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1 Introduction

The duality between string theory on asymptotically AdS spaces and conformal field the-

ories has been an exciting area of research for over ten years now, with string theory

providing answers to strong coupling questions in the gauge theory and vice-versa.

A year and a half ago, a new example of an AdS/CFT duality was proposed by Aharony,

Bergman, Jafferis, and Maldacena for the maximally supersymmetric gauge theory in

three dimensions: N = 6 supersymmetric Chern-Simons-matter with gauge group U(N)×
U(N) [1].1 The proposal was inspired by a construction of the gauge theory with even more

supersymmetry, N = 8, but which applied only to the gauge group SU(2) × SU(2) [3, 4].

The gravity dual of this theory is M-theory on AdS4 × S7/Zk, where k is the level of the

Chern-Simons term, or, for large enough k, type IIA string theory on AdS4 × CP
3.

This gauge theory and the dual string theory have been studied extensively, but so far

one of the most interesting observables in the gauge theory has not been constructed. Like

in all gauge theories, one can define Wilson loop operators, which in the dual string theory

are given by semi-classical string surfaces [5, 6]. The most symmetric string of this type

preserves half of the supercharges of the vacuum (as well as an U(1) × SL(2,R) × SU(3)

bosonic symmetry) but its dual operator in the field theory has not been identified yet.

So far the most symmetric Wilson loop operators in this theory, constructed in [7–9],

preserve only 1/6 of the supercharges and are therefore not viable candidates to be the

dual of this classical string. In fact, these operators exist also in Chern-Simons theories

1In this paper we will actually deal with the generalization of this theory to the case of different ranks,

U(N) × U(M), that was discussed in [2].
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with less supersymmetry [10] and do not get any supersymmetry enhancement due to the

clever quiver construction of the N = 6 theory.

One reason to look for these operators is that Wilson loops are interesting observables

in all gauge theories but in particular in Chern-Simons theories. In Chern-Simons without

matter they are in fact the main observables. Beyond that, the lack of the gauge theory

dual of the simplest string solution in AdS4 ×CP
3 is a glaring gap in our understanding of

this duality.

As another motivation, recall that the analog observable in N = 4 super Yang-Mills

theory in four dimensions has the remarkable property that its expectation value is a non-

trivial function of the coupling and of N which can be calculated exactly by a Gaussian

matrix model and interpolates from weak to strong coupling [11–13].

Another exact interpolating function which exists in the 4-dimensional theory is the

cusp anomalous dimension, also known as the universal scaling function [14–21] which cap-

tures the scaling dimension of twist two operators. Trying to compute similar quantities in

the 3-dimensional theory does not go through as nicely. In the calculation of the spectrum

of local operators there is a matching with the square root structure of the dispersion rela-

tion of giant magnons, but this involves one extra function of the coupling [22–24], whose

value is only known at weak and at strong coupling but not in the intermediate regime.

It is therefore interesting to revisit the question of Wilson loop operators in the hope

that there are exact interpolating functions for them. For the 1/6 BPS Wilson loop a matrix

model has been recently derived in [25] and, despite its complexity, has been solved in the

planar approximation in [26].2 Their results indeed match the string theory calculation

and provide a first non-trivial interpolation function for this theory.

Prompted by these considerations we construct here the 1/2 BPS Wilson loop for

N = 6 super Chern-Simons-matter. Furthermore we prove that the results of [25, 26]

carry over to our case. The calculation of [25] uses localization with respect to a specific

supercharge which is also shared by the 1/2 BPS loop. We show that the 1/2 BPS Wilson

loop is cohomologically equivalent to a very specific choice of the 1/6 BPS loop and is

therefore also given by a matrix model. This matrix model has a supergroup structure

and the 1/2 BPS loop is the most natural observable within this model. Indeed it can be

calculated for all values of the coupling also beyond the planar approximation [26].

In the coming section we present the loop and verify its symmetry. Our derivation

uses in an essential way the quiver structure of the theory. In addition to the gauge fields,

the Wilson loop couples to bilinears of the scalar fields and, crucially, also to the fermionic

fields transforming in the bi-fundamental representation of the two gauge groups. Our loop

is classified by representations of the supergroup U(N |M) and is defined in terms of the

holonomy of a superconnection of this supergroup.3 In our analysis we consider both a

loop supported along an infinite straight line and one supported along a circle.

In section 3 we relate this Wilson loop to the 1/6 BPS one and show that it is indeed

the most natural observable for the matrix model of [25]. We interpret this matrix model as

2This matrix model was studied also in [27].
3A somewhat similar construction for a topologically twisted version of N = 4 Chern-Simons-matter

was shown in [28] to be equivalent to pure Chern-Simons theory with a supergroup.
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that of a supermatrix which represents the semiclassical expansion of pure Chern-Simons

with supergroup U(N |M) on the lens space S3/Z2.

We conclude in section 4 with a discussion of our results and some possible extensions.

An appendix contains details about our notation.

2 The loop

We introduce now the construction of the Wilson loop in the U(N)k × U(M)−k Chern-

Simons-matter theory. We denote the gauge field of the U(N) factor as Aµ and the gauge

field of the U(M) factor as Âµ. These gauge fields are coupled to four scalar fields CI and

their complex conjugates C̄I , and to four fermions ψα
I and ψ̄I

α, with I = 1, 2, 3, 4 being an

SU(4)R index and α = +,− a spinor index. The scalars and the fermions are in the bi-

fundamental representation of the gauge group. Our notation is such that CC̄ and ψ̄ψ are

in the adjoint of U(N), whereas C̄C and ψψ̄ are in the adjoint of U(M). In the appendix

we give more details about our conventions.

The central idea of this paper is to augment the connection of U(N) × U(M) to a

superconnection of the form

L ≡



Aµẋ
µ + 2π

k |ẋ|M I
JCIC̄

J
√

2π
k |ẋ| ηα

I ψ̄
I
α√

2π
k |ẋ|ψα

I η̄
I
α Âµẋ

µ + 2π
k |ẋ|M̂ I

J C̄
JCI



 , (2.1)

where xµ parametrizes the curve along which the loop operator is supported and M I
J , M̂ I

J ,

ηα
I and η̄I

α are free parameters. A lot of the form of L is dictated by dimensional analysis

and by the index structure of the fields. In three dimensions the scalars have dimension

1/2, so they should appear as bi-linears, which are in the adjoint and therefore enter in the

diagonal blocks together with the gauge fields. The fermions have dimension 1 and should

appear linearly. Since they transform in the bi-fundamental, they are naturally placed in

the off-diagonal entries of the matrix. Note that ηI and η̄I are Grassmann even, so that

the off-diagonal blocks of L are Grassmann odd and L is a supermatrix.

Although L has the structure of a U(N |M) superconnection, the theory has only

U(N) × U(M) gauge symmetry. It is nevertheless possible, given a path and the extra

parameters, to calculate the holonomy of this superconnection and end up with a super-

matrix. For a closed curve one can then take the trace4 in any representation R of the

supergroup U(N |M). This gives the Wilson loop

WR ≡ TrR P exp

(
i

∫
Ldτ

)
. (2.2)

2.1 Infinite straight line

In order to find the maximally supersymmetric Wilson loop, we consider an operator defined

along an infinite straight line in the temporal direction, parameterized by xµ = (τ, 0, 0).

4One could also take the supertrace instead of the trace. We will show later that supersymmetry imposes

the latter.
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The supercharges of this theory are parameterized by the two-component spinors θ̄IJ
α

(see the appendix). Motivated by the 1/2 BPS string solution in AdS4 × CP
3, we want to

find a loop operator invariant under the same six supercharges. They are in fact the same

supercharges also annihilated by other brane solutions dual to the vortex loop operators

of [29] and are parameterized by

θ̄1I
+ , θ̄IJ+ , I, J = 2, 3, 4 . (2.3)

As mentioned before, this loop should also preserve an SU(3) subgroup of the R-

symmetry group. Given that and the chirality of the supercharges, this suggests the ansatz

M I
J = M̂ I

J = m1 δ
I
J − 2m2 δ

I
1δ

1
J , ηα

I = η δ1I δ
α
+ , η̄I

α = η̄ δI
1δ

+
α . (2.4)

We define the modified connections which appear in the diagonal blocks of L

A0 ≡ A0 +
2π

k
M I

JCIC̄
J , Â0 ≡ Â0 +

2π

k
M̂ I

J C̄
JCI . (2.5)

One can easily verify [7–9] that the supersymmetry variation of these terms does not vanish.

Instead we demand that their variation contains only ψ+
1 and ψ̄1

+, which appear anyhow

in the Wilson loop through the couplings to ηα
I and η̄I

α. Using the expressions in the

appendix we find that for the particular choice5 of m1 = m2 = 1 the variation is (noticing

that ψ+ = ψ− and ψ+ = −ψ−)

δA0 =
8π

k

[
θ̄1I
+ CI ψ

+
1 − 1

2
ε1IJK θ̄IJ+ ψ̄1

+ C̄
K

]
,

δÂ0 =
8π

k

[
θ̄1I
+ ψ+

1 CI −
1

2
ε1IJK θ̄IJ+ C̄K ψ̄1

+

]
.

(2.6)

Turning to the off-diagonal entries in L, the variation of the fermions ψ̄1 and ψ1

includes the covariant derivative γµDµ. Since the fermions appearing in the loop have

specific chiralities, as do the supercharges (2.3), the covariant derivative gets projected to

be along the direction of the loop by

(iγµ) +
+ = δµ

0 , (iγµ) −

− = −δµ
0 . (2.7)

Furthermore, all the non-linear terms appearing in the variation of the fermions can be

repackaged into a covariant derivative with the modified connection (2.5)

D0CI = ∂0CI + i
(
A0CI − CI Â0

)
,

D0C̄
I = ∂0C̄

I − i
(
C̄I A0 − Â0 C̄

I
)
,

(2.8)

with exactly the choice (2.4) of M I
J and M̂ I

J .

We finally find that
δψ̄1

+ = 2θ̄1I
+ D0CI ,

δψ+
1 = −ε1IJK θ̄

IJ+D0C̄
K .

(2.9)

5This value of MI
J is the same as the effective mass matrix of W-bosons arising upon higgsing the gauge

symmetry [30] (see also [9]).
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Combining (2.6) and (2.9) the variation of L for the time-like line is given by

δL =
8π

k
θ̄1I
+

(
CI ψ

+
1

√
k
8πηD0CI

0 ψ+
1 CI

)
− 4π

k
ε1IJK θ̄IJ+

(
ψ̄1

+ C̄
K 0√

k
8π η̄D0C̄

K C̄K ψ̄1
+

)
. (2.10)

The proof of supersymmetry-invariance of the Wilson loop requires one additional step,

namely integration by parts. Expanding to second order, the Wilson loop is

WR = TrR

[
1 + i

∫
∞

−∞

dτ L(τ) −
∫

∞

−∞

dτ1

∫
∞

τ1

dτ2 L(τ1)L(τ2) + . . .

]
. (2.11)

The off-diagonal pieces of the linear term are total derivatives, as can be seen in (2.10) and

integrate away. The diagonal part of the linear term does not vanish on its own, but it is

canceled by the variation of the fermions in the quadratic term. To see that, we write the

relevant terms for the variations with parameters θ̄1I
+

δWR =
8π

k
θ̄1I
+ TrR

[
i

∫
∞

−∞

dτ

(
CI ψ

+
1

ψ+
1 CI

)

−1

2
ηη̄

∫
∞

−∞

dτ1

∫
∞

τ1

dτ2

(
∂τ1CI(τ1)ψ

+
1 (τ2)

−ψ+
1 (τ1)∂τ2CI(τ2)

)
+. . .

]
. (2.12)

The last entry on the bottom right comes from the variation of L(τ2) and it has an extra

minus sign since the supersymmetry parameter θ̄ was permuted through the first fermion

ψ+
1 (τ1). We have also assumed that η and η̄ are constant, so we have pulled them out of

the integrals.

Integrating by parts and ignoring any possible contributions from infinity, one obtains

8π

k
θ̄1I
+

[
i

∫
∞

−∞

dτ

(
CI ψ

+
1

ψ+
1 CI

)
− 1

2
ηη̄

∫
∞

−∞

dτ

(
CIψ

+
1

ψ+
1 CI

)]
. (2.13)

The two integrals clearly cancel each other for ηη̄ = 2i. A similar cancellation takes place

for the θ̄IJ+ supercharges.

To summarize, we have shown at leading order in the expansion (2.11) that the Wilson

loop (2.1), (2.2) with

M I
J = M̂ I

J = δI
J − 2δI

1δ
1
J , ηα

I = η δ1I δ
α
+ , η̄I

α = η̄ δI
1δ

+
α , ηη̄ = 2i , (2.14)

preserves the six Poincaré supercharges (2.3) and is therefore 1/2 BPS. We performed the

same calculation to the next loop order by multiplying the diagonal part of δL with another

L and the off-diagonal pieces with two more and integrating one of the three integral by

parts. After including all the terms, the final result vanishes again.

This analysis can be carried over to all orders. To do that we separate L into the

diagonal part LB and the off-diagonal entries LF . We leave the bosonic piece in the

exponent and expand only LF

WR=TrRP
[
ei

R

LB dτ

(
1+i

∫
∞

−∞

dτ1 LF (τ1) −
∫

∞

−∞

dτ1

∫
∞

τ1

dτ2 LF (τ1)LF (τ2)+. . .

)]
. (2.15)
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The supersymmetry variation can act on the exponent, bringing down an extra integral

of δLB or can act on one of the LF , giving a matrix with an off-diagonal entry of the

form D0CI (or D0C̄
K). As mentioned before, this D0 is the covariant derivative with the

modified connection appearing in LB . This allows us to integrate by parts these terms in

the presence of the path ordered exp(i
∫
LB). As in the case considered explicitly above,

these will give non-zero contributions at the limits of integration, where in general we have

ip
∫

τ1<···<τp

dτ1 · · · dτn · · · dτp LF (τ1) · · · δLF (τn) · · ·LF (τp)

∝ (−1)n−1ip θ̄1I
+

∫

τ1<···<τn<···<τp

dτ1 · · · dτn · · · dτp (2.16)

LF (τ1)· · ·
[
LF (τn−1)

(
(CIψ

+
1 )(τn+1) 0

0 0

)
+

(
0 0

0 (CIψ
+
1 )(τn−1)

)
LF (τn+1)

]
· · ·LF (τp),

with the factor (−1)n−1 coming from pulling out θ̄1I
+ through the LF insertions. Reordering

the terms we see that this exactly cancels the insertion of the variation
∫
δLB into the term

in (2.15) with p− 2 integrals of LF .

This calculation proves that this Wilson loop preserves six of the twelve Poincaré

supercharges. Similarly, one can show that six conformal supercharges are also preserved.

2.2 Circle

Under a conformal transformation a line is transformed into a circle. While conformal

transformations are a symmetry of the theory, they change the topology of the curve and,

as it turns out, also the expectation value of the loop. In the case of the 1/2 BPS Wilson

loops of N = 4 super Yang-Mills one finds that, whereas the straight line has trivial

expectation value, the circular loop depends in an interesting way on the coupling constant

of the theory. It is therefore of great interest to consider circular Wilson loops also in this

3-dimensional theory.

First we consider the Wick rotation of the time-like line to a space-like line. The latter

can be defined either for the theory in Euclidean R
3 or in the Lorentzian theory in R

1,2,

as we do here. Indeed it is simple to check that the replacement |ẋ| → −i|ẋ| gives the 1/2

BPS Wilson loop for a space-like line. This replacement affects the scalar bi-linear term

and the fermionic terms.

To get the circle one should perform a conformal transformation. The path is now

given by6

x1 = cos τ , x2 = sin τ . (2.17)

The scalar couplings should not be affected by the conformal transformation, so for the

diagonal part of the superconnection L (2.1) we again use the shorthands

A ≡ Aµẋ
µ − i

2π

k
M I

JCIC̄
J , Â ≡ Âµẋ

µ − i
2π

k
M̂ I

J C̄
JCI . (2.18)

6We consider for simplicity a circle of unit radius but the result is invariant under conformal transfor-

mations and applies to an arbitrary radius circle.
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We still should couple only to the fermion fields ψα
1 and ψ̄1

α. The spinor index is chosen

by taking ηα
I (τ) and η̄I

α(τ) to be eigenstates of the projector

1 + ẋµ(γµ) β
α =

(
1 −ie−iτ

ieiτ 1

)
, (2.19)

thus

ηα
I (τ) =

(
1 −ie−iτ

)
η(τ) δ1I , η̄I

α(τ) = i

(
1

ieiτ

)
η̄(τ) δI

1 , (2.20)

with an arbitrary function η(τ) which is determined by checking the supersymmetry vari-

ation of the loop.

The loop along the line preserved six super-Poincaré symmetries and six supercon-

formal ones, for the circle we expect to find twelve which are linear combinations of the

two. The parameters of the superconformal transformations, which we label ϑ̄IJ , should

be related to the super-Poincaré transformation parametrized by θ̄IJα. We take the ansatz

ϑ̄1Iα = i θ̄1Iβ
(
σ3
) α

β
, ϑ̄IJα = −i θ̄IJβ

(
σ3
) α

β
, I, J 6= 1 , (2.21)

and using the explicit superconformal transformations [31] determine the supersymmetric

circular loop. Note that the choice in (2.21) is consistent with the reality condition (A.8)

on θ̄IJ and the analog one for ϑ̄IJ .

To do the calculation we note that, apart for one extra term in the variation of the

spinors, the superconformal transformations of the fields are the same as the super-Poincaré

transformations, modulo the replacement θ̄IJ → ϑ̄IJxµγµ. Using that xµγµẋ
νγν = iσ3,

with our choice of ϑIJ we find

θ̄1I + ϑ̄1Ixµγµ = θ̄1I(1 − ẋµγµ) ,

θ̄IJ + ϑ̄IJxµγµ = θ̄IJ(1 + ẋµγµ) , I, J 6= 1 .
(2.22)

Another useful relation involves the change of spinor indices on the projector

(1 ± ẋµγµ)α
β = (−1 ± ẋµγµ)βα . (2.23)

As mentioned in the appendix, unless we write it explicitly, we always use the indices as

in the left-hand side of this equation. Lastly, we note that

(1 ± ẋνγν)γ
µ(1 ± ẋργρ) = ±2(1 ± ẋνγν)ẋµ . (2.24)

Using these relations we get the variations under Poincaré and superconformal transfor-

mations of the fields in L

δA =
8πi

k
θ̄1I(1 − ẋµγµ)CIψ1 +

4πi

k
ε1IJK θ̄

IJ(1 + ẋµγµ)ψ̄1C̄K ,

δÂ =
8πi

k
θ̄1I(1 − ẋµγµ)ψ1CI +

4πi

k
ε1IJK θ̄

IJ(1 + ẋµγµ)C̄Kψ̄1 ,

δ
(
ηα
1 (τ)ψ̄1

α

)
= 4iη1θ̄

1I ẋµDµCI − 2η1σ
3θ̄1ICI ,

δ
(
ψα

1 η̄
1(τ)α

)
= −ε1IJK θ̄

IJ
[
2iη̄1ẋµDµC̄

K + σ3η̄1C̄K
]
.

(2.25)
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The extra terms in the variations of ψ and ψ̄ are written explicitly in [29]. We would like

to write the last two expressions as total derivatives, which gives the equations

∂τη1 =
i

2
η1σ

3 , ∂τ η̄
1 = − i

2
σ3η̄1 . (2.26)

From this we deduce that the extra function η(τ) in (2.20) is η(τ) = eiτ/2. The product of

the two couplings is then ηα
I η̄

I
α = 2i, as in the case of the line.

The superconnection for the circular Wilson loop is therefore

L ≡



 A −i
√

2π
k ηα

I ψ̄
I
α

−i
√

2π
k ψα

I η̄
I
α Â



 , (2.27)

with A and Â defined in (2.18) and

ηα
I (τ) =

(
eiτ/2 −ie−iτ/2

)
δ1I , η̄I

α(τ) =

(
ie−iτ/2

−eiτ/2

)
δI
1 . (2.28)

Collecting all the pieces, we find that the variation is

δL =
8πi

k

(
CI ψ1(1 + ẋµγµ) −i

√
k
2πDτ (η1CI)

0 ψ1 CI(1 + ẋµγµ)

)
θ̄1I

+
4πi

k
ε1IJK θ̄IJ

(
(1 + ẋµγµ)ψ̄1 C̄K 0

i
√

k
2πDτ

(
η̄1C̄K

)
(1 + ẋµγµ)C̄K ψ̄1

)
. (2.29)

It is instructive to repeat the supersymmetry analysis at leading order also for the

circle. Expanding the loop as in (2.11) and varying it as in (2.29), one finds (we consider

just one kind of supercharges and write explicitly only the terms in the diagonal blocks)

δWR ∝ iTrR

∫ 2π

0
dτ

(
CI ψ1(1 + ẋµγµ)θ̄1I

ψ1 CI(1 + ẋµγµ)θ̄1I

)
(2.30)

−TrR

∫ 2π

0
dτ1

∫ 2π

τ1

dτ2

(
−(∂τ1η1CI θ̄

1I)(1)(ψ1η̄
1)(2)

−(ψ1η̄
1)(1)

(
∂τ2η1CI θ̄

1I)(2)

)
.

As done for the line, it is easy to integrate by parts and verify the cancellation of the bulk

terms between the first and the second lines of this expression. From the integration by

parts one has now also the following boundary terms

− TrR

∫ 2π

0
dτ

((
η1CI θ̄

1I
)
(0) (ψ1η̄

1)(τ)

−(ψ1η̄
1)(τ)

(
η1CI θ̄

1I
)
(2π)

)
, (2.31)

which cancel once taking the trace, since η1 is antiperiodic on the circle, η1(2π) = −η1(0).

This calculation in fact determines that the Wilson loop is supersymmetric only when

taking the trace of the holonomy, and not the supertrace.7

7The trace of a supermatrix in an arbitrary representation is defined on diagonal matrices by the super-

trace as TrR
`

a 0

0 b

´

= sTrR
`

a 0

0 −b

´

. With this definition, equation (2.31) vanishes for any representation.
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We can repeat the all-order proof outlined in (2.16). Expanding the exponential in LF

one can see again cancellations between bosons and fermions similarly to what happened for

the line. The only difference from that case are the new boundary terms arising at τ = 0

from integrating over the first variation δLF (τ1) and at τ = 2π from the last variation

δLF (τp). As in the leading order case studied above, upon taking the trace these two

contributions cancel.

The same analysis carried out above applies also to the six other supercharges. We

have shown then that the circle operator is invariant under the twelve supercharges in (2.22)

and is therefore 1/2 BPS.

3 Localization to a matrix model

Recently, in a very nice paper [25], the evaluation of supersymmetric Wilson loop oper-

ators in Chern-Simons-matter theories with N = 2 supersymmetry was reduced to a 0-

dimensional matrix model. In this section we show how to apply the same result to the cir-

cular Wilson loop constructed in the preceding section.8 We can then use the solution of this

matrix model [26] to evaluate the Wilson loop at arbitrary values of the coupling constants.

The Wilson loop studied in [25] is the one constructed in [10]. The N = 2 Chern-

Simons-matter theories have supersymmetric Wilson loops with the gauge connection and

an extra coupling to the scalar in the vector multiplet. This scalar has an algebraic equation

of motion and after integrating it out we find the Wilson loop with a coupling to some of

the other scalar fields of the theory.

Specializing to the case of the theory with N = 6 supersymmetry, one ends up with

the Wilson loops of the type constructed in [7–9], where the connection is given by (2.1)

with ηα
I = η̄I

α = 0 and M I
J = M̂ I

J = diag(−1,−1, 1, 1).9 In the following we will denote

the resulting connection matrix by L1/6 and that for the loop constructed in section 2 by

L1/2. The reason for this notation is that while these Wilson loops preserve half of the

supercharges of the N = 2 theories, they do not see the supersymmetry enhancement of

the gauge theory from N = 2 to N = 6, so they are 1/6 BPS. The loops constructed in

section 2 preserve instead half of the supercharges of the N = 6 theory.

3.1 Relation between the different Wilson loops

The calculation of [25] uses localization with respect to a single supercharge, which is

also shared by the 1/2 BPS Wilson loop. We will show now that the 1/2 BPS Wilson

loop is related to the 1/6 BPS loop — they are in the same cohomology class under this

supercharge. Hence the localization calculation immediately applies also to the 1/2 BPS

Wilson loop.

8The calculation of [25] was done for a Wilson loop on the equator of S3, while here we discuss a circle

in R
3 or R

1,2. These operators should have the same expectation value when normalizing by the partition

function.
9The choice of 1/6 BPS Wilson loop is not unique. The constructions in [7–9] all preserve the same

supercharges but have slight differences. We use this definition, since it will turn out to be related to the

loop constructed in section 2, as we show below.
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We start by analyzing the case of the infinite straight line. We notice that the 1/2

BPS Wilson loop shares all four supercharges preserved by the 1/6 BPS one. These are

the ones parameterized by θ̄12
+ and θ̄34+ and their superconformal counterparts. For the

1/6 BPS Wilson loop the couplings of the scalars is given by the matrices M I
J = M̂ I

J =

diag(−1,−1, 1, 1) and there is no coupling to the fermions. One can therefore write the

difference between the superconnection for the 1/2 BPS loop and the connection of the 1/6

BPS one as

L̃ = L1/2 − L1/6 =




4π
k C2C̄

2
√

2π
k η ψ̄1

+√
2π
k η̄ ψ+

1
4π
k C̄

2C2



 . (3.1)

The off-diagonal term in L̃ is the same as LF defined above in (2.15). The diagonal piece

comes from the difference in the scalar couplings M I
J and M̂ I

J between the two loops.

We want now to show that the 1/2 BPS loop, W1/2, and the 1/6 BPS one, W1/6, are

cohomologically equivalent with respect to the aforementioned supercharges. This means

that the difference between the two loops is exact with respect to a linear combination Q

of the supersymmetries with parameters θ̄12
+ and θ̄34+, namely that there exists a V such

that

W1/2 −W1/6 = TrRP
[
ei

R

L1/2 − ei
R

L1/6

]
= QV , Q ≡ Q+

12 +Q34+ . (3.2)

To find V it is useful to rewrite the difference between the loops as

W1/2 −W1/6 = TrR P



ei
R

∞

−∞
L1/6(τ)dτ

∞∑

p=1

ip
∫

−∞<τ1<···<τp<∞

dτ1 · · · dτp L̃(τ1) · · · L̃(τp)



 . (3.3)

We take

V = iTrR P
[∫

∞

−∞

dτ ei
R τ
−∞

L1/6(τ1)dτ1 Λ(τ) ei
R

∞

τ L1/2(τ2)dτ2

]
, (3.4)

where

Λ =

√
π

2k

(
0 −η C2

η̄ C̄2 0

)
(3.5)

is such that QΛ = LF . Acting with Q on V and recalling that QL1/6 = 0, one finds the

following two terms

QV = iTrR P
[∫

∞

−∞

d τei
R τ
−∞

L1/6(τ1)dτ1
(
LF (τ)ei

R

∞

τ L1/2(τ2)dτ2 +Λ(τ)Qei
R

∞

τ L1/2(τ2)dτ2
)]
.

(3.6)

To evaluate the second contribution we can use a similar logic to the all-order proof (2.16)

and Taylor expand the LF in the exponent, the difference being that the integral in the

exponent is now between τ and infinity rather than between minus infinity and infinity.

The cancellation between bosons and fermions is therefore incomplete and when Q acts on

the first LF the integration by parts introduces an extra boundary term

iΛ(τ)

∫
∞

τ
dτ1QLF (τ1) =

(
4π
k (C2C̄

2)(τ) 0

0 4π
k (C̄2C2)(τ)

)
. (3.7)
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This is nothing else than the diagonal part of L̃. Combining it with the term in LF in (3.6),

one finds

QV = iTrRP
[∫

∞

−∞

dτ ei
R τ
−∞

L1/6(τ1)dτ1 L̃(τ) ei
R

∞

τ L1/2(τ2)dτ2

]

= iTrRP
[
ei

R

∞

−∞
L1/6(τ1)dτ1

∫
∞

−∞

dτ L̃(τ) ei
R

∞

τ
L̃(τ2)dτ2

]
, (3.8)

which, upon Taylor expansion, can be seen to be exactly equal to (3.3).

We analyze now the circular loop. The difference between the connections is now

L̃ = L1/2 − L1/6 =



 −i4π
k C2C̄

2 −i
√

2π
k ηα

1 (τ) ψ̄1
α

−i
√

2π
k ψα

1 η̄
1
α(τ) −i4π

k C̄
2C2



 ≡ L̃B + LF . (3.9)

So we can write W1/2 −W1/6 in a power series of terms with the W1/6 connection

W1/2−W1/6 =TrRP
[
ei

R

2π
0

L1/6dτ

(
i

∫ 2π

0
dτ1 L̃(τ1) −

∫

τ1<τ2

dτ1dτ2 L̃(τ1)L̃(τ2)+· · ·
)]
. (3.10)

As we saw in the supersymmetry analysis, terms with different numbers of integrals mix.

It will be therefore useful to separate this sum into terms with different numbers of field

insertions. First LF , then L̃B and L2
F , next LF L̃B and L3

F , etc.

Before finding V we should choose one of the supercharges annihilating the 1/6 BPS

Wilson loop. We take10

Q = (Q12+ + iS12+) + (Q34+ − iS34+) (3.11)

and define

Λ = i

√
π

2k
eiτ/2

(
0 C2

C̄2 0

)
. (3.12)

It is easy to check that

QΛ = LF , QLF = −8Dτ (e
−iτΛ) , 8ie−iτΛΛ = L̃B . (3.13)

The covariant derivative acting on Λ in QLF has the generalized connection with A and

Â in L1/2 (2.18), but its action on Λ is the same as a covariant derivative in the L1/6

connection, since the difference between the two, involving C2C̄
2 and C̄2C2, cancels when

acting on Λ. We can therefore integrate the total derivative inside a Wilson loop with

either the L1/2 or L1/6 connection.

10 For consistency with the analysis of [25] we consider here only one specific chirality.
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We now solve for V in a power series. We take V =
∑

∞

p=1 Vp, where the term Vp has

p field insertions into the Wilson loop with connection L1/6. The first few are

V1 = iTrR P
[
ei

R

2π
0

L1/6dτ

∫ 2π

0
dτ1 Λ(τ1)

]
,

V2 = −1

2
TrRP

[
ei

R

2π
0

L1/6dτ

∫

τ1<τ2

dτ1 dτ2

(
Λ(τ1)LF (τ2) − LF (τ1)Λ(τ2)

)]
, (3.14)

V3 = TrRP
[
ei

R

2π
0

L1/6dτ

(
−
∫

τ1<τ2

dτ1 dτ2

(
L̃B(τ1)Λ(τ2) + Λ(τ1)L̃B(τ2)

)

−i
∫

τ1<τ2<τ3

dτ1 dτ2 dτ3

(
Λ(τ1)LF (τ2)LF (τ3)+LF (τ1)Λ(τ2)LF (τ3)+LF (τ1)LF (τ2)Λ(τ3)

))]
.

Using (3.13) it is easy to check that

QV1 = iTrR P
[
ei

R

2π
0

L1/6dτ

∫ 2π

0
dτ1 LF (τ1)

]
,

QV2 = TrRP
[
ei

R

2π
0

L1/6dτ

(
i

∫ 2π

0
dτ1 L̃B(τ1) −

∫

τ1<τ2

dτ1 dτ2 LF (τ1)LF (τ2)

)]
,

QV3 = TrRP
[
ei

R

2π
0

L1/6dτ

(
−
∫

τ1<τ2

dτ1 dτ2

(
L̃B(τ1)LF (τ2) + LF (τ1)L̃B(τ2)

)

− i

∫

τ1<τ2<τ3

dτ1 dτ2 dτ3 LF (τ1)LF (τ2)LF (τ3)

)]
.

(3.15)

These indeed are the terms in the expansion of W1/2−W1/6 around the L1/6 connection

with one, two and three fields insertions. We have also checked the next term in the

expansion and expect this pattern to extend to all orders.

This comparison with the 1/6 BPS loop allows for an alternative, immediate verifica-

tion that the loop constructed in section 2 is indeed 1/2 BPS. This derivation shows that the

Wilson loop is invariant under the single supercharge used above. Then we note that from

inspecting L1/2, the Wilson loop preserves an SU(3) subgroup of the SU(4) R-symmetry

group of the theory. Note though that the supercharge is not invariant under this SU(3), so

acting with this symmetry we automatically generate more supercharges preserved by this

loop. In a similar fashion one can generate the full supergroup with twelve supercharges

preserved by the loop as the minimal one containing the SU(3) generators and the four

preserved by the 1/6 BPS loop.

3.2 Supermatrix model and supergroup Chern-Simons

Since the 1/2 BPS loop and the 1/6 BPS one are in the same cohomology class with respect

to Q, we can immediately conclude that the localization argument used in [25] for the 1/6

BPS circular loop will also apply unaltered to our operator.

Generalizing the matrix model derived in [25] to the case of M 6= N gives the following

expression for the partition function

Z =

∫ N∏

a=1

dλa e
ikπλ2

a

M∏

â=1

dλ̂â e
−ikπλ̂2

â

∏
a<b sinh2(π(λa − λb))

∏
â<b̂ sinh2

(
π
(
λ̂â − λ̂b̂

))
∏

a,â cosh2
(
π
(
λa − λ̂â

)) .

(3.16)
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Here λa (a = 1, . . . , N) and λ̂â (â = 1, . . . ,M) are two sets of eigenvalues corresponding

to the two gauge groups of the theory. Our 1/2 BPS Wilson loop in the fundamental

representation is evaluated by inserting into the integral above

W =

N∑

a=1

e2πλa +

M∑

â=1

e2πλ̂â . (3.17)

For a general representation the insertion is (see footnote 7)

WR = TrR

(
diag(e2πλa) 0

0 diag
(
e2πλ̂â

)
)

= sTrR

(
diag(e2πλa) 0

0 − diag
(
e2πλ̂â

)
)
. (3.18)

Examining these expressions one sees that if the cosh functions in (3.16) were in the

numerator rather than in the denominator, this would be the matrix model for pure Chern-

Simons theory with gauge group SU(N + M) on a lens space S3/Z2, where an SU(N)

subgroup is expanded around the trivial vacuum and an SU(M) subgroup around the other

flat connection [32–34].11 Compared to the trivial saddle point with unbroken SU(N+M),

the non-trivial connection is represented by the shift of the eigenvalue λ → λ + i/2. This

replaces some of the sinh functions with cosh functions and also gives the (−) factor in the

lower-right block on the right-hand side of (3.18).

In (3.16) the cosh functions are in the denominator rather than in the numerator. This

arises naturally when considering instead the matrix model and Chern-Simons theory (and

the same saddle point) for the gauge supergroup SU(N |M). For a fuller discussion see [26].

4 Discussion

In this paper we have found the so far elusive 1/2 BPS Wilson loop operator of N = 6

super Chern-Simons-matter. We have considered both a loop supported along an infi-

nite straight line and one supported along a circle. The former preserves separately six

Poincaré supercharges and six conformal supercharges, whereas the latter preserves twelve

linear combinations of the two. The proof of the invariance of our operator under these su-

percharges is quite novel, for it requires to Taylor expand the exponential and to integrate

by parts some of the variations in order to have cancellations between terms of different

order. While the theory has only U(N) × U(M) gauge symmetry, our loop can be defined

for arbitrary representations of the supergroup U(N |M).

We have shown that this loop is related to another one, which is only 1/6 BPS, by the

addition of a term exact under a supercharge Q. This in turn implies that the expectation

values of the two loops are equal and allows us to use the matrix model (3.16), derived

using localization in [25]. Beyond this formal derivation it would be interesting to check

this expression by an explicit perturbative computation. It is straightforward to do the

matrix model calculation perturbatively, plugging (3.17) into (3.16). The first few orders

are

〈W 〉MM = 1 + i
π

k
(N −M) − 2π2

3k2

(
N2 − 5

2
NM +M2 − 1

4

)
+ O

(
1

k3

)
. (4.1)

11We are grateful to Marcos Mariño for discussions about this point.
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This is a prediction for a corresponding computation to be performed directly in the gauge

theory (with framing one) by summing Feynman diagrams.

The matrix model gives, in principle, an exact expression for the expectation value of

the Wilson loop valid for all values of N , M and k. Unfortunately, unlike the 4-dimensional

analog [11–13], this matrix model is quite complicated (for similar models see e.g. [32–36]).

Still, it can be solved [26] and gives the correct expression for the expectation value of the

Wilson loop at strong coupling as evaluated by a macroscopic fundamental string extending

in AdS4 × CP
3 and ending along the circular loop on the boundary of AdS4 (or by an M2

brane wrapping the orbifolded direction of S7/Zk)

〈W 〉 ≃ exp

(
π

√
2N

k

)
≃ exp

(
π

√
N +M

k

)
. (4.2)

Note that while the matrix model is related to the supergroup Chern-Simons theory,

it is not exactly the same. The matrix model calculates the contribution of a single saddle

point in a perturbative expansion of the Chern-Simons theory. This is reminiscent of

the situation for the Wilson loops on S2 in N = 4 supersymmetric Yang-Mills in four

dimensions and their relation to two-dimensional Yang-Mills [37, 38]. They are not given

by the full answer in the 2-dimensional theory, but rather by a semiclassical expansion

around the zero-instanton sector [39–41]. Recently an interpretation was given for the

other saddle points, as the correlation function of Wilson and ’t Hooft loops [42]. It would

be interesting to understand if there are any observables in N = 6 Chern-Simons-matter

theory which give the other saddle points in the perturbative expansion of the U(N |M)

pure Chern-Simons theory.

Another direction worth investigating is related to the construction of Wilson loops

via the higgsing of membranes, as done in four dimensions in [43]. In [9, 30] the coupling of

the Wilson loop to the scalar fields was found by separating membranes and computing the

mass of the resulting off-diagonal modes stretching between them. This indeed gives the

scalar couplings in (2.4), but did not include the fermions, that, as we have seen, are crucial

to enhance the supersymmetry of the loop operator. It would be therefore interesting to

repeat the calculation considering also fermionic off-diagonal modes and to reproduce the

couplings ηα
I and η̄I

α in this way.

There are other objects in this theory which are very closely related to the Wilson loops

constructed here. These are the vortex loop operators of [29], which have a semiclassical

description in the gauge theory. Along the loop the gauge symmetry is broken to some

subgroup and different U(1) factors have vortices. In addition, the scalar fields can have

square-root branch cuts. So, parameterizing the transverse plane to the line by complex

coordinates z and z̄, the field configuration (in one U(1) factor) is

A = Â = −i α
2k

(
dz

z
− dz̄

z̄

)
, C1 =

β√
z
, (4.3)

with α and β being two real parameters. The vortex loops carry k unit of electric flux and

should be an alternative description for k coincident Wilson loops. In fact, while one can

construct the Wilson loop in any anti-symmetric representation, in Chern-Simons theory
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the dimension of the symmetric representation should be smaller than k. We expect the

vortex loops to take over as the description of the object carrying k units of electric flux.

In the M-theory picture the 1/2 BPS Wilson loop is an M2-brane wrapping the orbifolded

direction of S7/Zk. The k-th symmetric loop is the brane wrapping the circle in the

covering space. This brane then develops extra allowed deformations, including opening

up in AdS4, which corresponds to the β parameter above, and rotating on S7, thus leading

to the 1/3 BPS vortex of [29].

Still, a fuller classification of all 1-dimensional defects in this theory is in order. In

N = 4 super Yang-Mills in four dimensions the classification of Wilson and ’t Hooft loops

gives rise to a rich structure of objects in the dual string theory, including probe branes

wrapping various cycles (see e.g. [43–46]) and fully backreacted geometries, the so-called

“bubbling” solutions (see e.g. [47–50]). So far this classification has only been partially

undertaken in the M-theory dual of N = 6 super Chern-Simons-matter. We plan to

complete this in a future publication.

Apart for the theory with N = 6 supersymmetry, there are closely related 3-

dimensional Chern-Simons-matter theories with N = 4 and N = 5 supersymmetry [51–53].

These theories are based on more complicated quivers and have a richer structure of al-

lowed gauge groups and matter representations. We expect that constructions similar to

ours will give the 1/2 BPS loops of these theories. These should probably be related to

Wilson loop observables in the topological theories discussed in [28].

It would be also of some importance to find other loop operators of N = 6 super

Chern-Simons-matter preserving reduced amounts of supersymmetry, following the spirit

of [54, 55]. In particular, note that the couplings satisfy the relations η̄I
αη

β
I = i(1+ ẋµγµ) β

α

and M I
J = δI

J + iηα
J η̄

I
α. Such relations may play a role in a more comprehensive analysis as

do the pure spinors in the treatment of [56].
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A Notation and conventions

For the supersymmetry analysis of the loop, we consider the theory in R
1,2 with metric

gµν = diag(−1, 1, 1) and space-time indices µ, ν, . . . = 0, 1, 2. The spinor indices are denoted

with lower case letters from the beginning of the Greek alphabet, α, β, . . . = +,−. Spinor

indices are raised and lowered according to the following rules

ψα = εαβψβ , ψα = εαβψ
β , ε+− = −ε+− = 1 , (A.1)

and we choose for our basis of gamma matrices

(γµ) β
α = {−iσ3, σ1, σ2} , (A.2)

obeying the relation γµγν = gµν + εµνργρ (with ε012 = 1). Lowering the upper index, these

matrices become symmetric

(γµ)αβ = {−iσ1,−σ3, i1} . (A.3)

When not written explicitly, the spinor indices are contracted as

θψ ≡ θαψα = −θαψ
α = ψαθα = ψθ ,

θγµψ ≡ θα(γµ) β
α ψβ = −ψγµθ , (A.4)

where θ and ψ are arbitrary spinors.

Regarding the gauge index structure, if we denote by a, â the gauge indices in the

fundamental of the first and the second gauge group, respectively, we have

(CI)
â

a , (C̄I) a
â , (ψI)

a
â , (ψ̄I) â

a . (A.5)

Under supersymmetry the fields transform as (for clarity we indicate here all the spinor

indices explicitly)

δAµ =
4πi

k
θ̄IJα(γµ) β

α

(
CIψJβ +

1

2
εIJKLψ̄

K
β C̄

L

)
,

δÂµ =
4πi

k
θ̄IJα(γµ) β

α

(
ψJβCI +

1

2
εIJKLC̄

Lψ̄K
β

)
,

δCK = θ̄IJαεIJKLψ̄
L
α , (A.6)

δC̄K = 2θ̄KLαψLα ,

δψβ
K = −iθ̄IJαεIJKL(γµ) β

α DµC̄
L

+
2πi

k
θ̄IJβεIJKL

(
C̄LCP C̄

P − C̄PCP C̄
L
)

+
4πi

k
θ̄IJβεIJMLC̄

MCKC̄
L,

δψ̄K
β = −2iθ̄KLα(γµ)αβDµCL − 4πi

k
θ̄KL
β (CLC̄

MCM − CM C̄
MCL) − 8πi

k
θ̄IJ
β CIC̄

KCJ ,

where we have written the transformations only in terms of the parameters θ̄ and not θ,

by using the following relation

θIJ =
1

2
εIJKLθ̄

KL . (A.7)

The supersymmetry parameters are antisymmetric, θ̄IJ = −θ̄JI , and obey the reality

condition

θ̄IJ = (θIJ)∗ . (A.8)
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