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A SUPERFAST STRUCTURED SOLVER FOR TOEPLITZ LINEAR
SYSTEMS VIA RANDOMIZED SAMPLING∗

JIANLIN XIA† , YUANZHE XI† , AND MING GU‡

Abstract. We propose a superfast solver for Toeplitz linear systems based on rank structured
matrix methods and randomized sampling. The solver uses displacement equations to transform
a Toeplitz matrix T into a Cauchy-like matrix C, which is known to have low-numerical-rank off-
diagonal blocks. Thus, we design a fast scheme for constructing a hierarchically semiseparable (HSS)
matrix approximation to C, where the HSS generators have internal structures. Unlike classical HSS
methods, our solver employs randomized sampling techniques together with fast Toeplitz matrix-
vector multiplications, and thus converts the direct compression of the off-diagonal blocks of C
into the compression of much smaller blocks. A strong rank-revealing QR factorization method is
used to generate/preserve certain special structures, and also to ensure stability. A fast ULV HSS
factorization scheme is provided to take advantage of the special structures. We also propose a
precomputation procedure for the HSS construction so as to further improve the efficiency. The
complexity of these methods is significantly lower than some similar Toeplitz solvers for large matrix
size n. Detailed flop counts are given, with the aid of a rank relaxation technique. The total cost of
our methods includes O(n) flops for HSS operations and O(n log2 n) flops for matrix multiplications
via FFTs, where n is the order of T . Various numerical tests on classical examples, including
ill-conditioned ones, demonstrate the efficiency, and also indicate that the methods are stable in
practice. This work shows a practical way of using randomized sampling in the development of fast
rank structured methods.
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1. Introduction. In this work, we consider the solution of Toeplitz linear sys-
tems. Toeplitz systems arise in many numerical and engineering applications, such as
PDE and integral equation solutions, image and signal processing, time series analysis,
orthogonal polynomials, etc. A Toeplitz system looks like

(1.1) Tx = b,

where T is a Toeplitz matrix in the following form:

(1.2) T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t0 t−1 t−2 · · · t−(n−1)

t1 t0 t−1
. . .

...

t2 t1 t0
. . . t−2

...
. . .

. . .
. . . t−1

tn−1 · · · t2 t1 t0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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That is, the entries along every diagonal of T are constant. T is defined by a vector
of 2n− 1 parameters t−(n−1):n−1, called the Toeplitz vector, that generates T .

The system can be solved quickly. There are fast solvers that need about O(n2)
flops, such as Schur-type and Levinson-type methods [28]. Methods requiring less than
O(n2) costs (or roughly O(n) costs) are called superfast solvers. However, some fast
and superfast algorithms are unstable. See [4, 6, 14, 41] for some discussions. Stable
generalized Schur algorithms [13, 27] and look-ahead algorithms [8] are proposed to
enhance the numerical stability. Superfast solvers with stabilization also exist [44].
Preconditioning techniques are first studied in [35, 39]. See [7, 34] and a survey paper
[9], as well as the references therein. Fast displacement-equation type algorithms in
[15, 17, 21, 22, 23] are numerically or analytically shown to be stable. Some of these
methods transform T into a Cauchy-like matrix C using displacement structures [26]
and then solve C.

1.1. Displacement structures and a low-rank property. Displacement
structures are first introduced in [26]. Selected detailed studies can be found in
[15, 21, 24, 36, 38]. It is straightforward to verify that the following Sylvester-type
displacement equation for T holds:

(1.3) Z1T − TZ−1 = GHT ,

where G ∈ R
n×d, H ∈ R

n×d, and Zt = ( 0 t
In−1 0

), with In−1 the size n− 1 identity

matrix. Here, d = 2 is called the displacement rank. Since Z1 is a circulant matrix,
it can be diagonalized by the normalized inverse discrete Fourier transform matrix

(1.4) Fn =
1√
n
(ω2(i−1)(j−1))1≤i,j≤n, ω = e

πi
n , i =

√
−1.

This leads to another displacement equation [21],

(1.5) D1C − CD−1 = ĜĤT ,

where

(1.6)
C = FTDH

0 FH , Ĝ = FG, Ĥ = FD0H,

D0 = diag(1, ω, . . . , ωn−1), D1 = diag(1, ω2, . . . , ω2(n−1)), D−1 = ωD1.

Equation (1.5) indicates that C is a Cauchy-like matrix in the following form:

(1.7) C = FnTDH
0 FH

n =

(
ĜiĤ

T
j

ω2(i−1) − ω2j−1

)
1≤i,j≤n

,

where Ĝi is the ith row of Ĝ, and Ĥj is the jth row of Ĥ . Thus with FFTs, the
system (1.1) can be converted into a Cauchy-like system

(1.8) Cx = b,

where x = FnD0x and b = Fnb. Such a strategy for Toeplitz solutions is first used
in [21].

The matrix C and similar representations have a low-rank property [12, 33]. That
is, its off-diagonal blocks have small numerical ranks for a given tolerance, which are
bounded by O(log n). Based on this property, two superfast and numerically stable
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Toeplitz solvers are developed in [12, 33]. The solvers compress the off-diagonal
blocks of C or its variations and approximate C by rank structured matrices. (Here
by compression, we mean the computation of a truncated SVD or a rank-revealing
factorization.) The method in [12] first uses O(n2 logn) flops to approximate the
following Cauchy matrix in a precomputation stage:

(1.9) C =

(
1

ω2(i−1) − ω2j−1

)
1≤i,j≤n

.

Then a rank structured approximation to C, called a sequentially semiseparable (SSS)
matrix [11], can be constructed with about O(n log2 n) cost. After this, (1.1) can be
solved quickly with about O(n logn) cost. The method in [33] has similar complexity.

1.2. Main results. The methods in [12, 33] need O(n2 logn) ∼ O(n2 log2 n)
flops for precomputations, and then O(n log2 n) flops for the structure construction
and solution for (1.8). They use only the low-rank property of C and ignore its Cauchy-
like structure. Here, we consider further taking advantage of this special Cauchy-like
structure (in fast matrix-vector multiplications) as well as special matrix forms (e.g.,
(3.10)–(3.11)), so as to reduce the costs of rank structured operations to O(n) after
an O(n log2 n) cost for FFTs. We achieve this from several aspects.

One aspect is that we use randomized sampling together with fast Toeplitz matrix-
vector multiplications. The ideas of randomized sampling for constructing rank struc-
tured approximations have been extensively studied, and are shown to be very useful
in dealing with rank deficiency [29, 30, 31, 37] (and others). As one example, to com-
press a low-rank block Φ, multiply a random matrix X to Φ. The product ΦX is then
compressed with rank-revealing factorizations, which gives the compression informa-
tion of Φ [29]. For a given matrix with small off-diagonal ranks, the method in [31]
uses O(1) such matrix multiplications to approximate the matrix by a rank structured
form called hierarchically semiseparable (HSS) matrix [10, 46]. An HSS matrix is a
data-sparse form given by a sequence of internal small dense matrices (called genera-
tors). The method in [30] uses O(log n) multiplications without knowing the entries
of the original matrix. Here, it is well known that Toeplitz matrix-vector products
can be quickly computed [16]. Together with (1.7), we can compute the product of
the Cauchy-like matrix C with an n×O(log n) Gaussian random matrix X as needed
here in O(n log2 n) flops via FFTs. Then, we use a procedure similar to the one in
[31] to approximate C by an HSS matrix.

Another aspect is that we use a special HSS form by incorporating additional
structures into the HSS generators. The generators obtained from the off-diagonal
block compression via randomized sampling has certain special structure (e.g., (3.5)).
Unlike the method in [31] which uses an extra step to reorthonormalize an HSS form,
we avoid this step to not only save the cost but also preserve the special structures. In
fact, the special structures of the generators can be used to improve the HSS solution
efficiency.

By taking advantage of both the Cauchy-like and additional structures, we gain
significant improvements to classical HSS algorithms. Unlike some inversion-based al-
gorithms, we propose special ULV-type [10, 46] HSS factorization and solution meth-
ods which are often more efficient. The complexity of all these algorithms is O(n),
and is significantly lower than both standard HSS methods [45] and the structured
operations in the Toeplitz solvers in [12, 33]. We give detailed flop counts, which are
not available in the Toeplitz solvers in [12, 33] or the randomized sampling methods
in [30, 31]. We also use an idea of rank relaxation [45] so that even if the off-diagonal
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rank bound of C is O(log n), we can still achieve truly O(n) complexity in the HSS
operations, in practice, instead of O(n logn) or more. The usage of strong RRQR
factorizations leads to a stable process, which is verified by numerical experiments.
A variety of Toeplitz examples, especially ill-conditioned ones, demonstrate both the
efficiency and the accuracy of our methods.

We also discuss a precomputation procedure to first compress the off-diagonal
blocks of C, which depends on n only, instead of the entries of T . The information is
then used in the HSS construction for C so as to further reduce or avoid the cost of
multiplying C and the random matrix X . The total precomputation cost is only O(n)
(after FFTs), in contrast with O(n2 logn) or O(n2 log2 n) in [12, 33]. This version is
especially useful when there are multiple T of the same large size.

1.3. Outline. The remaining sections are organized as follows. Section 2 pro-
vides brief discussions of HSS representations and the low-rank property of C. The
HSS construction, factorization, and solution procedures for C are presented in sec-
tion 3. Section 4 then briefly describes an HSS construction method with precompu-
tations. A variety of numerical examples are shown in section 5, and we draw some
concluding remarks in section 6. The following notation is used in the presentation:

• Let Ii be a subset of {1 : n} ≡ {1, 2, . . . , n} with contiguous indices. We
use Ici and Iri to denote the subsets of contiguous indices in {1 : n} that are
smaller and larger than those in Ii, respectively.

• A|Ii is the submatrix formed by all rows of A with row index set Ii. Also,
A|Ii×Ij is the submatrix of A with row index set Ii and column index set Ij .

• diag(D1, . . . , Dk) is a diagonal matrix with diagonal blocks D1, . . . , Dk, and
diag(v1:k) is a diagonal matrix with diagonal entries v1, v2, . . . , vk.

2. Hierarchically semiseparable matrices and the low-rank property.

2.1. Review of hierarchically semiseparable representations. HSS repre-
sentations enable us to conveniently take advantage of the low-rank property of the
Cauchy-like matrix in (1.7). An n × n HSS matrix A with postordering notation is
defined hierarchically in terms of three components [46]:

(1) There is a full binary tree T with nodes labeled as i = 1, 2, . . . , which are
postordered. That is, any nonleaf node i has a left child c1 and a right child
c2, ordered as c1 < c2 < i.

(2) There is an index set Ii (with contiguous indices) associated with each node
i of T . The index sets are defined so that Ii = {1, 2, . . . , n} for the root node
i = root(T ), and Ic1 ∪ Ic2 = Ii, Ic1 ∩ Ic2 = ∅ for the children c1 and c2 of each
nonleaf node i.

(3) There are a sequence of matrices Di, Ui, Vi, Ri, Wi, Bi (called HSS gener-
ators) associated with the nodes i = 1, 2, . . . , so that for any nonleaf node i
and its children c1 and c2,

Di ≡ A|Ii×Ii =

(
Dc1 Uc1Bc1V

T
c2

Uc2Bc2V
T
c1 Dc2

)
,(2.1)

Ui =

(
Uc1

Uc2

)(
Rc1

Rc2

)
, Vi =

(
Vc1

Vc2

)(
Wc1

Wc2

)
.(2.2)

Initially, the U , V generators are defined for leaf nodes, and R, W generators
are defined for all nodes. R, W are called translation operators and are used
to recursively reconstruct the U , V generators associated with i from those
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associated with c1 and c2 [10]. If i = root(T ), then Di ≡ A, and Ui, Vi,
Ri, Wi, Bi are set to be empty matrices (since root(T ) is associated with a
diagonal block which is the entire A, instead of any off-diagonal block).

Then A is said to be in an HSS form with the corresponding HSS tree T . See
Figure 2.1 for an example. Note that we use matrix transposes V T in (2.1) even if A
is complex. This is convenient for our operations below.

U7B7V14T
D1

D2
D4

D5
D8

D9
D11

D12

U10B10V13T

U3B3V6T

U14B14V7T

U6B6V3T

U13B13V10T

root

1 2

3

7 14

6

4 5
Fig. 2.1. An HSS matrix and its HSS tree.
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Fig. 2.2. The numerical ranks rl (versus the row sizes Nl) of the HSS block rows A−
i at level

l of the HSS partition for order n Cauchy matrices C in (1.9), where the relative tolerance for
computing the ranks is τ = 10−8, the bottom level HSS block row size is Nlmax = 20, and for
comparison purposes, we also plot shifted logNl and log logNl curves.

An HSS form can be constructed by compressing certain off-diagonal blocks, called
HSS blocks of A associated with each node i of T and defined as

(2.3) A−
i =

(
A|Ii×Ici

A|Ii×Iri

)
, A

|
i =

(
A|Ici×Ii

A|Iri×Ii

)
.

Clearly, the columns of Ui form a basis for the column space of the HSS block row

A−
i , and the rows of V T

i form a basis for the row space of the HSS block column A
|
i.

We call the maximum (numerical) rank of all HSS blocks the HSS rank of A.

2.2. Low-rank property of C. According to [12] and section 4, the numerical
rank of an HSS block of C in (1.7) is at most twice that of the corresponding HSS



842 JIANLIN XIA, YUANZHE XI, AND MING GU

block of C in (1.9). Thus to examine the low-rank property of C, it is sufficient
to look at C. The HSS rank of C can be shown to be at most O(log n) [12, 33].
In Figure 2.2, we plot the numerical ranks of the HSS block rows of two Cauchy
matrices C. Each matrix is hierarchically partitioned into lmax levels of HSS blocks.
At level l = 0, 1, . . . , lmax, the HSS block has row size Nl = n/2l and numerical rank
rl. Clearly, when l decreases, Nl doubles, but rl only increases slightly. In fact,
Figure 2.2 indicates that rl increases much slower than O(logNl) (it is roughly in the
pattern of O(log logNl) in this computation). Although not yet analytically justified,
this is observed to hold numerically, in practice. This observation is useful for the
derivation of the truly linear complexity of our HSS construction and solution as in
section 3.6.

3. Fast HSS construction and solution for the Cauchy-like system. In
this section, we study the fast construction of an HSS approximation to C in (1.7). Let
r be the HSS rank of C. Then r = O(log n). Unlike the HSS construction algorithm
for a general dense matrix (which costs O(rn2) flops or more), here we need only
O(n log2 n) flops for C. The main framework of our method is listed in Table 3.1.

Table 3.1

Overview of our superfast Toeplitz solver.

Stage Step Section

T to C Conversion of T to C 1.1

C to HSS approximate Computation of CX and CTX with random X 3.1
Compression via randomized sampling 3.2
HSS construction for C with CX and CTX 3.3

Factorization/solution HSS factorization 3.4
HSS solution for Cx = b 3.5

Recovery of the solution to Tx = b (x = D−1
0 F∗

nx) 1.1

Some major ideas used are as follows:
(1) A structure-preserving rank-revealing factorization via randomized sampling.
(2) Fast Toeplitz matrix-vector multiplication via circulant matrix-vector multi-

plication and FFT.
(3) HSS construction via hierarchical application of the compression and ran-

domized sampling.
(4) Rank relaxation in the detailed analysis of the complexity.

3.1. Fast matrix-vector multiplication for C. Our HSS construction for C
needs the multiplication of C with an n× (r+μ) Gaussian random matrix X , where r
is the HSS rank of C, and μ is a small integer. (The values of r + μ in some practical
examples are shown in section 5.) According to (1.7), we have

(3.1) CX = FnT (DH
0 FH

n X).

The product X̃ = DH
0 FH

n X can be obtained efficiently and stably via FFT and
diagonal scaling. Thus, we need to compute T X̃. This can be done quickly by
extending the Toeplitz matrix to a circulant matrix (see, e.g., [16])

T =

(
T S
S T

)
,

where S is a Toeplitz matrix generated by the Toeplitz vector (t1:n−1, 0, t−(n−1):−1)
T .

Let v = (t0:n−1, 0, t−(n−1):−1)
T . ThenT can be diagonalized by the normalized inverse
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DFT matrix F2n (defined in (1.4)):

T = FH
2ndiag(F2nv)F2n.

Thus,

(3.2) T

(
X̃
0

)
=

(
T X̃

SX̃

)
= FH

2ndiag(F2nt)F2n

(
X̃
0

)
.

The last product can be quickly computed via FFTs and diagonal scaling, and its
first half is T X̃. The total cost for computing CX with (3.1) and (3.2) is about
40(r + μ)n logn flops for FFTs. Note that such a fast multiplication scheme works
since C is obtained from T , and is generally not applicable to an arbitrary Cauchy-like
matrix.

3.2. Compression method: Structure-preserving rank-revealing factor-
ization via randomized sampling. The construction of an HSS form usually in-
volves hierarchical compression of the HSS blocks. Without loss of generality, assume
Φ is an M × N block with numerical rank α. Compute a strong rank-revealing RQ
factorization [18]

(3.3) Φ
M×N

≈ P R
M×α

· Ω
α×N

,

where P is a permutation matrix. Let

R =

(
R1

R2

)
α

M − α
, E = R2R

−1
1 .

To ensure stability, the permutations are done by increasing det(R1) so that the entries
of |E| are small enough [18]. The increase of the determinant can be quickly detected.

Rewrite (3.3) as

(3.4) Φ ≈ P

(
R1

R2

)
Ω = P

(
I
E

)
(R1Ω) = P

(
I
E

)
Φ|̂I,

where Φ|̂I is a submatrix of Φ with row indices Î. This holds due to the permutation
and identity matrices. To emphasize the fact that Φ|̂I preserves part of the structure
of Φ, we call (3.4) a structure-preserving rank-revealing (SPRR) factorization of Φ.
This factorization is closely related to skeleton approximations [43], and is also called
interpolative decomposition [29, 31] or subset selection decomposition [25]. A similar
decomposition called representative row/column selection is also studied in [19] based
on strong rank-revealing LU factorizations.

To enhance the efficiency of the compression, especially when the size of Φ is
large, (3.4) can be combined with random sampling [29, 31]. Generate an N × (α+μ)
Gaussian random matrix X1, where μ is a small integer. Next, apply the SPRR
factorization to the product of Φ and X1, which is a much smaller matrix:

Y1 = ΦX1 ≈ P1

(
I
E1

)
Y1 |̂I1 .

Then an approximate factorization of A can be obtained as [29]

(3.5) Φ ≈ U1Φ|̂I1 with U1 = P1

(
I
E1

)
.
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It is shown in [20, 29, 32] that, under very mild assumptions for μ, the probability for
the approximation error to satisfy the following relationship is 1− 6μ−μ:

(3.6)
∥∥Φ− U1Φ|̂I1

∥∥
2
≤ (1 + 11

√
α+ μ

√
min(M,N))σα+1,

where σα+1 is the (α + 1)st singular value of Φ. For example, if μ = 20, then the
probability of failure is less than 10−17. If, in addition, M = N = 1000, α = 100, and
σα+1 = 10−15, then the right-hand side in (3.6) is about 3.8× 10−12. In practice, the
bound often overestimates the error. In our tests below, we use μ = 10 as in [31] and
a relative tolerance 10−15 (for σ1/σα+1).

This SPRR factorization has more advantages other than structure preservation.
It uses only matrix-vector multiplications without requiring the explicit entries of Φ.
If α � N , the compression of Y1 is significantly faster than that of Φ.

3.3. HSS construction for C. Our HSS construction algorithm has a scheme
similar to the one in [31], but with additional structures fully considered and without
using any extra reorthonormalization. Also, we use postordered traversal of a given
HSS tree T . Assume r is the HSS rank of C, and the HSS block row i have row
dimension mi and starting row index li. That is,

(3.7) li =

{ ∑
j: leaf, j<i mj + 1 if i is a leaf,

lc1 otherwise, if c1 is the left child of i.

First, use the method in section 3.1 to compute

(3.8) Y = CX, Z = CTX.

(In [31], two Gaussian random matrices are generated. Here, one is sufficient.)
Next, we show the HSS construction process following the traversal of the nodes

i = 1, 2, . . . of T . We compress the HSS blocks hierarchically to get the HSS generators
Ui, Vi, Ri, Wi, and Bi.

If i is a leaf, let Xi ≡ X |Ii , Yi ≡ Y |Ii , and Zi ≡ Z|Ii . Set Di ≡ C|Ii×Ii . Then we

compress C−
i and C|

i with SPRR factorizations and randomized sampling. We need to

form the products Φi ≡ C−
i X |(Ici∪Iri )

and Θi ≡ (C|
i)

TX |(Ici∪Iri )
for compression. The

ith block rows of CX and CTX are

DiXi + C−
i X |(Ici∪Iri )

= Yi and DT
i Xi + (C|

i)
TX |(Ici∪Iri )

= Zi,

respectively. This leads to

(3.9) Φi = Yi −DiXi, Θi = Zi −DT
i Xi.

See Figure 3.1(i).

Thus, to compress C−
i and C|

i, we compute SPRR factorizations

Φi ≈ UiΦi |̂Ii with Ui = Pi

(
I
Ei

)
r

mi − r
,(3.10)

Θi ≈ ViΘi|Ĵi
with Vi = Qi

(
I
Fi

)
r

mi − r
.(3.11)

(To simplify the notation, r is used to denote the numerical ranks of all HSS blocks.)
Then

(3.12) C−
i ≈ UiC−

i |̂Ii , (C|
i)

T ≈ Vi(C|
i)

T |Ĵi
.
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Di

C X Y

Ci Xi YiUi Ui Ii

Ii

Ii

c

r

C X Y

Ci Xi YiDiUc1
Uc2

Ii

Ii

Ii

c

r

(i) A leaf node i (ii) A nonleaf node i

Fig. 3.1. How Φi = C−
i X|(Ic

i
∪Ir

i
) is obtained when node i is a leaf node or a nonleaf node,

where the index sets satisfy Ici ∪ Ii ∪ Iri = {1, 2, . . . , n}.

Also, let

(3.13) Ŷi = V T
i Xi =

(
I FT

i

)
QT

i Xi, Ẑi = UT
i Xi =

(
I ET

i

)
PT
i Xi,

where the identity matrices (as additional structures) are used to save the multiplica-

tion cost. Since C−
i |̂Ii and (C|

i)
H |Ĵi

in (3.12) are blocks in C, we identify their global
indices in C as

(3.14) Ĩi = li + Îi − 1, J̃i = li + Ĵi − 1.

If i is a nonleaf node, assume c1 and c2 are the left and right children of i,
respectively, which have been visited before. Let

(3.15) Bc1 = C|̃Ic1×J̃c2
, Bc2 = C|̃Ic2×J̃c1

.

Due to recursion, all generators associated with c1 and c2 are available, and

(3.16) Yc1 −Dc1Xc1 = Uc1Φc1 |Ic1 , Yc2 −Dc2Xc2 = Uc2Φc2 |Ic2 .

For example, the first formula in (3.16) is a direct result of the steps associated with
c1, (3.10), and (3.18), together with (2.2). Therefore, we can ignore existing U , V
generators in our further compression as follows:

C−
i X |(Ici∪Iri )

= Yi −DiXi

≈
(

Yc1

Yc2

)
−
(

Dc1 Uc1Bc1V
T
c2

Uc2Bc2V
T
c1 Dc2

)(
Xc1

Xc2

)

=

(
(Yc1 −Dc1Xc1)− Uc1Bc1V

T
c2Xc2

(Yc2 −Dc2Xc2)− Uc2Bc2V
T
c1Xc1

)
≈
(

Uc1Φc1 |Ic1 − Uc1Bc1V
T
c2Xc2

Uc2Φc2 |Ic2 − Uc2Bc2V
T
c1Xc1

)

=

(
Uc1

Uc2

)(
Φc1 |Ic1 −Bc1 Ŷc2

Φc2 |Ic2 −Bc2 Ŷc1

)
.

See Figure 3.1(ii). Similarly,

(C|
i)

TX |(Ici∪Iri )
≈
(

Vc1

Vc2

)(
Θc1 |Ic1 −BT

c2Ẑc1

Θc2 |Ic2 −BT
c1Ẑc2

)
.



846 JIANLIN XIA, YUANZHE XI, AND MING GU

This means we need only compress

(3.17) Φi ≡
(

Φc1 |Ic1 −Bc1 Ŷc2

Φc2 |Ic2 −Bc2 Ŷc1

)
, Θi ≡

(
Θc1 |Ic1 −BT

c2Ẑc1

Θc2 |Ic2 −BT
c1Ẑc2

)
.

Compute SPRR factorizations

Φi ≈
(

Rc1

Rc2

)
Φ|̂Ii with

(
Rc1

Rc2

)
= Pi

(
I
Ei

)
,(3.18)

Θi ≈
(

Wc1

Wc2

)
Θ|Ĵi

with

(
Wc1

Wc2

)
= Qi

(
I
Fi

)
.(3.19)

Also, let

Ŷi =
(
WT

c1 WT
c2

)( X̂c1

X̂c2

)
=
(
I FT

i

)
QT

i

(
X̂c1

X̂c2

)
,(3.20)

Ẑi =
(
RT

c1 RT
c2

)( Ẑc1

Ẑc2

)
=
(
I ET

i

)
PT
i

(
Ẑc1

Ẑc2

)
,

where, again, the identity matrices are useful in saving the multiplication cost.
Similarly, use (3.14) to update the indices. Then the process repeats for the nodes

in T . The algorithm is summarized as follows.

Algorithm 1 (HSS construction for C).
• Compute the products (3.8)
• for nodes i = 1, 2, . . . of T

if i is a leaf
– Set Di ≡ C|Ii×Ii

– Compute Φi and Θi in (3.9)
– Compute Ui in (3.10) and Vi as in (3.11)
else

– Obtain Bc1 , Bc2 as in (3.15)
– Compute Φi and Θi (3.17)
– Compute Rc1 , Rc2 in (3.18) and Wc1 , Wc2 as in (3.19)
end

Remark 1. Unlike the method in [31], here we do not further reorthonormalize
the HSS form. That is, we maintain the forms of Ui, Vi in (3.10)–(3.11) and Ri, Wi

in (3.18)–(3.19), not only to avoid the extra cost, but also to preserve the internal
structures (permutations and identity matrices).

3.4. Fast ULV HSS factorization. For notational convenience, we do not
distinguish between C and its HSS approximation. Here, we directly use the special
forms of Ui, Vi, Ri, Wi to compute a ULV-type factorization. (ULV represents a
sequence of orthonormal and triangular factors. Here, the factors may be special
structured matrices.) Standard ULV HSS factorization [10, 46] has three main steps:

(1) Introduce zeros into HSS block row i by introducing zeros into Ui or Ri.
(2) Partially factorize Di.
(3) Merge remaining blocks and repeat.
The first step is often expensive. For example, it is usually done via a full QR

factorization Ui = Ωi(
0
Ũi
). Then ΩH

i is multiplied to the HSS block row C−
i so that
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zeros are introduced into C−
i , or

(3.21) ΩH
i Ui =

(
0

Ũi

)
.

This also needs a dense matrix multiplication D̃i = ΩH
i Di. Here, since Ui and Ri

have special forms as in (3.10) and (3.18), respectively, this step can be significantly
improved. That is, we can avoid the QR step and also reduce the matrix multiplication
cost. Our ULV factorization has a framework similar to those in [10, 46] (where
pictorial representations are available), but is much faster with internal structured
operations. Again, we traverse the tree T for nodes i = 1, 2, . . . .

If i is a leaf, according to (3.10), the following formula automatically introduces
zeros into Ui without any actual cost:

(3.22)

[(
−Ei I
I 0

)
PT
i

]
Ui =

(
0
I

)
.

That is, in (3.21), we simply set

ΩH
i =

(
−Ei I
I 0

)
PT
i , Ũi = I.

Then we also update the diagonal block Di as

D̃i =

(
−Ei I
I 0

)
PT
i Di.

Note that this requires only the multiplication of Ei with the pivot block of PT
i Di,

which reduces the ΩH
i Di dense multiplication cost from 2m3

i to 2r
2(mi−r). Therefore,

zeros are introduced into the HSS block row C−
i , and (3.12) is updated to(

−Ei I
I 0

)
PT
i C−

i ≈
(

0
I

)
C−
i |̂Ii .

Then partition D̃i as D̃i = ( D̃i;1,1 D̃i;1,2

D̃i;2,1 D̃i;2,2
)mi−r

r and compute a QR factorization

(
D̃T

i;1,1

D̃T
i;1,2

)
= Q̃i

(
D̂T

i;1,1

0

)
.

Update D̃i and the HSS block column C|
i by computing

D̂i = D̃iQ̃i =

(
Li 0

D̂i;2,1 D̂i;2,2

)
, Ṽi = Q̃T

i Vi ≡
(

Ṽi;1

Ṽi;2

)
,

where Ṽi is partitioned conformably. Therefore, D̂i;1,1 can be eliminated. Similarly,
the blocks associated with the sibling node of i can also be partially eliminated.

If i is a nonleaf node, its children c1 and c2 can be removed from T , and i becomes
a leaf with new generators

Di =

(
D̂c1;2,2 Bc1 Ṽ

T
c2;2

Bc2 Ṽ
T
c1;2 D̂c2;2,2

)
, Ui =

(
Rc1

Rc2

)
, Vi =

(
Ṽc1;2Wc1

Ṽc2;2Wc2

)
.
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(Here, Di, Ui, Vi are used for notational convenience, and they are not the original
generators associated with i.) This is the merge process. Note that, due to (3.18)–
(3.19), we have

Ui = Pi

(
I
Ei

)
, Vi =

(
Ṽc1;2

Ṽc2;2

)
Qi

(
I
Fi

)
.

The formation of Vi can also take advantage of the identity matrix. Here again, due
to the form Ui, we can apply the same procedure to node i as in the step for a leaf.
Thus, the fast elimination steps repeat, until we reach the root node where a direct
LU factorization is used.

3.5. Fast ULV HSS solution. Similarly, the solution for (1.8) (with the ULV
factors of the HSS approximation to C) can also be quickly computed. The framework
follows those in [10, 46]. Initially, partition b into individual pieces bi following all
the leaf level Di sizes. The solution consists of two stages.

The first stage is a forward substitution process. For a leaf i, let

(3.23) b̃i =

(
−Ei I
I 0

)
PT
i bi ≡

(
b̃i,1

b̃i,2

)
m− r
r

, yi ≡ L−1
i b̃i,1.

The multiplication for b̃i can be quickly conducted. For a nonleaf node i with children

c1 and c2, let bi = (
b̃c1,2

b̃c2,2
), and the above process (3.23) repeats for i. When

i = root (T ) is reached, we compute yi ≡ D−1
i b̃i,1 using the LU factorization of Di.

The second stage is a backward substitution process. Let xroot(T ) = yroot(T ). For
any nonleaf node i and its children c1 and c2, partition xi as xi = (xi,1

xi,2
) rr . Then

compute

xc1 = Q̃c1

(
yc1

xi,1

)
, xc2 = Q̃c2

(
yc2

xi,2

)
.

This process then continues in a top-down traversal of T . When it finishes, we just
need to merge the xi pieces associated with all leaves i to form the solution x.

3.6. Complexity, rank relaxation, and accuracy. To estimate the complex-
ity, we list the flop counts of some basic matrix operations in Table 3.2. Here, we
need only count the cost of the HSS block row compression, since the block column
compression cost is the same. For simplicity, assume all HSS blocks have numerical
ranks r and mi = m = O(r). Also let r̃ = r + μ, which is close to r.

Table 3.2

Flop counts of some basic matrix operations, which can be found in, say, [16] or can be derived
based on those. The RRQR factorization in our work is based on the modified Gram–Schmidt process
with column pivoting [16]. The SPRR factorization uses the RRQR factorization.

Operation Flops
Product of an m× q matrix and an q × r matrix 2mqr
RRQR factorization of an m× q matrix with rank r 4mqr − 2r2(m + q) + 4

3
r3

SPRR factorization of an m× q matrix with rank r 4mqr − r2(m+ 2q) + 1
3
r3

Full QR factorization of an m× q tall matrix (m > q) 2q2
(
m− q

3

)

Product of the Q factor and an m× r matrix 2rq(2m − q)
Solution of an order m triangular system Lx = b km2

The flop counts for the main steps of the HSS construction for C are listed as
follows, with low-order terms dropped:
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• Matrix multiplications:
– Computing the product CX : 40r̃n logn.
– For each leaf node i,

∗ Computing Φi in (3.9): 2m2r̃.
∗ Computing Ŷi in (3.13): 2r(m− r)r̃.

– For each nonleaf node i,
∗ Computing Φi in (3.17): 4r2r̃.
∗ Computing Ŷi in (3.20): 2r2r̃.

• SPRR factorizations:
– (3.10) for each leaf node i: 4mr̃r − r2(m+ 2r̃) + 1

3r
3.

– (3.18) for each nonleaf node i: 8r̃r2 − r2(2r + 2r̃) + 1
3r

3.
The total matrix multiplication cost (for both row and column operations) is thus

(3.24) ξ0 ≡ ξ0,1 + ξ0,2,

where ξ0,1 is for computing CX , and ξ0,2 is for updating the products in the construc-
tion process, and they are given by

ξ0,1 = 80r̃n logn,

ξ0,2 = 2

[ ∑
i: leaf

(
2m2r̃ + 2r(m− r)r̃

)
+

∑
i: nonleaf

(
4r2r̃ + 2r2r̃

)]
= 4r̃

(
m+ r + 2

r2

m

)
n.

The total HSS construction cost (for the compression and excluding ξ0) is

ξ1 = 2

[ ∑
i: leaf

(
4mr̃r−r2(m+2r̃) +

1

3
r3
)
+

∑
i: nonleaf

(
8r̃r2−r2(2r+2r̃)+

1

3
r3
)](3.25)

≈ 2

3
r

(
12μ+ 9r + 8

r2

m
+ 12

rμ

m

)
n.

Similarly, the ULV factorization and the solution costs are

ξ2 ≈ 2

(
4

3
m2 + 4mr − 2r2 + 16

r3

m

)
n and ξ3 ≈ 2

(
4m+ 4r + 8

r2

m

)
n,

respectively.
We then compare the performance of our methods with some similar ones from

several aspects. First, if m is chosen to be 2r as often used in HSS methods [45], we
get the costs as illustrated in Table 3.3. The methods are much more efficient than
classical HSS methods.

Table 3.3

Flop counts of our new HSS algorithms for C when m = 2r, as compared with classical HSS
algorithms, where the terms with μ are dropped since μ is a small constant.

HSS construction ULV factorization ULV solution

Classical HSS 6rn2 42r2n 37rn
New HSS (80r logn+ 74

3
r2)n 58

3
r2n 16rn

Next, unlike [31], we do not need an extra step to reorthonormalize the HSS form.
Such a step may cost as much as 413r2n flops when m = 2r [45], and it even destroys
the special structures in the generators.
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Furthermore, even our bounds above can be further improved. Assume, for the
HSS block rows corresponding to the nodes at level l of the HSS tree T , the row size
is Nl = N/2l and the maximum numerical rank is rl. (Here, the root is at level 0 and
the leaves are at the largest level lmax.) According to the idea of rank relaxation in
[45], when Nl and rl increase (as l decreases along the tree levels) following certain
patterns, HSS algorithms may achieve similar orders of complexity as when rl = O(1).
Here as observed in section 2, rl ≤ O(logNl) = O(lmax − l) in practice. Thus, let
m = O(1) so that rlmax = O(1). The count (3.25) is essentially improved to

ξ1 =
∑
i: leaf

O (1) +
∑

i: nonleaf

O

(
(lmax−l)2

[
13

3
(lmax−l)+ 6μ

])
= O(n).

Therefore, the actual HSS construction cost is truly linear in n, in practice. This also
holds for the ULV factorization and solution. Thus, the costs of our methods are

(3.26) ξ0,1 = O(n log2 n), ξ0,2 = O(n), ξ1 = O(n), ξ2 = O(n), ξ3 = O(n).

Remark 2. The accuracy of the method can be roughly discussed as follows:
(1) The HSS blocks of C have fast decaying singular values, and C can be accu-

rately approximated by our HSS construction scheme. The compression of
each HSS block introduces an error that satisfies the bound in (3.6) with a
high probability. (The bound is related to the tolerance.) Such a bound is
then magnified by an appropriate factor in the hierarchical compression. In
general, this often overestimates the error, as observed in other HSS methods
[10, 46] and randomized HSS methods or similar [30, 31].

(2) The original ULV HSS factorization methods in [10, 46] produce a sequence
of intermediate QR factorizations. This converts the HSS matrix into the
products of smaller orthogonal and triangular matrices at the hierarchical
levels, which can be used to solve HSS systems stably. Here, these QR fac-
torizations are replaced by a stable process (3.22). Also, the pivot growth
factor is generally much smaller than the worst case bound in the classical
LU factorization [19]. This helps ULV HSS schemes achieve good accura-
cies. Our numerical tests below indicate that our method works well also
for ill-conditioned problems, although a mathematical justification is not yet
available. A comprehensive error and stability analysis will be conducted in
future work. A closely related study can be found in [3].

4. Precomputations. The previous HSS construction algorithm requires the
SPRR factorizations of Φi and Θi for each node i. We can further improve the effi-
ciency of the HSS construction and randomized sampling by using a precomputation
stage. As pointed out in [12], we can first compress the HSS blocks of the Cauchy
matrix C in (1.9). The compression steps in section 3.3 can be significantly improved
so that the SPRR factorizations take only O(log3 n) flops. Also, the multiplication
with X is needed only in this precomputation. This is briefly explained as follows.

Due to the special structure of C, its compression can be performed with high
efficiency. That is, at each level of the HSS tree, only one block needs to be compressed.
Then a shifting strategy similar to the one in [12] can be used to get the compressed
forms for other blocks at the same level. Similarly, the column compression stage can
also take advantage of the compression information from the row compression stage.

The compression information from C can then be used to quickly compute an
HSS approximation to C. Without loss of generality, we consider only a leaf node i.
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For convenience, we use similar notation as in the previous section, but with different
fonts. That is, C−

i , Ui, etc., are replaced by C−
i , Ui, etc., respectively. Once we

have an approximate factorization C−
i ≈ UiC

−
i |̂I1 , similar to the method in [12], the

corresponding HSS block C−
i of C in (1.7) can be approximated by

C−
i ≈ ÛiΨ̂i with

Ûi =
(

diag
(
Ĝ|(li:li+m−1),1

)
Ui diag

(
Ĝ|(li:li+m−1),2

)
Ui

)
,

Ψ̂i =

⎛
⎝ C−

i |̂I1diag
(
Ĥ |(li:li+m−1),1

)
C−

i |̂I1diag
(
Ĥ |(li:li+m−1),2

)
⎞
⎠ ,

where Ĝ and Ĥ are given in (1.6) and Ĝ|(li:li+mi−1),1 is the vector given by rows li

to li +m− 1 of the first column of Ĝ.
Then to preserve the structure of C−

i in the factorization, we further compute an
SPRR factorization

(4.1) Ûi ≈ UiÛi |̂Ii with Ui = Pi

(
I
Ei

)
.

Thus, due to the special structure of Ui (permutation and identity matrix), we have

(4.2) C−
i ≈ UiÛi |̂IiΨ̂i = UiC−

i |̂Ii .

Therefore, we get a factorization (4.2) that is similar to (3.12) and still preserves the
Cauchy-like structure of C in C−

i |̂Ii .
This idea can be modified to handle upper level HSS blocks similarly. After the

precomputation stage, the HSS construction for C costs only O(n) flops.
Remark 3. The cost of the SPRR factorization (4.1) is comparable to that of

(3.10). However, we save the cost of ξ0 = O(n log2 n) which is needed only in the pre-
computation. In practice, ξ0 is insignificant if n is not very large. Hence, the scheme
with precomputations is suitable for large n. This section shows the potential of this
precomputation stage for multiple T of the same large n, and the details will appear
in future work. Our current implementation and numerical experiments in the next
section focus on the previous direct HSS construction for C without precomputations.
This direct version gives satisfactory results and is sufficient in general.

5. Numerical experiments. In this section, we test our algorithm (denoted
NEW) in section 3, which is implemented in MATLAB on a Unix machine. For conve-
nience, we use the following notation in the experiments:

• m is the leaf level HSS block row size.
• r̃ = r + μ is the column size of X as in section 3.3.
• ξconstr(NEW) = ξ0 + ξ1 and ξsol(NEW) = ξ2 + ξ3 as in (3.26) are the flop counts
of the HSS construction and solution, respectively, for C by NEW.

• e2 =
‖x−x̃‖2

‖x‖2
is the relative error, where x is the exact solution to Tx = b and

x̃ is the numerical one.
• γ2 = ||T x̃−b||2

‖|T x̃|+|b|‖2
is the relative residual for the numerical solution.

• σ is the storage size, such as the total number of nonzeros in the factors.

Example 1. Matrix A: The KMS Toeplitz matrix [42] defined by the Toeplitz
vector t with

(5.1) tk = ϕ|k|, 0 < ϕ < 1.
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Fig. 5.1. Example 1: Numerical results for the well-conditioned Matrix A with ϕ = 0.5, where
m = 80 and r̃ = 40 in NEW, and NEW(0) (or NEW(2)) is for the accuracies of NEW without (or with two
steps of) iterative refinement.

Our method NEW is compared with four other methods (also in MATLAB):
• SSS: The superfast solver in [11] based on SSS structures. SSS uses an O(n2)
complexity precomputation procedure, whose cost is excluded here. (Even if
so, NEW is still much faster than SSS in general, as illustrated below.)

• DIS: The fast solver in [2] with displacement structures.
• SCH1: The superfast Schur algorithm in [40] with improved stability.
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• SCH2: The superfast Schur algorithm in [1].
For the case when ϕ = 0.5 in (5.1), the Toeplitz matrix T is well conditioned. For

example, when n = 103, the 2-norm condition number κ2 ≈ 9. The flops, timings (in
MATLAB), and accuracies of the algorithms are shown in Figure 5.1. The relative
tolerance in RRQR factorizations is set to be 10−15 in all our tests, although sometimes
a larger tolerance may save some costs. We also show the solution costs of NEW and
SSS after the factorizations in Figure 5.2, where b is generated with Tx, and x is
random. For ϕ = 1− 10−12 in (5.1), T is ill conditioned, and the results are given in
Figure 5.3. We make the following observations:

• The total costs, timings, and factorization costs of NEW are roughly linear
in n. In Figures 5.1(i)–(iii), 5.2, and 5.3(i)–(iii), we also included a line for
O (n). Clearly, this line matches well each performance line for NEW.

• Each flop/timing line for NEW has smaller slopes than those for other methods.
In fact, in Figures 5.1(i), NEW starts to be faster than SSS, DIS, and SCH1

around n = 29, 213, and 215, respectively. In Figure 5.3(i), such break-even
points are even smaller.

• The storage of NEW is also nearly O (n). When n is around 215, NEW requires
less storage than all the other methods except DIS (which is much slower).

• NEW performs better for the ill-conditioned case, both in the costs and the
accuracies. When n gets large, the other methods either require too much
memory, are too slow, or break down. For example, in Figure 5.3, SCH1 and
SCH2 produce NaN results in MATLAB. For the well-conditioned case, NEW
gives relatively lower accuracies. However, high accuracies can be quickly
reached with few steps of iterative refinement.

• Note that NEW is also very flexible, and works for general n and (nonsymmet-
ric/indefinite) T . However, SCH1 and SCH2 works only for symmetric positive
definite T . Currently, SCH1 also requires n to be a power of 2.
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Fig. 5.2. Example 1: Solution flops and timings for NEW corresponding to Figure 5.1.

Example 2. Then we test the algorithm NEW on various matrices as follows:
• Matrix B: The Toeplitz vector t that defines the matrix T is

t−(n−1):−1 = 1 + randn(n− 1, 1)/n, t0:n−1 = 1 + randn(n, 1)/n,

where randn(n, 1) generates n normally distributed random numbers. T is
mildly ill conditioned.
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Fig. 5.3. Example 1: Numerical results for the ill-conditioned Matrix A with ϕ = 1 − 10−12,
where m = 80 and r̃ = 40 in NEW.
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• Matrix C: The Prolate Toeplitz matrix defined by

t0 = 2ω, tk =
sin(2ωkπ)

kπ
, k = 0, ω ∈ [0, 1/2].

This is a classical test matrix which is very ill conditioned [15, 17]. Here, we
use ω = 1/4.

• Matrix D: The Toeplitz matrix defined by

tk =
√
ε2k2 + 1.

The matrix has a 2-norm condition number κ2 ≈ 0.363n2e3.07/ε [5]. Here, we
choose ε = 1

8 , and then κ2 ≈ 1.7n2 × 1010.
• Matrix E: The Toeplitz matrix defined following a Gaussian radial basis func-
tion as

tk = e−ε2k2

.

The matrix has a condition number κ2 ≈ 1
2e

π2/(4ε2) and is highly ill condi-

tioned for small ε [5]. Here, we choose ε = 1
6 , and then κ2 ≈ 1.9× 1038.

The results are shown in Table 5.1. We see that the construction and solution
costs and storage still follow the patterns of nearly linear complexity. NEW gives small
residuals for all the matrices. In some cases, the solution errors are relatively larger for
large n and κ2. We may similarly use iterative refinement to improve the accuracies.

Table 5.1

Example 2: HSS construction cost (ξconstr), ULV solution cost (ξsol), and relative residual e2
of NEW for the Matrices B–E, where m = 80 and r̃ = 40.

n 25 × 10 26 × 10 27 × 10 28 × 10 29 × 10 210 × 10 211 × 10

ξconstr 3.33e7 7.95e7 1.69e8 3.68e8 7.37e8 1.53e9 3.05e9
ξsol 1.16e7 2.75e7 5.92e7 1.23e8 2.50e8 5.04e8 1.01e9

MatrixTime 3.40e−1 4.40e−1 9.20e−1 1.96e0 3.91e0 8.44e0 1.61e1
B σ 1.52e5 3.3e5 6.96e5 1.42e6 2.87e6 5.78e6 1.56e7

γ2 6.76e−14 1.52e−12 6.35e−12 4.03e−11 8.50e−11 5.92e−10 1.85e−9
e2 3.40e−9 4.48e−7 3.15e−6 5.74e−5 6.25e−4 7.16e−2 2.34e−1

ξconstr 3.63e7 8.69e7 1.90e8 3.97e8 8.02e8 1.62e9 3.30e9
ξsol 9.96e6 2.58e7 5.95e7 1.23e8 2.50e8 5.05e8 1.01e9

MatrixTime 4.00e−1 5.20e−1 1.19e0 2.47e0 5.04e0 1.05e1 2.05e1
C σ 1.44e5 3.26e5 6.97e5 1.43e6 2.88e6 5.78e6 1.16e7

γ2 1.44−15 2.47e−14 4.96e−12 4.78e−12 7.82e−11 8.52e−10 8.00e−10
e2 1.66e2 2.85e2 7.68e1 3.32e2 8.52e2 1.21e4 1.14e6

ξconstr 3.42e7 8.08e7 1.80e8 3.73e8 7.87e8 1.55e9 3.16e9
ξsol 7.47e6 2.11e7 5.68e7 1.19e8 2.50e8 5.05e8 1.01e9

MatrixTime 3.60e−1 5.00e−1 1.12e0 2.33e0 4.79e0 9.85e0 1.89e1
D σ 1.28e5 2.99e5 6.85e5 1.41e6 2.87e6 5.78e6 1.16e7

γ2 4.76−15 6.55e−15 1.72e−13 4.83e−13 6.49e−14 2.66e−13 9.71e−15
e2 7.07e−2 2.37e−1 7.05e0 3.17e0 7.47e1 5.93e1 7.88e2

ξconstr 3.61e7 8.60e7 1.86e8 3.91e8 7.99e8 1.62e9 3.29e9
ξsol 1.05e7 2.72e7 5.95e7 1.23e8 2.50e8 5.05e8 1.01e9

MatrixTime 3.80e−1 5.40e−1 1.19e0 2.35e0 4.87e0 1.05e1 2.03e1
E σ 1.46e5 3.32e5 6.97e5 1.42e6 2.88e6 5.78e6 1.16e7

γ2 4.40−16 9.14e−16 1.85e−13 2.67e−13 5.21e−13 2.85e−12 5.01e−12
e2 1.56e1 3.60e1 1.44e1 4.43e1 7.96e1 1.73e2 2.92e2
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Example 3. Matrix F: The Toeplitz matrix defined as follows [17]:

tk =

⎧⎪⎪⎨
⎪⎪⎩

9
10 + 1

10 rand(1) if k = 0,
−t0 if k > 0,
0 if − n

2 < k < 0,
rand(1) otherwise,

where rand(1) generates a random number from uniform distribution in (0, 1).
NEW is compared with two methods:

Levinson: The Levinson algorithm in [8].

GEPP: Gaussian elimination with partial pivoting.
For this matrix, both the straightforward GEPP and the Levinson algorithm fail

since they produce huge element growth [17]. See Table 5.2. Here, NEW still provides
reasonably good accuracies. In comparison, Levinson works only for small n, and
quickly fails to produce meaningful results. GEPP fails for all the matrix sizes in the
table. Thus instead, for GEPP, we show the growth factors which are very large.

Table 5.2

Example 3: Numerical results for Matrix F, where m = 80, r̃ = 60 in NEW, ρgrow is the pivot
growth factor in GEPP, and NaN and Inf are outputs in MATLAB to mean certain failures.

n 25 × 10 26 × 10 27 × 10 28 × 10 29 × 10 210 × 10 211 × 10

NEW

ξconstr 1.03e8 2.38e8 5.32e8 1.05e9 2.18e9 4.45e9 8.84e9
ξsol 1.91e7 5.76e7 1.38e8 2.95e8 6.08e8 1.23e9 2.48e9
γ2 3.55e−17 9.85e−15 1.66e−12 5.99e−12 4.02e−11 4.30e−10 5.66e−9
e2 2.80e−15 3.89e−12 3.18e−10 1.43e−8 2.98e−7 1.05e−5 3.35e−4

Levinson
γ2 7.02e−2 NaN NaN NaN
e2 8.28e31 NaN NaN NaN

GEPP ρgrow 1.34e48 1.78e96 4.16e192 Inf

6. Conclusions and future work. In this paper, we study superfast structured
Toeplitz solutions based on an SPRR factorization and randomized sampling. The
Cauchy-like matrix C can be approximated quickly by an HSS matrix in O(n) flops
for block compression and O(n log2 n) flops for FFTs. One solver we propose is sig-
nificantly faster than an existing one based on SSS methods and some other methods
for large n. Strong rank-revealing factorizations are used for stability. We also briefly
show an HSS construction procedure with precomputations, where the compression
costs only O(log3 n) after FFTs. This construction procedure is especially useful if n
is very large and if there are multiple Toeplitz matrices of the same size.

The discussions here provide the possibility of developing new fast versions. For
example, it is possible to compute the products such as CX and Φi in (3.9) just once
in the precomputation. After this, the HSS construction for C involves just O(n) cost
block compression. This will appear in our future work. The current version without
precomputation gives superior results.

This work also shows a practical way of using randomized sampling in the devel-
opment of new efficient structured methods.
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[4] A. W. Bojańczyk, R. P. Brent, F. R. de Hoog, and D. R. Sweet, On the stability of
the Bareiss and related Toeplitz factorization algorithms, SIAM J. Matrix Anal. Appl., 16
(1995), pp. 40–57.

[5] J. P. Boyd and K. W. Gildersleeve, Numerical experiments on the condition number of the
interpolation matrices for radial basis functions, Appl. Numer. Math., 61 (2011), pp. 443–
459.

[6] J. R. Bunch, Stability of methods for solving Toeplitz systems of equations, SIAM J. Sci.
Statist. Comput., 6 (1985), pp. 349–364.

[7] R. H. Chan, J. G. Nagy, and R. J. Plemmons, Displacement preconditioners for Toeplitz
least squares iterations, Electron. Trans. Numer. Anal., 2 (1994), pp. 1–13.

[8] T. F. Chan and P. C. Hansen, A look-ahead Levinson algorithm for general Toeplitz systems,
IEEE Trans. Signal Process., 40 (1992), pp. 1079–1090.

[9] R. H. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38
(1996) pp. 427–482.

[10] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically
semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622.

[11] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and

D. White, Some fast algorithms for sequentially semiseparable representations, SIAM J.
Matrix Anal. Appl., 27 (2005), pp. 341–364.

[12] S. Chandrasekaran, M. Gu, X. Sun, J. Xia, and J. Zhu, A superfast algorithm for Toeplitz
systems of linear equations, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 1247–1266.

[13] S. Chandrasekaran and A. H. Sayed, Stabilizing the fast generalized Schur algorithm, SIAM
J. Matrix Anal. Appl., 17 (1996), pp. 950–983.

[14] G. Cybenko, The numerical stability of the Levinson–Durbin algorithm for Toeplitz systems
of equations, SIAM J. Sci. Statist. Comput., 1 (1980), pp. 303–319.

[15] I. Gohberg, T. Kailath, and V. Olshevsky, Fast Gaussian elimination with partial pivoting
for matrices with displacement structure, Math. Comp., 64 (1995), pp. 1557–1576.

[16] G. H. Golub and C. V. Loan, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1996.

[17] M. Gu, Stable and efficient algorithms for structured systems of linear equations, SIAM J.
Matrix Anal. Appl., 19 (1998), pp. 279–306.

[18] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong-rank revealing QR
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

[19] M. Gu and J. Xia, A numerically stable and superfast algorithm for solving Toeplitz systems
of linear equations, Presentation in the SIAM Conference on Applied Linear Algebra,
Monterey, CA, 2009.

[20] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288.

[21] G. Heinig, Inversion of generalized Cauchy matrices and other classes of structured matrices,
in Linear Algebra for Signal Processing, IMA Vol. Math. Appl. 69, Springer, New York,
1995, pp. 95–114.

[22] G. Heinig, Solving Toeplitz systems after extension and transformation, Calcolo, 33 (1996),
pp. 115–129.

[23] G. Heinig and F. Hellinger, Displacement structure of pseudoinverses, Linear Algebra Appl.,
197/198 (1994), pp. 623–649.

[24] G. Heinig and K. Rost, Algebraic methods for Toeplitz-like matrices and operators, Oper.
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