
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 97, Number 3, July 1986

A SUPERREFLEXIVE BANACH SPACE WHICH
DOES NOT ADMIT COMPLEX STRUCTURE

STANISLAW J. SZAREK1

ABSTRACT. We construct an infinite-dimensional superreflexive real Banach

space which does not admit complex structure and consequently is not isomor-

phic to the Cartesian square of any Banach space. We also construct a variant

of Bourgain's example of a complex Banach space with nonunique complex

structure and state a number of open problems about structure of Banach

spaces and their linear groups.

1. Introduction and main results. The main result of this paper is the

following

THEOREM 1.1. There exists an infinite-dimensional superreflexive real Banach

space which does not admit complex structure. Moreover, it can be chosen to be a

subspace of a Banach lattice, which is 2-convex and q-concave for any q > 2 (resp.

2-concave and p-convex for any p < 2).

We have the immediate

COROLLARY 1.2. There exists an infinite-dimensional superreflexive real Ba-

nach space which is not isomorphic to the Cartesian square of any Banach space.

It should be observed that the James' space J [6] constitutes a nonreflexive

example for the main statements of Theorem 1.1 and Corollary 1.2. Also, examples

of superreflexive spaces which are not isomorphic to their Cartesian squares have

been known for some time (see [3, 1]). However, the space from [3] is known to be

isomorphic to some Cartesian square (see also Problem 7.4).

The proof of Theorem 1.1 is based on the following finite-dimensional result:

PROPOSITION 1.3. Given q G [2,oo] and n € N there exists Y = Y™ C Lq

with dim Y = n such that if Z = Y ©2 H (H any Hubert space) and if A: Z —» Z

satisfies A2 = —I, then \\A\\ > cnn^1/2-1/''/2, where en is a numerical constant.

Proposition 1.3 is proved using the results from [19], in turn influenced by [5

and 18]. The procedure of "glueing" finite-dimensional spaces into an infinite-

dimensional one is taken from [2] ; similar schemes were previously employed e.g. in

[3, 7 or 8].

The paper is organized as follows: §2 explains notation and terminology. §3

presents known results and preliminary lemmas. §4 contains the proof of Proposi-

tion 1.3. In §5 we derive Theorem 1.1 from Proposition 1.3. In §6 we give a sketch
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of an alternate proof of the result of J. Bourgain [2] on nonuniqueness of complex

structure in normed spaces. §7 lists open problems.

ACKNOWLEDGMENTS. The author would like to thank Haskeil Rosenthal for
pointing out that the problems considered here were open.

2. Notation and terminology. We use standard Banach space notation, as

can be found e.g. in [11]. If B is a measurable subset of Rn, we will denote by

vol(ß) the usual n-dimensional Lebesgue measure of B and by ac(B) the absolute

convex hull of B. If X is a normed space, we will denote by || • \\x its norm; by L(X)

the space of bounded linear operators on X, endowed with the usual operator norm

II " \\l(x) (which we may also denote by ||- :X —► X\\); similarly L(X, Y). L&(X)
is the space of R-linear operators on the (possibly complex) space X. B(X) is the

unit ball of X; B(l™) = B™. If (Xj) is a sequence of normed spaces, (0 • Xj)¡p is

the space of sequences (xj),Xj G Xj, for which the norm ||(a;¿)ll = ||(||a;¿||x,-)llip is

finite; we will also denote by X\ ©p X2 the Zp-sum of just two spaces.

For T G L(X,Y), irp(T) denotes the usual p-absolutely summing norm of T

(see [11, vol. II, pp. 63-64]). We need to know that if T G L{X,Y) and S G
L(Y,Z), then ttp(T) < min{||S||7rp(T),7rp(S)||:T||}. We say that X satisfies the

Grothendieck theorem with constant C iff 7Ti(T) < C||T||¿(x,¡2) for T G L(X, I2)

(note that we always have 7rp(T) < 7ri(T) for p > 1). If H is a Hilbert space and

T G L(H), T compact, we denote by (sj(T))^AA[h the sequence of s-numbers of T

(i.e. the eigenvalues of |T| = (T*T)1/2, counted with multiplicity and arranged in

the nonincreasing order). hs(T) = ||(aj(T))||2 is the Hilbert-Schmidt norm of T;

we have hs(T) = ^(T). Furthermore, if T G L(H) is compact and (sj(T)) g l\,

we define the quasi-norm

?o     ¿-j 1

|| • He satisfies the triangle inequality, but is not positively homogeneous. For our

purposes it is essentially sufficient to know that if 5 G L(l%) and ||S||c0 < 6n,

then there exists F £ ln with codimF < Vén such that ||Sz||2 < Ve||x||a for

x G F. Also let us note that if Sk(S) = a, then ||Sx||2 < a||i||2 on a subspace of

codimension < k and || Sa; || 2 > o||ic||2 on a subspace of dimension > k.

Finally, to avoid unnecessary repetitions, let us agree that the letters c,ci,c',

etc. will denote universal constants while e.g. c(6) will denote a constant depending

only on a parameter 6.

3. Known results and preliminary lemmas. The following known result is

the starting point of this paper:

THEOREM 3.1 [19, THEOREM 1.5]. Given 6 G (0,1] and n G N, there exists
a norm || • ||xj» on Rn satisfying

(a) X™ is isometric to a quotient of l^  for some N < 2n,

(b) HI2 < IMx? < II • Hi,
(c) Xn satisfies the Grothendieck theorem with constant c\,

(d) if ||r||L(x») < c(6)y/n, then \\T - XI\\Co < Sn for some A G R.
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REMARK 3.2. Conditions (a) and (b) are clearly equivalent to

, . | B(Xf) = &c{ei,e2,... ,en,xn+i,... ,xN}, where (e.,) is the

I standard unit vector basis and \\xj\\2 < 1 for n < j < N.

In particular, it then follows that [vol(5(Xil))/vol(n-1/2ß2")]1/n < (8e3/7r)1/2 <

7.2 (see e.g. [17, Lemma 6.5]).
REMARK 3.3. The fact that Xf can be chosen to satisfy the Grothendieck

theorem with universal constant ci (and also to have cotype 2 constant < ci and

other properties not used here) follows from the "random" choice of x/s; the kernel

of the quotient map from (a) is then, with large probability, nearly Euclidean (cf.

[19, §5(a) or 18, Remark 4.5; 9, 14]). In fact for our purposes it is sufficient to

use the classical Grothendieck theorem on operators from l\ to ¿2 since, as one

can show, the quotient map is a "good" isomorphism on some very large (e.g.

.9n-dimensional) "nearly" Euclidean subspace of l^.

COROLLARY 3.4. Given p G [1,2], 8 G (0,1] and n G N, there exists a norm

|| • Hjjfn on Rn such that

(i) Xp is isometric to a quotient of lp  with N < 2n,

(ii) if ¡|T|L(Xn) < c(6)nllv-1/2, then \\T - XI\\Co < b~n for some A G R,

(iii) n1^-1/2!) • ||2 > || • ||x? (equivalents n1'2-1'"^ C B(X%)),

(iv) [vol(S(Xpl))/vol(n1/2-1/P52t)]1/n <c2,

(v) Xp satisfies the Grothendieck theorem with constant Cin1-1/p.

PROOF. Consider the same quotient space as in Theorem 3.1, but with respect

to the l^f-norm rather than the Z^-norm. Since II • ILjv > II • 11/jv > N1/p~~1\\ ■ \\,n,
V ±11 lltj       -     II lllp       - II 111^    I

we have also

(i) II • IU? > Mix» > #xMl • IUr>
and so (ii) and (v) follow. By Remark 3.2, the quotient map sends the standard

unit vector basis of RN ontoei,e2,... ,en,xn+i,... ,xn G R" andsoß™ C B(Xp)\

thus || ■ ||x» < || • ||i" (< n1/p_1/2|| • ||¡n); this shows (iii). Finally, (1) implies that

B(X£) C N1~1/pB(X?). Since N < 2n, this combined with the second part of

Remark 3.1 proves (iv) with c2 = 21_1/p • 7.2 < 11.

REMARK 3.5. In the terminology of [20], (iii) and (iv) mean that the "volume

ratio" of Xp with respect to the ellipsoid n1/2-1^.^ does not exceed C2. Hence, by

[20, (*), p. 368 or 15, Remark 5], there exists a subspace E of X™ with dimE >\n

such that forxGE

(2) n^-^Wxh > ||x||x- > canV'-^Wxh,

where C3 = (47rc2)-1.

We also need the following

LEMMA 3.6. Let (H, \ ■ |) be an n-dimensional Hubert space and D G L(H) be

such that, for some A G R, ||D - A/||c0 < 8n. Then there exists a subspace F of

H with codimF < 2\/Sn such that \(D2 + I)x\ > (1 - 2¿)|x| for xEF.

PROOF. Let Fq C H be a subspace with codim Fo < \/6n such that \Dx - Xx\ <

V6\x\ for x G Fq. Then F = F0 n D~1(F0) is the required subspace.
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4. Proof of Proposition 1.3. By duality, it is enough to prove the assertion

of Proposition 1.3 with Y replaced by a quotient of Lp, where 1/p = 1 - 1/q.

Specifically, let us consider Z = X™ ©2 H, where X™ is obtained via Corollary 3.4

applied with 6 = 2-6. Set c0 = min{c(2-6), (4c3ci)_1/2}, where c(2-6), a and

C3 come from Corollary 3.4(ii), (v) and (2), respectively. To prove the Proposition

let us assume, to the contrary, that there exist A G L(Z) with A2 = —I and

||A|| < con'1/2-1/9)/2. Write A as a 2 x 2 matrix with operator entries

An   A12
A21    A22

Xp"

H

Clearly,

(3) \\Aij\\ < con^2-1^2 = con^-1^2

for i,j = 1,2 and the corresponding operator norms. In particular, Corollary 3.4(h)

implies that there exists A G R such that || An -XI\» \\c0 < 2~6n and so, by Lemma

3.6 applied with D = An and 6 = 2-6, we get that there exists a subspace F of

Xp (identified with Rn) with codim F < n/4 such that

(4) ||(A21+7)x||2>(l-2-5)||x||2    forxGF.

On the other hand, A2|x" = A2, + A12A21 = -Jx«* and so, denoting R =

—A12A21, we have

(5) A2n+IX? = R.

By Corollary 3.4(v) and (3),

7r2(fi) < HA12II ■ 7r2(A2i) < cm^^PHAiill ■ P21II < cicgn1/2.

Now choose Ex C Xp1 with dim E1 > n/2 so that (2) holds for x G REX (E1 =

R~lE with E given by Remark 3.5 works). Of course, the left inequality in (2)

holds for all x G X£ (Corollary 3.4(iii)). It thus follows that ■k2{R\e1-Iei^ II ' II2) -*
¿2) = hsiülßj < csCiCçn1/2 < \nxl2 (note our choice of en). Consequently, there

exists a further subspace E2 C E\ with dim£^2 > \ dimití > \n such that

(6) \\Rx\\2 < y/4jñ)xs(R\El)\\x\\2 < \\\x\\2    for x G E2.

This (remember (5)) contradicts (4) and proves Proposition 1.3.

5. Proof of Theorem 1.1. In this section we deduce Theorem 1.1 from Propo-

sition 1.3. The former one will follow immediately from the following

PROPOSITION 5.1. There exist a sequence of integers (n^) and a sequence of

reals qk | 2 such that if Y = (0VQ"t)¡2, where the Y™'s are the spaces given by

Proposition 1.3, then there is no operator A G L(Y) such that A2 = —I.

PROOF.  We follow the argument from [2].  However, since we work with sub-

spaces of Lg-spaces, we do not have to go through an interpolation argument.

Define sequences (nk) and (qk) inductively by
(Io) 91 = n, = 4,

(2°) if (o,-), (nj) are defined for j < k, choose qk G (2,qk-i) so that
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A SUPERREFLEXIVE BANACH SPACE 441

(i) nlLY/gk < 2
and then choose nk > nk-i so that

(ii) con^-^Vi2 > k,
where Co is the constant from Proposition 1.3.

Observe that since nk Î oo, (i) implies that qk 1 2 (we could also require this

additionally).

Now suppose that there exists A G L(Y) with A2 = -I and fix A; > ||A||. Denote

by Pj the natural projection of F onto Y$. Set Z' = Y£k +AYqnkk. Then AZ' = Z'

and Z' = Y^ e2 F', where F' = [I-Pk)Z' = {I - Pk)AY£<. Clearly, dimF' < nk

and f" C (®j¥fc PjF')h. We have, for j < k,

d(P3F',lfmP>F') < (dimP3F')1'2 < n1/2 < «jß;

similarly, for j > k,

d(PjF',lfmPiF') < (dimPjF')1/2-1^ < nk'2-l/qk < 2

(we used 2°(i) and [11]); this shows that

d(F',lfmF') < max{2,4/_21} = n]/2v

Hence if Z = Y"k ©2/2im F'. then d(Z, Z') < n1^. Combining this with Proposition

1.3 we see that

\\A\z4L{zl)>c0n^-^'WJ2>k

by 2°(ii); a contradiction. This proves Proposition 5.1 and concludes the proof of

Theorem 1.1.

REMARK 5.2. It is clear from the proof that Proposition 5.1 (and hence also

Theorem 1.1 and Corollary 1.2) remains true if we replace Y by Y © H, where H

is any Hubert space.

6. A variant of Bourgain's example of a space with nonunique complex

structure. In this section we indicate how, arguing analogously as in §§3-5, one

can reprove the following results of J. Bourgain [2].

THEOREM 6.1. There exists a (superreflexive) complex Banach space X such

that if one defines new multiplication by complex scalars by X © x = Ax and denotes

the resulting new complex Banach space by X, then X and X are not isomorphic.

As a consequence, there exists a real Banach space, which admits two nonisomorphic

complex structures.

Similarly as in [2], the argument is based on some finite-dimensional fact (slightly

stronger than the corresponding result from [2]).

PROPOSITION 6.2. Given q G [2, oo] and n G N there exists (a complex Banach

space) Y = Y™ c Lq with dim Y = n such that if Z = Y ©2 H (H any complex

Hubert space) and T: Z —► Z is invertible and complex antilinear (i.e. T is R-linear

and T(Xx) = XTx forXeC and x G Z), then \\T\\ ■ \\T-l\\ > c^n1'2-1'".

Once this is shown, we argue exactly as in [2] (and very similarly as in §3

of this paper, Proposition 6.2 playing the role of Proposition 1.3) to prove that

X = (0 YV-kk)i2 verifies Theorem 6.1 for the appropriate choice of (nk) and (qk).
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Also the (nearly "soft") proof of Proposition 6.2 goes along similar lines as the

proof of Proposition 1.3.  First [19, Lemma 3.5A, Theorem 1.4, cf. §5(a)] readily

imply (cf. the proof of Corollary 3.4) the existence, for given p G [1,2], ¿G (0,1]

and n G N, of a (complex) norm || • ||o-„ on Cn satisfying conditions (i), (iii), (iv)
p

and (v) of Corollary 3.4 ((v) for R-linear operators) and additionally

(ii)'
if S: Cn —► Cn is C-antilinear and at least r > 6n s-numbers

of S are > a, then ||S||L  ,x„) > c'(6) ■ a ■n (l/p-l/2)/2

where, for the purpose of determining s-numbers, S is thought of as R-linear (note

here that in the language of [19] S is C-antilinear iff it is R-linear and SA = —AS,

where A: Cn —> Cn is given by Ax = ix).

By duality, it is again enough to show that the assertion of Proposition 6.2 holds

with Z replaced by Z' = X™ ©2 H, where X™ is obtained as described above (with

6 = 1/2) and 1/p = 1 - 1/q. To this end, let T: Z' -+ Z' be C-antilinear and
invertible and, to argue by contradiction, suppose that

(7) l|TM|T-1||<min|i(C'(i))2,c"|n1/p-V2)

where the choice of c" will be indicated later (note that 1/p - 1/2 = 1/2 - 1/q).

Consider the matrix representations

Tu    T\2
T21    T22

yn
-^■p rp—\   _

H '

ïïi    T[2

J21 222 H

Denote by k the smallest integer > n/2 and set a = sk(Tn), a' = Sfc(Ti1). Then,

by (ii)' and (7),

(8) aa' < 1/2.

On the other hand (cf. the remark at the end of §2), there exists (an R-linear

subspace) F C X£, codimF = k- 1 < n/2 (resp. F' C X£) such that

(9) ||Tiix||2 < a||x||2    for x G F

and, respectively,

(9') Hïnxlla <a'||x||2   for x G F'.

Now observe that

(10) IXn=T11Ti1+T12Ti1
p

and, similarly as in the argument leading to (6), choose a (real or complex) subspace

Ei of Xp with (real) dirndl > |n such that T^T^Ei is "nearly" Euclidean in

the sense of (2) (we use our analogues of (iii) and (iv) from Corollary 3.4 and [15,

Théorème 8] (or [16, Remark 2 or 17, Proposition 3]). Then hs(TnTiAEl) < \nxl2

if c" in (7) was chosen small enough. Accordingly, there exists a further (real)

subspace E2 C E\, dim£2 > n, such that, for x G E2,

WTuT^xh^^-ln^Wxh^^Wxh.
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This, combined with (8), (9), (9)' and (10), shows that if x G E2 D F' D T{^(F) (a
nontrivial subspace), then

||x||2 = !|T11ri1x + r12^1x||2< laa' + Yj Ha < U + X ) "X"2'

a contradiction if x ^ 0.  This shows Proposition 6.2 and concludes the proof of

Theorem 6.1.

REMARK 6.3. As was communicated to the author by N. J. Kalton, the example

[8] of a (closed) subspace of Lp (p G [0,1)), every endomorphism in which is a

multiple of the identity, can be modified to yield a like complex space such that

every R-linear endomorphism in it is a (complex) multiple of the identity. It can

also be modified to yield the isometric version of Theorem 6.1.

7. Open problems.
Problem 7.1. Let X be a (real) Banach lattice (resp. a space with unconditional

basis). Does X admit complex structure? Is X isomorphic to Y2 for some Banach

space y? Lattice isomorphic to Y2 for some Banach lattice Y? It should be

noticed that the spaces constructed in this paper do not even have the so-called

local unconditional structure (see [4]).

Problem 7.2. Does there exist a real Banach space nonisomorphic to a Hubert

space which admits unique complex structure?

Problem 7.3. In [19] the "worst" possible finite-dimensional examples for nonex-

istence (resp. nonuniqueness) of complex structure were given. Under what non-

trivial assumptions do we have positive results? In particular, if a space has a

1-unconditional basis?

Problem 7.4. Can we replace in Corollary 1.2 "X / y2" by "X / ym" for given

m > 2? Any m > 2?
Problem 7.5. Under what general assumptions about a group of operators on

¿2, does some element of the group not admit "good" approximation by a multiple

of identity in the quasi-norm || • ||c0 (equivalently, satisfies the condition (Mk,a)

from [19] for large k, a)? For groups acting irreducibly on ln this was essentially

done in [12]; [19] provides other examples. Similarly, under what general assump-

tions about a group T does there exist a Banach space X such that there are no

representations of T acting on X? Note that the assertion of Theorem 1.1 from

this paper can be restated as follows. "There is no representation (of the circle

group) o-.S1 —► L(X) with o(—l) = -/" and one can ask under what general as-

sumptions on a group (resp. representation) a statement like this is possible (this

may be related to [13]). Also recall the well-known question about existence of a

Banach space, all bounded linear operators on which one of the form A7 + A with

A compact (resp. nuclear) (cf. Remark 6.3 and [8]). This seems to be quite hard;

one can ask instead for an example of a space X for which the quotient algebra of

L(X) by the ideal of compact (resp. nuclear) operators is "small".

Problem 7.6. Do we have a complex version of Corollary 1.2? It would presum-

ably follow if we had a complex version of Theorem 1.5 from [19].
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