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Abstract— Inspection of power line infrastructures must be
periodically conducted by electric companies in order to ensure
reliable electric power distribution. Research efforts are focused
on automating the power line inspection process by looking
for strategies that satisfy the different requirements of the
inspection: simultaneously detect transmission towers, check for
defects, and analyze security distances. Following this direction,
this paper proposes a supervised learning approach for solving
the tower detection and classification problem, where HOG
features are used to train two MLP (multi-layer perceptron)
neural networks. The first classifier is used for background-
foreground separation, and the second multi-class MLP is used
for classifying 4 different types of electric towers. A thorough
evaluation of the tower detection and classification approach
has been carried out on image data from real inspections tasks
with different types of towers and backgrounds. In the different
evaluations that were conducted highly encouraging results
were obtained. This shows that a learning-based approach is a
promising technique for power line inspection.

I. INTRODUCTION

Electric power companies invest significantly on the in-
spection and preemptive maintenance of the power line
infrastructure. The most common strategy is to perform aerial
inspection of the power line corridor, at regular intervals. The
traditional (and the most common) approach to inspection
uses a manned helicopter, equipped with multiple sensors
- e.g. differential global positioning system (DGPS), cou-
pled with inertial measurement unit (IMU); light and radar
sensor, LIDAR; visual, infrared and ultra-violet cameras
etc. - mounted on gyroscope stabilized gimbals, and an
expert crew, for recording and documenting the relevant data
captured from these sensors. This data, which is recorded
over thousands of kilometers, is later manually examined to
detect potential faults and damage on different power line
components (such as, cables, towers, insulators etc.). This
process is not only extremely time consuming, but also very
expensive and prone to human error. Moreover, the manned
flights, which are carried out very close to the live power
cables, are highly dangerous to the crew. With these problems
in mind, power industry is actively seeking solutions to
automate different aspects of power line inspection.

In the last two decades, multiple complementary research
directions have been investigated for automating the task of
visual inspection. One key direction has been on developing
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Fig. 1. Three main types of aerial inspection platforms: Manned helicopter
[17]; Expliner, a rolling on wire (ROW) robot [11]; and Unmanned Aerial
Vehicles (UAVs).

unmanned robotic vehicles for autonomously inspecting the
power line corridor (see Figure 1) [1], [2], [3]. Two promi-
nent lines of research have emerged:
« Unmanned Aerial Vehicles (UAV) [4], [5], [6], [7], [8],
[9]; and
« Rolling on Wire (ROW) robots, also known as climbing
robots [10], [11], [12], [13], [14], [15].

More recently, some authors have also proposed a hybrid
climbing-flying robot which combines the advantages of
UAVs and ROW robots into a single platform [16].

The primary objective is to design and develop techniques
that allow these unmanned mobile platforms to perform
completely autonomous navigation and inspection of the
power line corridors. The degree of autonomy, however,
ranges from one robot to another, and complete autonomy
is yet to be achieved.

The robots (both UAVs and ROWs), currently in use by the
industry, require human intervention for navigation, as well
as data acquisition, and complete autonomy of the mobile
platform remains a very active area of research. It has been
emphasized in recent literature that a marked improvement
over the state of the art is necessary at multiple fronts, such
as, visual servoing, obstacle detection and avoidance, robust
control algorithms, battery recharging etc. [1], [2].

In addition to the type of robotic platform, another key
research direction has been on applying existing or suitably
modified computer vision algorithms for automating the in-
spection process. Power line inspection is usually segmented



into two steps - data collection and fault identification -
where, the field of computer vision has contributed to help
automate both steps.

Autonomous data collection will require mobile robots
which can navigate and acquire relevant sensor data, with
minimal human supervision. In this step, computer vision
approaches have been investigated primarily on UAVs and
remotely piloted vehicles, for visual control [4], [5], tracking
of power lines [5], [6], tracking of electric towers [18], [19],
and obstacle detection [9].

The second step involves the detection of faults in the
power line infrastructure. This is usually carried out at a
base station once the data has been collected. Automated
inspection, in this step, is directed towards detection and
localization of electric wires, towers, insulators, conductors,
wire-clamps etc., in the captured video data. Using the visual
information, the state of the art has focused on power line
and electric tower detection. The detection of power lines
and towers can then be used to find various defects/faults in
the power line infrastructure.

Several works have been aimed at detecting faults - in
insulators, conductors, tower joints, structure discoloration
etc. - using data from other sensors than a video camera
(although see [20] for an exception). This paper presents a
computer-vision based solution, applied to tower detection
and classification. Therefore, the current discussion is limited
to the works which use information captured from video data.

In the recent years, research community has primarily
focused on power line detection. For this task, a common
preprocessing strategy is to detect line segment candidates in
an image, and find the segments which form part of the power
lines [7], [8], [19], [21], [22]. Line detection is primarily
useful for detecting faults such as sagging and proximity to
the vegetation or man-made structures.

Some researchers have also focused on detection and
segmentation of electric towers in the images [23], [18], [19],
[24], [25]. Similar to the power line detection approaches,
preprocessing stage for tower detection generally involves
locating the line segments in the image. This is unsurprising,
since linearity is a common and a very useful feature for
identifying most likely regions in the image with high
likelihood of being a power line or a tower candidates.

For locating and segmenting the tower from the set of
most likely candidates, several authors apply either further
filters or predefined rules/heuristics to remove the noisy line
segments [18], [19], [24], [25]. The remaining line segments
are considered as belonging to the tower. Some authors
then apply different segmentation approaches to extract the
complete tower from the image: e.g. a template matching ap-
proach is used in [18]; graph-cut [26] based segmentation is
used in [24]; a rule-based, as well as watershed segmentation
[27] is used in [19]. Golightly and Jones [23] presented a
different approach from the state of the art where, instead
of lines, the corners were considered the key identifying
features of a tower. They used a modified corner detector
[28] to detect and track the tower tops.

Fig. 2. Exemplars of a few types of electrical towers [29]

Although different approaches to tower detection and
segmentation have reported promising results, these results
must be viewed from the perspective of the assumptions
authors make. Most of the results have been reported on
just one type of tower. Since the tower type is fixed, several
simplifying assumptions are made (mostly with respect to
the color, shape and appearance of the tower). However, the
electric towers are extremely diverse in shape, appearance
and size (see Figure 2), as well as they differ in color
and the material used for construction (wood, ceramic, steel
etc.). Therefore, most the state of the art results cannot be
generalized to several different tower types.

To achieve the goal of complete autonomy, researchers
must aim towards developing more general approaches which
are able to detect more than one type of tower. Our paper is
an effort in this direction. In literature, tower detection has
been seen as a filtering pipeline. Line segment detectors are
applied to detect lines in images. To capture the tower from
these set of line segments, further refinement steps (heuristics
or more filters) are applied. This strategy, as previously
mentioned, is not generic and not useful for more than one
type of tower.

In this paper, we consider tower detection as a supervised
learning problem. To our knowledge, supervised learning for
electric tower detection has not been previously reported
in literature. We propose a solution using a 2-class neural
network classifier for tower-background classification. This
is one of the key contributions of this paper. Moreover, we
also raise the problem of classification of different types of
electric towers. The problem of tower classification has not
been addressed previously in literature. We approach this
problem using a 4-class neural network for classifying 4
types of electric towers. This is our second key contribution.
Finally, a complete solution is implemented which allows
simultaneous tower detection and classification.

In contrast to most of the recent approaches (see [23]
for an exception), which make assumptions regarding the
global shape and appearance of the tower, local features are
explored. In particular, a state of the art feature descriptor,
histogram of oriented gradients (HOG)[30], is used. Note
that the corner features used in [23] can be considered
as local features. The choice of learning algorithm is a
multi-layer perceptron (MLP) neural network. A labeled
dataset (collected from several real manned aerial inspec-
tions) of cropped images of towers (of 4 different types) and



background, is used to train the MLP. Figure 6(a) shows
the sample images from this dataset. To apply the trained
classifier to real images, a sliding-window approach ([31],
[32]) is used to first locate the tower in a given image. In this
approach, the classifier is applied to the subregions/windows
inside the image to detect the presence of the tower in that
region.

In addition to tower detection, knowing the type of a tower
can greatly facilitate the localization of regions more prone
to faults or damage (e.g. insulators, tower tops, power line
connection, conductors etc.). Tower classification, therefore,
can be a valuable step in automatizing the inspection process.
A 4-class MLP was trained on the previously mentioned
dataset of cropped tower images. Finally, a complete solution
is proposed for combining tower detection and classification,
by integrating the tower type classifier with the tower detec-
tion workflow.

A thorough evaluation of the tower detection and classi-
fication approach was carried out. In the independent eval-
uation of these approaches, highly encouraging results were
obtained. A small drop in performance is observed when the
complete detection-classification workflow is evaluated. The
reduced performance resulted from the errors carried forward
from tower detection from the detection stage to the tower
classification stage.

The rest of the paper is organized as follows: Section II
states the problem addressed in this paper concretely and
describes several challenges which need to be addressed; our
approach to tower detection and classification is presented
in Section III; The results are reported and discussed in
Section IV; and the final section concludes the paper, as well
as points towards future research directions.

II. PROBLEM STATEMENT

For many years, ground patrols and also helicopter pa-
trols have been in charge of the inspection of power line
insfraestructures. Currently, different projects are looking for
automating either the acquisition process or the analysis pro-
cess, or both, with the main objective of being able to detect
and diagnose different defects of the power line infrastructure
by using new sensors or by using new inspection platforms
(e.g. robots [10], [3], [15]; UAVs [4], [6], [7]).

In all these new possible approaches, computer vision
plays an important role for automatically moving the camera
in order to maintain the electric tower inside the field of
view of the camera, and for identifying and categorizing the
different defects and failures of the power line infrastructure.

Nonetheless, although computer vision is a key technique
for automating the power line inspection process, it is in fact
a very challenging task for this technique. Power line infras-
tructures are heterogeneous and complex, for example, as can
be seen in Fig. 3, electric towers come in a wide variety of
shapes and sizes, and the location of their components also
varies depending on the type of tower (e.g. the position of
the insulators changes).

Background changes is another problem that the visual
system has to deal with. As can be seen in Fig. 3, depending

Fig. 3. Power line inspection. This is a complex problem for computer
vision: varying lighting conditions, background changes, position of com-
ponents of the tower depends on the kind of tower (insulators’ position),
and power line infrastructures are very complex an heterogeneous, among
other problems.

on the terrain, different visual features can be used to seg-
ment the electric tower from the background, or to segment
the wires. However, because of the high variability of the
terrain and the variety of electric towers, it is difficult to find a
unique feature (e.g. the color of the towers is not unique) that
can work in all the possible scenarios. Illumination changes
also play an important role. For example, in Fig. 3, it can
be seen that in some of the images the contrast between the
lines and the background is low and not sufficient to segment
the wires.

Another important factor that must be taken into consid-
eration when automating the power line inspection, is the
quality of the images. The image quality changes depending
on the kind of inspection that is conducted and on the vehicle
used for inspection. As can be seen in Fig. 4, when an
exhaustive inspection is conducted (images on the right)
details are perceived mush better, and therefore it would
be more feasible for a computer vision algorithm to detect
defects on those images. Nevertheless, this kind of inspection
requires the helicopter to go slow and also to stop in every
tower, something that with manned helicopters implies a
considerable increase of the inspection price. In general, for
accurate inspections, the quality of the images should be
good but, this on the other hand, is currently difficult to
ensure, especially at low prices.

Conversely, if a faster inspection is conducted (image on
the left), the quality of the images will degrade (blurred
images) and only external problems could be analyzed (e.g.
the structure of the tower). This is also a problem that
could be found when exploring a UAV-based approach. With
UAVs, constant vibrations and payload restrictions make the
acquisition of high quality images a very difficult task, and
therefore, making the process of detecting faults in those
images extremely difficult.

Other problems such as constant viewpoint changes (e.g.



Fig. 4. Visual inspection. The image quality changes depending on the kind
of inspection. Exhaustive inspection allow high quality images (images on
the right), whereas a fast inspection make it difficult to conduct a detailed
analysis of the components of the electric tower (image on the left).

especially when cameras are manually moved) and scale
changes of the electric tower and its components add ad-
ditional complexity to the idea of applying computer vision
to solve this problem, in which, depending on the adopted
strategy, could require a system that automatically defines
which is the best frame to be used for detecting defects.

Currently, there is not a complete solutoion that satisfies
the different requirements of automated power line inspec-
tion: simultaneously detect electric towers, check for defects,
and also analyze security distances. Therefore, in terms of
cost-benefits, it is important for energy companies to solve
this problem and try to find a system that can deal with the
different requirements of the inspections at high speed.

In this paper we explore the electric tower detection and
classification problem applying a machine learning approach,
using low quality images. Therefore, the system will help
in reducing the maintenance cost of the electric system by
being able to cope with one of the problems of increasing
the vehicle speed (reducing the quality of the images).

III. TOWER DETECTION AND CLASSIFICATION
STRATEGY

The objective of the proposed strategy is to determine
the position of the electric tower and the type of tower,
in single images. Due to the difficulty of the task (e.g.
wide variety of backgrounds), a learning-based approach
is used. The strategy is based on two stages. In the first
stage (tower detection stage), a neural network classifier is
trained for tower-background classification, and in the second
stage (tower classification stage), a 4-class neural network
classifier is trained for identifying the type of tower. In
both stages, HOG (Histogram of Oriented Gradients) features
[30] are used to train two MLP neural networks. Once the
two MLP classifiers have been trained, they are applied for
tower detection and classification for power line inspection.
In the following paragraphs the system architecture for tower
detection and classification is described.

A. System Architecture

The proposed strategy for power line inspection is based
on the interaction between a tower detection and a tower

classification stage as shown in Fig. 5. As input the system
receives a color image; and the output of the system, if it
finds a tower, corresponds to the position of the tower and
the type of tower contained in the image.

Fig. 5(a) describes the workflow of the tower detection
stage. In order to apply the trained tower detection classifier
to the input image, the color image is converted into a
grayscale image, and a sliding-window approach is used to
scan the image. As shown in Fig. 5(a), a small window W
of a predefined size is slid over the image. In our strategy
two different window sizes are used (W1:160 x 290 pixels,
and W2:130 x 260 pixels). The size of these windows has
been defined based on the average size of the tower images
used for training the classifiers. Each window W, provided
by the sliding window algorithm is resized to 64 x 128 pixels,
and then from this image HOG features are extracted. The
resulting HOG feature vector (of size 3780) is passed as input
to the MLP classifier trained for tower detection, where the
window W will be classified as Tower or Background, using
the following criteria:

) > 0. < 0.
Class:{; , if (a1 >098 & a<0.001)

, otherwise

where a; and ay are the activation values of the output
layer neurons for Class 1 (Tower) and Class 2 (Background),
respectively.

The position in the image of all the windows W that have
been classified as Class 1 (Tower) are then saved (see Fig.
5(a), red boxes, image on the right). Finally, when the sliding
algorithm has finished scanning the entire image, the result
from the detection stage is obtained as the bounding box that
covers all windows W that were saved. This ROI (region of
interest) shown in Fig. 5(a) (green box, image on the right),
corresponds to the final result from the detection stage.

The result of the tower detection stage is used as input
to the tower classification stage, as described in Fig. 5(b).
This ROI is resized to 64 x 128 pixels, and then, HOG
features are extracted. The resulting HOG feature vector (of
size 3780) is passed as input to a 4-class MLP trained for
tower classification, which will be in charge of defining to
which class the ROI belongs to: Type 1, Type 2, Type3, or
Type 4 (see Fig. 5(b)).

B. HOG descriptor

Histograms of oriented gradients (HOG) are used in this
paper as features to describe the shape of the electric towers,
and its use for power line inspection is explored. The general
idea of the use of the HOG descriptor is that the local
appearance and shape of an object can often be described
by the distribution of intensity gradients or edge directions,
as it is mentioned in [30].

The first stage of the algorithm consists in calculating
the gradient along two directions in order to obtain the
magnitude and direction of the gradient at every pixel. This
is conducted applying the 1-D [-1,0,1] and [—1,0, 1]T masks
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System architecture. The proposed strategy for power line inspection is based on the interaction between a tower detection Fig. 5(a) and a tower

classification stage Fig. 5(b). In the first stage (tower detection stage), a neural network classifier is trained for tower-background classification, and in the
second stage (tower classification stage), a 4-class neural network classifier is trained for identifying the type of tower. In both stages, HOG (Histogram

of Oriented Gradients) features are used.

to the 64 x 128 resized image. Then, the image is divided into
small regions of 8 x 8 pixels size, called “cells”. For each cell,
a local 1-D histogram of gradients is calculated over all the
pixels in the cell. This histogram consists in 9 orientation
bins, evenly spaced over 0 — 180° (“unsigned” gradient).
Then, as it is mentioned in [30], in order to reduce aliasing,
votes are interpolated bilinearly between the neighboring bin
centres, and the gradient magnitudes of the pixels in the cell
are used to vote into the histogram.

The next step of the algorithm consists in normalizing
the oriented histograms in order to get invariance to illu-
mination changes and foreground-background contrast. This
is conducted using blocks of 2 x 2 cells. The blocks are
overlapped 50% so that each cell histogram contributes with
several components to the final feature vector, each of them
normalized with respect to a different block of cells. The final
HOG feature vector is obtained by collecting all the values
from the normalized blocks. With this procedure, a HOG
descriptor of size 3780 is obtained, which will be used for
tower detection and classification for power line inspection.

C. MLP classifiers

Two feed-forward backpropagation neural networks are
used for the tower detection and the tower classification
stages shown in Fig. 5. Both neural networks use a sigmoid

activation function and the algorithm used for training these
networks is the Resilient Backpropagation algorithm [33].
One of the advantage of this algorithm is its low computa-
tional cost [33], which allows to quickly train and evaluate
different neural network configurations.

The configuration of the neural network used in the tower
detection stage is a 3-layers MLP with 10 neurons on the
hidden layer and 2 neurons on the output layer, and for the
tower classification stage a 3-layers MLP with 40 neurons on
the hidden layer and 4 neurons on the output layer is used.

IV. EXPERIMENTS AND RESULTS

This section begins by describing the data used for eval-
uation of MLPs and the complete system. The methodology
to train and evaluate the two classifiers is also presented.
After performance evaluation of the respective MLPs inde-
pendently, the complete system (the complete tower detection
and classification pipeline) is assessed. Although the results
obtained are very encouraging, several immediate directions
for further improvements are highlighted.

A. Experimental Set-up

Currently there are no publicly available datasets of power
line inspection. Proprietary aerial inspection data was made
available by an electric power company. The data consists



of 11 videos captured during multiple manned aerial in-
spections. 6 of these videos primarily contain inspections
of towers supporting high voltage lines (Type 1 and Type
2 towers) and the other 5 videos contain inspections of
towers for medium voltage lines (Type 3 and Type 4). The
inspections were non-exhaustive, therefore the video quality
is relatively poor. The resolution of the frames is also low:
for Type 1 and Type 2 towers, the average frame size is
550 x 480, and for Type 3 and Type 4, the average frame
size is 720 x 576.

From these videos, a dataset of cropped images was
created where each of those images was either labeled as
Background or as Tower, indicating, in the latter case, also
the type of the tower. To collect this data, two software tools
were created:

o Data acquisition tool: Given all the frames of a video,
this tool allows a human user to traverse through each
frame sequentially or randomly. From any chosen im-
age, the user can select a rectangular region, which can
contain a tower or part of the background. Finally, for a
selected region, the tool allows to provide the label, for
example, if the region containing the tower is selected,
user can provide the type of the tower, otherwise label
the region as Background.

« Label correction tool: Labeling process is a time con-
suming and tiring process. It is possible that some
labeling errors can occur. This tool allows the user to see
the cropped images and the associated labels. The user
can provide the correct label in case there is a mistake
in labeling.

Data acquisition tool was used to collect and label 3200
image regions (1600 regions containing tower and 1600
containing background) from 11 videos. For 1600 tower
images, 400 image regions of each type were labeled. Later,
the label correction tool was applied to remove any labeling
mistakes. Finally, all the image regions were resized to the
size of 64 x 128. Figure 6 can give the reader an idea of
the resized labeled images of different types of towers and
background.

B. Training and Evaluation Methodology

In order to train and evaluate the MLP for detection,
3200 images have been divided into 3 sets: training, cross
validation, and test set. 1200 images of each class (tower and
background) have been used for training, while 200 images
of each class are used for the cross validation and 200 for
the test set. The images belonging to the tower class have to
be equally distributed according to each type, such that 300
images of each type of tower are used for training, and 50
images of each type are used for validation and 50 for test.

For training and evaluating the MLP for classifying tower
types, 1600 images of electric towers (Figure 6(a)) have been
divided into training, cross validation and test set. From these
images, 300 of each tower type (Type 1 to Type 4) have been
used for training, 200 (50 images per tower type) for cross-
validation and another 200 for testing.

|

(b)

Fig. 6. Examples of cropped images of: (a) 4 cropped tower images and (b)
5 background images. These and similar images are used for training and
evaluation of the MLPs for tower detection and tower-type classification.

C. Results and Discussion

Table I shows the confusion matrix obtained on testing
the MLP used in the detection stage. A total test error of
3.25% is attained. A false positive rate of 2.5% was achieved,
which means that only 5 of the 200 background test images
were incorrectly classified as tower. On the other hand, we
obtain a false negative rate of 4%, which indicates that 8
tower images, out of 200 used for testing, were predicted
as background. These results suggest that, although overall
performance of the classifier is good, tower images get
predicted as background more often than background images
as tower.

The errors in the detection stage will have significant
influence on the complete system, since the prediction errors
get carried forward to the tower classification stage. More
specifically, the regions detected as Tower, which were actu-
ally Background, will always lead to prediction errors in the
tower-type classification stage. That is, from the perspective
of the complete system, it is more favorable to have less
false positives than false negatives in the detection stage.
Since the false positives in the evaluation of the detection
stage, are relatively low, we believe this MLP configuration
is suitable for being applied to the complete tower detection-
classification pipeline.

Table II presents the confusion matrix corresponding to the
classification MLP tested with the test set of tower images.
In this results it can be seen that towers of Type 1 and 2 are
the most likely to be well classified, obtaining a classification
accuracy of 98% and 96% respectively, while towers Type 3



TABLE 1
CONFUSION MATRIX OBTAINED FOR THE TOWER DETECTION TEST SET

Actual class
Predicted class Tower | Background
Tower (%) 96 2.5
Background (%) 4 97.5
TABLE 11
CONFUSION MATRIX OBTAINED FOR THE TOWER CLASSIFICATION TEST
SET
Actual class
Predicted class type 1| type2 | type 3 | type 4
Type 1 (%) 98 4 2 2
Type 2 (%) 0 96 0 0
Type 3 (%) 0 0 94 6
Type 4 (%) 2 0 4 92

and 4 are the hardest one in the classification task, obtaining
a classification accuracy of 94% and 92% respectively. It
is interesting to see that most of the false positives obtained
for Type 3 correspond to tower Type 4 and vice versa. These
obtained classification results seems to be reasonable due to
the fact that Types 3 and 4 correspond to medium-voltage
towers (Figure 6(a), the two images on the right), which are
mainly identified by their vertical pole. In contrast, towers
Type 1 and 2 correspond to high-voltage towers (Figure 6(a),
the two images on the left), which have a more complex
structure, and therefore a more complex HOG pattern, very
different from the one of the other tower types.

D. Evaluation of the complete system

TABLE III
CONFUSION MATRIX OF THE TOWER DETECTION STAGE OF THE
COMPLETE SYSTEM.

Actual class
Predicted class Tower | Background
Tower (%) 91.67 26
Background (%) 8.33 74
TABLE IV

CONFUSION MATRIX OF THE TOWER CLASSIFICATION STAGE OF THE
COMPLETE SYSTEM.

Actual class
Predicted class type I | type 2 | type 3 | type 4
Type 1 (%) 93.33 6.66 20 13.33
Type 2 (%) 6.67 86.67 6.67 0
Type 3 (%) 0 0 60 0
Type 4 (%) 0 0 13.33 86.67

Finally, the complete system is evaluated using the trained
MLPs for tower detection and classification. 110 completely
new images (not cropped, like the labeled ones used for
training the neural networks) were collected from the video
data, 50 containing no tower, and 60 (15 per tower type)
containing an electric tower. These images were not used in
the training and evaluation of the MLPs.

In Table III it can be seen that when there is an electric
tower in the image, it is detected in 92% of the cases. That
is, only in 5 images, of the 60 images containing a tower,
the detection stage has missed it. On the other hand, the
false positive rate (background region detected as a tower)
is 26%. These results appear contrary to the ones in Table 1.
The results reported in Table III are shown with respect to the
complete images, which is an important criterion. The same
results can also be viewed from the perspective of the number
of sliding windows per image. The MLP for detection makes
prediction over each sliding window. Two different window
sizes are explored for detection (see Section III-B), and since
images from different videos are of varying size, the number
of classifications per image can range anywhere between 240
and 480. Making a cautious assumption that most of the
windows in an image only contain background regions, the
real false negative rate is much lower.

All the regions predicted as containing a tower, in the
tower detection stage, get passed as input to the MLP for
classifying the type of the tower. The results are reported in
Table IV. The false negatives in the detection stage belong to
the towers of Types 2 (1 incorrect detection), 3 (2 incorrect
detections) and 4 (2 incorrect detections). Note that, in Table
IV, the results do not show the false positives (background
detected as a tower) of the detection stage.

The results obtained in the classification stage are very
promising. The towers with complex structure, Types 1 and
2, lead to 93% and 87% accuracy. Due to the complexity
of the structure, as captured by the HOG features, these two
types of towers do not get confused with Types 3 and 4.
Type 4 towers get predicted correctly in 87% of the cases.

Figure 7 shows a few tower detections and classifications
obtained during the evaluation of the complete system. ' As
shown in Figure 7(a) good results are obtained in highly clut-
tered backgrounds, with varying illumination, color, texture,
and for the different types of tower that we have considered.
In the figure, it can be seen that the towers are properly
detected even with a very complex background with vertical
structures in the terrain and even with houses or other parts
of electric towers in the scene. Several poor cases were also
observed in the detection, as well as, in the classification
stages, as shown in Figures 7(b) and 7(c).

A few promising directions can be explored to achieve
better discrimination. At the feature-level, in addition to the
HOG features, simpler feature spaces can be simultaneously
explored. On the other hand, at the classification level
ensemble-based classifiers can be explored [34]. In this case,
multiple complementary features can then be exploited to
train several classifiers where eventual decision is derived
from their ensemble. Moreover, it is also important to note
that, although good results in tower classification and detec-
tion were obtained, the dataset itself was relatively small.
More labeled data is expected to further improve, both the
detection and the classification stages.

'A video demonstration of the reported results has been made available
at: http://youtu.be/iZmuOOXB4ps



V. CONCLUSIONS AND FUTURE DIRECTIONS

Power line infrastructures are heterogeneous and complex,
making automatic power line inspection a difficult prob-
lem. Therefore, there is a current considerable interest in
this area of research. To achieve the goal of autonomous
inspection, research efforts must aim towards developing
general approaches that satisfy the several requirements: e.g.
simultaneous detection of power lines and electric towers,
check for defects in several power line components, analyze
security distances, among others. The current paper is an
effort in this direction, with emphasis on electric tower
detection and classification in aerial inspection data. We
believe this is a key stage to be able to develop more complex
tasks such as defects analysis, especially when the main
source of information comes from poor quality images.

To our knowledge, the problem of tower detection and
classification in video sequences has not been addressed as
a machine learning problem. The key novelty of this paper
is the investigation of a supervised learning framework for
providing a complete solution for simultaneous detection and
classification of different types of electric towers.

In particular, the learning paradigm investigated is based
on two feed-forward back-propagation multi-layer perceptron
(MLP) neural networks. The first MLP is a 2-class classi-
fier which is trained for tower-background segmentation. A
sliding window approach is applied, where, given an image,
each window is classified individually to predict whether the
region inside an image is Background or a Tower. Several
windows, where towers are detected, are combined to provide
a single region of interest (ROI), which is the final prediction
of the complete detection process.

The second MLP is a 4-class classifier which is trained for
identifying 4 different types of electric towers. The problem
of tower classification, from video sequences, has not been
explored in the literature previously, and is another key
novelty of the paper. The ROI detected as a tower by the first
MLP is taken as input by the second MLP and classified as
belonging to one of the 4 types of towers explored in this
paper.

A thorough evaluation of the tower detection and classifi-
cation approach has been carried out using image data from
real visual inspection tasks. In the independent evaluation
of the MLPs, highly encouraging results were obtained.
Tower detection was shown to be very robust in several
challenging environments with cluttered background, varying
illumination, different tower viewpoints etc. This shows that
a learning-based approach is a promising direction for power
line inspection.

One of the main reasons for the good performance is due
to the use of local shape and appearance features, HOG,
for image region representation. However, such features may
not be an ideal representation for all types of towers. It
was discussed that perhaps simpler features may be useful
for towers with a simple structure (Types 3 and 4). This
problem was more visible during the evaluation of the
complete system, especially with higher number of mis-

classifications for the Type 3 tower. Therefore, immediate
future work is lined towards exploring other feature spaces.
Another promising direction is to use classifier ensembles
where multiple classifiers are trained on different features.
This can enhance the performance of the detection as well
as the classification stages. Finally, visual tracking is also
anticipated to significantly enhance the results from tower
detection.
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Fig. 7. Detection and classification results obtained during evaluation of
the complete system: (a) Examples of correct detection and classification
for different types of towers; (b) Examples of incorrect detection; and (c)
Examples of incorrect classification.



