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Abstract: - In this paper, we present a supervised statistical-based cerebrovascular segmentation method from 

Time-Of-Flight MRA. The novelty of this method is that rather than model the dataset over the entire intensity 

range, we at first use a low threshold to eliminate the lowest intensity region, and then use two uniform 

distributions to model the middle and high intensity regions, respectively. Subsequently, in order to overcome 

the intensity overlap between subcutaneous fat and arteries, a high order multiscale features based energy 

function is introduced to enhance the segmentation. Comparing with those sole intensity based segmentation 

method the newly proposed algorithm can solve the problem of the regional intensity variation of TOF–MRA 

well and improve the quality of segmentation. The experimental results also show that the proposed method can 

provide a better quality segmentation than sole intensity information used method. 

 

Key-Words: Statistical segmentation, Bayesian method, Maximum a posteriori (MAP) estimation, Markov 

Random field, High-order multiscale features. 

 

 

1 Introduction 
The human cerebrovascular system is a complex 

three-dimensional anatomical structure and a three-

dimensional (3D) representation of vasculature can 

be extremely important in image-guided 

neurosurgery, pre-surgical planning and clinical 

analysis. 

Magnetic resonance angiography (MRA) is a 

noninvasive medical imaging modality that 

produces three dimensional (3D) images of vessels 

and cavities. Three major groups of MRA 

techniques are time-of-flight (TOF) MRA, contrast 

enhanced (CE) MRA and phase contrast (PC) MRA. 

TOF exploits the difference in the amplitude of 

longitudinal magnetization between flowing and 

static spins. The TOF technique is not quantitative 

but it is widely used clinically because it is fast and 

provides high contrast images, which is the main 

motivation behind our study. Although its 

importance is well-known, a three-dimensional 

representation of blood vessels is not available 

directly. A common approach is to use a maximum 

intensity projection (MIP) where three-dimensional 

(3D) data is projected onto a 2D plane by choosing 

the maximal intensity value along that projection 

direction. However, a major drawback of this 

method is that the background artefacts and other 

tissues may occlude vascular structures of low 

contrast and small width. Thus, it is desirable to 

extract the vasculature tree before it is visualized. 

A variety of the methods have been developed for 

extracting blood vessels [1,2] and all of these 

methods can be classified into three main categories: 

deformable model [3,4,5,6,7,8,], statistical models 

[9,10,11,12] and multiscale filtering [13,14,15,16].  

Since statistically based parametric techniques are 

efficient and easy to implement，they have been 

widely used to classify vessels in magnetic 

resonance angiography. Several researchers have 

demonstrated that, with a proper statistical mixture 

model for the observed intensity distribution of an 

angiogram, the expectation maximization (EM) 

algorithm followed by an estimator can be used to 

segment vascular structures [9,10,12,17]. Model 

selection is an important issue in this kind of 

statistical segmentation techniques. According to the 

intensity range, three major classes can be found in 

a TOF MRA dataset: the lowest intensity region 

corresponds to cerebrospinal fluid (CSF), bone, and 

the background air. The middle intensity region 

corresponds to brain tissues, including both the grey 

and white matter, and parts of the eyes. The third 

high intensity region corresponds to subcutaneous 

fat and arteries. 

In [9], a normal distribution is used to model each 

of the low and middle intensity regions, while a 

uniform distribution is used to model the vessels 

class as shown in Fig. 1(a). Chung et al. introduced 

a Rician distribution for background noise 

modelling [10]. Hassouna et al. found that Rayleigh 
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distribution provides an accurate fit when compared 

with the normal distribution, and use an additional 

normal distribution to describe the overlap the 

background and the brain tissues. And using a 

normal distribution instead of the uniform 

distribution describes the distribution of the blood 

vessels [12], the histogram and mixture fit are 

shown in Fig.1 (b). 

 

  
           (a)                                           (b) 

 

 

To the best of our knowledge, in the literature, the 

researchers have been laying a strong emphasis on 

the model selection over the entire dataset and 

pursuing automatic segmentations. However, after 

inspecting over different TOF MRA datasets, we 

found that the distributions of the background and 

the overlap between background and the brain tissue 

are not always fitted very well. So, there is none a 

FMM can be applicable to all different clinical 

datasets. Furthermore, for the purpose of binary 

segmentation, there is not necessary to find a FMM 

over the entire dataset which is complex, time 

consuming and may not get an accurate 

segmentation. At the same time, due to the overlap 

between subcutaneous fat and arteries, certain 

postprocessings are indispensable for reclassifying 

them. Thus, such an automatic global thresholding 

is not automatic yet. 

In our research, we at first use a low threshold to 

eliminate the lowest intensity region, and then use 

two uniform distributions to model the middle and 

high intensity regions, respectively. Subsequently, 

in order to reclassify the subcutaneous fat and 

arteries, a high order multiscale features based 

energy function is introduced into the Bayesian 

framework to get the complete cerebrovascular 

segmentation. 

 

2 Problem Formulation 

Traditional Markov random field (MRF) based 

segmentation algorithm requires modeling two 

random fields. Let  where N is the total 

number of voxels.  is unobservable 

MRF, also called the label field and x is a realization 

of X. The image to be segmented y is a realization of 

the observed random field . Let 

},...,1{ NS =
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},{ vesselbackgroundL =  and x be a binary 

segmentation of the image y, and then each element 

in the x can be regarded as a mapping from S to L. A 

feasible segmentation x is, therefore, in a Cartesian 

product xΩ of label sets. The set  is known as the 

configuration space.   

xΩ

The process of segmentation is to find  which 

represents the correct tissue class at each voxel site 

given by image y. we attempt to find the MAP 

estimation from the MRA dataset. 

∗x

)|(maxarg* yxpx
xx Ω∈

=                       (1) 

where 

)(

)()|(
)|(

yp

xpxyp
yxp =                  (2) Fig 1. (a) Model by Wilson and Noble (1999). (b) 

Model by Hassouna (2006) 

where is the posterior probability of y 

conditioned on x, denotes the probability 

distribution of x conditioned on y. is a priori 

probability of y, and p is the probability 

distribution of x. Because the prior probability of 

image  is independent of the segmentation x, so 

above equation can be rewritten as 
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The likelihood and the prior probabilities are also 

known as the observation and the prior models in 

the Bayesian segmentation framework. 

 

2.1 Observation Model 
In practice, due to high complexity of the random 

variables X and Y, an assumption is made that 

intensity values in the image are independent and 

identically distributed, and can be modeled by a 

FMM[[18]. 
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 is independent of the individual sites s S∈  and 

lω ( Ll ∈ ) called mixing parameter. We take Φ as 

the model parameter set with  

}|;{ Llll ∈=Φ θω                                      (5) 

Consider two configuration x and y. The joint 

probability distribution of x and y dependent on the 

model parameters can be written as  
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we can compute the marginal distribution of y 

dependent on the parameter set  Φ

∏
∑

∈

∈

⋅=

Φ=Φ

Ss

ll

Ll

yf

ylpyp

);(

)|,()|(

θω
                                (7) 

This is the so-called finite mixture model (FMM). 

In this section, we first use a low threshold to 

eliminate the low intensity region, and then use two 

normal distributions to fit the rest histogram. The 

histogram of the processed dataset and the mixture 

fit are shown in Fig.2.  Thus, the mixture 

distribution of two Gaussian distributions is defined 

by 

∑
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where the function  are the normal 

density functions. The quantities 
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class proportions which sum is unity. 
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Expectation Maximization (EM) can be used to 

estimate the parameters of a chosen distribution for 

a set of data by maximizing the likelihood of the 

distribution [19]. In the EM algorithm the 

distribution parameters are iteratively estimated by 

updating initial parameter estimates under the 

constraint that the difference between the log-

likelihoods of the mixture distribution is to be 

minimized. 

 

 

2.2 Prior Model 
The spatial property can be modelled through 

different aspects, amongst which the contextual 

constraint is a general and powerful one. MRF 

theory provides a convenient and consistent way to 

model context-dependent entities such as image 

pixels and correlated features. 

An MRF is characterized by its local property 

(the Markovianity) whereas a GRF is characterized 

by its global property (the Gibbs distribution). The 

Hammersley-Clifford theorem [20] establishes the 

equivalence of these two types of properties. The 

theorem states that X is an MRF on S with respect 

to N if and only if X is a GRF on S with respect to 

N.  Hence, if X is a MRF, its joint probability can be 

given by 

T
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is a normalizing constant called the partition 

function, T is a constant called the temperature 

which shall be assumed to 1 unless otherwise stated, 

andU is the energy function. The energy )(x

c

)(x

∑
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is a sum of clique potentials V  over all possible 

cliques C. The value of V depends on the local 

configuration on the clique c. 
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c

In this paper, isotropic Multi-level Logistic (MLL) 

Model is adopted as MRF model and only pair-wise 

cliques are considered. The potential function for 

pair-wise cliques is written as  

∑
∈

=
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where sη is the neighbourhood of s and the 

potential functions are defined as  
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 The parameter srβ describes the strength of the 

interaction between pair-wise neighbouring voxels.  

Classification of the blood vessels is equivalent to 

find the optimal labelling using the maximum a 

posteriori (MAP) estimator:  

))()|((minarg* xUxyUx
xx

+=
Ω∈

                  (15) 
Fig. 2 Histogram and Mixture fit of processed dataset. 

where )|(log)|( xypxyU −= represents the 

likelihood energy function and ∑
∈

=
Cc

C xVxU is 

the prior energy function. 

)()(

Although this type of statistically based parametric 

techniques have been widely used to classify vessels in 
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magnetic resonance angiography (MRA) and gotten a 

great success. There are still some misclassified voxels 

because of the overlap between background and 

arteries. For example, some vessel voxels may be 

classified as non-vessel class in regions with 

significant vascular signal loss due to complicated 

flow conditions including slowly and turbulent blood 

flow. On the other hand, some background voxels may 

be classified as blood vessels class, when the noise has 

high intensity value.  

However, a spatial representation of small vessels 

and their branches which exhibit much variability 

are most important in planning and performing 

neurosurgical procedures. The more minute the 

information is, the more precise the navigation and 

localization of computer guided procedures. Present 

representations do not yield this kind of information. 

A more precise spatial representation of this 

complex anatomic structure is needed. 

In the first step of classification, the two functions 

and are not sufficient to reclassify the 

tiny vessels and high intensity background noise 

because of the intensity overlap between them. It is, 

therefore, necessary to introduce other information 

to deal with this problem. In fact, the high-order 

differential image information provides a rich 

description of the brain tissue and blood vessels in 

the medical imagery and therefore we have added a 

third term into the energy function, which is 

obtained by high order information analysis.  

)|( xyU )(xU

The speed image of TOF MRA provides 

information of the patients’ blood flow. The 

intensity values in the image are proportional to the 

flow velocity. Because of the blood viscosity, 

frictional force slows down the blood flow near the 

vascular wall. As such, the intensity profile is 

nonuniform within the vascular structures. 

Analyzing the intensity values distribution of 

structures in TOF MRA, images within a local 

neighborhood play an important role. Many 

different techniques have been proposed for analysis 

the local structure of the image [3, 6, 7, 8]. The 

differential invariants constitute a complete and 

irreducible set of differential operators appropriate 

for the description of the local image structure up to 

any desired order. 

For a point s in the image, a feature vector  is 

assigned  

)(sf
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where each  is the vector of differential 

invariants computed at scale 
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where and  represent the fist and second 

order Gaussian derivatives computed at scale 

σ1I nI σ2

nσ .The parameters nσλ1 , nσλ2 and nσλ3  represent the 

eigenvalues of the Hessian matrix of the image I, 

ordered by increasing magnitude. R  differentiates 

between plate and line like structures, R  accounts 

for deviation from a blob like structure, and S  

differentiates between vessel and background 

A

B

Once the vector of differential invariants is 

computed on each voxel, the K-nearest neighbor 

algorithm (KNN) can be used to estimate the 

probability function for a voxel to belong to a class. 

In pattern recognition, kNN is a method for 

classifying objects based on closest training 

examples in the feature space. Thus, the probability 

for a voxel x to belong to a class  is computed for 

the formula 
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where δ  represents the Euclidean distance.  is 

the K nearest neighbours and  is the set of voxels 

of the training set that belongs to the class . For 

blood vessel segmentation application and  

stand for background and blood vessels, 

respectively. 

)(sNK

iL

iC

0C 1C

In general, the selection of the candidates for 

training is of great importance in the learning stage 

of any supervised pattern recognition method and 

the overall performance of the method strongly 

depends on the selection of these candidates. In our 

application, there are only two types of training 

points, namely, background (including of brain 

tissues and subcutaneous fat) and blood vessels. 

TOF MRA images have large regional variations in 

intensity and the thin blood vessels have low 

contrast between vessels and the background. 

Furthermore, in some case, aneurysm may be 

occurred. Hence, when we select the training points 

for blood vessels, all of the above conditions should 

be considered. After selected, the corresponding 

feature vectors are computed and stored. 
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By now, high-order multiscale features based 

energy function can be defined as: 
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where λ  is a positive weighted coefficient. 

Optimal labeling of the MRA data is obtained 

through the condition 

))(|(()()|((minarg* 0 sfCspUxUxyUx
xx

∈++=
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The deterministic relaxation iterated conditional 

modes (ICM) is used for the MAP estimation [21]. 

Although the ICM usually converges to a local 

minimum of the energy function, this loss of 

optimality may be compensated for by an 

appropriated initial guess. In our experiments, we 

use maximum likelihood (ML) estimate [22]. The 

initial binary segmentation  is obtained as follows: 0x

)}||(max{arg0 Ssxypx ss
Lxs

∈∀=
∈

           (24) 

 

3 Parameters Estimation 
The mixture-density parameter estimation problem 

is probably one of the most widely used applications 

of the EM algorithm in the computational pattern 

recognition community, where the distribution 

parameters are iteratively estimated by updating 

initial parameter estimates under the constraint that 

the difference between the log-likelihoods of the 

mixture distribution is to be minimized. By 

minimizing that difference, the equations become: 
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where N is the total number of voxels being 

considered and ys is the intensity of voxel at location 

s. The function  is the conditional 

probability of voxel s belonging to class l at current 

iteration and is defined as  

)|( sylp

∑
=

=

=
2

0

)|(

)|(
)|(

j

j

s
old

j

s
old

l
s

old

jyp

lyp
ylp

ω

ω
                               (28) 

The common approach is to run the EM algorithm 

more than once, starting from different sets of initial 

parameter values and then selecting the estimated 

set and maximizing the conditional expectation, 

which is computationally expensive and the 

convergence is still not guaranteed. In this research, 

we adopt a histogram analysis based initialization 

method to find a good initial estimate to above 

parameters. 

On the other hand, in the MRF prior model, there 

are two free parameters, srβ and λ . There are several 

MRF parameter estimation techniques such as the 

coding method [23], the least square error method 

[24] and the maximum pseudo likelihood estimator 

(MPLE) method. In this work, the MRF parameters 

are found empirically. The sensitivity of the MRF 

parameters in the segmentation is analyzed. In order 

to find the optimal parameters, we have tested each 

combination of parameters by changing srβ from 

zero to 1 with an incremental step of 0.1 and λ  

from zero to 10 with an incremental set of 1. 

 

4   Experimental Results 

Since a complete vasculature is very complex, the 

manual segmentation by experts is unavailable. 

Therefore, in order to validate our method, we 

applied our algorithm to synthetic 3D volume with 

data volume 256x256x9 voxels. Furthermore, our 

algorithm has also been exerted on several real 

clinical datasets.  

To compromise between the computational speed 

and the accuracy of the algorithm, in the following 

experiments, only three different scales have been 

used, namely, 8.00 =σ , 21 =σ and 42 =σ ,which 

cover most of the objects from the thinnest arteries 

of interest to the thickest arteries in the datasets. In 

each experiment, 100 points have been selected for 

vessels and backgrounds.The number of the nearest 

neighbors is set as 10=K . 

 

4.1   Synthetic Image Volume  

In this experiment, a synthetic image volume 

containing several blood vessels was built.  A slice 

of the volume is shown in Fig. 3(a). All the blood 

vessels are generated using a parabolic intensity 

old
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profile and 8 voxels width. The noisy image with 

SNR= 4 and its truth segmentation is presented in 

Fig. 3(b) and (c), respectively. Fig. 3(d) gives the 

probability image derived from Equ(21). The 

segmentation results using sole intensity 

information and both information are illustrate in 

Fig. 3(e) and (f). A quantitative analysis of 

misclassified error for each slice in the volume is 

illustrated in Fig.3 (g). The misclassified error of 

our method and intensity information alone is 

3.32947% and 4.38046%, respectively. Notice that 

all segmentation results in this experiment are 

obtained without spatial contextual information. 

The segmentation error is calculated by counting 

the number of misclassified voxels, which is given 

by 

%100
image in the  voxelsofnumber  Total

 voxelsiedmisclassif ofNumber 
×=Error          

(29) 

                      

4.2 Clinical Data Sets 
In order to evaluate performance of our algorithm, 

we have tested our algorithm on several 3D TOF 

clinical datasets. For real clinical images, a 

quantitative assessment is very difficult because the 

complete vasculature is very complex and the 

manual segmentation by experts is unavailable. 

Even the manually-obtained segmentations cannot 

be considered “ground truth” since many vessels is 

not obtained and bright areas not corresponding to 

vessel are included in some cases. In the following 

experiments, qualitative comparisons are shown 

only due to the difficulty of obtaining ground truth 

segmentations for datasets.  

To show the accuracy of the segmentation, a 

comparison is done with the maximum intensity 

projection (MIP) [25] and Hassouna’s method [12], 

which is a recent unsupervised sole intensity based 

segmentation algorithm for blood vessel 

segmentation. 

The first dataset used here was acquired on a 1.5T 

scanner with voxel size of 0.859×0.859×1.017 mm3 

and image size of 256x256x115 voxels. 

In Fig.4, the influence of parameter λ  has been 

tested. From (c) to (g) we can find that with the 

increment of λ  more and more high intensity 

backgrounds such as eye and subcutaneous fat are 

eliminated f the segmentation results. Fig.4 (b) and 

(c) give the segmentation results using Hassouna’s 

method and our proposed preprocessing based two-

Gaussian mixture model. Note that the noise in 

Fig.4. (b) is not filtered using largest connected 

components. Segmentation result using proposed 

method is shown in Fig. 5 from different viewpoints. 

To validate our algorithm, the algorithm has been 

exerted on another two clinical datasets. The data 

volume in the second dataset is 256 ×256 ×79 

voxels with a voxel size of 0.938 ×0.938 ×2 mm3
.  

The second dataset contains 256 ×256 ×129 voxels 

and with a voxel size of 0.859×0.859×1mm3. 

In the following two experiments, the parameter 

configurations were: 5.0=srβ  and 5=λ . MIP 

images, segmentation results using Hassouna’s 

method (without postprocessing) and our proposed 

method are present in Fig 6 (a), (b) and (c), 

respectively. 

 

5 Conclusion 
In this paper, we have introduced a Bayesian image 

segmentation method for cerebrovascular 

segmentation from TOF MRA.  The novelty of this 

method is that rather than relying on the intensity 

feature alone, high-order feature is used to enhance 

the segmentation result.  In particular, the use of 

high order multiscale information provides a richer 

description of the different tissues in medical 

imagery than the description solely provided by the 

intensity distributions. 

In order to evaluate the algorithm, the proposed 

methodology has been applied to both the synthetic 

and real clinical image volumes. In synthetic image 

experiment, the segmentations produced by the 

newly proposed algorithm are in high degree of 

agreement with the ground truth.  However, due to 

the complexity of the whole cerebrovascular tree, 

the ground truth is unavailable by manual 

segmentation. To compensate for the loss of ground 

truth, we have compared our algorithm with both 

MIP and Hassouna’s method [12]. The comparison 

results illustrate that the proposed method can 

provide a better quality segmentation than sole 

intensity information used method. 
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Fig.3. Synthetic image segmentation. 

(a)A middle slice of synthetic volume.(b)Noisy image with SNR=4;(c)Ground truth 

(d) Probability for tube. (e). Segmented image using intensity information alone. 

(f) Segmented image using intensity and high order multiacle information. 

(g) Segmentation error on each slice. 

(a) (b) (c) (d) 

(g) (e) (f) 

Fig. 4 (a) MIP image; (b) Segmentation using Hassouna’s method;(c) Segmentation result using two 

Gaussian model.; From (c) to (g) Three-dimensional surfaces of the segmentation results with 

parameter 0= 2= 5= 8= 10=λ ,λ , λ ,λ and λ ,respectively. 
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Fig.5. Segmentation result using proposed method is shown from different viewpoints. 

 (a) (b) (c) 

 
Fig.6.  Comparison of segmentation results .(a) MIP; (b) Segmentation result using Hassouna’s method; 

(c) Segmentation result using our method. 
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