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A Superlinear Infeasible-Int erior-Point Algorithm 

for Nfonotone Complementarity Problems 

Stephen Wright* and Daniel Ralph' 

Abstract 

We use the globally convergent framework proposed by Kojima, Noma, and Yoshise 

to construct an infeasible-interior-point algorithm for monotone nonlinear complemen- 

tarity problems. Superlinear convergence is attained when the solution is nondegener- 

ate and also when the problem is linear. Numerical experiments confirm the efficacy 

of the proposed approach. 

1 Introduction 

We consider the problem of finding a vector pair (z,y) E iR" x R" such that 

Y = f ( 4 ,  2 T y = o ,  

where f : R" + 151" is continuously differentiable in an open set containing the nonnegative 

orthant of IR" (denoted by tRz) and monotone, that is, 

Problem (1) is a monotone nonlinear complementarity problem, abbreviated as SCP. We use 

S to denote the solution set for (1).  

Interior-point algorithms for problems of this type have been considered recently by 

Kojima, Yoma. and Yoshise [4], Ciiler [3], and Potra and Ye [6]. In [-I], the authors consider a 

broad class of infeasible-interior-point algorithms for (1) and show that, assuming continuous 

differentiability of f, at  least one of three scenarios eventually occurs: The algorithm reaches 

the vicinity of a solution to ( l ) ,  it reaches the vicinity of a solution to a nearby problem. 

or it returns an error condition that indicates that no solution of (1) exists in a certain 

large nonnegative neighborhood of (0,O). The algorithm we propose in this paper falls into 
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the class considered in [4], and so this global convergence result holds. Under additional 

assumptions on f and S, our algorithm exhibits superlinear convergence. 

Our algorithm is based on the one described in [9] for linear complementarity problems 

(for which f has the form f(x) = Ax + q for some n x n positive semidefinite matrix A) .  

It differs in two main respects. First, the step generated by the algorithm of [9] depends 

on the entire iteration history through its use of a parameter tk, which counts the number 

of fast steps taken prior to iteration k. However, in order to fit the framework of [4], 
the mapping from one iterate to the next must be determined completely by the current 

iterate (xk, yk), so this explicit dependence on t k  must be eliminated. Second, it is no longer 

practical to choose the step length CY to be the largest scalar in (0,1] that satisfies certain 

central path/infeasibility conditions, since to do so would require frequent use of expensive 

root-finding techniques applied to components of f(z). Instead, we use Armijo conditions in 

conjunction with a backtracking line search technique, in which the initial trial step length 

is chosen judiciously. 

We present some notation and define the algorithm in Section 2. In Section 3, we state the 

results from Kojima, Noma, and Yoshise [4] and show that the algorithm of Section 2 fits this 

framework. In Section 4, we prove the rate-of-convergence results under the assumption that 

the step lengths are of the same order as the current duality gap estimate xTy/n. We show 

in Section 5 that this assumption holds when the minimizer is unique and nondegenerate. 

Computational experience is reported in Section 6. 

Unless otherwise specified, 11 - 11 denotes the Euclidean norm of a vector. We frequently 

as superscripts on vectors and matrices and as subscripts on scalars. Subscripts are used to 

indicate components of vectors and matrices. The notation B( (5, g), 6 )  is used for the closed 

ball 

use (z ,y )  as shorthand for the vector (z T ,y T T  ) E R2". Iteration indices (usually k) appear 

B ( ( %  g ) ,  6) = ((2, Y) f R" x If?" I 11(& Y) - (%!all I 61- 

The vector (1,1,. - - , 1 )  is denoted by e, while z+ is obtained by replacing all negative com- 
ponents in the vector z by zero. If (x*,y*) is a solution of (l), we can partition - - - ,n) 
into two index sets B and N ,  where 

xf = 0 V i  E N ,  yz* = 0 Vi E B. (2) 

The solution is strictZy complementary if x* + y* > 0. 

2 The Algorithm 

Given a starting point with (xo, yo) > ( O , O ) ,  the algorithm generates a sequence of iterates 

( z k , y k )  > ( O , O ) ,  k = 1,2,-.. . With each vector pair (s, y )  > 0 we associate the following 
quantities: 

T 
p = x y/n, 7' = y - ~ ( x ) ,  e = (1, I , . . .  , llT, 

X = diag(x1,z2,---,z,), Y = diag(y1, y2, * - - , Yn). 
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When (x ,y)  = ( z k , y k ) ,  we sometimes attach a subscript or superscript k to the quantities 

The main computational operation at each iteration is solution of the 2n-dimensional 

p ,  r ,  X ,  Y to make the dependence on (z k k  , y  ) explicit. 

linear system 

where 6 E [0, .5]. The steps generated by the algorithm have the form 

where 

Note that 

At each iteration, the formulae (3) and (4) axe used to calculate a fast step and, if it is 

unsuccessful, a safe step. Safe steps ensure that desirable global convergence properties hold, 

while fast steps ensure rapid local convergence. These two types of steps axe distinguished 

by different choices of the centering parameter 8 in (3), different choices of the initial trial 

step size for the Armijo line search, and slightly different acceptance criteria for the step 

length. While the formal treatment and theqretical utility of fast and safe steps are quite 

different, the distinction between them need not be so wide in practice. The wide latitude 

allowed to the user in the choice of 6 and initial trial step size for safe steps means that safe 

steps can be made to perform like fast steps during the later stages of the algorithm. 

The overall algorithm is parametrized by a variety of positive scalar constants, which we 

specify now and explain later, as they arise in subsequent discussions: 

The starting point (zo, yo) is assumed to satisfy 

The main algorithm can now be specified. 

for IC = 0,1,2, - -, 

if ,uk = 0, 

then terminate with solution (zk, y k ) ;  
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(zk+', yk+') t fast(zk, yk); 

then (zk+', yk+') +- safe(zk, yk); 

end if 

if pk+l > p p k  

end for. 

Note that the fast step is taken if it produces at least a factor of p decrease in the comple- 

mentarity gap p. Otherwise, the algorithm reverts to  the safe step. The coefficient matrix 

in (3) is the same for both fast and safe steps, so only one matrix factorization is required 

per iteration. 

The safe step procedure is defined as follows. 

safe(z,y): . 

choose 5 E [c, 3, CYO 

solve (3) to find (AS, Ay); 
calculate 

[ii, 11; 

choose CY to be the first element in the sequence a', xa', x2ao, - - ., 
such that the following conditions are satisfied: 

return (z(a), y(a)). 

A nonzero centering term is used, allowing us to move a nontrivial distance along the search 

direction while staying in the set defined by 

where y = ;U (see formula (9a)). In the second acceptance condition (9b), the left inequality 

ensures a "sufficient decrease" in the objective function. A condition of this kind is present in 

most optimization algorithms based on line searchs. The purposes of the right inequality in 

(9b) is to prevent improvement in the complementarity gap p from outpacing improvement 

in the infeasibility, measured by T. The relevant result is proved in Lemma (2.2). 
Fast-step calculations are a little more complicated. Since it is not permissible in the 

framework of [4] to maintain a counter t k  of the number of fast steps taken prior to iteration 

I C ,  we form an estimate f of its value by examining the properties of the current iterate. The 

integer f is in turn used to form and ,8, which are used in the acceptance criteria for the 

step length CY. We show in later analysis that have essentially the same properties 

as the quantities 7 and 

and 

in the algorithm of [lo]. 
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fast(z, y): 

solve (3) with 5 = 0 to find (As,Ay);  
calculate 7 as in (8); 

calculate 
define ;i, = 'Ymin + T(7 - "Ymin); 

and define to be the smallest positive integer such that 

(with {= 0 if & 2 1); 

if i = m  then return(z, y); 

define = (with 6 = 1 if I- = 0); 
define 

if CYO 5 0 then return(z, y); 

choose cr to be the first element in the sequence a', xa', x2ao, - - -, 
such that the following conditions are satisfied: 

return(a( CY), y( CY)). 

There is no centering component in this step, since 8 = 0. It is therefore necessary to relax 

the value of A/ in (10) from j. to ;i. to ensure that we can move a nontrivial distance along this 

direction while staying in this set. The second acceptance criterion (13b) is again motivated 

by our wish to not allow improvement in ,u to outpace improvement in T .  There is no Armijo 

condition for the fast step. Instead, a "sufficient decrease" condition is enforced in the main 

program, since the fast step is accepted only if pk+l 5 PPk. 
We stress again that we use the subscripted notation yk, T k ,  ,8k, ,&, and fk to denote the 

values of T7 T7 p, p, and t" associated with the k-th iterate (sk, yk). We use CYI; to denote the 
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value of a! used by the step that is actually accepted, whether it comes from fast or safe. 

For the purposes of subsequent analysis, we also define 

k- 1 

vk = n ( 1  - Q j ) .  

j=O 

From (6), we have that 
0 rk = u k r  . 

Suppose that successful fast steps are taken at iterations Icl, k2, 
e,  with 

0 5 IC1 < IC2 < . e . ,  

and that safe steps are taken at all other iterations. If we define t k  to be the total number 

of fast steps accepted prior to iteration I C ,  then clearly 

and 

t k  = 1, k = h + 1 , * . * , k l + 1 7  1 = 1 , 2 , . * - .  (16) 

The following result relates the settings of ?k and b k  on each fast step to  t k .  Its proof is 

-, at which a fast  step is taken, 

rather technical and is relegated to the appendix. 

Lemma 2.1 If ro # 0,  then for each iteration k1, 1 = 1,2, 

we have f o r  1 = 1,2, - - -, that the following inequalities hold. 

Finally, we show that the improvement in complementarity p k / , u O  cannot exceed the 

improvement in feasibility ~ / r k ~ ~ / ~ ~ r o ~ ~ ,  modulo a constant factor PL > 0. 

Lemma 2.2 If TO # 0, d l  iterates ( z k ,  y k )  satisfy 

k>-, P L  

llrkII - P o  

(22) 

where 

6 

M 

-312 
1 > P L  = JJ(1 -=j) > e . 

j= 1 

Proof. The first inequality follows from (9b), (13b), and (6), with similar arguments to 
is those in the proof of Lemma 2.1, which we do not repeat here. The inequality PL > 

proved in [lo, Lemma 3.11. 



3 Global Convergence 

Kojima, Noma, and Yoshise 14, Section 4.11 analyze an algorithm that would be equivalent 

to our algorithm if we allowed only safe steps to be taken. They show that it fits into the 

framework that allows their global convergence result to hold. We show in this section that 

the use of fast steps does not disqualify our algorithm from the framework of [4], and so the 

main global convergence result of that paper holds. 

Throughout the section we assume only that f is continuously differentiable and mono- 

tone. 

The model algorithm of Kojima, Noma, and Yoshise consists of three fundamental com- 

ponents: 

e An admissible set 0 c (iR3, x R3,) U S (where IR3+ is the strictly positive orthant 

in R") to which all iterates are confined. In our case, 

A merit function $(z,y), which in our case is simply $(z,y) = 2 T y = np. 

e An algorithmic mapping A that produces a new point (z+,y+) E i-l from a given 

( 5 , ~ )  E R. In our case, A is the fast step calculation whenever it produces a decrease 

factor of at least p in p; otherwise, A is the safe-step calculation. 

The main result of (41 is obtained if the following condition is satisfied. (Note that the items 

in this condition are obtained by combining Conditions 2.1 and 2.3 of [4].) 

Condition 1 The admissible set R, merit function $J, and algorithmic mapping A satisfy 

the following conditions: 

0 0  
f i)  (z ,Y E a; 

fii) fl = sZ++ U 0s  is a subset of (R:+ x R:+) U S and is closed in (IR" x IR"), where 

(iii) $J is a real-valued and continuous junction on R++; 

(iv) A is a point-to-set mapping from C? into the collection of nonempty subsets of 0. 
For every ( 2 , j j )  E $I++, there exist positive numbers S and E such that i f  (z,y) E 

B ( ( Z , Y ) , S )  n R and (z+,y+) E d ( z , y ) ,  then either 

(z+,y+) E 0s 

or 
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(v) sup{zTy I (x, y) E R++, $(x, y) I: T }  < 00 for every suficiently large T E IR; 

(vi) if (x+, y+) E d(z, y), then 

Y+ - fb+) = (1 - w - f(ZC)), 

for some 6 E (0 , l ) .  

It is immediately clear from our definition of R, $, and A that our algorithm satisfies Con- 

dition l ( i ) ,  (ii), (iii), (v), and (vi). The following two lemmas show that the remaining 
condition, (iv), is also satisfied. The first of these lemmas essentially shows that the require- 

ments (9) on the step length crk in a safe-step calculation are satisfied for all ak sufficiently 

small. In keeping with the definition of the generic algorithm of [4], in which the mapping 

A does not depend explicitly on the iteration history, we state the result without reference 

to the iteration counter k. The proof of the first result can be found in the appendix. 

Lemma 3.1 Suppose that (it, ij) E R++. Then there esist 8 > 0 and & E (0,1] such that for 

any (5, y) E B(( i t ,  a ) ,  8 )  n52, the calculations (3), (41, and (5) applied to the point (2, y) with 

8 E [C, 1/21 will yield (~(a),  CY)) satisfying the conditions (9) for all a E [O,&]. 

Lemma 3.2 Given any ( Z , j j )  E a++, there are constants 6 > 0 and E > 0 such that i f  one 

step of the dgorithrn is applied to any point (x,y) E B ( ( Z , g ) , S )  U 52, the new point (z+,y+) 

generated by this process has (x+)~Y+ <_ sTy - E .  Hence Condition l(iv) is satisfied. 

Proof. It is easy to check that the result (z+,y+) of any fast or safe step satisfies the 

conditions for membership in 52, so we need only find an 6 > 0 that satisfies the decrease 

condition. 

Let & and b be as defined in Lemma 3.1. We can clearly choose a 6 5 8 and C2 > 0 such 

that 

If a safe step is calculated from the point (x, y), then from Lemma 3.1 we have that (9) are 

satisfied for all cy E [0, &I. Because of the backtracking nature of the step length procedure, it 

is easy to see that the step length parameter Q actually generated by the safe-step procedure 
satisfies 

Q 2 min(xiu, ii), 

where CU is the lower bound on the initial trial step length. Setting E ( * )  = (1c/2)C2 min(x&, C y ) ,  

we have from (9b) that 

(z+lTy+ = .(a) y(a) I: z y - n ( 1 -  3)cya: y 5 x y - n(1/2>~2 min(;y&, ti) = xTy - dl). 

T 
x Y 2 c2 %y) E W%V),J). 

T T T T 

The other algorithmic possibility is that a successful fast step is taken from (2, y). Because 

of the acceptance criterion associated with such a step, we have that 
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where we have defined d2) = (1 - p)C2. 

The result of the lemma follows by taking E = min(e('), 

Having shown that Condition 1 holds in our case, we can state the main results, both of 

which follow immediately from results in Kojima, Noma, and Yoshise [4]. The first result is 

essentially f4, Lemma 2.21. 

Theorem 3.3 The sequence ( x k ,  y k )  behaves in one of the following three ways. 

( A )  ( x k , , y k )  E S for some k < 00. 

(B) The sequence {(xk, y k ) }  is bounded, and every limiting point of the sequence belongs to 

Sna. 

(C) The sequence {(x', y k ) }  is  unbounded. 

The second result follows immediately from [4, Theorem 2.51. 

Theorem 3.4 Let E be any small positive number and M be any positive number. Then 
there exists a finite integer p such that at least one of the following three alternatives occurs. 

(A' )  (xP)*yP < E and vpllroll < E .  

(B')  ro # 0,  and vp}lroll < E .  

(C') TO # 0, vpl\roll 2 E ,  and vp(r0)*zP - (zP)=yP 2 v p M .  

In the case (C'), the set 

contains no solutions of ( I ) .  

4 Superlinear Local Convergence 

We show here that if the algorithm does not terminate finitely or diverge (that is, if alter- 

native (B) of Theorem 3.3 occurs), then the complementarity gap converges superlinearly 

to zero, under certain assumptions. The Q-order of convergence is at least 1 + i, where 

? E ( 0 , l )  is the user-defined parameter in the main algorithm. The analysis in this section is 

similar to that of Wright 1111, which deals with the case of linear f, but there are a number 

of complications because of the nonlinearity of f and the simpler line search procedure. 

We define a near-solution subset of a++ by 

where 



Assumption 1 The sequence generated b y  the algorithm is bounded and does not terminate 

jnitely. iWoreover, there is 6 > 0 such that 

(i) for  all (x,y) E sl++(b) there is a constant C3 > 0 such that a fast step (Az,Ay) 

(ii) Of(-) is Lipschitz continuous on the set {x I (x, y) E $2++(6) for some y}. 

calculated via (3) with 8 = 0 satisfies II(Ax, Ay)ll 5 C3p; 

We show in Wright [ll] that this assumption and therefore the conclusions of this section 

hold when f is linear and S contains a strictly complementary solution (not necessarily 

unique). 

In our first result, we show that the initial step length in the fast steps (12) approaches 

1, giving the possibility of substantial progress. The result is a consequence of Assumption 

1 and Theorem 3.3. 

Lemma 4.1 If Assumption 1 holds, then 

(i) p k  1 0; 

(ii) p Z / ? ' k  5 0; 

(iii) p i /  min(Tk - ?k, B k )  + 0. 

ProoJ Assumption 1 implies that alternative (B) of Theorem 3.3 holds, and so all limit 

points of {(zk, y k ) }  are in S n Q. Since p = 0 for all (x ,y)  E S n $2 and since { p k }  is a 

decreasing sequence, (i) follows. 
For (i i ) ,  we consider the effect of iteration E - 1 on the value of t k .  If a safe step was 

taken at iteration k - 1, then we have tk = t k - 1  and pk < p k - 1 ,  so certainly 

i 
pk-1 - < -. 

T t k  T t k - 1  

If a fast step is taken, then t k  = tk-1 + 1 and pk 5 ppk-1 .  Hence, by the definition of p we 
have 

Hence, the sequence p l / T t k  is decreasing. To see that it decreases to zero, consider two 

cases. First, if only a finite number of fast steps are taken, we have that tk is constant for 

all k sufficiently large, while p k  1 0, so we obtain the result in this case. Second, if there are 

an infinite number of fast steps, we have from ( 2 3 )  that p i / T * k  decreases by a factor of at 

least p i / ?  < 1 on each such step. Hence, the subsequence corresponding to the fast steps 

decreases geometrically to zero, so by monotonicity the whole sequence converges to zero, 

and (ii) holds in this case also. 

For (i i i) ,  we note from (17) and (21) that 
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and hence the sequence in question is majorized by a sequence that is decreasing monotoni- 

If Assumption 1 holds, then we can define positive constants C4 and CS such that for the 

tally to zero, giving the desired result. 

fast steps (Ax,Ay) we have 

and 

IlA4l I C5P (25) 

for all k sufficiently large. Defining [ = [ + Cspo, where po = ( ~ ' ) ~ y O / n ,  we have under the 

prevailing assumption that 

llx + ~ A s l l  5 I .  (26) 

The next result show that the initial step length (12) eventually satisfies the acceptance 

criteria (13a) and (13b), making reduction of the step length unnecessary. 

Lemma 4.2 Suppose that Assumption 1 holds. Define the constant CS by 

Then provided that (z,y) f f l++(d)  and 

where p, q, and 7 are defined in fast, the conditions (13a) and (13b) are satisfied for all 

Pro0.f We start with the condition (13a). Using (3), (4)) (5)) (8)) (24)) (25)) (26)) and 

Assumption 1, we have €or CY E [0,1] that 

11 



Meanwhile, from the right-hand side of (13a), we have 

By replacing ;i. by 1 in the last term and rearranging, we see that (31) holds if 

From (27) we see that this inequality is equivalent to 

and, since (32) holds for all a in the range of (28), the condition (13a) also holds for all a in 

this range. 

Turning now to (13b), we can perform a similar calculation to (30) (but this time seeking 

a lower bound) to obtain 

From (27) and (33) we deduce that 

Therefore a sufficient condition for (13b) is that 

Condition (34) is certainly satisfied for all o in the range (28), so we obtain the desired 
result. H 

We now give some threshold conditions on p that ensure that the initial trial step length 

cyo is accepted not only by the conditions (13a), (13b), but also by the outer loop, that is, it 

yields a reduction factor of at least p in the complementarity p. 

12 



Lemma 4.3 Suppose that Assumption 1 holds and that ( ~ , y )  E f l++(b )  with 

and 

(35) 

Then the initial step length cyo for  the fast step defined by  (12) satisfies the acceptance criteria 

(13), and the fast step is accepted by  the main algorithm. 

ProoJ Note from (35) that 

Using (21) and (36), we have 

We can use Lemma 4.2 and the first inequality in (37) to deduce that oro lies in the range 

(28) and hence satisfies (13). 

To demonstrate acceptance of the fast step by the main algorithm, we need to show that 

Using (30) again, we have 

Z(CY)TY(Cl) 5 ZTy(l - C y )  + C4(ZTy)P + cLC,” ( zTy /n )p  5 rTy(l - CY + C6p). (38) 

From this expression, we deduce that the fast step (with CY = a’) is accepted by the main 

algorithm if 

Note from (36) that 

1 - cro + csp I p. (39) 

P 5 -. 
min(;j. -+,& 2 

P+ 

Using both (35) and (36), we have 

rn The bound (39) clearly follows from these expressions, so the fast step is accepted. 

We are ready for the main superlinear convergence result. 
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Theorem 4.4 Suppose that Assumption 1 holds. Then the algorithm eventually always takes 

fast steps, and 

(i) the sequence (!&} converges superlinearly to zero with Q-order at least 1 + i, and 

(ii) the sequence { V k )  converges superlinearly to zero with R-order at least 1 + +. 

Proof. Because of Lemma 4.1, the threshold conditions (35), (36) will be satisfied for all 

For the rate-of-convergence result, note from (lfz), (30), and .i E (0 , l )  that there is a 

sufficiently large k, so fast steps will eventually always be taken. 

constant Clo such that 

for dl fast iterates k for k sufficiently large. Superlinear convergence of pk with Q-order 

at least 1 + i follows by standard arguments; see Wright [9, Theorem 6.31 and Wright and 
Zhang [12, Theorem 5.21. For (ii), we have from (22) that 

so ( V k )  is majorized by a sequence that converges with Q-order at least 1 + i ,  giving the 
result . 8 

5 Nondegenerate Problems 

We have already noted that Assumption 1 holds if f is linear and S contains a strictly 

complementary solution. In this section, we consider nonlinear f .  We show that if (1) has 

a unique, nondegenerate solution, and if there is a vector J: > 0 for which f(5) > 0, then 

Assumption 1 is satisfied. 

Assumption 2 

y*  > 0; 
(i) The solution set S contains the single vector pair (x*, y'), where X* + 

(zi) There is a point 2 E IR" such that ( 3 , f ( Z ) )  > 0;  

(iii) The submatrix 

[Of (x*)ijl;EB, jcB 

(with B defined in (2)) is nonsingular, and D f (.) is Lipschitz continuous in a neigh- 
borhood of x*. 

We start by showing boundedness of the iteration sequence. 

Lemma 5.1 Suppose that Assumption 2 holds. Then the sequence {(xk, y'))) is bounded. 
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Proof. Define E -  > 0 by 
1 

E* = - min f i (Z)  > 0, 

and choose 1M > 0 large enough that (~- ' )~z* < M .  Then case (C') of Theorem 3.4 cannot 

occur, so there is a finite integer K such that we have that v~I(rO(1 < E*. Since the sequence 

{ v k }  is decreasing, we have vk[iroll < E* for all k 2 K .  

2 k l ,  ..., n 

By monotonicity of f ,  we have 

(rk - F)T(f(zk) - f(z)) 2 0. (41) 

Hence, since e* > 0 and x k  > 0, it follows that { sk }  is bounded. 

Boundedness of {yk} follows from 

Because of boundedness, case (C) of Theorem 3.3 does not occur, so the sequence either 

terminates finitely or converges to (r*, y*). An estimate of the size of the step from (3) can 

also be easily obtained. ' 

Lemma 5.2 Suppose that Assumption 2 holds. Then there is b > 0 such that for all (5, y) E 

0++(8), the step calculated from (.3) satisfies 
I 

Il(A~:,AY>ll = O ( d *  (43) 

Proof. Consider the nonlinear system of equations F ( z ,  y) = (0,O) defined by 

and note that F(.r*, y') = (0,O) with nonsingular Jacobian 

15 



We can choose constants &I > 0 and 6 > 0 such that 

Also, we know from the definition of R that 

(X: ,Y> E R++ * l K Y  - f (4 ,XYe) l l  = O ( d .  

Combining these estimates with (3), we have for (x ,y )  E R++(8) that 

giving the result. 

We can now state the main result of this section. 

Theorem 5.3 Suppose that Assumption 2 holds and that finite termination of the algorithm 

at the solution point ( x * , ~ * )  does not occur. Then Assumption I is satisfied. 

6 Computational Results 

The method described here has been implemented and tested on some small NCPs from the 

collection of Dirkse [Z] and some larger extended linear-quadratic programming problems 

from Zhu and Rockafellar [13]. The following parameter settings are used in our code: 

x = .9, 8 = .01, 5 = .95, K; = .l, 7 = .5, 

7hn = 10-4, Ymax = 1 OV2 7 .i = .9, p = 0.2. 

We modify the algorithm slightly to use a different value for the reduction factor x for the 

fast steps. This value, xrast; is set to 0.98. The value of sigma is chosen at each safe iteration 

according to the formula 

o = max(5, min(p, omax)), 

where we used omax = .25. We also avoid calculation of fast steps when they are not likely 

to succeed. In our implementation, the fast step is not calculated as long as p k  > 0.1; the 

safe step is always taken when this condition holds. 

Successful termination is declared when the criteria 

are both satisfied, where TOL = lo-'' in our examples. 

We experimented with three nonlinear problems from Dirkse [2]. We omit the details of 

these problems here, but refer the reader to [2] and the references therein for further details. 

Briefly, the problems are 

nash: Nash equilibrium problem, with n = 10; 
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Table 1: Performance of the algorithm on small NCP test problems 

Problem 

Starting Point 

Po 

I I  To I 103 

Iterations 

Solves 

Trial steps 

Fast steps 

nash 

xo = e  zo = 1Oe 

.16(+3) .21(+5) 

.30( +4) .1S( +5) 

43 15 

47 19 

SO2 17 

2 2 

j osep hy 

xo = e xo = 1Oe 

.lo( +2) .73( +4) 

.12(+2) .75(+3) 

9 17 

13 22 

10 17 

2 3 

colvncp 

zo = e zo= 1Oe 

.59( +2) .2S(+5) 

.65(+3) .31(+5) 

17 24 

26 34 

26 35 

7 8 

josephy: Four-variable problem due to Josephy; 

colvncp: A convex programming problem, formulated as an NCP with n = 15. 

Two starting points, both of which are distant from the solution, are used for each problem. 

They are 

YO = max(L Hf(~o)l lcQ)e, 
0 x = e, 

and 

Table 1 summarizes the performance of our code on these problems. The entries for po and 

~ ~ r o ~ ~ ~  are self-explanatory; they indicate that our starting point was distant from the solution 

for each of the problems. The number of "iterations" equals the number of evaluations of 

the Jacobian Df(-) and also the number of matrix factorizations. The number of "solves" 

indicates the number of times the factors were used to compute a (safe or fast) step. The 

number of solves typically exceeds the number of iterations because both a safe step and a 

fast step are computed on some iterations. The "trial steps" entry is the total number of 

candidate step lengths ak that were tried during the entire algorithm. This number is equal 

to the total number of evaluations of the function vector f. 
The results in the table represent good performance of the method, with the exception 

of the Nash problem from the first starting point. The large number of unsuccessful trial 
values of crk is due to the lack of sophistication of our Armijo line search, which would 

certainly be replaced by a safeguarded polynomial interpolation scheme in a more practical 
implementation of the algorithm. When x is changed from .9 to a more conservative .5, 

the number of trial steps for this case decreases to 139, without affecting the number of 

factorizations. 

Our second set of test problems is quite different from the first. They are large, mixed 

linear complementarity problems, in which, given an index set Z C { 1, - - , n}  and its com- 

plement Z = { 1,. . - , n}\Z, we aim to find a vector pair (5, y) such that 

xo = 1Oe, YO = max(1, Ilf(z0)ll03>e. 

y = M z  + Q, ( Z l , Y I )  2 0, SIYl T = 0, YI = 0, (44) 
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. 

where the coefficient matrix M is positive semidefinite. A few obvious modifications to 

the algorithm are required to take account of the mixed nature of the problem, and we do 

not discuss these here. We obtain the problems by reformulating the stagewise extended 

linear-quadratic programming (ELQP) problems considered by Rockafellar [7] and Zhu and 

Rockafellar [13]. The motivation for these stagewise problems comes from optimal control, 

and we refer the reader to the cited references for more details. Stagewise ELQPs are quite 

complicated to state. They are defined in terms of the quadratic function 

where the intermediate variables ( 5 0 ,  - a ,  ZN) satisfy 

i = l , - - . , N .  

The matrices P; and Q; are all positive semidefinite. The problem is to find a saddle point 

of J(u0, - - a ,  U N ;  V I ,  - - V N + ~ )  subject to u; E Vi, i = 0, - - a ,  N ,  and D; E K,  i = 1, - - - , N + 1, 

where each U; and V,  is a polyhedral subset of R"' and Rim', respectively. Associated with 

the ELQP is a primal problem 

where 

and a dual problem 

where 

By introducing explicit representations of the polyhedral sets Vi and x 7  and introducing 

intermediate and slack variables, we can formulate the ELQP as a mixed monotone linear 

complementarity problem of the form (44). Moreover, by a "stagewise" ordering of the 

variables, we can ensure that the coefficient matrix M is banded, where the bandwidth 

is independent of N .  It is the bandedness that makes the complementarity formulation 

practical, since the time taken to factor and solve the linear system at each iteration of 

our algorithm is O ( N ) ,  rather than the 0 ( N 3 )  that would be obtained by a more naive 

formulation. In our code, the LAPACK band solve routines DGBTRF and DGBTRS [l] are 

used to solve this linear system. 

We tested our algorithm on modifications of the random stagewise ELQPs that are de- 

scribed in Section 6 of Zhu and Rockafellar [13]. The problems are obtained by discretizing 
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Table 2: Performance of the algorithm on smaller ELQP problems 

Data Set 

PO 

Iterations 

Solves 

Trial steps 

Fast steps 

CPU time (sec) 

n; = 10, m; = 10, N = 64, dimension = 2600 

1 3 5 7 9 
.19(+4) .11(+6) .15(+4) .43(+4) .18(+4) 

15 19 15 23 IS 

20 24 18 35 24 
16 24 19 35 24 
3 4 5 3 5 

26.1 33.3 25.4 41.2 31.5 

continuous generalized optimal control problems, where the data for the continuous prob- 

lems is generated randomly. The matrices P; and &; are chosen to be diagonal and positive 

semidefinite, while the remaining matrices and vectors in the problem are dense. The poly- 

hedra Uj and & are rectangles, that is, Cartesian products of intervals on the real line. In 

[13], the matrices &j and Pi are all strictly positive definite, but we modify them here by 

setting Q; 0. As discussed in Rockafellar [7], this choice corresponds to “hard” constraints 

on the primal variables 21;; in fact, the primal problem above reduces to a quadratic pro- 

gram. The algorithms described by Rockafellar [8] and Zhu and Rockafellar [13] tend not to 

perform well in this important case, however. They lend themselves better to fully quadratic 

problems in which P; and Q; are all positive definite. On the other hand, our interior-point 

algorithm seems indifferent to this property. 

The code for our algorithm does not take advantage of the linear nature of these problems, 

even though the Armijo line search could be replaced easily by an exact determination of the 

maximal ak. Our aim is to demonstrate that the algorithm that we analyze in this paper is 

quite effective for both linear and nonlinear problems. 

We use the code discussed in [13] to generate the data and starting points for our test 

problems. Besides resetting each Q i  to 0, we modify the starting points slightly to ensure 

strict interiority. We use the odd-numbered data sets from the problem generator, which 

accounts €or our numbering scheme for the test problems. Tables 2 and 3 contain a summary 

of our results. The first line of each table contains the dimensions of the problem according 

to the notation above. The total dimension of the linear system to be solved at each iteration 

depends not only on the total number of components in (uo, - , u ~ )  and (Q, * - e ,  VN+I) but 

also on the number of intermediate and slack variables. Some components of the linear 

system can be eliminated conveniently, leaving a subproblem whose size is the “dimension” 

indicated in Tables 2 and 3. The numbers of iterations, solves, and trial step lengths are as 

in Table 1. The last row contains CPU times on a Sun SPARCstation IPX. 

The results indicate good performance, with between 15 and 28 iterations performed for 

each problem. These results could have been improved by finer tuning of the user-defined 

parameters, but they substantiate our claim that a single set of parameters can give good 

performance on very different problems (large and small, linear and nonlinear). Note that the 

average number of iterations is slightly higher in Table 3, reflecting the oft-made observation 
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Table 3: Performance of the algorithm on larger ELQP problems 

n; = 20, m; = 20, N = 128, dimension = 10320 

Data Set 1 3 5 7 9 
Po .28(+4) .11(+6) .14(+5) .18(+5) .10(+5) 

Iterations 21 26 20 28 22 

Solves 29 38 25 45 32 

Trial steps 34 48 31 52 36 

CPU time (sec) 435. 548. 406. 592. 452. 

Fast steps 6 4 6 1 4 

that this number grows slowly with problem size in most interior-point methods. Note, too, 

that a number of fast steps were taken at the tail of the iteration sequence, and rapid local 

convergence was observed . 

7 Conclusions 

The local convergence results represent a natural extension of those presented in [ll] for the 

case of linear f. In this case, we require only existence of a strictly complementary solution for 

ll(Az, Ay)ll = O(p)  to hold. Monteiro and Wright [5] show that the strict complementarity 

assumption is necessary for superlinear convergence of methods that behave like Newton's 

method near the solution. There is a considerable gap between the weak assumption of the 

linear case and the stronger assumptions of Section 5 for nonlinear f ,  and current research 

is aimed at bridging this gap as far as possible. 

Our results can be extended easily to the case of Holder continuous of(-), that is, 

IlDf(z') - Df(x'>ll 5 Lllz' - ~ ' 1 1 '  for some T E (0,1] and xl ,  2' in a neighborhood of z-. 

When T > (& - 1)/2, we'can show local convergence with Q-order 1 + +, provided that + 
lies in the range (0, r2 + r - 1). The algorithm can be modified to allow reduction of + after 

failed fast iterations, so that that the inclusion .i E (0, r2 + r - l), and therefore superlinear 

convergence, eventually occurs. Knowledge of T is not necessary. In the case of Of( e >  merely 

continuous near f, we still have global convergence, from the analysis of Section 3. 
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Appendix 

Proof of Lemma 2.1. We deal only with the case of ro # 0, since the proofs for the case of 

ro = O are simple specializations. 

We prove (17) and (18) by induction on 1. Taking 1 = 1, we know that safe steps are 

taken for k = 0,1, - . , k 1  - 1. Therefore, from (9b), we have 

k l - 1  

p k 1  /PO 2 n (1 - aj) = v k l ,  

j=1 

while, from (14), 

Therefore, by (ll), we have %, 2 1 and f k ,  = 0 = t k l ,  yielding (17). For (18), we note that 

by choice of (zo, 9') and ( 8 ) ,  we have 

0 rkl = VklT . 

YO = 7rnax- 

Since safe steps are taken for IC = O , l , .  . + , IC1 - 1, we have by repeated application of (9a) 

and (8) that 

Hence, 

so (18) is satisfied for I = 1. 

continue to be true at kl+l .  From (11) and (14), we have that 

"Imax = To = ?l = - .  . = . 

I 

7 k l  7min = 7max - %in, 

We now assume that (17) and (18) are satisfied for kl, kz, - , lq and prove that they 

ikl 

p k l / p O  2 VkdPki 2 vkl  n(1 - 7'). 
j=1 

Applying (13b) to the fast step that is taken at iteration kr, we have that 

p k r + l / p O  2 (1 - a k i ) ( l  - b k l ) ( p k c / p O )  

2 

= v k i + l ( l  - b k t ) p k l  

(1 - a k l ) ( l  - b k l ) V k I p k l  

- - V k l + 1 ( l  - +'+1)pk l  

tkI-f-1 

2 %+1 (1 - 7'). 
j=t 

Since safe steps are taken at  iterations Icr  + 1,. - , kr+l - 1, we have from (9b) that the ratio 

( p k / V k )  is nondecreasing for k = kl + 1, - - , kl+l. In particular, 
I 
I tkl 

~ 

p k t + l  / P O  2 v k i + l  n (1 - 7 ' ) ~  
j=l  

i 
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and therefore 
GI +1 

pkl+1 2 (1 - 7')- 
j=1 

From (45), the definition of i k l t l ,  and the inductive hypothesis for (17), we have 

(45) 

so (17) continues to hold at kl+l. 

Combining (13a) at k = kc with (8) at k = I C 2  + 1, we have that y k l + l  >, + k l .  In fact, as 

observed earlier, q k  is nondecreasing over the safe iterations k = kl + 1, - - - , kl+l - 1, and so 

Hence, by using the definition of 9 k  and the inductive hypothesis for (18), we have that 

?ki+l - 7min 2 ?kl - %in = ?(?kt - 7min) 1 ?'('Ymax - 'Ymin). 

Therefore (18) continues to hold at  iteration Icr+l. We conclude that (17) and (18) hold for 

all 1 = l ,2, . . - .  

To prove (19), we note by (18) and the definition of +kl that 

as required. 

For (20), we need only note that 

pkl = ;yiki+' 2 7(2-1)+l = 7 .  

The final inequality (21) follows immediately from (19) and (20), if we note that 1-7 L 7. 

Proof of Lemma 3.1. Define 

and choose positive constants C3 and C2 such that 

Note that the coefficient matrix 

is nonsingular at  ( 3 , g )  and continuous in an open set containing B((Z ,g) ,6)  C (R: X R"+- 
The right-hand side of (3) is also continuous with respect to both (z,y) and 8. Therefore 

we can define a constant C1 > 0 such that 
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Hence the left inequality in (9b) is certainly satisfied if 

a 2 2  C1 + QCi(C3 + C1) SUP IlDf(z + OaAz) - Df(z)l) 5 (1 - s)a(l- &)zTy. (47) 
w o , q  

By continuity of Df, we can make the following assertion: for each (z,y) E B((. , i j) ,b),  
there is ~1(z)  > 0 such that 

for all d with lldll 5 ql(z). Since B((Z,jj),8) is compact, we have that 

Therefore, setting 

Hence (47) is satisfied, yielding the left inequality in (9b). 

we have 

We now show that (9a) holds. For any i = 1, - , n, (5, y)  E L?((Z ,  g), 8 ) ,  and a f (0, &(')I7 

23 



By combining the last two expressions) we find that (9a) will be satisfied if 

(zTy/n)ai7( 1 - 7) - 2a2C,2 - 2CrCi(c3 + C1) SUP l lDf(z + OCYAZ) - Df(z)II 2 0, 
w o , l )  

which in turn is true if 

Just as we chose 151 above, we can find 4 2  such that 

for all ( ~ , y )  E B ( ( Z , i j ) ) 6 )  and lldll 5 7j2. Hence, if we choose 

a calculation similar to (48) shows that (50) (and hence (9a)) is satisfied for all cy E [0 ,d2) ]  

and ( 5 7  9) E B ( ( %  a 7  6. 
For the remaining inequality, we have as in (46) that 

z ( ~ ~ ) ~ y ( a )  2 z * y [ l -  a(1 - e)] - a2C: - C Y C ~ ( C ~  + C1) sup IlDf(5 + 6 a A t )  - Df(t>II. 
e €  ( 0 ~ )  

Therefore, the right inequality in (9b) holds if 

~ 

which in turn is satisfied if 



As before, we can choose ij3 > 0 such that 

for all (z,y) E B ( ( ? , y ) , 8 )  and lldll 5 753. Another calculation like (48) shows that the 

inequality (51) is satisfied if CY E [0,&(3)],  where 

The conclusion of the lemma is obtained by setting & = d3). 
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