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Abstract— There is a biological evidence to prove information1

is coded through precise timing of spikes in the brain. However,2

training a population of spiking neurons in a multilayer network3

to fire at multiple precise times remains a challenging task. Delay4

learning and the effect of a delay on weight learning in a spiking5

neural network (SNN) have not been investigated thoroughly.6

This paper proposes a novel biologically plausible supervised7

learning algorithm for learning precisely timed multiple spikes8

in a multilayer SNNs. Based on the spike-timing-dependent9

plasticity learning rule, the proposed learning method trains an10

SNN through the synergy between weight and delay learning.11

The weights of the hidden and output neurons are adjusted12

in parallel. The proposed learning method captures the contri-13

bution of synaptic delays to the learning of synaptic weights.14

Interaction between different layers of the network is realized15

through biofeedback signals sent by the output neurons. The16

trained SNN is used for the classification of spatiotemporal input17

patterns. The proposed learning method also trains the spiking18

network not to fire spikes at undesired times which contribute19

to misclassification. Experimental evaluation on benchmark data20

sets from the UCI machine learning repository shows that the21

proposed method has comparable results with classical rate-based22

methods such as deep belief network and the autoencoder models.23

Moreover, the proposed method can achieve higher classification24

accuracies than single layer and a similar multilayer SNN.25

Index Terms— Multilayer neural network, spiking neural26

network (SNN), supervised learning, synaptic delay.27

I. INTRODUCTION28

SPIKE-timing-dependent plasticity (STDP) plays a29

prominent role in learning biological neurons, and it30

represents one form of synaptic plasticity which underpins31
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synaptic weight changes based on the precise times of pre and 32

postsynaptic spikes [1]. STDP highlights the important role of 33

precise spike times in information processing in the brain [2]. 34

In addition, the rapid sensory processing observed in the 35

visual, auditory, and olfactory systems supports the assumption 36

that information is encoded in the precise timing of the 37

spikes [3]–[5]. Moreover, using precise timing of spikes results 38

in a higher information encoding capacity compared with 39

rate-based coding [6], and it can also convey the information 40

related to rate of spikes in a multispike coding scheme [2]. 41

Furthermore, as neural activity is metabolically expensive, 42

the high number of spikes involved in rate coding scheme 43

demands a significant amount of energy and resources [7], [8]. 44

Despite the existing evidence supporting information encoding 45

using the precise timing of spikes, the exact neuronal 46

mechanisms that underlie learning to fire at precise times are 47

still not clear and remain as one of the challenging problems 48

in the field of spiking neural networks (SNNs) [2], [9]–[11]. 49

In this paper, a novel supervised learning algorithm inspired 50

by STDP is proposed to train an SNN to fire multiple spikes 51

at precise desired times. Local synaptic biochemical events, 52

produced by incoming spikes, are used to adjust weights and 53

delays appropriately. In addition, neurons in the output and 54

hidden layers interact with each other through a biofeedback 55

signal sent by the output neurons to train the network. The 56

main novelty of the proposed method consists in: 1) capturing 57

the effect of synaptic delays on the learning of neuronal 58

connection weights in an SNN, which has not been consid- 59

ered in previous works and 2) learning the spiking network 60

synaptic delays. In addition, the proposed approach introduces 61

an additional training mechanism to prevent the occurrence 62

of undesired spikes which contribute to the misclassification 63

of spatiotemporal input patterns. The proposed approach is 64

validated using benchmark classification data sets and is 65

compared against both spiking and rate-based neural models 66

including state-of-the-art deep learning and autoencoder mod- 67

els. The experimental results show an improvement in learning 68

accuracy over existing competitive SNN architectures and 69

comparable performance to state-of-the-art rate-based neural 70

models. 71

The remainder of this paper is structured as follows. A brief 72

review of background and related work on SNNs is presented 73

in Section II. Section III introduces the proposed method 74
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in detail. The simulation results are then provided in75

Section IV. Finally, Section V concludes this paper.76

II. BACKGROUND AND RELATED WORK77

Different artificial neural networks (ANNs) have been78

devised based on the working principle of their biological79

counterparts. McCulloch and Pitts (1943) developed the firstAQ:1 80

ANN where the neuron model is a logic unit which can be in81

an active or inactive (binary) mode depending on the weighted82

sum of their binary inputs. Later, a continuous transfer function83

(e.g., sigmoid function) is applied to the weighted sum of84

continuous inputs to generate continuous output [12]. The con-85

tinuous values represent the biological neuron spiking rates.86

ANNs are inspired by the biological nervous system and are87

successfully used in various applications. However, their high88

abstraction compared to their biological counterparts [13] and89

their inability to capture the complex temporal dynamics of90

biological neurons have resulted in a new area of ANNs where91

the focus is placed on more biologically plausible neuronal92

models known as SNNs. Thanks to their ability to capture93

the rich dynamics of biological neurons and to represent94

and integrate different information dimensions such as time,95

frequency, and phase, SNNs offer a promising computing96

paradigm and are potentially capable of modeling complex97

information processing in the brain [14]–[20].98

In 1952, Hodgkin and Huxley [16] built a 4-D detailed99

conductance-based neuron model which can reproduce elec-100

trophysiological measurements to a high degree of accuracy.101

However, because of its intrinsic computational complexity,102

this model has a high computational cost. For this reason,103

simple phenomenological spiking neuron (SN) models are104

employed for simulating large-scale SNNs [15]. The leaky105

integrate-and-fire (LIF) model is a popular 1-D spiking neural106

model with low computational cost, but it offers relatively107

poor biological plausibility compared with the Hodgkin and108

Huxley model. Simple phenomenological SN models with low109

computational cost are highly popular for studies of neural110

coding, memory, and network dynamics [12].111

The first supervised learning algorithms for multilayer112

SNNs using the precise timing of spikes could train113

only a single spike for each neuron. Bohte et al. [21]114

proposed the multilayer SNN called SpikeProp (inspired by115

the classical back-propagation algorithm) as one of the first116

supervised learning methods for feedforward multilayer SNNs.117

Backpropagation with momentum [22], QuickProp [22],118

resilient propagation [22], [23], and the SpikeProp based on119

adaptive learning rate [24] were proposed to improve the120

performance of SpikeProp. In all these methods, neurons in the121

input, output, and hidden layers can only fire a single spike.122

Despite the capability of a single-spike learning method,123

single-spike coding schemes limit the diversity and capacity124

of information transmission in a network of SNs. In contrast,125

multiple spikes significantly increase the richness of the neural126

information representation [25], [26]. In addition, training a127

neuron to fire multiple spikes is more biologically plausible128

compared to single-spike learning methods [27], [28].129

Temporal encoding through multiple spikes transfers important130

information which cannot be expressed by a single-spike 131

coding scheme or a rate coding scheme. Although the exact 132

mechanism of information coding in the brain is not clear, 133

biological evidence shows that multiple spikes have a pivotal 134

role in the brain. For instance, mapping between spatiotempo- 135

ral spiking sensory inputs composed of spike trains to precise 136

timing of spikes is an essential characteristic of neuronal 137

circuits of the zebra finch brain to execute well-timed 138

motor sequences [29]. In the mixed approaches proposed in 139

[30] and [31], it is suggested that using both spike timing 140

and spike rate increases processing speed. These methods use 141

a combination of both correlated and uncorrelated spiking 142

signals. So, there is useful information in the spike rate that 143

cannot be captured by the precise timing of single spikes. 144

Encoding information in the precise timing of multiple 145

spikes which are used in this paper can capture not only the 146

information in the spike rate but also the information in inter 147

spike intervals. 148

Pfister et al. [32] designed a supervised learning algorithm 149

for a single SN which updates synaptic weights to increase 150

the likelihood of postsynaptic firing at several desired times. 151

The algorithm is designed to train only a single neuron; 152

however, it can train the neuron to fire multiple desired 153

spikes. ReSuMe [25], spike pattern association neuron [33], AQ:2154

perceptron-based SN learning rule [34], biologically plausible 155

supervised learning method (BPSL) [35], and efficient mem- 156

brane potential-driven supervised learning method [36] are 157

other examples of learning methods that can train a single 158

neuron to fire multiple desired spikes. Multispike learning 159

methods focus on a single neuron or a single layer of neurons. 160

It is difficult to design a multilayer SNN to fire multiple 161

desired spikes because the complexity of the learning task is 162

increased [27], [37]. In this situation, the learning algorithm 163

should control several neurons to generate different desired 164

spikes. However, a real biological nervous system is composed 165

of a large number of interconnected neurons [27], [28], [37]. 166

A multilayer neural network has a higher information 167

processing ability than a single layer of neurons. Sporea and 168

Grüning [28] have shown that a multilayer SNN can perform 169

a nonlinearly separable logical operation; however, the task 170

cannot be accomplished without the hidden layer neurons. 171

Ghosh-Dastidar and Adeli [37] and Booij and 172

tat Nguyen [38] extended the multilayer SpikeProp [21] 173

to allow each neuron in the input and hidden layers to fire 174

multiple spikes. However, each output neuron can fire only 175

a single spike. Xu et al. [27] proposed the first supervised 176

learning method based on the classical error back-propagation 177

method that can train all the neurons in a multilayer SNN 178

to fire multiple spikes. Gradient learning methods suffer 179

from various known problems which can lead to learning 180

failure such as sudden jumps (called surge) or discontinuities 181

in the error function [24]. The problem becomes more 182

severe when the output neurons are trained to fire more 183

than a single spike. In addition, the construction of an error 184

function becomes difficult when multiple desired spikes 185

should be learned as the number of actual output spikes may 186

differ from the number of desired spikes in each learning 187

epoch [27]. After investigation of the gradient-based methods 188
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in [23], [39], and [40], it is concluded that the application189

of STDP is worth further investigation to implement a190

more biologically plausible learning algorithm for multilayer191

SNNs [37].192

Sporea and Grüning [28] have used STDP and anti-STDP193

to devise the first biologically plausible supervised learn-194

ing algorithm for the classification of real-world data by a195

multilayer SNN in which each neuron in the input, hidden,196

and output layers can fire multiple spikes. The authors did not197

consider the spikes fired by hidden neurons when training the198

hidden neurons parameters. However, in a biological neuron,199

STDP usually works on the pre- and postsynaptic spikes of the200

neuron. In addition, the output spikes of the hidden neurons201

have significant effects on a training task in a multilayer SNN.202

Another drawback of this method [28] is that it has used the203

same learning adjustment method for inhibitory and excitatory204

neurons in hidden layers. However, inhibitory and excitatory205

neurons have different effects in a network by generating206

positive and negative postsynaptic potentials (PSPs). In this207

paper, a method is proposed to use spikes fired by hidden208

neurons during learning, and excitatory and inhibitory neurons209

are trained appropriately.210

Delays of spike propagation are an important characteristic211

of real biological neural systems, and they have a significant212

effect on the information processing ability of the nervous213

system [18], [41], [42]. In EDL [43], an extended delay214

learning-based remote supervised method for SNs, and in215

DL-ReSuMe [41], a delay learning-based remote supervised216

method for SNs, investigated the viability of adjusting the217

neuron synaptic weights and delays for training a single SN218

to map a given spatiotemporal input pattern into a desired219

output spike train. STDP and anti-STDP were used to adjust220

the synaptic weights, and a delay shift approach was used to221

adjust their delays. It is worth noting that constant synaptic222

delays have been employed in [28], hence neglecting the223

effect of a synaptic delay between a hidden neuron and an224

output neuron on the weight adjustment of the hidden neuron.225

It trains the hidden neuron to fire at the time of an output226

desired spike. However, the generated spike is shifted by the227

network synaptic delay and causes an error in the firing time228

of the output neuron. SpikeProp and its related gradient-based229

methods [21], [23], [37] have taken into account the effect of230

a delay between a hidden neuron and an output neuron on231

the input weight adjustment of the hidden neurons. However,232

the use of multiple connections with different delays after a233

hidden neuron causes each of the different delays to affect234

the adjustment of the hidden neuron weights in different and235

opposite directions. Because, different errors are propagated236

from an output neuron to a hidden neuron corresponding to237

the different subconnections between the two neurons. The238

different errors force the hidden neuron to fire at different239

times depending on the different delays related to the multiple240

connections, and it disturbs the learning procedure. This might241

be one reason for the huge sudden rise in learning error of242

SpikeProp, as reported in [24].243

In this paper, a learning algorithm is proposed to train244

both weights and delays of a multilayer SNN to fire multiple245

desired spikes. In the proposed method, each neuron at input,246

hidden, and output layers can fire multiple spikes. Supervised 247

training of SNs which fire multiple spikes in a multilayer 248

SNN remains a challenge. Furthermore, the proposed approach 249

trains the synaptic delays in the multilayer SNN and also takes 250

into the effect of delays on weight adjustments which is not 251

considered in [21]–[24] and [28]. In the proposed method, 252

the effect of the delays between a hidden neuron and an 253

output neuron is considered during weight adjustments of the 254

hidden neuron. In addition, the proposed method trains the 255

weights of the hidden neurons by using the spikes fired by 256

hidden neurons during STDP and anti-STDP, which results in 257

a more biologically plausible and a highly accurate learning. 258

Moreover, different weight adjustment strategies are used to 259

train excitatory and inhibitory hidden neurons based on the 260

effect of the excitatory (positive) and inhibitory (negative) 261

PSPs (EPSP and IPSP) produced by the trained hidden neu- 262

rons. In Section II, the principle of the proposed method is 263

described. 264

III. MATERIALS AND METHODS 265

The aim of the proposed supervised learning algorithm is to 266

train a multilayer SNN to map spatiotemporal input patterns 267

to their corresponding desired spike trains which implements a 268

classification of the spatiotemporal input patterns. The network 269

is composed of an input, a hidden, and an output layer. 270

An output neuron, called a readout neuron, is fully connected 271

to the hidden neurons. A spatiotemporal input pattern is 272

emitted by the neurons in the input layer. Each input neuron is 273

randomly connected to a fraction number of hidden neurons as 274

used in [18]. The LIF neuron model described in [41] is used. 275

The proposed method trains the spiking network by adjusting 276

the learning parameters of the hidden and output neurons in 277

parallel. 278

A. Overview of the Proposed Learning Method 279

The proposed learning method aims to train the multilayer 280

SNN to enable each readout (output) neuron to fire actual 281

output spikes at desired times and to cancel out undesired 282

output spikes. A remote supervising signal is considered for 283

an output neuron similar to ReSuMe [25]. At the time of a 284

desired spike where there are not any actual output spikes 285

at the readout neuron, the network learning parameters are 286

adjusted to increase the total PSP of the readout neuron to hit 287

the threshold level and generate an actual output spike at the 288

desired time by using biologically plausible local events. The 289

output neuron does the following three activities in parallel at 290

the desired spike time. 291

First, at the time of the desired spike, the output neuron 292

sends back an instruction signal (biofeedback) that shows the 293

time of desired spike to the hidden neurons. After receiving 294

the instruction signal, an excitatory hidden neuron poten- 295

tiates its weights based on STDP to fire an output spike 296

(hidden spike) at a specific time interval before the desired 297

time. The specific time interval is equal to the delay related 298

to the connection between the excitatory hidden neuron and 299

the output neuron. The effect of the generated hidden spike 300

(i.e., the PSP generated by the hidden spike) is shifted to 301
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the desired spike time after the related delay between the302

hidden neuron and the output neuron. The potentiation of303

the excitatory hidden neuron weights is stopped when the304

hidden neuron firing rate reaches a certain value, because305

a biological neuron cannot fire with a limitless rate, and a306

refractory period will ensure an upper bound on the neuron307

firing rate. The excitatory hidden neuron weight potentiation308

at the time of a desired spike is also stopped when an actual309

spike is generated at the time of the desired spike by the310

output neuron. In addition, the feedback triggers an inhibitory311

hidden neuron to try to remove its output spikes fired a312

specific time interval before the desired time by using the313

long-term depression (LTD) of anti-STDP. The time interval314

is equal to the delay between the inhibitory hidden neuron and315

the readout neuron. The hidden neuron output spikes before316

the time interval affects the PSP of the readout neuron at the317

desired time, i.e., the hidden spikes generate delayed PSPs at318

the desired time. The reduction of the inhibitory hidden spikes319

helps the readout neuron to increase its total PSP at the desired320

time to hit the threshold level.321

Second, similar to ReSuMe [25] the output neuron poten-322

tiates its weights that have a spike shortly before the desired323

time based on STDP to increase its PSP at the desired time324

to fire.325

The third activity at the time of a desired spike where there326

are not any actual output spikes of the readout neuron is the327

adjustment of delays of the readout neuron to increase the PSP328

of the readout neuron at the desired time, based on EDL [43].329

All the abovementioned activities are repeated at the time of330

other desired spikes in a multispike coding scheme.331

At the time of an undesired output spike of the readout332

neuron (i.e., where there is an actual output spike and there are333

not any desired spikes), the learning algorithm should reduce334

the total PSP of the readout neuron at the time of the undesired335

output spike to remove it by applying the following three336

processes in parallel. First, the readout neuron sends a feed-337

back to excitatory hidden neurons to instruct them to remove338

their output spikes. Each excitatory hidden neuron removes339

its spike fired at a precise time interval before the time of the340

undesired spike by using LTD based on anti-STDP and reduces341

its weights. The time interval for the hidden neuron is equal to342

the delay between the hidden neuron and the readout neuron.343

Consequently, the reduction of the excitatory hidden neuron344

weights can help the readout neuron to reduce its total PSP345

and to remove the undesired output spike. It is clear that the346

weight reduction should be applied to the excitatory neurons347

that have a number of output spikes. Therefore, the LTD is348

applied to the excitatory neurons when their firing rates are349

higher than a threshold rate. The threshold rate is set by trial350

and error. In addition, the feedback triggers each inhibitory351

hidden neuron to potentiate its weights based on the long-352

term potentiation of STDP. The weight potentiation increases353

inhibitory hidden spikes before a precise time interval (the time354

interval is equal to the delay between the hidden neuron and355

the readout neuron) before the undesired spike time to help356

the readout neuron to reduce its total PSP at the undesired357

output spike time. The second process is applied at the time358

of the undesired output spike and consists of a reduction of the359

readout neuron weights that have spikes at the undesired output 360

spike time or shortly before it by using anti-STDP similar to 361

ReSuMe [25]. The third process reduces the readout neuron 362

total PSP at the time of the undesired spike by adjusting the 363

delays of the readout neuron based on EDL [43]. 364

The hidden layer spikes play an important role in the 365

generation of the network output spikes (both at desired and 366

undesired times). Generated spikes by different hidden neurons 367

cooperatively increase the PSP of the output neuron at a 368

desired time and help it to fire at the desired time. In addition, 369

when the complexity of a learning task is increased by increas- 370

ing the number of desired spikes and also by increasing the 371

number of different training patterns for each class, it becomes 372

difficult or impossible to train a single neuron to fire at all the 373

desired times for all the training patterns. Different groups of 374

hidden neurons can contribute in generating different desired 375

spikes and cooperatively drive a readout neuron to fire at all 376

the desired times for all the training patterns. 377

In Sections III-B and III-C, first the training rule of the 378

output neurons is explained and then the training of the hidden 379

neurons weights is described in detail. 380

B. Training the Output Neurons 381

The weights and delays of each output neuron are trained 382

by EDL, as described in [43]. The delay adjustments in 383

cooperation with the weight adjustments train an output neuron 384

to increase its total PSP at a desired time to generate an actual 385

output spike, and also the adjustments help the output neuron 386

to reduce its PSP at undesired spike times and to remove 387

undesired actual output spikes. The weights are trained by 388

the following equation: 389

dwoh(t)

dt
=

[

sd
o (t) − sa

o (t)
]

[

a +

∫ +∞

0
�(s)sh(t− doh− s)ds

]

390

(1) 391

where woh and doh are the weight and delay related to the 392

connection between the hth hidden neuron and the oth output 393

neuron, respectively. sd
o (t) and sa

o (t) are desired and actual 394

output spike trains of the oth output neuron, respectively. 395

sh(t) is the spike train fired by hth hidden neuron. a is 396

a non-Hebbian parameter that can speed up the learning. 397

�(s) is a learning window similar to that of STDP and has 398

an exponential function as described by 399

�(s) =

{

Ae−s/τ , s ≥ 0

0, s < 0
(2) 400

where τ and A are the exponential decay time constant and 401

the amplitude of the learning window, respectively. 402

xoh(t), a local variable called spike trace, is used to train 403

the delay related to the synapse that connect hth excitatory 404

hidden neuron to oth output neuron. xoh(t) is governed by 405

xoh(t) =

{

Ae−(t−t
f

h −εoh)/τ , t
f

h < t < t
f +1

h

A, t = t
f

h

(3) 406

where t
f

h is the firing time of the f th spike of the hth 407

excitatory hidden neuron, τ is the time constant of the expo- 408

nential function, εoh is the delay between the hth excitatory 409
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Fig. 1. Trace xom related to input spike at tm jumps to a maximum value
after the delay εom . Then it decays exponentially through time.

hidden neuron and the oth output neuron, and A is a constant410

value which are equal to their counterparts in (2). xoh(t) is411

used to obtain appropriate value for delay adjustment. The412

adjustment �εoh is calculated by (4) similar to EDL [43]413

�εoh(t) =

⎧

⎪

⎨

⎪

⎩

+�tom(t)(xoh(t)/xom(t))4, t = t̂
f

o

−�tom(t)(xoh(t)/xom(t))4, t = t
f

o

0, Otherwise

(4)414

where t̂
f

o is the time of the f th desired spike, t
f

o is the415

time of the f th actual output spike of the oth output neuron,416

and xom(t) is the maximum trace between the traces of the417

excitatory hidden neurons connected to the oth output neuron418

at the current time t . xom(t) is corresponding to the connection419

between the mth excitatory hidden neuron (that has the closest420

spike before the current time t) and the oth output neuron.421

�tom is a delay shift which is necessary to be added to the422

delay between the mth excitatory hidden neuron and the oth423

output neuron to bring the effect of the closest spike fired424

by mth excitatory hidden neuron to the current time t . It is425

derived from (3) and calculated by426

�tom = t − tm − εom = −τx ln (xom(t)/A) (5)427

where tm is the firing time of the mth excitatory hidden neuron428

before current time t . The mth excitatory hidden neuron has429

the closest spike before the current time t . It has the maximum430

trace at time txom(t) out of all excitatory input synapses of the431

oth output neuron. xom(t) should be less than A, because the432

spike should occur before the current time. εom is the delay433

between the mth excitatory hidden neuron and the oth output434

neuron. Fig. 1 illustrates the relationship between the different435

parameters used in (5).436

The delay adjustment in (4) tries to increase the total PSP of437

the oth output neuron at t = t̂
f

o and to reduce the total PSP438

at t = t
f

o . The delay increment in (4) shifts the positive PSPs439

generated by excitatory inputs to the desired times to generate440

an output spike. The delay reduction shifts the positive PSPs441

away from the actual output spikes times to remove undesired442

spikes. When an actual output spike is generated at the time443

of a desired spike, the positive delay adjustment cancels out444

the negative delay adjustment and the delays are stabilized.445

In (4), we have [xoh(t)/xom(t)] ≤ 1. The use of the fourth446

power in (4) reduces the amount of delay adjustment related447

to a far input spike. A far input spike corresponds to a low448

value of [xoh(t)/xom(t)] and consequently a lower value of449

the fourth power of [xoh(t)/xom(t)] ≤ 1, and only the delays450

related to the close input spikes which have a high effect on 451

the PSP is adjusted by a high value to prevent unnecessary 452

change of the delays in the network. 453

The adjustment of delay between the hth inhibitory hidden 454

neuron and the oth output neuron �µoh is governed by 455

�µoh(t) =

⎧

⎪

⎨

⎪

⎩

−�t̄om(t)(x̄oh(t)/(x̄om(t))4, t = t̂
f

o

+�t̄om(t)(x̄oh(t)/x̄om(t))4, t = t
f

o

0, Otherwise

(6) 456

where x̄oh(t) is the spike trace related to the connection 457

between hth inhibitory hidden neuron and the oth output 458

neuron. x̄om(t) is the maximum trace between the inhibitory 459

hidden neurons that are connected to the oth output neuron. 460

It should be less than A. �t̄om(t) is calculated by putting 461

x̄om(t) in (5). The decrement of delays in the first expression 462

of (6) at the desired times shifts away the negative PSPs 463

generated by inhibitory inputs (from the desired times) and 464

increases the total PSP of the output neuron accordingly. This 465

might increase the total PSP to hit the threshold level and 466

generate an actual output at the desired times. The delay 467

increment in the second expression relates to the inhibitory 468

input spikes before the actual outputs shifts the negative PSP 469

of the inhibitory inputs toward the actual output spikes to 470

remove undesired output spikes. When an actual output spike 471

is generated at the time of a desired spike, the delay decrement 472

and increment in (6) are equal and the net adjustment becomes 473

zero. 474

C. Training the Hidden Neurons 475

This section introduces the learning algorithms for both 476

excitatory and inhibitory hidden neurons. 477

1) Weight Learning of Excitatory Hidden Neurons: The 478

synaptic weight between the i th input neuron and the hth 479

excitatory hidden neuron is denoted by whi and all the delays 480

in the network are neglected in this stage. The synaptic weight 481

adjustment is governed by 482

�whi(t) 483

=

⎧

⎪

⎨

⎪

⎩

+
∑

o [�(t− ti )(1− �(t − th)/A)](woh/A), t = t̂
f

o

−
∑

o [�(t− ti )(�(t− th)/A)](woh/A), t = t
f

o

0, Otherwise

484

(7) 485

where ti is the last firing time of the i th input spike at or before 486

the current time t . Equation (7) shows that the algorithm 487

adjusts the weight at the time of the f th desired spike of the 488

oth output neuron, t = t̂
f

o , and at the time of the f th actual 489

output spike of the oth output neuron, t = t
f

o . The sigma (
∑

) 490

collects the weight adjustment on all the output neurons. 491

At the time of the desired spike, the weight is potentiated in 492

proportion to the STDP time window (�(t − ti )) to generate 493

hidden neuron spike at the desired time or shortly before it to 494

increase the total PSP of the oth output neuron and help the 495

output neuron to generate an actual output spike at the desired 496

time (Fig. 2). Different hidden neurons correspond to different 497

desired spikes, and they cooperatively force the output neuron 498

to fire at all desired times. 499
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Fig. 2. Synaptic weight between i th input neuron and the hth excitatory
hidden neuron whi is potentiated in proportion to the value of STDP time

window [�(t − ti )] at t = t̂
f

o to generate hidden spike at the desired time

t = t̂
f

o . The generated excitatory input will be fed to the oth output neuron,
and it increases the total PSP of the neuron at the desired time.

Fig. 3. whi, the synaptic weight between i th input neuron and the hth

excitatory hidden neuron, is reduced in proportion to �(t − ti ), at t = t
f

o (the
time of the f th actual output spike of the oth output neuron). The reduction
might lead to the cancelation of the hidden spike at th and consequently the

reduction of the total PSP of the oth output neuron generated at t = t
f

o and

remove the actual output at t = t
f

o .

At the time of an actual output, t = t
f

o , �whi(t) is reduced500

in proportion to the STDP time window �(t − ti ). It depends501

on the time difference of its input spike ti , and the current time502

t = t
f

o , (t f
o − ti ). The reduction might lead to the cancellation503

of the hidden spike at th shortly before t = t
f

o or at t
f

o , and504

consequently reduces the total PSP of the oth output neuron505

generated at t = t
f

o and remove the actual output at t = t
f

o506

(Fig. 3). When the actual output spikes at t = t
f

o , it becomes507

close to the desired spike at t = t̂
f

o , the positive weight508

adjustment related to the desired spike cancels out the negative509

weight adjustment at the actual output. Consequently, the net 510

weight adjustment becomes small. 511

The excitatory hidden neuron weight is adjusted based on 512

the three spikes shown in Fig. 3 by (7). In a triplet-STDP, 513

which is a more accurate model of synaptic plasticity in 514

a biological neuron than a standard pair-based STDP [1], 515

three spikes also affect a weight adjustment. A triplet-STDP 516

described in [1] uses a single presynaptic and two postsynaptic 517

spikes. There are different models for triplet-STDP [1]. 518

The term [(1 − �(t − th)/A)] in (7) prevents the weight 519

change of an excitatory hidden neuron that already has an 520

actual output at the desired time, t = t̂
f

o as in this situation 521

�(t̂
f

o − th) = A, consequently, [(1 − �(t̂
f

o − th)/A) = 0]. 522

Therefore, the weight increment related to the hidden whi 523

is 0, because the hidden neuron already has a spike at this 524

desired time and it does not need more weight adjustment. 525

Different hidden neurons contribute to firing of the output 526

neuron at different desired times and cooperatively help the 527

output neuron to fire at all the desired spikes in a multispike 528

coding scheme. The term also causes a smaller increment of 529

the weight whi that has output spike closely before the desired 530

spike [�(t̂
f

o −th) ∼= A, consequently, (1−�(t̂
f

o −th)/A) ∼= 0]. 531

An unnecessary high adjustment might shift the hidden spike 532

close to t̂
f

o beyond the desired time and reduce the total PSP of 533

the oth output neuron at the desired time. In addition, the term 534

(1 − �(t − th)/A) causes a comparatively high increment of 535

whi when a hidden neuron does not have spike before t = t̂
f

o 536

[because (1 − �(t̂
f

o − th)/A) = 1], or the actual output of 537

the hth hidden neuron is far from the desired time at t = t̂
f

o 538

[(1 − �(t̂
f

o − th)/A) ∼= 1]. The high increment might force 539

the hth hidden neuron to fire at the desired time t = t̂
f

o , and 540

consequently increase the total PSP of the oth output neuron 541

at the desired times t = t̂
f

o . 542

The term [�(t − th)/A] in (7) when t = t
f

o prevents the 543

reduction of whi if the hth excitatory hidden neuron does not 544

have any actual output spikes before the actual output of the 545

oth output neuron at t = t
f

o [(�(t
f

o − th)/A) = 0]. Because, 546

whi does not have any roles in the generation of the output 547

spike at t = t
f

o . If an excitatory hidden neuron has output 548

spike before and close to an actual output spike at t = t
f

o , 549

the term has comparatively a high value [(�(t
f

o −th)/A) ∼= 1], 550

and consequently, whi is adjusted with a higher value, because 551

the excitatory hidden neuron has a strong contribution in the 552

generation of the actual output spike at t = t
f

o and the weight 553

reduction might lead to the removal of the output from the 554

excitatory hidden neuron and consequently reduce the total 555

PSP of the output neuron. 556

In a network with nonzero delays, the proposed method 557

trains the excitatory hidden neuron to fire at a time interval 558

(equal to the corresponding delay connecting the hidden 559

neuron to the output neuron) before a desired time. The early 560

firing of the excitatory hidden neuron increases the total PSP 561

of its successor output neuron at the desired time by the 562

delayed effect of the excitatory hidden spike. However, in the 563

previous situation, where the connections do not have any 564

delays, an excitatory hidden neuron is trained to fire at the 565

same time as the desired time. Correspondingly, (8) is used to 566
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adjust whi, the synaptic weights between the i th input neuron567

and the hth excitatory hidden neuron, at time t568

�whi(t)569

=

⎧

⎪

⎨

⎪

⎩

+
∑

o [xhi(t − εoh)(1 − xoh(t)/A)](woh/A), t = t̂
f

o

−
∑

o[xhi(t − εoh)(xoh(t)/A)](woh/A), t = t
f

o

0, Otherwise

570

(8)571

where xhi(t) is the spike trace corresponding to the connection572

between the i th input neuron and the hth excitatory hidden573

neuron. Each spike in the i th input spike train causes a574

delayed (εhi) jump in the trace then it decays exponentially575

by a time constant similar to (3). xoh(t) is the trace corre-576

sponding to the connection between the hth excitatory hidden577

neuron and the oth output neuron. Each output spike of the578

hth excitatory hidden neuron results in a delayed (εoh) jump579

in the trace which decays exponentially by a time constant τ580

similar to (3). εhi is the delay between the i th input neuron581

and the hth excitatory hidden neuron, and εoh is the delay582

between the hth excitatory hidden neuron and the oth output583

neuron. The traces have same amplitude A and time constant τ584

as the STDP time window in (2).585

The update of whi at t = t̂
f

o in (8) based on the delayed586

xhi(t) increases whi by a high value if it has spike shortly587

before (t̂
f

o − εoh), because in this case xhi(t̂
f

o − εoh) has a588

high value. The high increase can lead to the generation of an589

output spike of the hth excitatory hidden neuron at (t̂
f

o −εoh).590

The effect of the generated hidden spike is shifted to the time591

of the desired spike in the oth output neuron after the delay592

of the connection between the hth excitatory hidden neuron593

and the oth output neuron εoh. This helps the output neuron594

to generate output spike at the desired time.595

The decrement in the second expression of (8) is high if596

the i th input neuron has spike shortly before (t
f

o − εoh).597

Consequently, this decrement tries to remove the actual output598

of the hth excitatory hidden neuron at (t f
o − εoh) and helps599

the oth output neuron to reduce its PSP at the time t
f

o (by600

considering the delay εoh).601

2) Weight Learning of the Inhibitory Hidden Neurons: The602

connection weight between the hth inhibitory hidden neuron603

and the i th input neuron w̄hi is updated similar to (8) by604

multiplying it with a negative sign as shown in605

�w̄hi(t)606

=

⎧

⎪

⎨

⎪

⎩

−
∑

o [x̄hi(t− µoh)(x̄oh(t)/A)]|woh/A|, t = t̂
f

o

+
∑

o [x̄hi(t− µoh)(1 − x̄oh(t)/A)]|woh/A|, t = t
f

o

0, Otherwise

607

(9)608

where µoh is the delay between the hth inhibitory hidden609

neuron and the oth output neuron, and x̄hi(t) is the spike610

trace corresponding to the connection between the i th input611

neuron and the hth inhibitory hidden neuron. x̄oh(t) is the612

spike trace related to the connection between the hth inhibitory613

hidden neuron and the oth output neuron. The delay related the614

connection between the i th input neuron and the hth inhibitory615

hidden neuron is µhi. According to (9), the weight is reduced616

if the i th input neuron has a delayed (µhi) spike shortly before 617

(t̂
f

o − µoh) to increase the total PSP of the oth output neuron 618

at the desired time t̂
f

o by removing hidden inhibitory spike 619

at or before (t̂ f
o − µoh). In addition, (9) increases the weight 620

w̄hi to generate hidden inhibitory spike at (t
f

o −µoh) to reduce 621

the total PSP of the oth output neuron at t = t
f

o . The reduction 622

of the total PSP removes the actual output spike of the oth 623

output neuron at t
f

o . 624

It is proposed that hidden neurons receive biofeedback from 625

the readout neurons. Through this biofeedback, the times 626

of desired spikes and actual outputs related to the neurons 627

in the next layer are made available at the hidden layer 628

neurons which use them to adjust their weights appropriately. 629

In this paper, we did not describe the basis of the biofeed- 630

back or model it in detail. The training of the network is 631

stopped when it reaches its goal, i.e., the readout neuron 632

generates actual output spikes at the desired times and all the 633

undesired output spikes of the readout are removed. 634

D. Classification Ability of the Proposed Method 635

The weight and delay learning characteristics of the pro- 636

posed method enable it to train a neuron to fire at desired spike 637

times related to an applied input pattern. In a classification 638

task, an input pattern is assigned to the class whose desired 639

spike train is most similar to the actual output of the network. 640

Therefore, the classification ability of the proposed method can 641

be improved if an output neuron is also trained not to fire close 642

to the desired spikes of other classes in addition to firing at the 643

desired times representing to the current class of the input pat- 644

tern. As a result, the proposed method introduces an additional 645

learning mechanism when a misclassification occurs. 646

The learning algorithm considers two desired spike trains 647

after a misclassification. The first one is related to the class 648

of the applied input spatiotemporal pattern, i.e., the desired 649

spikes of the correct class, and the second one is related to 650

the class that causes the misclassification (incorrect class). 651

Thus, the learning adjusts the readout neurons and hidden 652

neurons learning parameters at the time of each desired spike 653

related to the class that causes the misclassification. It reduces 654

the weights of the readout neuron that have a spike before 655

the desired time. To force the oth output neuron to not fire 656

at the f th desired spike of class j (t = t̂
f ( j )

o ) the weights of 657

the othoutput neuron are adjusted by the following equation 658

at t = t̂
f ( j )

o : 659

�woh(t) = −�(t − th − doh). (10) 660

The proposed classification learning method adjusts an 661

excitatory hidden neuron weight at the desired spike times 662

(t = t̂
f ( j )

o ) related to the class that causes the misclassification 663

by the following equation similar to (8): 664

�whi(t) = −
∑

o

[xhi(t − εoh)(xoh(t)/A)](woh/A). (11) 665

An inhibitory hidden neuron weight at t = t̂
f ( j )

o is adjusted 666

similar to (9) by the following equation: 667

�w̄hi(t) = +
∑

o

[x̄hi(t − µoh)(1 − x̄oh(t)/A)]|woh/A|. (12) 668
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The delay related to an excitatory input of a readout neuron669

is adjusted by (13) at t = t̂
f ( j )

o . The following equation is670

similar to (4):671

�εoh(t) = −�tom(t)(xoh(t)/xom(t))4 (13)672

The delay related to an inhibitory input of the readout at673

t = t̂
f ( j )

o is adjusted through the following equation which is674

similar to (6):675

�µoh(t) = +�t̄om(t)(x̄oh(t)/x̄om(t))4. (14)676

The proposed method uses a criterion to control the learning677

level of every pattern and manage the misclassifications during678

training and adjust the network learning parameters to increase679

the inter class separability of the network.680

Consider a pattern from class i is applied to the network and681

an actual output of the network is generated. The correlation682

between the actual output and the corresponding desired spike683

train of the class i is called ci which is calculated by the684

method used in [41] as in685

ci =
vd · vo

|vd ||vo|
(15)686

where “vd ·vo” denotes the inner product of the two vectors vd687

and vo. vd and vo are two vectors with real value components688

which are generated from spike trains. A desired spike train is689

convolved with a symmetric Gaussian function to generate vd .690

Similarly, vo is generated by convolving an actual output spike691

train with the symmetric Gaussian function. |v| is the length692

of a vector v.693

A maximum value p and a threshold level �c for ci are694

considered to control the learning. If the correlation metric ci695

is less than �c, the network learning parameters are updated696

based on the applied training pattern and their desired spike697

train without considering any extra criteria. In this situation,698

the network adjusts its learning parameters to increase its699

knowledge about the applied training pattern inside the class i .700

The low value of the correlation related to the applied training701

pattern ci < �c means that the similarity of the training702

pattern with the previous trained patterns from the same class i703

is low and the learning parameters of the network should be704

adjusted to increase the ability of the network to recognize the705

patterns inside the class i .706

If ci reaches the value of p, the learning related to the707

pattern is not applied to the network in the current learning708

epoch, because the high value of the correlation shows that709

the knowledge of the presented training pattern is already in710

the network and it is not necessary to adjust the learning711

parameters for the current value of ci . It means that the712

network has learned the overall distribution of the data from713

the class i and it is not necessary to memorize all the details714

of the presented training pattern. It also prevents over training715

of the network.716

If ci has a value between �c and p, i.e., (�c < ci < p),717

and ci is appropriately higher than the correlation metric718

related to the other classes to prevent misclassification, then719

the learning related to the applied pattern is stopped in the720

current epoch. Therefore, if �c < ci < p and ci > c j + �c721

(where j = argmax{k∈{1,2,...,N}&k �=i}ck , ck is the correlation722

TABLE I

PROPOSED CLASSIFICATION LEARNING METHOD

metric of the actual output with the kth desired spike 723

train, and N is the number of all the classes), the learning 724

adjustment related to the applied pattern from class i is not 725

applied to the network in the current epoch. The ci > c j +�c 726

denotes that the network can distinguish the class of the 727

applied pattern correctly with an appropriate margin (�c), 728

therefore it is not necessary to have more training for the 729

current value of ci in the learning epoch. 730

If ci has a value between �c and p, and ci < c j + �c, 731

it suggests that a misclassification has occurred. In this situa- 732

tion, the network learning parameters are updated to enhance 733

the interclass separability of the network by training it to not 734

fire close to the desired spike train of the class that causes this 735

misclassification and to reduce c j . The learning parameters are 736

also updated to increase the ability of the network to generate 737

the desired spike related to the applied pattern from the class i 738

to increase ci . The reduction of c j and the increment of ci 739

may change the situation ci < c j + �c to ci > c j + �c and 740

prevent the misclassification. The training is continued until 741

the maximum number of learning epochs is reached or if the 742

stopping criteria noted in Table I apply. 743

A ci greater than p shows that the network is trained to fire 744

appropriately close to the corresponding desired spike train. 745

Therefore, similar to the situation where (�c < ci ≤ p and 746

ci > c j + �c) the related learning adjustment is not applied 747

to the network. The p value is chosen high enough depending 748

on the desired spike trains related to the different classes to 749

guarantee that when ci > p, ci is appropriately higher than c j 750

(ci > c j +�c). Desired spike trains related to different classes 751

(related to ci and c j ) should be chosen in a such a way that the 752

correlation between the desired spike trains are low enough to 753

support the point that if an actual spike train is very similar to 754

the desired spike related to ci , (ci > p) then it is appropriately 755

dissimilar to the other classes (c j < ci − �c). The values of 756

p and �c are determined by trial and error. In this paper, 757

the method used in [44] is employed to choose the desired 758

spikes. A sequence of numbers starting from 10 to 100 ms 759
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with 10-ms time interval is generated. Then a number of firing760

times are extracted randomly from the sequence to assign each761

desired spike train corresponding to a class. In this situation,762

every two spikes have at least 10-ms interval. The parameter p763

is set based on the level of precision that the desired spikes764

should be learned. In this paper, when an actual output spike765

train reaches 90% of accuracy compared to its corresponding766

desired spike train the learning is stopped, so the learning767

parameter p is set 0.9. The parameter �c should be higher768

than the maximum correlation between the desired spike trains769

related to different classes. �c is set 0.45 to implement the770

proposed method.771

After training, each testing pattern is applied to the network772

and the readout actual output spike train is calculated. The773

correlations between the actual output spike train and the774

desired spike trains corresponding to all classes are obtained.775

The input pattern is assigned to the class whose corresponding776

desired spike train has the maximum correlation value with the777

actual output spike train.778

IV. RESULTS779

A. Effect of Network Setups on the Learning Performance780

First, the effects of the different maximum allowable delays781

and the number of desired output spikes in each class on782

the performance of the learning method are explored. Then,783

the running time for the proposed method is reported. In the784

following simulation, the performance of the network is first785

evaluated on the Fisher IRIS data set. The IRIS data fea-786

tures are converted to spike times using population coding,787

as described in [23], where each feature value is encoded by788

M identically shaped overlapping Gaussian functions where789

M is set to 40. The IRIS data have four features for each790

pattern so there are 4 × M = 160 input spikes obtained which791

are then applied to 160 input synapses. The high number792

of input synapses increases the number of input spikes, and793

consequently reduces the length of silent windows inside a794

spatiotemporal input pattern and helps the neuron to fire at795

multiple desired times. In addition, there are nine extra input796

synapses with input spikes at fixed times for all patterns. The797

fixed times are the same as the times of desired spikes cor-798

responding to all classes. These inputs act as bias inputs [21]799

and act as the reference start times in a multispike coding800

scheme. There are 360 hidden neurons in the hidden layer.801

The total time duration of the input spatiotemporal pattern is802

set to 100 ms, T = 100 ms.803

1) Effect of Maximum Allowable Delays: Similar to [24],804

50% of the IRIS data were selected randomly and used as805

training data and the remaining used for testing. The accuracy806

of the proposed method on the testing data reaches its highest807

value, 95.1%, when the maximum allowable delay D is 3 ms808

and there is a single readout neuron.809

In Table II, the accuracies of the proposed method for810

different delays when there are three readout neurons (each811

corresponding to a class) in the network are shown. The accu-812

racy of the method on the testing data reaches its maximum813

value when D = 3 ms (Table II). The accuracy of the proposed814

method on the testing data is increased from 95.1% to 95.7%815

TABLE II

EFFECT OF THE DIFFERENT MAXIMUM ALLOWABLE DELAYS ON

IRIS DATA RECOGNITION. 50% OF THE DATA ARE

USED AS TRAINING DATA

Fig. 4. Comparison of the learning method accuracy on the IRIS data training
set when one and three readout neurons are used.

when the number of readout neurons is increased from one 816

to three when D = 3 ms. In Fig. 4, the accuracy of the 817

learning algorithm on the training data is shown when a single 818

readout neuron and three readout neurons are used. All these 819

procedures are repeated independently for 40 different runs, 820

and the mean value of the 40 results are reported. Different 821

random initial weights and different random selections of the 822

training and testing data are used for the different runs. When 823

the number of readout neurons is increased, the number of 824

learning parameters is also increased. Therefore, the readout 825

neurons learn a lower number of training patterns compared 826

to the situation where a single readout neuron is used, where 827

the readout neuron should learn patterns related to all classes. 828

Subsequently, they can learn the input patterns better compared 829

to the situation that a single readout neuron is used. For higher 830

values of maximum allowable delays, the cooperation between 831

weight adjustment and delay adjustment is reduced and it leads 832

to a lower accuracy. A higher delay adjustment causes a higher 833

shift in the delayed effect of input spikes, and this higher shift 834

might destroy previous weight training that was based on the 835

previous value of the delay. 836

Synaptic delays at chemical synapses usually take values 837

from 1 to 5 ms. The minimum value of a synaptic delay 838

is 0.3 ms. Synaptic delay also can take a value higher than 839

5 ms [45]. Different researchers use different maximum values 840

for range [1, 16] ms. The results in this section show that for 841

this configuration, 3 ms is an optimal value for the maximum 842

synaptic delay. In the following simulations, Max Delays are 843

set to 3 ms. 844

2) Effect of the Number of Desired Spikes: In the following 845

experiment, the accuracy of the proposed method is obtained 846

for different numbers of desired spikes corresponding to each 847

class (Table III). 848

The network reaches its maximum testing accuracy, 95.7%, 849

when three desired spikes are used in each desired spike train. 850
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TABLE III

EFFECT OF THE NUMBER OF DESIRED SPIKES ON LEARNING ACCURACY

USING THE IRIS DATA SET WITH THREE READOUT NEURONS

Fig. 5. Recognition accuracy for different numbers of desired spikes.

A very high number of desired spikes in each desired spike851

train (i.e., for a desired spike train with 100-ms duration and852

10-ms minimum interspike interval, the highest number of853

desired spikes is 10) reduce the performance of the learning854

method as this increases the complexity of the learning task855

and the network should be trained to fire at a higher number of856

desired instances with a limited number of learning parame-857

ters. For instance, the testing accuracy of the proposed method858

is reduced from 95.7% to 81% when the number of desired859

spikes is increased from 3 to 7 (Fig. 5).860

The time distances between desired spikes of different861

classes are reduced when there is a high increase in the862

numbers of desired spikes. Therefore, a small deviation in863

the times of output spikes can cause a switching from one864

class to the other one and reduces the accuracy. On the other865

hand, a lower number of desired spikes reduce the complexity866

of the learning task, therefore the training accuracy will be867

increased. However, a very low number of desired spikes lead868

to a low testing accuracy. For example, when the number869

of desired spikes is reduced from three to one, the testing870

accuracy is reduced from 95.7% to 95.1%. It shows that a871

single spike cannot capture enough information from training872

data, and consequently, it reduces the testing accuracy despite873

of a comparably high training accuracy of 99.9%. Moreover,874

the distributions of spikes in the spatiotemporal input patterns875

compared to desired spikes also affect the accuracy and876

the relation between the number of desired spikes, and the877

accuracy is not a simple linear function (Fig. 5).878

3) Evaluation of the Running Time: MATLAB simulations879

were carried out on a quad core PC with 3 GHz and 16 GB880

of RAM. The running times required for each learning epoch881

of the proposed method are reported in Table IV. The running882

time related to a learning epoch is measured 10 times, and883

the mean value is reported for each number of input synapses.884

The running time is increased by increasing the maximum885

allowable delays D. For instance, the method needs 5.2 s886

to execute a learning epoch when D = 1 ms. However,887

TABLE IV

EFFECT OF THE MAXIMUM ALLOWABLE DELAY (d) ON THE RUNNING

TIME OF THE PROPOSED METHOD USING THE IRIS DATA SET

Fig. 6. Runing time of a learning epoch is increased linearly as a function
of (a) number of training patterns and (b) number of input synapses.

the running time is increased to 15.9 s when D is increased 888

to 7 ms. Because, at each time step, the learning algorithm 889

should check the events at the previous time steps depending 890

on the delays. A higher number of previous time steps should 891

be considered for a higher value of delays. Therefore, the 892

computational complexity of the method and consequently the 893

running time is increased when the delay is increased. 894

The running times of a learning epoch of the proposed 895

method are measured for different numbers of training pat- 896

terns. The number of training patterns is increased from 897

15 to 135. IRIS data set is used to train the algorithm. Fig. 6(a) 898

shows the relationship between the running times and the 899

number of training patterns. The fit line shown in Fig. 6(a) 900

is obtained by fitting the data points to a 1-D polynomial. The 901

line is described by the equation T (n) = 0.1128n + 1.593. 902

The time complexity of the process related to the equation is 903

linear, i.e., it is O(n) using the big O notation. It shows that 904

the running time increases linearly with the number of training 905

samples. 906

Random spatiotemporal input patterns with different 907

numbers of inputs are used to analyze the complexity of 908

the learning algorithm as a function of the number of input 909

synapses. There are three classes similar to IRIS data in the 910

randomly generated data. A spike train composed of three 911

spikes is considered as desired spike train for each class 912

like the desired spike used for IRIS data. The spike times in 913

each input spatiotemporal pattern are generated by a uniform 914

distribution. The values of spike times are extracted randomly 915

from (0, 100) interval. The number of input synapses is 916

changed from 100 to 1000, and an input spike is considered 917

for each input synapse. Then, the running time for each 918
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TABLE V

COMPARISON WITH THE MULTILAYER SNN PROPOSED

IN [28] ON THE IRIS DATA SET

learning epoch is calculated to analyze the complexity of919

the learning method. In this experiment, there are a fixed920

number of 75 training patterns. Fig. 6(b) shows the evolution921

of the running time in terms of the number of input synapses.922

In addition, a line fit with the obtained data points is plotted.923

The dependence between running time and the number of924

inputs indicates a linear time complexity, i.e., O(n).925

B. Comparison With State-of-the-Art Methods926

In the following simulation, first the proposed927

method is compared with the method proposed by928

Sporea and Grüning [28]. In this case, 75% of the total929

IRIS data for each class are considered as a training set and930

the remaining 25% are used for testing, as in [28]. The results931

are shown in Table V. The accuracy of the proposed method932

on the training is 99% which is higher than the method933

proposed in [28], 96%. The proposed method also achieved a934

higher testing accuracy of 96% (compared to 94% achieved935

by [28]).936

Similar to the biologically plausible structure used in [18],937

each of the 169 input neurons is connected randomly to a938

limited number of neurons (40 neurons) in the hidden layer939

which consists of a population of 360 neurons. There are940

no subconnections, and every two neurons in two subsequent941

layers are connected by a single connection similar to the bio-942

logically plausible neural network in Izhikevich’s work [18].943

The proposed learning algorithm is designed to manage the944

training of a large number of SNs by local events such as945

spike trace which takes place at the location of each synapsis.946

There are three output neurons in the output layer and all947

the hidden neurons are connected to the three output neurons.948

The network proposed in [28] uses the timing of a single949

spike of an input neuron for each feature. The four input950

neurons are fully connected to ten neurons in the hidden layer.951

Every two neurons in two subsequent layers are connected by952

12 subconnections with different delays from 1 to 12 ms. All953

the neurons in the hidden layer are fully connected to an output954

neuron. The performance of the method in [28] on the IRIS955

data is shown in Table V.956

In order to compare the accuracy of the proposed method957

with that achieved by other existing methods, 50% of the958

data samples from the IRIS data set are selected randomly959

to construct training data and the remaining 50% are used for960

testing. The testing results are summarized in Table VI. The961

accuracies of the proposed method on the training and testing962

data are 99.7% and 95.7%, respectively. The testing accuracy963

of the proposed method, 95.7%, is comparable with the best964

TABLE VI

COMPARISON WITH OTHER METHODS ON THE IRIS DATA SET

TABLE VII

COMPARISON WITH OTHER METHODS ON THE WBCD DATA SET

result achieved for the state-of-the-art methods on IRIS data 965

set. The proposed method has a high training accuracy, 99.7%. 966

The proposed method converges for all trials because it does 967

not have the silent neuron problem. It has remote supervised 968

spikes. In addition, it solves the problem of silent windows 969

in a spatiotemporal input pattern by delay learning. A silent 970

window can prevent generation of desired spikes and con- 971

sequently it can cause learning convergence problem. These 972

characteristics of the proposed method make it appropriate 973

for learning multiple spikes. The accuracies of the proposed 974

method are calculated for all trials, and there are not any 975

rejected results. In contrast, the convergence rate of SpikeProp 976

is investigated in [24] and as it has a problem with silent 977

neurons it cannot converge for all trials, and as a result, 978

those trials with low accuracies are removed from the reported 979

results [24]. 980

The Breast Cancer Wisconsin (Diagnostic) data set (WBCD) 981

from the UCI machine learning repository is used as the sec- 982

ond data set to evaluate the proposed method and to compare it 983

with the other state-of-the-art methods, as shown in Table VII. 984

WBCD contains 699 samples. The samples belong to two 985

different classes (malignant and benign categories) where 986

458 samples are from the first category and 241 samples are 987

from the second category. A total of 120 samples are selected 988
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TABLE VIII

PERFORMANCE COMPARISON WITH SRESN AND GPSNN
ON THE BUPA LIVER DISORDERS DATA SET

Fig. 7. Evolution of the accuracy of the proposed method over different
learning epochs on BUPA liver disorders data. It needs 24 learning epochs
to pass the accuracy level of 60%. SRESN [46] needs 715 epochs to reach
about to the same level of accuracy.

randomly from each category to construct the training set, and989

the remaining data is used for testing. The proposed method990

has an accuracy comparable with the best accuracy achieved991

by the other state-of-the-art methods (Table VII).992

One advantage of SNNs is that they use spikes to commu-993

nicate between neurons. However, in the classical neural net-994

works, real values are used to transfer data between neurons.995

Each spike can be encoded by a binary bit; however, a real996

value needs a high number of bits to be transferred between997

neurons depending on the precision that is required for the998

values. As shown in Tables VI and VII, the proposed method999

using spikes for communication between neurons and can1000

achieve better or comparable accuracies with the state-of-the-1001

art rate-based models including deep belief network (DBN)1002

and autoencoders.1003

One more data set which is used to evaluate the proposed1004

method is the BUPA liver disorders data from the UCI machine1005

learning repository. There are 345 samples in this data set in1006

which 145 samples are from the first class and 200 samples are1007

from the second class. A total of 70 data samples are selected1008

randomly from each class to construct the training set, and1009

the remaining data is used for testing. Each sample has six1010

attributes. The performance of the proposed method is shown1011

in Table VIII. The testing accuracy of the proposed method1012

is higher than SRESN [46] and GPSNN [47]. SRESN [46]1013

uses a 30-2 architecture, and the proposed method uses a1014

246-360-2 architecture where there are 246 input neurons,1015

360 hidden neurons, and two output neurons. The evolu-1016

tion of the training accuracy of the proposed method over1017

different learning epochs is shown in Fig. 7. The proposed1018

method needs 24 learning epochs to pass the training accuracy1019

of 60.4%; however, SRESN [46] needs 715 learning epochs1020

to reach the same accuracy level. The proposed method can1021

reach the accuracy level of 66.9% in less than 100 epochs.1022

The performance of the proposed method on different data1023

sets is compared with SRESN [46] in Table IX. The number1024

TABLE IX

COMPARISON WITH SRESN ON DIFFERENT DATA SETS

of learning parameters in SRESN [46] is lower than that of the 1025

parameters in the proposed method (see Table IX). A lower 1026

number of learning parameters can reduce the simulation 1027

time required for each learning epoch. However, the proposed 1028

method achieved high accuracies in a lower number of learn- 1029

ing epochs compared to the method with a single layer of 1030

learning neurons on Pima diabetes, BUPA liver disorder, and 1031

ionosphere data sets. The proposed learning method achieves 1032

this improvement through appropriate interaction between 1033

different layers of SNs in a multilayer structure. 1034

V. CONCLUSION 1035

This paper proposed a BPSL for multilayer SNNs. It uses 1036

the precise timing of multiple spikes, which is a biologically 1037

plausible information coding scheme. The learning parameters 1038

of neurons in the hidden layer and output layer are learned in 1039

parallel using STDP, anti-STDP, and delay learning. 1040

The simulation results show that the proposed method 1041

has improved the performance of the first fully supervised 1042

algorithm that learns multiple spikes in all layers proposed 1043

in [28].The improvement of the proposed method can be 1044

attributed to a number of properties of the proposed method. 1045

First, it has used the firing times of spikes fired by the hidden 1046

neurons to train the weights of the hidden neurons unlike the 1047

method in [28] where the firing time of hidden neurons is not 1048

considered and the weights of a hidden neuron are adjusted by 1049

the same values irrespective of the neuron firing at the desired 1050

times or not firing at all. In the proposed method, weight 1051

learning, based on the firing times of the hidden neurons, helps 1052

adjust the weights appropriately and prevents unnecessary 1053

weight adjustments. Another property of the proposed method 1054

is the appropriate use of the EPSP and the IPSP produced 1055

by the hidden excitatory and inhibitory neurons to effectively 1056

adjust their weights, unlike the approach in [28] where equal 1057

weight updates are applied to both excitatory and inhibitory 1058

neurons, which can reduce the learning performance. Another 1059

property of the proposed method that improves its performance 1060

compared to the learning method in [28] is the appropriate 1061

sony
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consideration of the effect of delays on the weight learning.1062

It was shown that the delay after a hidden neuron has an1063

essential effect on the output of the spiking network, hence1064

it should be considered during the training of the weights of1065

the hidden neuron. For example, an excitatory hidden neuron1066

should fire earlier than a desired output spike depending on1067

the delay after the hidden neuron, as described in the previousAQ:3 1068

sections. The produced PSP by the fired hidden spike is shifted1069

to the desired time by the delay. The effect of the delay on1070

the weight adjustments of hidden neurons is not considered1071

in [28], and it was shown that this resulted in a lower accuracy1072

compared to the proposed method on the IRIS data set.1073

The performance of the proposed method was also1074

compared with other algorithms on different data sets. The1075

results showed that the proposed method can achieve a1076

higher accuracy compared to a single-layer SNN. In addition,1077

the method has comparable accuracy with the best result1078

achieved by state-of-the-art rate-based neural models including1079

autoencoders and DBNs.1080

The results also showed that a very high number of desired1081

spikes can reduce the accuracy of the method by increasing1082

the complexity of the learning task, and a very low number1083

of desired spikes cannot capture all the temporal informa-1084

tion of input data. Although the delay learning increases1085

the complexity of the learning method and consequently the1086

running time, it was shown that delays can increase the1087

learning performance of the proposed method. In addition,1088

delays are a biologically plausible property of SNNs. Another1089

property of the proposed method is its multilayer structure1090

that increases the computational cost of each learning epoch.1091

However, the results showed that it can also reduce the number1092

of learning epochs and can improve its accuracy compared to1093

the similar multilayer spiking network proposed by Sporea and1094

Grüning [28]. The ablity of the proposed method to effectively1095

learn multiple desired spikes suggests that this approach may1096

be suitable for neuroprosthetic applications.1097

In a biologically plausible neuron model, the output of a1098

neuron depends not only on synaptic inputs, but also on the1099

internal dynamics of the neuron [48]. Therefore, a potential1100

direction for future work is to incorporate the neuron internal1101

dynamics in the proposed method, additionally to the effect1102

of the synaptic weight and delays, which may lead to a new1103

learning algorithm with potentially higher performance. For1104

instance, Zhang et al. [49] have proposed a dynamic firing1105

threshold to make the spiking network learning robust to1106

noise. A similar method can be applied to the multilayer1107

spiking network proposed in this paper to further improve its1108

performance.1109

It is possible to extend the learning algorithm to more layers1110

(deep SNNs). However, more layers may reduce the effect of1111

training of earlier layers on the network output. Designing1112

effective learning methods for deep spiking networks will be1113

investigated in the future work.1114
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A Supervised Learning Algorithm for Learning
Precise Timing of Multiple Spikes in Multilayer

Spiking Neural Networks
Aboozar Taherkhani , Ammar Belatreche, Member, IEEE, Yuhua Li, Senior Member, IEEE,

and Liam P. Maguire, Member, IEEE

Abstract— There is a biological evidence to prove information1

is coded through precise timing of spikes in the brain. However,2

training a population of spiking neurons in a multilayer network3

to fire at multiple precise times remains a challenging task. Delay4

learning and the effect of a delay on weight learning in a spiking5

neural network (SNN) have not been investigated thoroughly.6

This paper proposes a novel biologically plausible supervised7

learning algorithm for learning precisely timed multiple spikes8

in a multilayer SNNs. Based on the spike-timing-dependent9

plasticity learning rule, the proposed learning method trains an10

SNN through the synergy between weight and delay learning.11

The weights of the hidden and output neurons are adjusted12

in parallel. The proposed learning method captures the contri-13

bution of synaptic delays to the learning of synaptic weights.14

Interaction between different layers of the network is realized15

through biofeedback signals sent by the output neurons. The16

trained SNN is used for the classification of spatiotemporal input17

patterns. The proposed learning method also trains the spiking18

network not to fire spikes at undesired times which contribute19

to misclassification. Experimental evaluation on benchmark data20

sets from the UCI machine learning repository shows that the21

proposed method has comparable results with classical rate-based22

methods such as deep belief network and the autoencoder models.23

Moreover, the proposed method can achieve higher classification24

accuracies than single layer and a similar multilayer SNN.25

Index Terms— Multilayer neural network, spiking neural26

network (SNN), supervised learning, synaptic delay.27

I. INTRODUCTION28

SPIKE-timing-dependent plasticity (STDP) plays a29

prominent role in learning biological neurons, and it30

represents one form of synaptic plasticity which underpins31
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synaptic weight changes based on the precise times of pre and 32

postsynaptic spikes [1]. STDP highlights the important role of 33

precise spike times in information processing in the brain [2]. 34

In addition, the rapid sensory processing observed in the 35

visual, auditory, and olfactory systems supports the assumption 36

that information is encoded in the precise timing of the 37

spikes [3]–[5]. Moreover, using precise timing of spikes results 38

in a higher information encoding capacity compared with 39

rate-based coding [6], and it can also convey the information 40

related to rate of spikes in a multispike coding scheme [2]. 41

Furthermore, as neural activity is metabolically expensive, 42

the high number of spikes involved in rate coding scheme 43

demands a significant amount of energy and resources [7], [8]. 44

Despite the existing evidence supporting information encoding 45

using the precise timing of spikes, the exact neuronal 46

mechanisms that underlie learning to fire at precise times are 47

still not clear and remain as one of the challenging problems 48

in the field of spiking neural networks (SNNs) [2], [9]–[11]. 49

In this paper, a novel supervised learning algorithm inspired 50

by STDP is proposed to train an SNN to fire multiple spikes 51

at precise desired times. Local synaptic biochemical events, 52

produced by incoming spikes, are used to adjust weights and 53

delays appropriately. In addition, neurons in the output and 54

hidden layers interact with each other through a biofeedback 55

signal sent by the output neurons to train the network. The 56

main novelty of the proposed method consists in: 1) capturing 57

the effect of synaptic delays on the learning of neuronal 58

connection weights in an SNN, which has not been consid- 59

ered in previous works and 2) learning the spiking network 60

synaptic delays. In addition, the proposed approach introduces 61

an additional training mechanism to prevent the occurrence 62

of undesired spikes which contribute to the misclassification 63

of spatiotemporal input patterns. The proposed approach is 64

validated using benchmark classification data sets and is 65

compared against both spiking and rate-based neural models 66

including state-of-the-art deep learning and autoencoder mod- 67

els. The experimental results show an improvement in learning 68

accuracy over existing competitive SNN architectures and 69

comparable performance to state-of-the-art rate-based neural 70

models. 71

The remainder of this paper is structured as follows. A brief 72

review of background and related work on SNNs is presented 73

in Section II. Section III introduces the proposed method 74

2162-237X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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in detail. The simulation results are then provided in75

Section IV. Finally, Section V concludes this paper.76

II. BACKGROUND AND RELATED WORK77

Different artificial neural networks (ANNs) have been78

devised based on the working principle of their biological79

counterparts. McCulloch and Pitts (1943) developed the firstAQ:1 80

ANN where the neuron model is a logic unit which can be in81

an active or inactive (binary) mode depending on the weighted82

sum of their binary inputs. Later, a continuous transfer function83

(e.g., sigmoid function) is applied to the weighted sum of84

continuous inputs to generate continuous output [12]. The con-85

tinuous values represent the biological neuron spiking rates.86

ANNs are inspired by the biological nervous system and are87

successfully used in various applications. However, their high88

abstraction compared to their biological counterparts [13] and89

their inability to capture the complex temporal dynamics of90

biological neurons have resulted in a new area of ANNs where91

the focus is placed on more biologically plausible neuronal92

models known as SNNs. Thanks to their ability to capture93

the rich dynamics of biological neurons and to represent94

and integrate different information dimensions such as time,95

frequency, and phase, SNNs offer a promising computing96

paradigm and are potentially capable of modeling complex97

information processing in the brain [14]–[20].98

In 1952, Hodgkin and Huxley [16] built a 4-D detailed99

conductance-based neuron model which can reproduce elec-100

trophysiological measurements to a high degree of accuracy.101

However, because of its intrinsic computational complexity,102

this model has a high computational cost. For this reason,103

simple phenomenological spiking neuron (SN) models are104

employed for simulating large-scale SNNs [15]. The leaky105

integrate-and-fire (LIF) model is a popular 1-D spiking neural106

model with low computational cost, but it offers relatively107

poor biological plausibility compared with the Hodgkin and108

Huxley model. Simple phenomenological SN models with low109

computational cost are highly popular for studies of neural110

coding, memory, and network dynamics [12].111

The first supervised learning algorithms for multilayer112

SNNs using the precise timing of spikes could train113

only a single spike for each neuron. Bohte et al. [21]114

proposed the multilayer SNN called SpikeProp (inspired by115

the classical back-propagation algorithm) as one of the first116

supervised learning methods for feedforward multilayer SNNs.117

Backpropagation with momentum [22], QuickProp [22],118

resilient propagation [22], [23], and the SpikeProp based on119

adaptive learning rate [24] were proposed to improve the120

performance of SpikeProp. In all these methods, neurons in the121

input, output, and hidden layers can only fire a single spike.122

Despite the capability of a single-spike learning method,123

single-spike coding schemes limit the diversity and capacity124

of information transmission in a network of SNs. In contrast,125

multiple spikes significantly increase the richness of the neural126

information representation [25], [26]. In addition, training a127

neuron to fire multiple spikes is more biologically plausible128

compared to single-spike learning methods [27], [28].129

Temporal encoding through multiple spikes transfers important130

information which cannot be expressed by a single-spike 131

coding scheme or a rate coding scheme. Although the exact 132

mechanism of information coding in the brain is not clear, 133

biological evidence shows that multiple spikes have a pivotal 134

role in the brain. For instance, mapping between spatiotempo- 135

ral spiking sensory inputs composed of spike trains to precise 136

timing of spikes is an essential characteristic of neuronal 137

circuits of the zebra finch brain to execute well-timed 138

motor sequences [29]. In the mixed approaches proposed in 139

[30] and [31], it is suggested that using both spike timing 140

and spike rate increases processing speed. These methods use 141

a combination of both correlated and uncorrelated spiking 142

signals. So, there is useful information in the spike rate that 143

cannot be captured by the precise timing of single spikes. 144

Encoding information in the precise timing of multiple 145

spikes which are used in this paper can capture not only the 146

information in the spike rate but also the information in inter 147

spike intervals. 148

Pfister et al. [32] designed a supervised learning algorithm 149

for a single SN which updates synaptic weights to increase 150

the likelihood of postsynaptic firing at several desired times. 151

The algorithm is designed to train only a single neuron; 152

however, it can train the neuron to fire multiple desired 153

spikes. ReSuMe [25], spike pattern association neuron [33], AQ:2154

perceptron-based SN learning rule [34], biologically plausible 155

supervised learning method (BPSL) [35], and efficient mem- 156

brane potential-driven supervised learning method [36] are 157

other examples of learning methods that can train a single 158

neuron to fire multiple desired spikes. Multispike learning 159

methods focus on a single neuron or a single layer of neurons. 160

It is difficult to design a multilayer SNN to fire multiple 161

desired spikes because the complexity of the learning task is 162

increased [27], [37]. In this situation, the learning algorithm 163

should control several neurons to generate different desired 164

spikes. However, a real biological nervous system is composed 165

of a large number of interconnected neurons [27], [28], [37]. 166

A multilayer neural network has a higher information 167

processing ability than a single layer of neurons. Sporea and 168

Grüning [28] have shown that a multilayer SNN can perform 169

a nonlinearly separable logical operation; however, the task 170

cannot be accomplished without the hidden layer neurons. 171

Ghosh-Dastidar and Adeli [37] and Booij and 172

tat Nguyen [38] extended the multilayer SpikeProp [21] 173

to allow each neuron in the input and hidden layers to fire 174

multiple spikes. However, each output neuron can fire only 175

a single spike. Xu et al. [27] proposed the first supervised 176

learning method based on the classical error back-propagation 177

method that can train all the neurons in a multilayer SNN 178

to fire multiple spikes. Gradient learning methods suffer 179

from various known problems which can lead to learning 180

failure such as sudden jumps (called surge) or discontinuities 181

in the error function [24]. The problem becomes more 182

severe when the output neurons are trained to fire more 183

than a single spike. In addition, the construction of an error 184

function becomes difficult when multiple desired spikes 185

should be learned as the number of actual output spikes may 186

differ from the number of desired spikes in each learning 187

epoch [27]. After investigation of the gradient-based methods 188
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in [23], [39], and [40], it is concluded that the application189

of STDP is worth further investigation to implement a190

more biologically plausible learning algorithm for multilayer191

SNNs [37].192

Sporea and Grüning [28] have used STDP and anti-STDP193

to devise the first biologically plausible supervised learn-194

ing algorithm for the classification of real-world data by a195

multilayer SNN in which each neuron in the input, hidden,196

and output layers can fire multiple spikes. The authors did not197

consider the spikes fired by hidden neurons when training the198

hidden neurons parameters. However, in a biological neuron,199

STDP usually works on the pre- and postsynaptic spikes of the200

neuron. In addition, the output spikes of the hidden neurons201

have significant effects on a training task in a multilayer SNN.202

Another drawback of this method [28] is that it has used the203

same learning adjustment method for inhibitory and excitatory204

neurons in hidden layers. However, inhibitory and excitatory205

neurons have different effects in a network by generating206

positive and negative postsynaptic potentials (PSPs). In this207

paper, a method is proposed to use spikes fired by hidden208

neurons during learning, and excitatory and inhibitory neurons209

are trained appropriately.210

Delays of spike propagation are an important characteristic211

of real biological neural systems, and they have a significant212

effect on the information processing ability of the nervous213

system [18], [41], [42]. In EDL [43], an extended delay214

learning-based remote supervised method for SNs, and in215

DL-ReSuMe [41], a delay learning-based remote supervised216

method for SNs, investigated the viability of adjusting the217

neuron synaptic weights and delays for training a single SN218

to map a given spatiotemporal input pattern into a desired219

output spike train. STDP and anti-STDP were used to adjust220

the synaptic weights, and a delay shift approach was used to221

adjust their delays. It is worth noting that constant synaptic222

delays have been employed in [28], hence neglecting the223

effect of a synaptic delay between a hidden neuron and an224

output neuron on the weight adjustment of the hidden neuron.225

It trains the hidden neuron to fire at the time of an output226

desired spike. However, the generated spike is shifted by the227

network synaptic delay and causes an error in the firing time228

of the output neuron. SpikeProp and its related gradient-based229

methods [21], [23], [37] have taken into account the effect of230

a delay between a hidden neuron and an output neuron on231

the input weight adjustment of the hidden neurons. However,232

the use of multiple connections with different delays after a233

hidden neuron causes each of the different delays to affect234

the adjustment of the hidden neuron weights in different and235

opposite directions. Because, different errors are propagated236

from an output neuron to a hidden neuron corresponding to237

the different subconnections between the two neurons. The238

different errors force the hidden neuron to fire at different239

times depending on the different delays related to the multiple240

connections, and it disturbs the learning procedure. This might241

be one reason for the huge sudden rise in learning error of242

SpikeProp, as reported in [24].243

In this paper, a learning algorithm is proposed to train244

both weights and delays of a multilayer SNN to fire multiple245

desired spikes. In the proposed method, each neuron at input,246

hidden, and output layers can fire multiple spikes. Supervised 247

training of SNs which fire multiple spikes in a multilayer 248

SNN remains a challenge. Furthermore, the proposed approach 249

trains the synaptic delays in the multilayer SNN and also takes 250

into the effect of delays on weight adjustments which is not 251

considered in [21]–[24] and [28]. In the proposed method, 252

the effect of the delays between a hidden neuron and an 253

output neuron is considered during weight adjustments of the 254

hidden neuron. In addition, the proposed method trains the 255

weights of the hidden neurons by using the spikes fired by 256

hidden neurons during STDP and anti-STDP, which results in 257

a more biologically plausible and a highly accurate learning. 258

Moreover, different weight adjustment strategies are used to 259

train excitatory and inhibitory hidden neurons based on the 260

effect of the excitatory (positive) and inhibitory (negative) 261

PSPs (EPSP and IPSP) produced by the trained hidden neu- 262

rons. In Section II, the principle of the proposed method is 263

described. 264

III. MATERIALS AND METHODS 265

The aim of the proposed supervised learning algorithm is to 266

train a multilayer SNN to map spatiotemporal input patterns 267

to their corresponding desired spike trains which implements a 268

classification of the spatiotemporal input patterns. The network 269

is composed of an input, a hidden, and an output layer. 270

An output neuron, called a readout neuron, is fully connected 271

to the hidden neurons. A spatiotemporal input pattern is 272

emitted by the neurons in the input layer. Each input neuron is 273

randomly connected to a fraction number of hidden neurons as 274

used in [18]. The LIF neuron model described in [41] is used. 275

The proposed method trains the spiking network by adjusting 276

the learning parameters of the hidden and output neurons in 277

parallel. 278

A. Overview of the Proposed Learning Method 279

The proposed learning method aims to train the multilayer 280

SNN to enable each readout (output) neuron to fire actual 281

output spikes at desired times and to cancel out undesired 282

output spikes. A remote supervising signal is considered for 283

an output neuron similar to ReSuMe [25]. At the time of a 284

desired spike where there are not any actual output spikes 285

at the readout neuron, the network learning parameters are 286

adjusted to increase the total PSP of the readout neuron to hit 287

the threshold level and generate an actual output spike at the 288

desired time by using biologically plausible local events. The 289

output neuron does the following three activities in parallel at 290

the desired spike time. 291

First, at the time of the desired spike, the output neuron 292

sends back an instruction signal (biofeedback) that shows the 293

time of desired spike to the hidden neurons. After receiving 294

the instruction signal, an excitatory hidden neuron poten- 295

tiates its weights based on STDP to fire an output spike 296

(hidden spike) at a specific time interval before the desired 297

time. The specific time interval is equal to the delay related 298

to the connection between the excitatory hidden neuron and 299

the output neuron. The effect of the generated hidden spike 300

(i.e., the PSP generated by the hidden spike) is shifted to 301
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the desired spike time after the related delay between the302

hidden neuron and the output neuron. The potentiation of303

the excitatory hidden neuron weights is stopped when the304

hidden neuron firing rate reaches a certain value, because305

a biological neuron cannot fire with a limitless rate, and a306

refractory period will ensure an upper bound on the neuron307

firing rate. The excitatory hidden neuron weight potentiation308

at the time of a desired spike is also stopped when an actual309

spike is generated at the time of the desired spike by the310

output neuron. In addition, the feedback triggers an inhibitory311

hidden neuron to try to remove its output spikes fired a312

specific time interval before the desired time by using the313

long-term depression (LTD) of anti-STDP. The time interval314

is equal to the delay between the inhibitory hidden neuron and315

the readout neuron. The hidden neuron output spikes before316

the time interval affects the PSP of the readout neuron at the317

desired time, i.e., the hidden spikes generate delayed PSPs at318

the desired time. The reduction of the inhibitory hidden spikes319

helps the readout neuron to increase its total PSP at the desired320

time to hit the threshold level.321

Second, similar to ReSuMe [25] the output neuron poten-322

tiates its weights that have a spike shortly before the desired323

time based on STDP to increase its PSP at the desired time324

to fire.325

The third activity at the time of a desired spike where there326

are not any actual output spikes of the readout neuron is the327

adjustment of delays of the readout neuron to increase the PSP328

of the readout neuron at the desired time, based on EDL [43].329

All the abovementioned activities are repeated at the time of330

other desired spikes in a multispike coding scheme.331

At the time of an undesired output spike of the readout332

neuron (i.e., where there is an actual output spike and there are333

not any desired spikes), the learning algorithm should reduce334

the total PSP of the readout neuron at the time of the undesired335

output spike to remove it by applying the following three336

processes in parallel. First, the readout neuron sends a feed-337

back to excitatory hidden neurons to instruct them to remove338

their output spikes. Each excitatory hidden neuron removes339

its spike fired at a precise time interval before the time of the340

undesired spike by using LTD based on anti-STDP and reduces341

its weights. The time interval for the hidden neuron is equal to342

the delay between the hidden neuron and the readout neuron.343

Consequently, the reduction of the excitatory hidden neuron344

weights can help the readout neuron to reduce its total PSP345

and to remove the undesired output spike. It is clear that the346

weight reduction should be applied to the excitatory neurons347

that have a number of output spikes. Therefore, the LTD is348

applied to the excitatory neurons when their firing rates are349

higher than a threshold rate. The threshold rate is set by trial350

and error. In addition, the feedback triggers each inhibitory351

hidden neuron to potentiate its weights based on the long-352

term potentiation of STDP. The weight potentiation increases353

inhibitory hidden spikes before a precise time interval (the time354

interval is equal to the delay between the hidden neuron and355

the readout neuron) before the undesired spike time to help356

the readout neuron to reduce its total PSP at the undesired357

output spike time. The second process is applied at the time358

of the undesired output spike and consists of a reduction of the359

readout neuron weights that have spikes at the undesired output 360

spike time or shortly before it by using anti-STDP similar to 361

ReSuMe [25]. The third process reduces the readout neuron 362

total PSP at the time of the undesired spike by adjusting the 363

delays of the readout neuron based on EDL [43]. 364

The hidden layer spikes play an important role in the 365

generation of the network output spikes (both at desired and 366

undesired times). Generated spikes by different hidden neurons 367

cooperatively increase the PSP of the output neuron at a 368

desired time and help it to fire at the desired time. In addition, 369

when the complexity of a learning task is increased by increas- 370

ing the number of desired spikes and also by increasing the 371

number of different training patterns for each class, it becomes 372

difficult or impossible to train a single neuron to fire at all the 373

desired times for all the training patterns. Different groups of 374

hidden neurons can contribute in generating different desired 375

spikes and cooperatively drive a readout neuron to fire at all 376

the desired times for all the training patterns. 377

In Sections III-B and III-C, first the training rule of the 378

output neurons is explained and then the training of the hidden 379

neurons weights is described in detail. 380

B. Training the Output Neurons 381

The weights and delays of each output neuron are trained 382

by EDL, as described in [43]. The delay adjustments in 383

cooperation with the weight adjustments train an output neuron 384

to increase its total PSP at a desired time to generate an actual 385

output spike, and also the adjustments help the output neuron 386

to reduce its PSP at undesired spike times and to remove 387

undesired actual output spikes. The weights are trained by 388

the following equation: 389

dwoh(t)

dt
=

[

sd
o (t) − sa

o (t)
]

[

a +

∫ +∞

0
�(s)sh(t− doh− s)ds

]

390

(1) 391

where woh and doh are the weight and delay related to the 392

connection between the hth hidden neuron and the oth output 393

neuron, respectively. sd
o (t) and sa

o (t) are desired and actual 394

output spike trains of the oth output neuron, respectively. 395

sh(t) is the spike train fired by hth hidden neuron. a is 396

a non-Hebbian parameter that can speed up the learning. 397

�(s) is a learning window similar to that of STDP and has 398

an exponential function as described by 399

�(s) =

{

Ae−s/τ , s ≥ 0

0, s < 0
(2) 400

where τ and A are the exponential decay time constant and 401

the amplitude of the learning window, respectively. 402

xoh(t), a local variable called spike trace, is used to train 403

the delay related to the synapse that connect hth excitatory 404

hidden neuron to oth output neuron. xoh(t) is governed by 405

xoh(t) =

{

Ae−(t−t
f

h −εoh)/τ , t
f

h < t < t
f +1

h

A, t = t
f

h

(3) 406

where t
f

h is the firing time of the f th spike of the hth 407

excitatory hidden neuron, τ is the time constant of the expo- 408

nential function, εoh is the delay between the hth excitatory 409
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Fig. 1. Trace xom related to input spike at tm jumps to a maximum value
after the delay εom . Then it decays exponentially through time.

hidden neuron and the oth output neuron, and A is a constant410

value which are equal to their counterparts in (2). xoh(t) is411

used to obtain appropriate value for delay adjustment. The412

adjustment �εoh is calculated by (4) similar to EDL [43]413

�εoh(t) =

⎧

⎪

⎨

⎪

⎩

+�tom(t)(xoh(t)/xom(t))4, t = t̂
f

o

−�tom(t)(xoh(t)/xom(t))4, t = t
f

o

0, Otherwise

(4)414

where t̂
f

o is the time of the f th desired spike, t
f

o is the415

time of the f th actual output spike of the oth output neuron,416

and xom(t) is the maximum trace between the traces of the417

excitatory hidden neurons connected to the oth output neuron418

at the current time t . xom(t) is corresponding to the connection419

between the mth excitatory hidden neuron (that has the closest420

spike before the current time t) and the oth output neuron.421

�tom is a delay shift which is necessary to be added to the422

delay between the mth excitatory hidden neuron and the oth423

output neuron to bring the effect of the closest spike fired424

by mth excitatory hidden neuron to the current time t . It is425

derived from (3) and calculated by426

�tom = t − tm − εom = −τx ln (xom(t)/A) (5)427

where tm is the firing time of the mth excitatory hidden neuron428

before current time t . The mth excitatory hidden neuron has429

the closest spike before the current time t . It has the maximum430

trace at time txom(t) out of all excitatory input synapses of the431

oth output neuron. xom(t) should be less than A, because the432

spike should occur before the current time. εom is the delay433

between the mth excitatory hidden neuron and the oth output434

neuron. Fig. 1 illustrates the relationship between the different435

parameters used in (5).436

The delay adjustment in (4) tries to increase the total PSP of437

the oth output neuron at t = t̂
f

o and to reduce the total PSP438

at t = t
f

o . The delay increment in (4) shifts the positive PSPs439

generated by excitatory inputs to the desired times to generate440

an output spike. The delay reduction shifts the positive PSPs441

away from the actual output spikes times to remove undesired442

spikes. When an actual output spike is generated at the time443

of a desired spike, the positive delay adjustment cancels out444

the negative delay adjustment and the delays are stabilized.445

In (4), we have [xoh(t)/xom(t)] ≤ 1. The use of the fourth446

power in (4) reduces the amount of delay adjustment related447

to a far input spike. A far input spike corresponds to a low448

value of [xoh(t)/xom(t)] and consequently a lower value of449

the fourth power of [xoh(t)/xom(t)] ≤ 1, and only the delays450

related to the close input spikes which have a high effect on 451

the PSP is adjusted by a high value to prevent unnecessary 452

change of the delays in the network. 453

The adjustment of delay between the hth inhibitory hidden 454

neuron and the oth output neuron �µoh is governed by 455

�µoh(t) =

⎧

⎪

⎨

⎪

⎩

−�t̄om(t)(x̄oh(t)/(x̄om(t))4, t = t̂
f

o

+�t̄om(t)(x̄oh(t)/x̄om(t))4, t = t
f

o

0, Otherwise

(6) 456

where x̄oh(t) is the spike trace related to the connection 457

between hth inhibitory hidden neuron and the oth output 458

neuron. x̄om(t) is the maximum trace between the inhibitory 459

hidden neurons that are connected to the oth output neuron. 460

It should be less than A. �t̄om(t) is calculated by putting 461

x̄om(t) in (5). The decrement of delays in the first expression 462

of (6) at the desired times shifts away the negative PSPs 463

generated by inhibitory inputs (from the desired times) and 464

increases the total PSP of the output neuron accordingly. This 465

might increase the total PSP to hit the threshold level and 466

generate an actual output at the desired times. The delay 467

increment in the second expression relates to the inhibitory 468

input spikes before the actual outputs shifts the negative PSP 469

of the inhibitory inputs toward the actual output spikes to 470

remove undesired output spikes. When an actual output spike 471

is generated at the time of a desired spike, the delay decrement 472

and increment in (6) are equal and the net adjustment becomes 473

zero. 474

C. Training the Hidden Neurons 475

This section introduces the learning algorithms for both 476

excitatory and inhibitory hidden neurons. 477

1) Weight Learning of Excitatory Hidden Neurons: The 478

synaptic weight between the i th input neuron and the hth 479

excitatory hidden neuron is denoted by whi and all the delays 480

in the network are neglected in this stage. The synaptic weight 481

adjustment is governed by 482

�whi(t) 483

=

⎧

⎪

⎨

⎪

⎩

+
∑

o [�(t− ti )(1− �(t − th)/A)](woh/A), t = t̂
f

o

−
∑

o [�(t− ti )(�(t− th)/A)](woh/A), t = t
f

o

0, Otherwise

484

(7) 485

where ti is the last firing time of the i th input spike at or before 486

the current time t . Equation (7) shows that the algorithm 487

adjusts the weight at the time of the f th desired spike of the 488

oth output neuron, t = t̂
f

o , and at the time of the f th actual 489

output spike of the oth output neuron, t = t
f

o . The sigma (
∑

) 490

collects the weight adjustment on all the output neurons. 491

At the time of the desired spike, the weight is potentiated in 492

proportion to the STDP time window (�(t − ti )) to generate 493

hidden neuron spike at the desired time or shortly before it to 494

increase the total PSP of the oth output neuron and help the 495

output neuron to generate an actual output spike at the desired 496

time (Fig. 2). Different hidden neurons correspond to different 497

desired spikes, and they cooperatively force the output neuron 498

to fire at all desired times. 499
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Fig. 2. Synaptic weight between ith input neuron and the hth excitatory
hidden neuron whi is potentiated in proportion to the value of STDP time

window [�(t − ti )] at t = t̂
f

o to generate hidden spike at the desired time

t = t̂
f

o . The generated excitatory input will be fed to the oth output neuron,
and it increases the total PSP of the neuron at the desired time.

Fig. 3. whi, the synaptic weight between ith input neuron and the hth

excitatory hidden neuron, is reduced in proportion to �(t − ti ), at t = t
f

o (the
time of the f th actual output spike of the oth output neuron). The reduction
might lead to the cancelation of the hidden spike at th and consequently the

reduction of the total PSP of the oth output neuron generated at t = t
f

o and

remove the actual output at t = t
f

o .

At the time of an actual output, t = t
f

o , �whi(t) is reduced500

in proportion to the STDP time window �(t − ti ). It depends501

on the time difference of its input spike ti , and the current time502

t = t
f

o , (t f
o − ti ). The reduction might lead to the cancellation503

of the hidden spike at th shortly before t = t
f

o or at t
f

o , and504

consequently reduces the total PSP of the oth output neuron505

generated at t = t
f

o and remove the actual output at t = t
f

o506

(Fig. 3). When the actual output spikes at t = t
f

o , it becomes507

close to the desired spike at t = t̂
f

o , the positive weight508

adjustment related to the desired spike cancels out the negative509

weight adjustment at the actual output. Consequently, the net 510

weight adjustment becomes small. 511

The excitatory hidden neuron weight is adjusted based on 512

the three spikes shown in Fig. 3 by (7). In a triplet-STDP, 513

which is a more accurate model of synaptic plasticity in 514

a biological neuron than a standard pair-based STDP [1], 515

three spikes also affect a weight adjustment. A triplet-STDP 516

described in [1] uses a single presynaptic and two postsynaptic 517

spikes. There are different models for triplet-STDP [1]. 518

The term [(1 − �(t − th)/A)] in (7) prevents the weight 519

change of an excitatory hidden neuron that already has an 520

actual output at the desired time, t = t̂
f

o as in this situation 521

�(t̂
f

o − th) = A, consequently, [(1 − �(t̂
f

o − th)/A) = 0]. 522

Therefore, the weight increment related to the hidden whi 523

is 0, because the hidden neuron already has a spike at this 524

desired time and it does not need more weight adjustment. 525

Different hidden neurons contribute to firing of the output 526

neuron at different desired times and cooperatively help the 527

output neuron to fire at all the desired spikes in a multispike 528

coding scheme. The term also causes a smaller increment of 529

the weight whi that has output spike closely before the desired 530

spike [�(t̂
f

o −th) ∼= A, consequently, (1−�(t̂
f

o −th)/A) ∼= 0]. 531

An unnecessary high adjustment might shift the hidden spike 532

close to t̂
f

o beyond the desired time and reduce the total PSP of 533

the oth output neuron at the desired time. In addition, the term 534

(1 − �(t − th)/A) causes a comparatively high increment of 535

whi when a hidden neuron does not have spike before t = t̂
f

o 536

[because (1 − �(t̂
f

o − th)/A) = 1], or the actual output of 537

the hth hidden neuron is far from the desired time at t = t̂
f

o 538

[(1 − �(t̂
f

o − th)/A) ∼= 1]. The high increment might force 539

the hth hidden neuron to fire at the desired time t = t̂
f

o , and 540

consequently increase the total PSP of the oth output neuron 541

at the desired times t = t̂
f

o . 542

The term [�(t − th)/A] in (7) when t = t
f

o prevents the 543

reduction of whi if the hth excitatory hidden neuron does not 544

have any actual output spikes before the actual output of the 545

oth output neuron at t = t
f

o [(�(t
f

o − th)/A) = 0]. Because, 546

whi does not have any roles in the generation of the output 547

spike at t = t
f

o . If an excitatory hidden neuron has output 548

spike before and close to an actual output spike at t = t
f

o , 549

the term has comparatively a high value [(�(t
f

o −th)/A) ∼= 1], 550

and consequently, whi is adjusted with a higher value, because 551

the excitatory hidden neuron has a strong contribution in the 552

generation of the actual output spike at t = t
f

o and the weight 553

reduction might lead to the removal of the output from the 554

excitatory hidden neuron and consequently reduce the total 555

PSP of the output neuron. 556

In a network with nonzero delays, the proposed method 557

trains the excitatory hidden neuron to fire at a time interval 558

(equal to the corresponding delay connecting the hidden 559

neuron to the output neuron) before a desired time. The early 560

firing of the excitatory hidden neuron increases the total PSP 561

of its successor output neuron at the desired time by the 562

delayed effect of the excitatory hidden spike. However, in the 563

previous situation, where the connections do not have any 564

delays, an excitatory hidden neuron is trained to fire at the 565

same time as the desired time. Correspondingly, (8) is used to 566



IE
E
E
 P

ro
o

f

TAHERKHANI et al.: SUPERVISED LEARNING ALGORITHM FOR LEARNING PRECISE TIMING OF MULTIPLE SPIKES 7

adjust whi, the synaptic weights between the i th input neuron567

and the hth excitatory hidden neuron, at time t568

�whi(t)569

=

⎧

⎪

⎨

⎪

⎩

+
∑

o [xhi(t − εoh)(1 − xoh(t)/A)](woh/A), t = t̂
f

o

−
∑

o[xhi(t − εoh)(xoh(t)/A)](woh/A), t = t
f

o

0, Otherwise

570

(8)571

where xhi(t) is the spike trace corresponding to the connection572

between the i th input neuron and the hth excitatory hidden573

neuron. Each spike in the i th input spike train causes a574

delayed (εhi) jump in the trace then it decays exponentially575

by a time constant similar to (3). xoh(t) is the trace corre-576

sponding to the connection between the hth excitatory hidden577

neuron and the oth output neuron. Each output spike of the578

hth excitatory hidden neuron results in a delayed (εoh) jump579

in the trace which decays exponentially by a time constant τ580

similar to (3). εhi is the delay between the i th input neuron581

and the hth excitatory hidden neuron, and εoh is the delay582

between the hth excitatory hidden neuron and the oth output583

neuron. The traces have same amplitude A and time constant τ584

as the STDP time window in (2).585

The update of whi at t = t̂
f

o in (8) based on the delayed586

xhi(t) increases whi by a high value if it has spike shortly587

before (t̂
f

o − εoh), because in this case xhi(t̂
f

o − εoh) has a588

high value. The high increase can lead to the generation of an589

output spike of the hth excitatory hidden neuron at (t̂
f

o −εoh).590

The effect of the generated hidden spike is shifted to the time591

of the desired spike in the oth output neuron after the delay592

of the connection between the hth excitatory hidden neuron593

and the oth output neuron εoh. This helps the output neuron594

to generate output spike at the desired time.595

The decrement in the second expression of (8) is high if596

the i th input neuron has spike shortly before (t
f

o − εoh).597

Consequently, this decrement tries to remove the actual output598

of the hth excitatory hidden neuron at (t f
o − εoh) and helps599

the oth output neuron to reduce its PSP at the time t
f

o (by600

considering the delay εoh).601

2) Weight Learning of the Inhibitory Hidden Neurons: The602

connection weight between the hth inhibitory hidden neuron603

and the i th input neuron w̄hi is updated similar to (8) by604

multiplying it with a negative sign as shown in605

�w̄hi(t)606

=

⎧

⎪

⎨

⎪

⎩

−
∑

o [x̄hi(t− µoh)(x̄oh(t)/A)]|woh/A|, t = t̂
f

o

+
∑

o [x̄hi(t− µoh)(1 − x̄oh(t)/A)]|woh/A|, t = t
f

o

0, Otherwise

607

(9)608

where µoh is the delay between the hth inhibitory hidden609

neuron and the oth output neuron, and x̄hi(t) is the spike610

trace corresponding to the connection between the i th input611

neuron and the hth inhibitory hidden neuron. x̄oh(t) is the612

spike trace related to the connection between the hth inhibitory613

hidden neuron and the oth output neuron. The delay related the614

connection between the i th input neuron and the hth inhibitory615

hidden neuron is µhi. According to (9), the weight is reduced616

if the i th input neuron has a delayed (µhi) spike shortly before 617

(t̂
f

o − µoh) to increase the total PSP of the oth output neuron 618

at the desired time t̂
f

o by removing hidden inhibitory spike 619

at or before (t̂ f
o − µoh). In addition, (9) increases the weight 620

w̄hi to generate hidden inhibitory spike at (t
f

o −µoh) to reduce 621

the total PSP of the oth output neuron at t = t
f

o . The reduction 622

of the total PSP removes the actual output spike of the oth 623

output neuron at t
f

o . 624

It is proposed that hidden neurons receive biofeedback from 625

the readout neurons. Through this biofeedback, the times 626

of desired spikes and actual outputs related to the neurons 627

in the next layer are made available at the hidden layer 628

neurons which use them to adjust their weights appropriately. 629

In this paper, we did not describe the basis of the biofeed- 630

back or model it in detail. The training of the network is 631

stopped when it reaches its goal, i.e., the readout neuron 632

generates actual output spikes at the desired times and all the 633

undesired output spikes of the readout are removed. 634

D. Classification Ability of the Proposed Method 635

The weight and delay learning characteristics of the pro- 636

posed method enable it to train a neuron to fire at desired spike 637

times related to an applied input pattern. In a classification 638

task, an input pattern is assigned to the class whose desired 639

spike train is most similar to the actual output of the network. 640

Therefore, the classification ability of the proposed method can 641

be improved if an output neuron is also trained not to fire close 642

to the desired spikes of other classes in addition to firing at the 643

desired times representing to the current class of the input pat- 644

tern. As a result, the proposed method introduces an additional 645

learning mechanism when a misclassification occurs. 646

The learning algorithm considers two desired spike trains 647

after a misclassification. The first one is related to the class 648

of the applied input spatiotemporal pattern, i.e., the desired 649

spikes of the correct class, and the second one is related to 650

the class that causes the misclassification (incorrect class). 651

Thus, the learning adjusts the readout neurons and hidden 652

neurons learning parameters at the time of each desired spike 653

related to the class that causes the misclassification. It reduces 654

the weights of the readout neuron that have a spike before 655

the desired time. To force the oth output neuron to not fire 656

at the f th desired spike of class j (t = t̂
f ( j )

o ) the weights of 657

the othoutput neuron are adjusted by the following equation 658

at t = t̂
f ( j )

o : 659

�woh(t) = −�(t − th − doh). (10) 660

The proposed classification learning method adjusts an 661

excitatory hidden neuron weight at the desired spike times 662

(t = t̂
f ( j )

o ) related to the class that causes the misclassification 663

by the following equation similar to (8): 664

�whi(t) = −
∑

o

[xhi(t − εoh)(xoh(t)/A)](woh/A). (11) 665

An inhibitory hidden neuron weight at t = t̂
f ( j )

o is adjusted 666

similar to (9) by the following equation: 667

�w̄hi(t) = +
∑

o

[x̄hi(t − µoh)(1 − x̄oh(t)/A)]|woh/A|. (12) 668
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The delay related to an excitatory input of a readout neuron669

is adjusted by (13) at t = t̂
f ( j )

o . The following equation is670

similar to (4):671

�εoh(t) = −�tom(t)(xoh(t)/xom(t))4 (13)672

The delay related to an inhibitory input of the readout at673

t = t̂
f ( j )

o is adjusted through the following equation which is674

similar to (6):675

�µoh(t) = +�t̄om(t)(x̄oh(t)/x̄om(t))4. (14)676

The proposed method uses a criterion to control the learning677

level of every pattern and manage the misclassifications during678

training and adjust the network learning parameters to increase679

the inter class separability of the network.680

Consider a pattern from class i is applied to the network and681

an actual output of the network is generated. The correlation682

between the actual output and the corresponding desired spike683

train of the class i is called ci which is calculated by the684

method used in [41] as in685

ci =
vd · vo

|vd ||vo|
(15)686

where “vd ·vo” denotes the inner product of the two vectors vd687

and vo. vd and vo are two vectors with real value components688

which are generated from spike trains. A desired spike train is689

convolved with a symmetric Gaussian function to generate vd .690

Similarly, vo is generated by convolving an actual output spike691

train with the symmetric Gaussian function. |v| is the length692

of a vector v.693

A maximum value p and a threshold level �c for ci are694

considered to control the learning. If the correlation metric ci695

is less than �c, the network learning parameters are updated696

based on the applied training pattern and their desired spike697

train without considering any extra criteria. In this situation,698

the network adjusts its learning parameters to increase its699

knowledge about the applied training pattern inside the class i .700

The low value of the correlation related to the applied training701

pattern ci < �c means that the similarity of the training702

pattern with the previous trained patterns from the same class i703

is low and the learning parameters of the network should be704

adjusted to increase the ability of the network to recognize the705

patterns inside the class i .706

If ci reaches the value of p, the learning related to the707

pattern is not applied to the network in the current learning708

epoch, because the high value of the correlation shows that709

the knowledge of the presented training pattern is already in710

the network and it is not necessary to adjust the learning711

parameters for the current value of ci . It means that the712

network has learned the overall distribution of the data from713

the class i and it is not necessary to memorize all the details714

of the presented training pattern. It also prevents over training715

of the network.716

If ci has a value between �c and p, i.e., (�c < ci < p),717

and ci is appropriately higher than the correlation metric718

related to the other classes to prevent misclassification, then719

the learning related to the applied pattern is stopped in the720

current epoch. Therefore, if �c < ci < p and ci > c j + �c721

(where j = argmax{k∈{1,2,...,N}&k �=i}ck , ck is the correlation722

TABLE I

PROPOSED CLASSIFICATION LEARNING METHOD

metric of the actual output with the kth desired spike 723

train, and N is the number of all the classes), the learning 724

adjustment related to the applied pattern from class i is not 725

applied to the network in the current epoch. The ci > c j +�c 726

denotes that the network can distinguish the class of the 727

applied pattern correctly with an appropriate margin (�c), 728

therefore it is not necessary to have more training for the 729

current value of ci in the learning epoch. 730

If ci has a value between �c and p, and ci < c j + �c, 731

it suggests that a misclassification has occurred. In this situa- 732

tion, the network learning parameters are updated to enhance 733

the interclass separability of the network by training it to not 734

fire close to the desired spike train of the class that causes this 735

misclassification and to reduce c j . The learning parameters are 736

also updated to increase the ability of the network to generate 737

the desired spike related to the applied pattern from the class i 738

to increase ci . The reduction of c j and the increment of ci 739

may change the situation ci < c j + �c to ci > c j + �c and 740

prevent the misclassification. The training is continued until 741

the maximum number of learning epochs is reached or if the 742

stopping criteria noted in Table I apply. 743

A ci greater than p shows that the network is trained to fire 744

appropriately close to the corresponding desired spike train. 745

Therefore, similar to the situation where (�c < ci ≤ p and 746

ci > c j + �c) the related learning adjustment is not applied 747

to the network. The p value is chosen high enough depending 748

on the desired spike trains related to the different classes to 749

guarantee that when ci > p, ci is appropriately higher than c j 750

(ci > c j +�c). Desired spike trains related to different classes 751

(related to ci and c j ) should be chosen in a such a way that the 752

correlation between the desired spike trains are low enough to 753

support the point that if an actual spike train is very similar to 754

the desired spike related to ci , (ci > p) then it is appropriately 755

dissimilar to the other classes (c j < ci − �c). The values of 756

p and �c are determined by trial and error. In this paper, 757

the method used in [44] is employed to choose the desired 758

spikes. A sequence of numbers starting from 10 to 100 ms 759
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with 10-ms time interval is generated. Then a number of firing760

times are extracted randomly from the sequence to assign each761

desired spike train corresponding to a class. In this situation,762

every two spikes have at least 10-ms interval. The parameter p763

is set based on the level of precision that the desired spikes764

should be learned. In this paper, when an actual output spike765

train reaches 90% of accuracy compared to its corresponding766

desired spike train the learning is stopped, so the learning767

parameter p is set 0.9. The parameter �c should be higher768

than the maximum correlation between the desired spike trains769

related to different classes. �c is set 0.45 to implement the770

proposed method.771

After training, each testing pattern is applied to the network772

and the readout actual output spike train is calculated. The773

correlations between the actual output spike train and the774

desired spike trains corresponding to all classes are obtained.775

The input pattern is assigned to the class whose corresponding776

desired spike train has the maximum correlation value with the777

actual output spike train.778

IV. RESULTS779

A. Effect of Network Setups on the Learning Performance780

First, the effects of the different maximum allowable delays781

and the number of desired output spikes in each class on782

the performance of the learning method are explored. Then,783

the running time for the proposed method is reported. In the784

following simulation, the performance of the network is first785

evaluated on the Fisher IRIS data set. The IRIS data fea-786

tures are converted to spike times using population coding,787

as described in [23], where each feature value is encoded by788

M identically shaped overlapping Gaussian functions where789

M is set to 40. The IRIS data have four features for each790

pattern so there are 4 × M = 160 input spikes obtained which791

are then applied to 160 input synapses. The high number792

of input synapses increases the number of input spikes, and793

consequently reduces the length of silent windows inside a794

spatiotemporal input pattern and helps the neuron to fire at795

multiple desired times. In addition, there are nine extra input796

synapses with input spikes at fixed times for all patterns. The797

fixed times are the same as the times of desired spikes cor-798

responding to all classes. These inputs act as bias inputs [21]799

and act as the reference start times in a multispike coding800

scheme. There are 360 hidden neurons in the hidden layer.801

The total time duration of the input spatiotemporal pattern is802

set to 100 ms, T = 100 ms.803

1) Effect of Maximum Allowable Delays: Similar to [24],804

50% of the IRIS data were selected randomly and used as805

training data and the remaining used for testing. The accuracy806

of the proposed method on the testing data reaches its highest807

value, 95.1%, when the maximum allowable delay D is 3 ms808

and there is a single readout neuron.809

In Table II, the accuracies of the proposed method for810

different delays when there are three readout neurons (each811

corresponding to a class) in the network are shown. The accu-812

racy of the method on the testing data reaches its maximum813

value when D = 3 ms (Table II). The accuracy of the proposed814

method on the testing data is increased from 95.1% to 95.7%815

TABLE II

EFFECT OF THE DIFFERENT MAXIMUM ALLOWABLE DELAYS ON

IRIS DATA RECOGNITION. 50% OF THE DATA ARE

USED AS TRAINING DATA

Fig. 4. Comparison of the learning method accuracy on the IRIS data training
set when one and three readout neurons are used.

when the number of readout neurons is increased from one 816

to three when D = 3 ms. In Fig. 4, the accuracy of the 817

learning algorithm on the training data is shown when a single 818

readout neuron and three readout neurons are used. All these 819

procedures are repeated independently for 40 different runs, 820

and the mean value of the 40 results are reported. Different 821

random initial weights and different random selections of the 822

training and testing data are used for the different runs. When 823

the number of readout neurons is increased, the number of 824

learning parameters is also increased. Therefore, the readout 825

neurons learn a lower number of training patterns compared 826

to the situation where a single readout neuron is used, where 827

the readout neuron should learn patterns related to all classes. 828

Subsequently, they can learn the input patterns better compared 829

to the situation that a single readout neuron is used. For higher 830

values of maximum allowable delays, the cooperation between 831

weight adjustment and delay adjustment is reduced and it leads 832

to a lower accuracy. A higher delay adjustment causes a higher 833

shift in the delayed effect of input spikes, and this higher shift 834

might destroy previous weight training that was based on the 835

previous value of the delay. 836

Synaptic delays at chemical synapses usually take values 837

from 1 to 5 ms. The minimum value of a synaptic delay 838

is 0.3 ms. Synaptic delay also can take a value higher than 839

5 ms [45]. Different researchers use different maximum values 840

for range [1, 16] ms. The results in this section show that for 841

this configuration, 3 ms is an optimal value for the maximum 842

synaptic delay. In the following simulations, Max Delays are 843

set to 3 ms. 844

2) Effect of the Number of Desired Spikes: In the following 845

experiment, the accuracy of the proposed method is obtained 846

for different numbers of desired spikes corresponding to each 847

class (Table III). 848

The network reaches its maximum testing accuracy, 95.7%, 849

when three desired spikes are used in each desired spike train. 850
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TABLE III

EFFECT OF THE NUMBER OF DESIRED SPIKES ON LEARNING ACCURACY

USING THE IRIS DATA SET WITH THREE READOUT NEURONS

Fig. 5. Recognition accuracy for different numbers of desired spikes.

A very high number of desired spikes in each desired spike851

train (i.e., for a desired spike train with 100-ms duration and852

10-ms minimum interspike interval, the highest number of853

desired spikes is 10) reduce the performance of the learning854

method as this increases the complexity of the learning task855

and the network should be trained to fire at a higher number of856

desired instances with a limited number of learning parame-857

ters. For instance, the testing accuracy of the proposed method858

is reduced from 95.7% to 81% when the number of desired859

spikes is increased from 3 to 7 (Fig. 5).860

The time distances between desired spikes of different861

classes are reduced when there is a high increase in the862

numbers of desired spikes. Therefore, a small deviation in863

the times of output spikes can cause a switching from one864

class to the other one and reduces the accuracy. On the other865

hand, a lower number of desired spikes reduce the complexity866

of the learning task, therefore the training accuracy will be867

increased. However, a very low number of desired spikes lead868

to a low testing accuracy. For example, when the number869

of desired spikes is reduced from three to one, the testing870

accuracy is reduced from 95.7% to 95.1%. It shows that a871

single spike cannot capture enough information from training872

data, and consequently, it reduces the testing accuracy despite873

of a comparably high training accuracy of 99.9%. Moreover,874

the distributions of spikes in the spatiotemporal input patterns875

compared to desired spikes also affect the accuracy and876

the relation between the number of desired spikes, and the877

accuracy is not a simple linear function (Fig. 5).878

3) Evaluation of the Running Time: MATLAB simulations879

were carried out on a quad core PC with 3 GHz and 16 GB880

of RAM. The running times required for each learning epoch881

of the proposed method are reported in Table IV. The running882

time related to a learning epoch is measured 10 times, and883

the mean value is reported for each number of input synapses.884

The running time is increased by increasing the maximum885

allowable delays D. For instance, the method needs 5.2 s886

to execute a learning epoch when D = 1 ms. However,887

TABLE IV

EFFECT OF THE MAXIMUM ALLOWABLE DELAY (d) ON THE RUNNING

TIME OF THE PROPOSED METHOD USING THE IRIS DATA SET

Fig. 6. Runing time of a learning epoch is increased linearly as a function
of (a) number of training patterns and (b) number of input synapses.

the running time is increased to 15.9 s when D is increased 888

to 7 ms. Because, at each time step, the learning algorithm 889

should check the events at the previous time steps depending 890

on the delays. A higher number of previous time steps should 891

be considered for a higher value of delays. Therefore, the 892

computational complexity of the method and consequently the 893

running time is increased when the delay is increased. 894

The running times of a learning epoch of the proposed 895

method are measured for different numbers of training pat- 896

terns. The number of training patterns is increased from 897

15 to 135. IRIS data set is used to train the algorithm. Fig. 6(a) 898

shows the relationship between the running times and the 899

number of training patterns. The fit line shown in Fig. 6(a) 900

is obtained by fitting the data points to a 1-D polynomial. The 901

line is described by the equation T (n) = 0.1128n + 1.593. 902

The time complexity of the process related to the equation is 903

linear, i.e., it is O(n) using the big O notation. It shows that 904

the running time increases linearly with the number of training 905

samples. 906

Random spatiotemporal input patterns with different 907

numbers of inputs are used to analyze the complexity of 908

the learning algorithm as a function of the number of input 909

synapses. There are three classes similar to IRIS data in the 910

randomly generated data. A spike train composed of three 911

spikes is considered as desired spike train for each class 912

like the desired spike used for IRIS data. The spike times in 913

each input spatiotemporal pattern are generated by a uniform 914

distribution. The values of spike times are extracted randomly 915

from (0, 100) interval. The number of input synapses is 916

changed from 100 to 1000, and an input spike is considered 917

for each input synapse. Then, the running time for each 918
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TABLE V

COMPARISON WITH THE MULTILAYER SNN PROPOSED

IN [28] ON THE IRIS DATA SET

learning epoch is calculated to analyze the complexity of919

the learning method. In this experiment, there are a fixed920

number of 75 training patterns. Fig. 6(b) shows the evolution921

of the running time in terms of the number of input synapses.922

In addition, a line fit with the obtained data points is plotted.923

The dependence between running time and the number of924

inputs indicates a linear time complexity, i.e., O(n).925

B. Comparison With State-of-the-Art Methods926

In the following simulation, first the proposed927

method is compared with the method proposed by928

Sporea and Grüning [28]. In this case, 75% of the total929

IRIS data for each class are considered as a training set and930

the remaining 25% are used for testing, as in [28]. The results931

are shown in Table V. The accuracy of the proposed method932

on the training is 99% which is higher than the method933

proposed in [28], 96%. The proposed method also achieved a934

higher testing accuracy of 96% (compared to 94% achieved935

by [28]).936

Similar to the biologically plausible structure used in [18],937

each of the 169 input neurons is connected randomly to a938

limited number of neurons (40 neurons) in the hidden layer939

which consists of a population of 360 neurons. There are940

no subconnections, and every two neurons in two subsequent941

layers are connected by a single connection similar to the bio-942

logically plausible neural network in Izhikevich’s work [18].943

The proposed learning algorithm is designed to manage the944

training of a large number of SNs by local events such as945

spike trace which takes place at the location of each synapsis.946

There are three output neurons in the output layer and all947

the hidden neurons are connected to the three output neurons.948

The network proposed in [28] uses the timing of a single949

spike of an input neuron for each feature. The four input950

neurons are fully connected to ten neurons in the hidden layer.951

Every two neurons in two subsequent layers are connected by952

12 subconnections with different delays from 1 to 12 ms. All953

the neurons in the hidden layer are fully connected to an output954

neuron. The performance of the method in [28] on the IRIS955

data is shown in Table V.956

In order to compare the accuracy of the proposed method957

with that achieved by other existing methods, 50% of the958

data samples from the IRIS data set are selected randomly959

to construct training data and the remaining 50% are used for960

testing. The testing results are summarized in Table VI. The961

accuracies of the proposed method on the training and testing962

data are 99.7% and 95.7%, respectively. The testing accuracy963

of the proposed method, 95.7%, is comparable with the best964

TABLE VI

COMPARISON WITH OTHER METHODS ON THE IRIS DATA SET

TABLE VII

COMPARISON WITH OTHER METHODS ON THE WBCD DATA SET

result achieved for the state-of-the-art methods on IRIS data 965

set. The proposed method has a high training accuracy, 99.7%. 966

The proposed method converges for all trials because it does 967

not have the silent neuron problem. It has remote supervised 968

spikes. In addition, it solves the problem of silent windows 969

in a spatiotemporal input pattern by delay learning. A silent 970

window can prevent generation of desired spikes and con- 971

sequently it can cause learning convergence problem. These 972

characteristics of the proposed method make it appropriate 973

for learning multiple spikes. The accuracies of the proposed 974

method are calculated for all trials, and there are not any 975

rejected results. In contrast, the convergence rate of SpikeProp 976

is investigated in [24] and as it has a problem with silent 977

neurons it cannot converge for all trials, and as a result, 978

those trials with low accuracies are removed from the reported 979

results [24]. 980

The Breast Cancer Wisconsin (Diagnostic) data set (WBCD) 981

from the UCI machine learning repository is used as the sec- 982

ond data set to evaluate the proposed method and to compare it 983

with the other state-of-the-art methods, as shown in Table VII. 984

WBCD contains 699 samples. The samples belong to two 985

different classes (malignant and benign categories) where 986

458 samples are from the first category and 241 samples are 987

from the second category. A total of 120 samples are selected 988
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TABLE VIII

PERFORMANCE COMPARISON WITH SRESN AND GPSNN
ON THE BUPA LIVER DISORDERS DATA SET

Fig. 7. Evolution of the accuracy of the proposed method over different
learning epochs on BUPA liver disorders data. It needs 24 learning epochs
to pass the accuracy level of 60%. SRESN [46] needs 715 epochs to reach
about to the same level of accuracy.

randomly from each category to construct the training set, and989

the remaining data is used for testing. The proposed method990

has an accuracy comparable with the best accuracy achieved991

by the other state-of-the-art methods (Table VII).992

One advantage of SNNs is that they use spikes to commu-993

nicate between neurons. However, in the classical neural net-994

works, real values are used to transfer data between neurons.995

Each spike can be encoded by a binary bit; however, a real996

value needs a high number of bits to be transferred between997

neurons depending on the precision that is required for the998

values. As shown in Tables VI and VII, the proposed method999

using spikes for communication between neurons and can1000

achieve better or comparable accuracies with the state-of-the-1001

art rate-based models including deep belief network (DBN)1002

and autoencoders.1003

One more data set which is used to evaluate the proposed1004

method is the BUPA liver disorders data from the UCI machine1005

learning repository. There are 345 samples in this data set in1006

which 145 samples are from the first class and 200 samples are1007

from the second class. A total of 70 data samples are selected1008

randomly from each class to construct the training set, and1009

the remaining data is used for testing. Each sample has six1010

attributes. The performance of the proposed method is shown1011

in Table VIII. The testing accuracy of the proposed method1012

is higher than SRESN [46] and GPSNN [47]. SRESN [46]1013

uses a 30-2 architecture, and the proposed method uses a1014

246-360-2 architecture where there are 246 input neurons,1015

360 hidden neurons, and two output neurons. The evolu-1016

tion of the training accuracy of the proposed method over1017

different learning epochs is shown in Fig. 7. The proposed1018

method needs 24 learning epochs to pass the training accuracy1019

of 60.4%; however, SRESN [46] needs 715 learning epochs1020

to reach the same accuracy level. The proposed method can1021

reach the accuracy level of 66.9% in less than 100 epochs.1022

The performance of the proposed method on different data1023

sets is compared with SRESN [46] in Table IX. The number1024

TABLE IX

COMPARISON WITH SRESN ON DIFFERENT DATA SETS

of learning parameters in SRESN [46] is lower than that of the 1025

parameters in the proposed method (see Table IX). A lower 1026

number of learning parameters can reduce the simulation 1027

time required for each learning epoch. However, the proposed 1028

method achieved high accuracies in a lower number of learn- 1029

ing epochs compared to the method with a single layer of 1030

learning neurons on Pima diabetes, BUPA liver disorder, and 1031

ionosphere data sets. The proposed learning method achieves 1032

this improvement through appropriate interaction between 1033

different layers of SNs in a multilayer structure. 1034

V. CONCLUSION 1035

This paper proposed a BPSL for multilayer SNNs. It uses 1036

the precise timing of multiple spikes, which is a biologically 1037

plausible information coding scheme. The learning parameters 1038

of neurons in the hidden layer and output layer are learned in 1039

parallel using STDP, anti-STDP, and delay learning. 1040

The simulation results show that the proposed method 1041

has improved the performance of the first fully supervised 1042

algorithm that learns multiple spikes in all layers proposed 1043

in [28].The improvement of the proposed method can be 1044

attributed to a number of properties of the proposed method. 1045

First, it has used the firing times of spikes fired by the hidden 1046

neurons to train the weights of the hidden neurons unlike the 1047

method in [28] where the firing time of hidden neurons is not 1048

considered and the weights of a hidden neuron are adjusted by 1049

the same values irrespective of the neuron firing at the desired 1050

times or not firing at all. In the proposed method, weight 1051

learning, based on the firing times of the hidden neurons, helps 1052

adjust the weights appropriately and prevents unnecessary 1053

weight adjustments. Another property of the proposed method 1054

is the appropriate use of the EPSP and the IPSP produced 1055

by the hidden excitatory and inhibitory neurons to effectively 1056

adjust their weights, unlike the approach in [28] where equal 1057

weight updates are applied to both excitatory and inhibitory 1058

neurons, which can reduce the learning performance. Another 1059

property of the proposed method that improves its performance 1060

compared to the learning method in [28] is the appropriate 1061
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consideration of the effect of delays on the weight learning.1062

It was shown that the delay after a hidden neuron has an1063

essential effect on the output of the spiking network, hence1064

it should be considered during the training of the weights of1065

the hidden neuron. For example, an excitatory hidden neuron1066

should fire earlier than a desired output spike depending on1067

the delay after the hidden neuron, as described in the previousAQ:3 1068

sections. The produced PSP by the fired hidden spike is shifted1069

to the desired time by the delay. The effect of the delay on1070

the weight adjustments of hidden neurons is not considered1071

in [28], and it was shown that this resulted in a lower accuracy1072

compared to the proposed method on the IRIS data set.1073

The performance of the proposed method was also1074

compared with other algorithms on different data sets. The1075

results showed that the proposed method can achieve a1076

higher accuracy compared to a single-layer SNN. In addition,1077

the method has comparable accuracy with the best result1078

achieved by state-of-the-art rate-based neural models including1079

autoencoders and DBNs.1080

The results also showed that a very high number of desired1081

spikes can reduce the accuracy of the method by increasing1082

the complexity of the learning task, and a very low number1083

of desired spikes cannot capture all the temporal informa-1084

tion of input data. Although the delay learning increases1085

the complexity of the learning method and consequently the1086

running time, it was shown that delays can increase the1087

learning performance of the proposed method. In addition,1088

delays are a biologically plausible property of SNNs. Another1089

property of the proposed method is its multilayer structure1090

that increases the computational cost of each learning epoch.1091

However, the results showed that it can also reduce the number1092

of learning epochs and can improve its accuracy compared to1093

the similar multilayer spiking network proposed by Sporea and1094

Grüning [28]. The ablity of the proposed method to effectively1095

learn multiple desired spikes suggests that this approach may1096

be suitable for neuroprosthetic applications.1097

In a biologically plausible neuron model, the output of a1098

neuron depends not only on synaptic inputs, but also on the1099

internal dynamics of the neuron [48]. Therefore, a potential1100

direction for future work is to incorporate the neuron internal1101

dynamics in the proposed method, additionally to the effect1102

of the synaptic weight and delays, which may lead to a new1103

learning algorithm with potentially higher performance. For1104

instance, Zhang et al. [49] have proposed a dynamic firing1105

threshold to make the spiking network learning robust to1106

noise. A similar method can be applied to the multilayer1107

spiking network proposed in this paper to further improve its1108

performance.1109

It is possible to extend the learning algorithm to more layers1110

(deep SNNs). However, more layers may reduce the effect of1111

training of earlier layers on the network output. Designing1112

effective learning methods for deep spiking networks will be1113

investigated in the future work.1114
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