footprint diameter of 20/  to 6/ . The array produces three MORPs 

associated with three distinct eigenmodes: one low-order quasi-omni-directional pattern and two 

degenerated higher-order patterns. It is shown that a reduction of element spacing results in both an 
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increased radiation quality factor of the higher-order patterns and an increased deviation between the 

low- and higher-order pattern radiation resistance. Without a decoupling-network, the low-order and 

higher-order modes cannot be simultaneously matched, resulting in a signal-to-noise degradation, 

which cannot be compensated for by digital beamforming. By choice of a proper monopole height, the 

decoupling network reduces to simple reactive cross coupling between the antenna ports. In this way 

simultaneous matching of all three modes can be achieved, resulting in an optimum signal-to-noise 

ratio (SNR). In this new configuration, the two higher-order radiation patterns become superdirective. 

The allowed minimum element spacing is governed by the required fractional frequency bandwidth. 

 

2. PROPERTIES OF 3-ELEMENT ARRAY 

The array structure comprising of three monopole antenna elements is depicted in Fig. 1. The 

frequency-dependent admittance matrix Y characterises the mutual coupling between the elements of 

the array, and according to 
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relates the port-currents nI  to the driving port-voltages nV . Port voltages may be expressed as a linear 

combination of the orthogonal eigenvectors of the admittance matrix: 
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with mv  as the mode-voltages. The port currents then become 
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with eigenvalues 1211 2YYjBGY AAA   and 1211 YYjBGYY BBCB   as the frequency 

dependent mode-admittances. The three mutually orthogonal far-field radiation patterns associated 

with the eigenmodes can be characterised by the three vector functions ),( mC , normalized such that  
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lmml d  4),(),( *CC     (4) 

where lm  denotes the Kronecker delta function.  

 

In order to study the effect of a change in the element spacing a on the frequency response of the 

mode-admittances )( fYA  and )( fYB  and on the corresponding radiation patterns, numerical 

simulations were carried out with the computer codes SuperNEC Lite [4] and Zeland IE3D [5]. In 

these simulations, the metallic ground plane was assumed to be infinite in size and metallic losses 

were neglected. In the presentation of the obtained results, 0f  and 00 / fc  denote the reference 

frequency and the corresponding free space wavelength. The monopole length and monopole diameter 

were chosen as 4/0l  and 40/0d . The element spacing was varied between 20/0a  and 

6/0a . For the numerical simulations, a reference frequency of 45.20 f  GHz was chosen, but 

the obtained results were normalized to allow conclusions to be drawn for arbitrary operating 

frequencies. In Figs. 2 and 3, the results for relatively small element spacing 10/0a  are shown as 

an example. Fig. 2 depicts the normalized radiation patterns CBAmDmm ,,,/),2/( C  at 

lcff 4/0  . The maximum directivity for the three modes were computed to be 

dBi1.524.3
2

max
 AAD C , dBi994.7

2

max
 BBD C  and dBi9.876.7

2

max
 CCD C . As a 

consequence of mutual coupling, mode admittance AY  for the lower-order mode A with dipole-like 

radiation pattern substantially differs from the mode input admittance CB YY   of the degenerated 

higher-order modes B and C. Fig. 3 shows the frequency dependence of the modal admittances as a 

function of the normalized frequency 0/ ff . The low-order and higher-order modes resonate at 

different frequencies, but the most notable difference is in the radiation quality factor radQ , where the 

higher-order modes display a significantly higher value. The relation between the radiation quality 

factor of higher-order modes and the element spacing 0/ a  is shown in Fig. 4, indicating a sharp 

increase with reduced spacing.  
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From an inspection of the numerical results, it was found that for 6/0a , the radiation patterns can 

be approximated by the following analytical expressions derived under the assumption of a sinusoidal 

line current distribution along the monopole axes while employing a Taylor series approximation: 
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A , B  and C  in eqs. (5) are phase angles that depend on the frequency. 

 

3. EFFECTS OF MUTUAL COUPLING 

By means of the eigenmode representation, the actual array with three mutually coupled elements can 

formally be replaced with a set of three equivalent antennas with radiation patterns corresponding to 

the three MORPs. In the receive mode, each of the three equivalent antennas can be modelled by 

means of a current source (see left part of Fig. 5) with source admittance equal to the corresponding 

mode admittance mmm jBGY   and source current mi , which in case of a spectrum of homogeneous 

plane waves incident on the antenna becomes 

   CBAmd
Z

G
i m

m
m ,,,),(),( inc

0




  EC    (6) 

For digital beamforming, three receiver channels with input admittance inY  are connected to the three 

antenna ports. Consequently the load in the equivalent circuits for the three modes in Fig. 5 has a value 

of inY , too. Due to the orthogonality of the voltage vectors defined in eq. (2), the total power delivered 

to the receiver channels is the sum of the power received by the three modes. In case of a power 

mismatch (i.e. in
* YYm  ), the power delivered by eigenmode m is reduced by a factor of 

2
m  

compared to the total power available from that mode, where 
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This is equivalent to a reduction in gain of the receiver channels with respect to this mode. Due to 

mutual coupling, the mode admittance AY  substantially differs from CB YY  . If (theoretically) 

lossless two-port matching networks as shown in Fig. 6(a) are inserted between the antenna ports and 

the three receiver channels, the mode admittances AY , BY  and CY  are transformed to new admittances 

AY
~

, BY
~

 and CY
~

 via  

},,{,
1

~
CBAm

jrY

qYjp
Y

m

m
m 




     (8) 

with real valued parameters p, q and r. However, since the same transformation applies for each of the 

three mode admittances, simultaneous matching of all modes cannot be achieved. If for example the 

admittance for mode A is power-matched to the input admittance of the receiver channels (i.e. 

in
*~

YYA  ), the effective gain of the receiver channels with respect to the quasi-omni-directional pattern 

of mode A is maximized, but the effective gain for the two higher-order patterns is significantly 

reduced.  

 

For the purpose of this discussion, the frequency-converted and digitised output voltages of the 

receiver channels are assumed to be related to the input port voltages via nn VV ,in,out  . From a linear 

combination of these output voltages, an unlimited number of simultaneous beams can be formed by 

means of a weighted sum of these output voltages with the port-weights ),,( 321 WWWt W  [6].  The 

beamformer output voltage thus becomes (with “+” denoting transjungation) 

     .inbeam VWV      (9) 

With mode-weights WUw t  where U  is defined in eq. (2), this may be transformed into a linear 

combination of the input mode voltages mv ,in : 

.inbeam vw V      (10) 
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Introducing eq. (6) and calculating inv  from the circuit shown in Fig. 5, one finds the beamformer 

voltage excited by an incident spectrum of homogeneous plane waves ),(inc E  as 
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
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The effective weights for a linear combination of the eigenpatterns are thus given by 

.~ *
mmm ww        (12) 

If the complex valued coefficients m  are known, the weights can be adjusted in accordance with eq. 

(12) to account for mutual coupling. This represents a measure of compensation for mutual coupling 

via digital signal processing, as discussed in detail in a variety of papers [7-11].  

 

However, this measure does not compensate for the SNR degradation due to mutual coupling. The 

voltages produced by the waves received by the antenna are superimposed onto noise voltages due to 

noise sources within the receiver channels. The noise properties of each receiver channel can be 

represented by a noise voltage and a noise current source (partially correlated to the noise voltage) at 

the input port of the receiver channel, as shown in Fig. 5. The effective receiver noise temperature ffeT  

is a function of the source admittance. The minimum receiver noise temperature minff,eT  is achieved 

when the source admittance equals an optimum value optoptopt jBGY  . In the structure under 

consideration, three parallel receiver chains are connected to the mutually coupled antenna ports. Due 

to the mutual orthogonality of the three different modes, the noise model for each mode can be shown 

to be identical to the noise model for a single receiver channel. The effective noise temperature for 

mode m therefore becomes [12] 

 
m

m

eme G

YY
RTTT

2

opt

eq0minff,ff,


     (13) 

with minff,eT , optY  and eqR  representing the minimum noise temperature, optimum source admittance 

and equivalent noise resistance of the three receiver channels, and 0T  denoting room temperature. 

From eq. (13), it is clear that a deviation of the mode admittance mY  from the optimum source 
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admittance increases the effective noise temperature. With these results, the gain-to-noise-temperature 

ratio can be formulated explicitly. With a certain set of weights mw~ , the ratio between the direction 

dependent antenna gain function ),( g  and receiver noise temperature becomes 

  .

~~

),(~
),(

,,

2

opt2

,,
eq0

2
min,ff
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2
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  (14) 

If all mode admittances mY  are matched to the optimum source admittance optY , the second term in the 

nominator vanishes, resulting in the highest SNR. This optimum case can only be achieved if all mode 

admittances are identical, which necessitates the use of a decoupling network. Without a decoupling 

network, the mode admittances cannot be simultaneously matched to the optimum source admittance, 

and some modes will be badly noise-matched. If these modes are needed for forming the desired 

radiation characteristic, the SNR will be reduced substantially. In contrast to the correction of the 

weights as shown above, this effect cannot be compensated for by means of digital signal processing.  

 

4. DECOUPLING OF ANTENNA PORTS 

In order to overcome the problems described above, an RF decoupling-network (RF-DN) has to be 

introduced between the antenna ports and the receiver channels. For the considered configuration of 

three monopoles, a novel and very simple solution for this decoupling network is proposed. As seen 

from Fig. 3, there are two values 1F  and 2F  of the normalized frequency clfffF /4/ 0  where the 

real parts of AY  and BY  are equal to each other. For a given operational center frequency ctrf , the 

normalized frequency and thus the length l of the monopole can be adjusted to yield 






2

1ctr

or

4

F

F

c

lf
F        (15) 

and therefore   0)()()( ctrctr3
1

ctr12  fGfGfG BA . With )()( ctr12ctr12 fjBfY  , the decoupling 

network reduces to reactive cross coupling between the adjacent antenna ports. Each coupling element 

has an admittance of 12jB  at the center frequency (see Fig. 6), thus yielding a 3-port admittance matrix  
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for the RF-DN. The admittance matrix of the array and the attached decoupling network, Y
~

, then 

becomes 

)(

100

010

001
~

ctrDN fYA
















 YYY .    (17) 

Each antenna port thus has an input admittance of 121111 2
~

BjYYY A   at the center frequency, 

irrespective of the excitation of the other ports. It therefore becomes possible to simultaneously match 

each port (and hence each mode) to the receiver input impedance, inY  or the optimum source 

impedance, optY . This may be accomplished in a straightforward manner using standard impedance 

matching techniques. Receiver channels are often internally noise-matched and possess a real valued 

input admittance inY  that coincides with the characteristic admittance of cables (e.g. 1/50 1 ). In 

such cases *
inopt YY  , so that optimum noise matching and power matching can be achieved 

simultaneously. 

 

For the example with 10/0a  and 40/0d , the normalized frequency 9998.01 F , so that the 

length l of the monopole needs to be decreased by 0.02% relative to 4/ctr  in order to yield 

1
12 0151.00  jY  at the center frequency. If, for example, the center frequency is chosen as 

45.2ctr f  GHz, decoupling can be accomplished by connecting a capacitor of 981.0C  pF between 

adjacent antenna ports. With this simple decoupling network, ports 1 to 3 become decoupled at ctrf . 

This results in a decoupled port impedance of  27.23.140
~

/1 11 jY , which may easily be 

transformed into the desired load impedance, e.g.  50inZ . The frequency bandwidth of decoupling 

and matching for this case is indicated in Fig. 7, which shows the frequency response of 
2

11

~
S  
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(fraction of power reflected) and 
2

21

~
2 S  (fraction of power coupled to the loads at the other two 

ports). Note that the loss due to reflection and cross coupling is theoretically zero at the center 

frequency. If the frequency bandwidth is defined via the requirement that 89 % of the power incident 

to the array is to be radiated (equivalent with the VSWR<2 bandwidth for single antennas), a 

fractional bandwidth of 2.6% is observed. If a wave is fed into port 1 of the new structure in Fig. 6(b) 

while the other two ports are terminated in matched loads, a linear combination of modes A and B is 

excited, resulting in a radiation pattern  

  ,3/),(2),(),(1  BA CCC     (17) 

with a maximum directivity of dBi2.1041.10
2

max11  CD . Fig. 8 depicts the normalised azimuth 

pattern for 2/ . If port 2 or 3 is excited, the radiation pattern is rotated about the z-axis by 120  

degrees. These radiation patterns are characterized by the fact that even in direction where the 

maximum directivity occurs, a partially destructive interference between the field contributions of the 

monopole currents occurs, which is a feature of a superdirective array [1]. The monopole elements 

together with the RF-DN form a resonator that provides the resonant current enhancement needed for 

superdirective radiation properties.  

 

5. CONCLUSION 

The potential problems associated with strong mutual coupling between closely spaced array elements 

have been highlighted. It was shown that without a decoupling network it would be impossible to 

match all of the characteristic modes simultaneously. Although the effects of impedance mismatch 

may be compensated for in digital beamforming, the inability to compensate for the SNR degradation 

remains a problem that can only be solved by decoupling the array ports. For the array of three closely 

spaced monopoles, a novel yet simple decoupling network has been proposed.  

 

The decoupled array represents a superdirective antenna. The drawback of superdirectivity is the 

frequency bandwidth limitation, which is related to the radiation quality factor radQ  of the higher-
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order modes. Since radQ  increases with decreasing element spacing, the allowed minimum element 

spacing is governed by the required fractional frequency bandwidth. Furthermore, dissipative losses in 

the antenna and matching network structure (up to now neglected) need to be taken into account. The 

unloaded quality factor 0Q  of matching and antenna structure must sufficiently exceed the radiation 

quality factor of the high-order radiation pattern to ensure that the increased gain due to 

superdirectivity is not negated by a reduction in efficiency [1-3].  
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Fig.1: Considered 3-element array with monopole elements (height l, diameter d) and element 
spacing a.  
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Fig. 2: Normalized radiation patterns of the three eigenmodes, CBAmDmm ,,,/),2/( C  

with maximum directivities 24.3AD , 94.7BD  and 76.7CD .  



  13

0.6 0.7 0.8 0.9 1.0 1.1
-0.216

-0.064

-0.008

0

0.008

0.064

0.216

0.512

F
2 F

1

 

 

G, B

F = f/f
0
 = 4f l/c

 G
A

 B
A

 G
B

 B
B

 
 
Fig. 3: Computer simulation results for the frequency response of real and imaginary part of the input 

admittance AY  for the low-order and CB YY   of the higher-order modes. 1F  and 2F  indicate 

values of the normalized frequency where the conductance BA GG  . 
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Fig.4: Dependence of the radiation quality factor of the high-order modes on the element spacing.  



  15

inoise,m

Receiver channelvnoise,m

im



+

Ym Yin
vin,m

+ 

 
 

Fig. 5: Equivalent circuit for the three modes for signal-to-noise considerations: 
 Left: Current source representing mode m of the antenna array with },,{ CBAm . 

 Right: Receiver channel with equivalent noise voltage mvnoise,  and noise current minoise, . 
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Fig. 6:  Array and beamforming system (a) without and (b) with a decoupling network. 
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Fig. 7: Computer simulation results for the effectiveness of decoupling and matching. Shown is the 

fraction of power reflected and power coupled to other ports as a function of frequency when 
feeding one port of an array with 1.0/ 0 a , 025.0/ 0 d  and monopole length adjusted to 

24995.0/ 0 l . Decoupling according to Fig. 6(b). 
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Fig. 8: Normalized radiation pattern 11 /),2/( DC  at center frequency ctrf  obtained by feeding 

port 1 of the 3-element array with attached decoupling network as shown in Fig. 6(b). 
Maximum directivity is 41.101 D . 

 
 
 
 
 
 
 
 


