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Abstract. This paper investigates the benefits of using a superresolution approach
for fMRI sequences in order to obtain high-quality activation maps based on low-
resolution acquisitions. We propose a protocol to acquire low-resolution images,
shifted in the slice direction, so that they can be used to generate superresolution
images. Adopting a variational framework, the superresolution images are defiend
as the minimizers of objective functions. We focus on edge preserving regular-
ized objective functions because of their ability to preserve details and edges. We
show that applying regularization only in the slice direction leads more pertinent
solutions than 3-dimensional regularization. Moreover, it leads to a considerably
easier optimization problem. The latter point is crucial since we have to process
long fMRI sequences. The solutions—the sought high resoltion images—are cal-
culated based on a half-quadratic reformulation of the objective function which
allows fast minimization schemes to be implemented. Our acquisition protocol
and processing technique are tested both on simulated and real functional MRI
datasets.

1 Introduction

In functional Magnetic Resonance Imaging (fMRI) a major goal is to maximize the image
spatial resolution, which will allow the investigator to visualize the smallest region of
neuronal brain activity. In order to obtain high-resolution activation maps, the spatial
resolution of the standard fMRI experiments performed at 1.5 T does not suffice, as
the penalty for acquiring higher resolution images is a reduction in SNR [10] which is
proportional to the decrease in voxel size. This decrease in SNR can be obviated by the
use of higher magnetic field scanners [19], these however imply much higher equipment
costs, an increased inhomogeneity and larger distortion artifacts in the images [7,12].
To overcome these problems, one possible solution is to use superresolution techniques
which allows us to generate a high resolution volume from a set of low resolution ones.
These techniques have already been used in different image processing applications
[18,1,5,4,11]. For anatomical MR images, superresolution can be employed in 2D FT
MR imaging in the image space, i.e. in the slice direction [9,15] and [16] proposed a
superresolution approach for 3D volumes.

In this paper we consider fMRI time series and propose an optimized approach for
high resolution fMRI images reconstructions. It is based on two parts. The first is the
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acquisition protocol (section 2). Images are acquired at a low resolution using alternate
shifts of the image slice stack over half-a-slice thickness, generating two separate slice-
shifted overlapping volumes. The second is the superresolution reconstruction technique
which combines recent work on edge preserving approaches and convergence rate studies
[14] (section 3). Section 4 presents the experiments on a synthetic sequence and on a
real acquisition made on human volunteer for a visual stimulus. The properties of the
resulting statistical parameter maps will be analyzed.

2 An Adapted fMRI Sequence

High resolution anatomical MRI images are classically acquired as 3D volumes. How-
ever the acquisition takes too much time and cannot reach the temporal resolution re-
quired in fMRI experiments. Instead MRI volumes are acquired as a stack of 2D slices
perpendicular to a given direction (see figure 1). The in-plane image data of a single slice
are generated by a 2D Fourier transform of the acquired set of MRI time-domain signals.
In-plane shifting in the image space (which is nothing else than a global phase shift in
the acquisition space), does not add any new information since due to the properties of
the 2D inverse Fourier Transform, it is equivalent to zero-padding of the raw data in the
temporal domain [9]. Therefore in fMRI, the use of a superresolution algorithm will be
only beneficial in the slice direction (perpendicular to the image plane), since shifted
slices correspond to different parts of the object in the real space.

Our acquired images are shifted only in the slice direction. According to our fMRI
acquisition protocol, both volumes are acquired in an interleaved fashion with the first
volume (G1) positioned with a relative slice offset equal to zero, and the second volume
(G2) with a relative slice offset (Dz) of half the slice thickness, as is demonstrated in
figure 1.

Fig. 1. The acquisition of the different slices in a volume. Left : The slice acquisition sequence
in the standard high resolution dataset (G0). Right : The acquisition sequence in the slice shifted
low resolution datasets (G1 and G2).

3 An Edge-Preserving Supperresolution Technique

Let us denote by ∆x, ∆y , ∆z , the high resolution discretization steps (voxel dimen-
sions). Each voxel hi,j,k represents the intensity of the image over the volume
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Wi,j,k = [(i − 1)∆x, i∆x] × [(j − 1)∆y, j∆y] × [(k − 1)∆z, k∆z]

Our low resolution images are denoted by lr, for r = 1, . . . , R. Each image lr represents
the the intensity of the image over the volume

V r
i,j,k = [(i − 1)∆x, i∆x] × [(j − 1)∆y, j∆y] × [(R(k − 1) + r)∆z, (Rk + r))∆z].

In [9] applying [11], a convolutional model is used to describe the relation between W
and V . Instead, we adopt an additive model. If s(x) is the signal intensity of the nuclei
located at x, the signal relevant to a volume v is

∫
v
s(x)dx. The measurement noise

involved in the data is denoted n. Thus we have

lri,j,k =
Rk+r∑

n=R(k−1)+r+1

∫

Vi,j,n

s(x) dx + nr
i,j,k =

Rk+r∑

n=R(k−1)+r+1

hi,j,n + nr
i,j,k (1)

This relation can be put into matrix form. Given (i, j), let hi,j and �r
i,j be the vectors

hi,j = [hi,j,1, . . . , hi,j,p]T (2)

�r
i,j = [�i,j,1, . . . , �i,j,pr

]T for r = 0, . . . , R − 1 (3)

where pr is the length of �r
i,j . The relation (1) can be expressed as

�r
i,j = Brhi,j + nr

i,j , ∀i, j with Br
k,n =

{
1 if R(k − 1) + r + 1 ≤ n ≤ Rk + r
0 otherwise.

The super-resolution problem consists in finding hi,j , for all i, j, based on �r
i,j , for all r

and i, j. The least-square solution of this problem is the minimizer ĥ of the following
objective:

Ψ(h) =
∑

i,j

R−1∑

r=0

∥
∥
∥Brhi,j − �r

i,j

∥
∥
∥

2
. (4)

Our problem (4) being ill-posed, such a ĥ is poor and unstable with respect to noise [4].
In such cases, a common approach in the field of computer vision is to add a penalty
term on the first derivatives of h [4,6]. The sought solution is defined as the minimizer
hh of a cost-function of the form

J (h) = Ψ(h) + Φ(h) where (5)

Φ(h) =
∑

i,j,k

βxφ(hi,j,k − hi−1,j,k) + βyφ(hi,j,k − hi,j−1,k) + βzφ(hi,j,k − hi,j,k−1)

(6)

The differences between the parentheses above provide an approximation of the spatial
derivatives in the x, y and z-directions, and φ : R → R is called a potential function. In
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order to have a convex minimization problem, we require that φ be a convex function.
Edge-preserving convex functions φ have been considered by many authors [17,8,3,2].
Among them, we chose

φ(t) =

{
t2/2 if |t| ≤ α,

α|t| − α2/2 if |t| > α.
(Huber function) (7)

because it is composed of quadratic and linear pieces and leads to simple numerical
calculations. In our case, the acquisition procedure combines data only in the z-direction.
This suggests we use regularization only along the z-axis, that is

Φ(h) = β
∑

i,j,k

φ(hi,j,k − hi,j,k−1) = β
∑

i,j

∑

k

φ(hi,j(k) − hi,j(k − 1)) (8)

where we use the notation introduced in (2). The optimization problem is simplified
to a sequence of 1-D minimizations, namely ĥi,j = arg minh Ji,j(h) for every i, j, where

Ji,j(h) =
R−1∑

r=0

∥
∥
∥Brh − �r

i,j

∥
∥
∥

2
+ β

∑

k

φ(h(k) − h(k − 1)). (9)

There are a lot of convergent methods to calculate ĥ. However, based on a comparative
study on the speed of convergence [14], we focus on the additive form of half quadratic
regularization [8,3]. It amounts to calculate the sequence (hn, bn) as given below:

hn = H−1(2BT �ij + βDT bn) where H = 2BT B + βDT D

bn
k =

{
0 if |hn−1(k) − hn−1(k − 1)| ≤ α
hn−1(k) − hn−1(k − 1) − α sign (hn−1(k) − hn−1(k − 1)) otherwise

,∀k

The sequence (hn, bn) converges to a (ĥ, b̂) such that ĥ is the sought solution. Observe
that the matrix H can be inverted only once, before to start the minimization for all i, j
and that calculation of bn is extremely simple.

4 Experiments

The Two fMRI Datasets Used for the Evaluation

� A synthetized dataset sequence generated in Matlab. It consists of a template MR im-
age with a base resolution of 3×3×4 mm3. From this volume a dynamic time series of
120 volumes, was generated with different "activated spheres" inserted in an interleaved
mode of 10 rest volumes and 10 activated volumes. These activated regions consisted
of different spheres with different radii and carefully chosen positions. Another acti-
vated area consisted of an irregular shape at the edge of the brain. The intensity of the
activation was set to a maximum of 8 percent signal change. In order to obtain a more
realistic dataset, Gaussian noise was inserted with a standard deviation of 2 percent for
the original high resolution set and 1 percent for the low resolution ones.
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� A real fMRI experiment with a neurophysiological stimulation paradigm. Two dif-
ferent acquisition strategies were used in this experiment, the high and low resolution
fMRI acquisition protocols (that is ground truth and slice-shifted). The stimuli used in
the experiment were designed to stimulate the horizontal (HM) and vertical (VM) visual
field meridian, using horizontally and vertically oriented wedge-shaped checkerboards.
In this experiment a total of 10 sessions were performed on the same subject, consisting
of 5 high resolution (ground truth) and 5 slice-shifted low resolution volume sessions.
These data were collected on a Siemens Sonata 1.5T MR system using a FE-EPI se-
quence (TR/TE = 3328ms/54ms, voxel size = 2×2×2 mm for the ground truth images
and 2×2×4 mm for the slice shifted images, acq. matrix = 128×128).

Low and high resolution datasets including the ones presented here are available at
http://www-sop.inria.fr/odyssee/team/Pierre.Kornprobst/mridata

Postprocessing of the fMRI Data

The postprocessing of the functional MR images is performed with the aid of the SPM99
package (Friston et al, 1995). Images were first motion compensated with respect to the
first image of the serie and spatially smoothed with an isotropic Gaussian kernel of
(3 mm)3. These preprocessing steps were identical for all the datasets (high resolution
and superresolution) of the real fMRI experiment, for the synthetic data no preprocess-
ing was perfomed. After these preprocessing steps the actual statistical analysis was
performed on the different datasets (real and synthetic). As a result of the loss of the
temporal information in the slice-shifted acquisition mode of the data, it was not possible
anymore to use the standard SPM statistical analysis protocols for the superresolution
datasets. Due to the properties of the haemodynamic response, the image data acquired
during the initial and final portion of the task are not in a stationary state (plateau) and
therefore these cannot be used for the post-hoc superresolution algorithm which should
only combine two sets of shifted and non-shifted volumes acquired with an identical
neurophysiological activation condition. A possible solution to use the full dataset and
the hemodynamic response function in the analysis would be to use an acquisition time
correction for all the separate slices on both the low resolution datasets before generating
the superresolution datasets. In this study we chose to analyse the superresolution fMRI
data with an adapted suboptimal design matrix by using the box-car function only, thus
without taking into account the temporal properties of the fMRI signal.

Results and Discussion

�Approaches tested. The aim is to evaluate the approaches which consist in minimizing
the energy (5), either with (6), a 3D regularization, or with (8), a 1D regularization.
Results will be compared to reconstructions: the Greenspan method [9], the average
image, generated by composing the image with signal intensities which are the average
of both the signal intensities of the slice shifted volumes, and the composed image, gen-
erated by composing the image with the signal intensities of both slice shifted volumes
interleaved with each other (see [13] for more details).

� Analysis of the SPM activation maps. For the different reconstructed sequences, we
computed the activated areas which are above the statistical threshold (pcorr < 0.05),
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Fig. 2. Synthetic dataset: Comparison between the activated areas observed with the statistical
SPM analysis in the high and low resolution datasets, and the reconstructed ones shown in the in
plane (A) and through plane direction (B).

overlaid on the mean EPI images of the interpolated datasets (See figures 2 and 4). Glob-
ally all the activation maps of the interpolated datasets look largely similar to those of
the high resolution reference dataset both for the synthetic as the real datasets. A closer
look at the data however reveals that the superresolution datasets show higher t-values
at the foci of the activated areas as compared to the reference high resolution and the
original low resolution dataset especially observed in the real data. The 3D anisotropic
images display more intense but less sharp activation patches as compared to the other
interpolated datasets. This is the result of the larger smoothing effect inherent to the 3D
anisotropic interpolation algorithm in all directions. The results obtained with the other
interpolation algorithms are all very similar with a slightly higher intensity and sharper
deliniation of the activated areas in the 1D anisotropic regularization case for both fMRI
datasets.

� The case of closeby activated areas. We propose in figure 3 a cut through the different
observed activated areas in the slice direction of the statistical maps from the synthetic
dataset. These graphs show the ability of the superresolution techniques to separate 2
activated areas which are very close to each other in the slice direction. In the left graph
the 2 areas are separated by 1 slice and in the right graph by 2 slices. These graphs show
that the 1D anisotropic regularization method displays a much better separation capa-
bility resembling closest to the high resolution dataset as compared to the Greenspan
method and both the average(not shown) and composed methods(not shown).
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Fig. 3. Synthetic dataset: Line graphs showing the z-score values of the activated areas cutted in
the slice direction for 2 activated areas separated by 1 slice (left) and 2 slices (right) in the different
datasets. The real boundaries of the activated areas are shown with a blue line and the treshold of
p=0.05 (corrected) is shown with a black line.

Fig. 4. Real fMRI dataset: Comparison between the activated areas for the horizontal meridian
(red-yellow) and vertical meridian (blue-green) observed with the statistical SPM analysis in the
original high resolution dataset, the low resolution dataset and the reconstructed datasets, shown
in the in plane (A) and through plane direction (B).
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5 Conclusion

This paper proposes a framework for augmenting the resolution in fMRI. It consists in
settling a suitable acquisition protocol and in using some recent results from nonlinear
restoration, in order to propose an efficient edge preserving superresolution algorithm.
Another originality of this paper is to validate the proposed approaches using the statis-
tical analysis of fMRI time series. A case study was first established before performing
tests on a real fMRI sequence with a human volunteer. These experiments clearly estab-
lish the interest of using superresolution in this context.

Taking into account both the results of the synthetic and the real fMRI datasets we
can conclude that although the 3D anisotropic diffusion superresolution dataset displays
the largest activated patches it is much more smoothed in plane as compared to the 1D
anisotropic superresolution and the other interpolated dataset. Therefore the algorithm
with the regularization in the slice direction only (1D anisotropic) appears to be the best
technique if one wants to detect small activated areas with a high resolution. On the other
hand if one wants to increase detectability of large activated areas, the dataset generated
with the 3D anisotropic algorithm will give the best results.
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