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ARTICLE

A supervised learning framework for chromatin
loop detection in genome-wide contact maps
Tarik J. Salameh1,6, Xiaotao Wang2,6✉, Fan Song1, Bo Zhang1, Sage M. Wright 1, Chachrit Khunsriraksakul1,

Yijun Ruan3,4 & Feng Yue 2,5✉

Accurately predicting chromatin loops from genome-wide interaction matrices such as Hi-C

data is critical to deepening our understanding of proper gene regulation. Current approaches

are mainly focused on searching for statistically enriched dots on a genome-wide map.

However, given the availability of orthogonal data types such as ChIA-PET, HiChIP, Capture

Hi-C, and high-throughput imaging, a supervised learning approach could facilitate the dis-

covery of a comprehensive set of chromatin interactions. Here, we present Peakachu, a

Random Forest classification framework that predicts chromatin loops from genome-wide

contact maps. We compare Peakachu with current enrichment-based approaches, and find

that Peakachu identifies a unique set of short-range interactions. We show that our models

perform well in different platforms, across different sequencing depths, and across different

species. We apply this framework to predict chromatin loops in 56 Hi-C datasets, and release

the results at the 3D Genome Browser.
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T
he proper gene regulatory programs of mammalian cells
are largely influenced by the 3D conformation of chro-
mosomes1. At kilobase to megabase scales, gene promoters

are often connected to their distal regulatory elements, such as
enhancers, through chromatin loops; rewiring of such loops has
been implicated in developmental diseases and tumorigenesis2,3.
It has been shown that chromatin loops are mediated by archi-
tectural proteins CTCF and cohesin via a loop extrusion model, in
which CTCF binds to a specific and non-palindromic motif in a
convergent orientation at two sites, acting as loop anchors4,5.

A growing number of experiments have been used to detect
chromatin loops. Hi-C6, a high-throughput derivative of Chro-
mosome Conformation Capture (3C)7, quantifies contacts
between all possible pairs of genomic loci using a proximity-
ligation procedure. With an improved experimental protocol and
deep sequencing, in situ Hi-C8,9 makes it possible to detect loops
at kilobase resolution. By introducing micrococcal nuclease for
chromatin fragmentation instead of restriction enzymes, Micro-
C10 further enables nucleosome-resolution analysis of chromatin
interactions. Proximity-ligation techniques also include ChIA-
PET11, PLAC-Seq12, and HiChIP13, which detect loops bound to
target proteins through chromatin immunoprecipitation steps,
and include Capture C14 and Capture Hi-C15, which enrich
interactions among a given set of sequences. Recently, several
ligation-free techniques emerged to measure different aspects of
chromatin organization. Genome Architecture Mapping (GAM)16

quantifies chromatin contacts by sequencing DNA from a set of
ultrathin nuclear sections at random orientations. Trac-looping17

captures multiscale contacts by inserting a transposon linker
between interacting regions. DNA SPRITE18 follows a split-pool
procedure to assign unique barcodes to individual complexes, with
read pairs sharing identical barcodes treated similarly to contacts
in Hi-C. Besides these biomedical protocols, high-throughput
imaging approaches such as STORM19 and HiFISH20 can directly
measure spatial distances at the single-cell level.

As these protocols emerged, investigators accordingly devel-
oped computational tools to identify chromatin loops. For Hi-C
data: Fit-Hi-C21 performs a distance-dependent spline fitting
procedure to refine its global background and chooses a binomial
distribution as the null model to evaluate contact significance,
which can output ~1 million cis-interactions from deeply
sequenced reads22. HiCCUPS8,23 incorporates local background
into its model and utilizes the Poisson test with a modified
Benjamini–Hochberg adjustment to determine significance, and
generally reports thousands of loop interactions. Analysis of
ChIA-PET and similar types of data usually starts with peak
calling to identify anchor regions for a target protein, but dif-
ferent computational tools may be based on different distribu-
tions. For example, the first published ChIA-PET tool24,25 adopts
a hyper-geometric distribution to filter out noise, while the more
recent Mango26 software builds a null model by incorporating
both the genomic distance and read depth of each anchor. For
PLAC-Seq and HiChIP, the recently developed MAPS27 filters
original interactions against ChIP-Seq peaks of the same protein,
and conducts a specific normalization procedure before evaluat-
ing significance. For Capture Hi-C, the main data analysis chal-
lenges are the asymmetry of interaction matrices, the uneven
capture efficiency of baits, and the huge number of tests at single-
fragment resolution. To address these problems, CHiCAGO
adopts a convolution background model and alleviates multiple
testing via a p-value weighting procedure28. Alternatively,
ChiCMaxima avoids statistical tests by using strategies from the
signal processing field to find local maxima and integrates bio-
logical replicate information to reduce false-positive rates29. We
observe that nearly all available tools are based on testing for

significant enrichment compared to a local or global background,
with specific calculations being quite empirical and difficult to
generalize between techniques. It would be intriguing and
potentially beneficial to automatically distinguish loop vs non-
loop interactions in a data-driven manner, which is a standard
supervised learning task.

Machine learning (ML) has been successfully applied in geno-
mics settings, such as predicting microRNA target activities30,
annotating chromatin states31,32, and characterizing functional
effects of noncoding variants33. In chromatin conformation stu-
dies, manifold learning strategies are employed by miniMDS34

and GEM35 to estimate 3D structures from 2D contact maps.
Some investigators have applied ML algorithms to predict 3D
interactions from 1D sequence and epigenomic datasets36,37. In
addition, we recently developed HiCPlus38, which can greatly
enhance the Hi-C data resolution through a deep convolutional
neural network. So far, the potential benefits of ML approaches for
loop detection at kilobase scales are relatively unexplored.

Here we present Peakachu (Unveil Hi-C Anchors and Peaks)
(Fig. 1), a supervised ML framework for detecting chromatin
loops from genome-wide interaction maps. Peakachu builds loop-
classifying models from defined positive and negative training
sets: the positive set could be any list of interactions from either
biologically enriched experiments such as ChIA-PET/HiChIP and
Capture Hi-C, or a high-throughput imaging experiment such as
HiFISH. The negative set is generated from loci randomly sam-
pled from two populations: (1) contacts with genomic distances
similar to the positive set, and (2) contacts with larger genomic
distances than the positive set. Once the training set is defined,
Peakachu applies a hyperparameter search to find the best ran-
dom forest model separating the two classes, which can be used to
detect loops from genome-wide contact maps. We show that the
predictions made by Peakachu have high precision and recall
rates. Further, we demonstrate Peakachu can detect high-
resolution chromatin loops with as few as 30 million intrachro-
mosomal Hi-C reads. With pretrained models, we successfully
predict chromatin loops in 56 Hi-C datasets at different
sequencing depths and make them available at the 3D Genome
Browser (3dgenome.org). Finally, we show Peakachu is a
platform-agnostic tool by applying it in two additional genome-
wide interaction data types, Micro-C, and DNA SPRITE.

Results
Overview of the Peakachu framework. We describe the overall
approach by Peakachu in Fig. 1. There are two parts of the input.
The first part is a genome-wide interaction matrix, such as Hi-C
or Micro-C data. The second part consists of the positive and
negative training datasets. Positive training sets are defined by
loops identified from orthogonal techniques such as ChIA-PET,
PLAC-Seq, Capture Hi-C, or even high-resolution imaging data
as they become available. For negative training sets, an equal
number of pixels are randomly selected from nonzero values with
a distance distribution derived from the positive set. The negative
set always contains contacts with the similar genomic distance
resembling the positive set, plus a set of long-range contacts
resembling noise inherent to contact maps.

The feature vectors of training samples are defined by the
surrounding pixels of each sample. Each vector includes the
absolute value of each pixel as well as the relative rank of each
pixel within the sample. The exact window size is configurable,
and we use 11 × 11 windows at 10 kb resolution for all work
presented in this text. Once feature vectors are constructed from
the positive and negative training sets, Peakachu applies a 3-fold
cross-validation loop to select a random forest model (refer to the
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Methods section for performance comparisons with other
machine-learning frameworks) that best separates the two classes.
Briefly, the input is randomly separated into three equal parts and
multiple models are trained using several combinations of tuning
parameters. Each of these models is trained on two parts of the
data; one part is used for scoring. The parameter combination
achieving the best score is used to fit a final model using the
whole training set.

In the prediction stage, similar feature vectors are defined for
all nonzero values in a contact map to compute per-pixel
probability scores, then a pooling algorithm is applied to
eliminate local loop redundancy. A model trained from a given
type of contact map, such as Hi-C, can be used to predict loops
from other maps of the same platform. As shown in the following
sections, a model trained on one cell type can be used to predict
loops from Hi-C matrices in other cell types with comparable

performance. Detailed description of the framework can be found
in the Methods section.

Orthogonal datasets reveal different sets of chromatin loops.
To train and evaluate the performance of Peakachu, we first used
the high-resolution Hi-C data from lymphoblastic cell line
GM128788, a tier one ENCODE cell line with extensive epigen-
ome data available. There are five types of orthogonal data
available in this cell line: CTCF ChIA-PET24, RAD21 ChIA-
PET39, SMC1 HiChIP13, H3K27ac HiChIP40, and promoter
Capture Hi-C28 (Supplementary Data 1). First, we observed that
each of these enrichment-based assays predicted a unique set of
chromatin interactions (Supplementary Fig. 1). Among them,
CTCF ChIA-PET identified the highest number of chromatin
loops, while H3K27ac HiChIP only identified 6395 loops. 25%
(1584 out of the 6395) H3K27ac HiChIP loops were predicted by

Input:  platform-specific training data GM12878 Hi-C

Genome-wide contact map

(Hi-C, SPRITE, Micro-C, ...)

Positive interactions

(ChIA-PET, HiFISH, PLAC-Seq, Capture Hi-C, ...)

Machine learning

Negative class

(random loci)

Positive class

(input loci)

11 × 11 windows at 10 kb resolution

Binary classifier

Cross-validation

Parameter tuning

Trained classifier computes

     per-pixel probabilities

 Pooling algorithm selects

candidate chromatin loops

Output: chromatin loops in different cell types and platforms 

mESC Hi-C K562 Hi-C

chr6: 150,130,000–151,830,000chr1: 79,730,000–81,350,000

0

150

0

50

Fig. 1 A binary classification framework for loop detection in genome-wide contact data. A contact matrix from Hi-C or similar experiment is

decomposed into a training set defined by sub-windows either centered at positive interactions from an orthogonal method (ChIA-PET, PLAC-Seq, HiFISH,

Capture Hi-C,…) or random loci of similar genomic distance. Hyperparameter tuning within a 3-fold cross-validation is applied to select a random forest

model best able to distinguish the two classes. A trained model can then compute per-pixel probabilities in a different contact map from the same platform,

with Hi-C depicted here. A greedy pooling algorithm selects the best-scored contacts from clusters of high-probability pixels.
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all five techniques, while 18% (1144/6395) are uniquely predicted
in this dataset. Similarly, 32% of the CTCF ChIA-PET loops are
unique, while only 7% of them can be recovered by all techniques,
potentially due to the fact that the number of loops in CTCF
ChIA-PET is much larger than other data types.

More interestingly, we found that these five datasets identified
chromatin loops at different genomic distance. For example, 75%
(4810/6395) of the H3K27ac HiChIP loops are within 250 kb
(Fig. 2a and Supplementary Fig. 2a) and only 8% (500/6395) are
over 500 kb. On the contrary, 42% (23,420/55,222) of the pooled

CTCF ChIA-PET interactions are long-range (>500 kb) and only
34% are short-range (<250 kb). This is consistent with previous
observations that CTCF is more responsible for long-range
interactions41,42, and that CTCF is a key component of both the
loop extrusion model4,5 and the formation of TADs43. At the
same time, H3K27ac is a histone mark for active enhancers and
promoters, and therefore it is possible that contacts enriched for
H3K27ac are shorter-range interactions between promoters and
enhancers, which could be more dynamic than CTCF loops44. In
the following sections, we first evaluate models trained by both
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Fig. 2 Peakachu framework applied in GM12878 Hi-C. a Distance distributions of CTCF ChIA-PET, H3K27ac HiChIP, and HiCCUPS (Hi-C) interactions in

GM12878 (top row). Distributions of Peakachu loops predicted from Hi-C after training with CTCF ChIA-PET or H3K27ac HiChIP data, and union of both

predictions (bottom row). Interactions in CTCF ChIA-PET were first pooled to remove local redundancy with the same algorithm used by Peakachu.

b Proportion of predicted loops with different regulatory element combinations at anchor loci. c CTCF binding patterns and APA analysis of Peakachu

predictions. d Overlap of loops predicted by Peakachu models trained with either CTCF ChIA-PET or H3K27ac HiChIP examples, and visualization of

interactions predicted from both models. e Different features drive the predictions for CTCF and H3K27ac models. APA plots for loops uniquely predicted

by CTCF or H3K27ac models (top row). The feature importance metric from random forests showing which pixels drive the classification most strongly

(bottom row). f Fraction and enrichment of Peakachu loop anchors bound for 133 transcription factors and 10 histone modifications. g Fraction of GM12878

interactions in orthogonal experiments recaptured by merged Peakachu loops. h Fraction of Peakachu predictions validated by orthogonal experiments.

Source data are available in the Source Data file.
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CTCF ChIA-PET and H3K27ac HiChIP and then combine their
results to achieve a more comprehensive set of interactions from
Hi-C data.

Peakachu captures known interactions from Hi-C data. We first
trained our model in GM12878 Hi-C data with the 92,807 pub-
lished chromatin interactions from CTCF ChIA-PET in the same
cell type (Supplementary Fig. 3). Loops in each chromosome were
predicted using models trained in the other 22 chromosomes
(Methods). Genome-wide, we identified 13,360 intrachromosomal
loops. Aggregate peak analysis (APA) shows that there is an
enrichment of Hi-C signals in the predicted loop regions (Fig. 2c).
Among the predicted loops, 51% have convergent CTCF binding
motifs in binding sites, 34% contain CTCF binding sites at a single
anchor, and 9% contain tandem motifs (Fig. 2c). 34% of the
predicted loops contained promoters at one anchor and enhancers
at another, and 41% contained enhancers at both anchors
(Fig. 2b). Seventeen percentage of the predictions contained nei-
ther promoters nor enhancers at either anchor.

Next, we trained a model using the 6395 GM12878 H3K27ac
HiChIP loops40 that contain a higher prevalence of short-range
interactions (Supplementary Fig. 3). In total, this model predicted
13,292 loops in the Hi-C matrix. We noticed that 65% of the
predictions are the same as from the model trained with CTCF:
65% of which exactly matched 64% of predictions from the CTCF
model (8606 of 13,292 and 13,360). When allowing for
mismatches of two bins for either anchor, the overlap increases
to 69 and 68% (9135 CTCF loops matching 9109 H3K27ac loops)
(Fig. 2d). The enrichment for promoters and enhancers is similar
but slightly higher than observed from the CTCF ChIA-PET
model (Fig. 2b): 37% of the predicted loops are between candidate
enhancers and promoters, and ~46% are between enhancers and
enhancers.

However, there are differences in the predictions from the two
models that vividly reflect the difference in the positive training
data. Firstly, we observed a higher percentage of short-range
interactions in predictions from the H3K27ac HiChIP model.
53% (7000/13,292) are short-range (<250 kb) while 14% are over
500 kb (Fig. 2a). On the contrary, only 36% (4874/13,360) of
predictions by the CTCF model were less than 250 kb, while 25%
(3335/13,360) were greater than 500 kb (Fig. 2a). This suggests
that H3K27ac HiChIP model identifies more short-range
interactions, and CTCF ChIA-PET model is better at identifying
long-range loops. Examining the Random Forest feature
importance, we found that the most important predictor in a
CTCF model is the center pixel, while the H3K27ac model is
additionally driven by the lower-left pixels (Fig. 2e). Secondly, we
observed a lower CTCF percentage when training with H3K27ac
HiChIP, compared with the model trained using CTCF ChIA-
PET data (Fig. 2c): 35% of the loops have convergent CTCF
binding motifs (vs. 51% in the model trained with CTCF ChIA-
PET), 42% contain binding sites at one anchor, and 13% contain
no CTCF binding sites. These disparate distributions of CTCF
patterns in the prediction are consistent with the patterns in the
positive training sets of both models (Supplementary Fig. 2b).

Despite the difference in genomic distance and CTCF motif
composition, we observed high validation rates for both
prediction sets (Supplementary Fig. 4). Eighty-four percent
(11,151 of 13,292) of loops from the H3K27ac HiChIP model
and 83% (11,143 of 13,360) of the CTCF ChIA-PET models can
be supported by at least one source, while 61% of HiChIP model
and 55% (7414 of 13,360) of ChIA-PET model can be supported
by at least two sources (Supplementary Fig. 4). Considering
predictions unique to either model, we found that 66% (2789 of
4225) of loops from the CTCF model and 68% (2824 of 4183)

from the H3K27ac model could be supported by at least one
orthogonal source. At least two sources could support 27% (1146
loops) of predictions unique to the CTCF model, and 44% (1827
loops) unique to the H3K27ac model.

Given that both models uniquely predicted valid loops, we
decided to use their merged, non-redundant output to report
loops from GM12878 and other cell types. This set of predictions
from GM12878 Hi-C has high recall and validation rates (Fig. 2g,
h) when compared with four validation sets. Nearly 80% of
Peakachu-predicted loops can be supported by at least one
orthogonal method. We also found that these predicted loops are
usually between distal regulatory elements and CTCF binding
sites (Supplementary Figs. 5 and 6).

To investigate whether models trained with CTCF ChIA-PET
and H3K27ac HiChIP data can also predict loops involving other
transcription factors (TFs) and histone modification markers, we
computed fold enrichment at loop anchors for 133 TFs and 10
histone modifications from the ENCODE consortium, following a
similar approach described in Rao et al. (Methods)8. We observed
a full range of TFs and histone modifications were enriched in our
predicted loops (Fig. 2f and Supplementary Fig. 7), including
factors such as YY141, ZNF14345, and H3K27me346, which have
been shown to play a role in chromatin loops but not used in our
training. This suggests that loop patterns learned from CTCF
ChIA-PET and H3K27ac HiChIP models can be used to predict
loops mediated by other factors.

Peakachu reveals a unique set of short-range interactions. To
benchmark the performance of Peakachu, we compared it with
two current popular enrichment-based methods, HiCCUPS23

and Fit-Hi-C21 (Fig. 3). First, we ran both methods on the same
GM12878 Hi-C matrix at 10 kb resolution. We noticed Fit-Hi-C
detected over 120 million significant interactions even with the
FDR cutoff <1e-5 (Supplementary Fig. 8a). Therefore, to make a
fair comparison, we sorted the Fit-Hi-C outputs by p-values
and merged the top 140,000 interactions into 14,876 loops
(Fig. 3a, b), with the same pooling algorithm used by Peakachu
(Methods). We observed that 72% (12,398 of 17,171) of Peakachu
results overlap with either HiCCUPS or Fit-Hi-C predictions
(Fig. 3a).

We systematically studied the characteristics of loops uniquely
detected by each method. Peakachu-specific predictions contain a
higher percentage of short-range loops (~79%, 3775/4773),
compared with 70 and 72% for HiCCUPS- and Fit-Hi-C-
specific loops (Fig. 3c). As for CTCF binding patterns, we found
85% of Peakachu-specific loops contain active CTCF binding sites
at least one anchor, compared with 73% for HiCCUPS and Fit-
Hi-C-specific loops (Fig. 3d, e). Most importantly, 58% (2766/
4773) of Peakachu-specific loops could be validated by at least
one ChIA-PET or HiChIP dataset, while the validation ratios for
HiCCUPS specific and Fit-Hi-C-specific loops are 48% (2205/
4632) and 40% (1888/4679), respectively (Fig. 3f).

Further, we validated Peakachu-specific loops by comparing
them with more external data such as ATAC-Seq, PhyloP
conservation scores47, and five orthogonal experimental data
generated from the 4D Nucleome consortium48, including
Dilution Hi-C49, H3K4me3 PLAC-Seq, RNAPII ChIA-PET,
TrAC-loop, and DNA SPRITE18. We found anchors of
Peakachu-specific loops are enriched with chromatin accessible
loci and highly conserved during the evolution, at all genomic
distances (Supplementary Fig. 9). APA analysis shows that these
Peakachu-specific loops have strong signal enrichment in all five
orthogonal datasets (Supplementary Fig. 10), suggesting that
Peakachu indeed identified a unique set of chromatin loops at a
high validation rate.
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We repeated the same aforementioned comparisons in human
leukemia cells (K562) and mouse embryonic stem cells (mESC),
and found that Peakachu consistently predicted more short-range
and CTCF-enriched loops, as well as higher validation rates
among orthogonal datasets (Supplementary Figs. 11, 12). There-
fore, we conclude that while searching only for the strongest dot
signals on a Hi-C map can reveal a large set of chromatin
interactions, a supervised machine-learning approach, especially
when trained with shorter regulatory interactions, can recover a
unique set of chromatin interactions.

Estimating false discovery rate (FDR) for Peakachu. In order to
estimate the FDR of our model, we applied Peakachu to predict

loops from a system previously used to investigate the impact of
cohesin loss on loop formations50. This system used a modified
human colorectal carcinoma cell line HCT-116, with an AID
domain tagging to both RAD21 alleles, an indispensable com-
ponent of the cohesin complex. When treated with auxin, RAD21
in this cell line is effectively destroyed, and loops concomitantly
disappeared in Hi-C maps genome-wide due to loss of cohesin.

Using a model trained with CTCF ChIA-PET interactions,
Peakachu identified only 19 loops genome-wide from the Hi-C map
of auxin-treated cells. The same model identified 11,814 loops from
the Hi-C map of untreated cells (Supplementary Data 2). Given that
the sequencing depths are similar between both maps, we roughly
estimated Peakachu’s FDR at ~0.2% (19/11,814).
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Peakachu is robust to sequencing depths. To test the effect of
sequencing depth on the performance of Peakachu, we compu-
tationally down-sampled the GM12878 dataset to 11 different
depths (ranging from 30 million to 2 billion cis-reads) (Methods),
with the same 10 kb resolution for each sequencing depth. We
then independently trained and predicted loops in each down-
sampled Hi-C matrix. First, we observed that lower sequencing
depths generally resulted in reduced numbers of predicted loops
(Fig. 4a). However, even at 1.5% down-sample rate (~30 million
reads), Peakachu still predict 2363 chromatin loops, 2128 (90%)
of which can be validated by at least one orthogonal data. More
importantly, we observed that the predicted loops are highly
concordant across different sequencing depths, although the
models are trained separately. For example, 87% (12,364/14,260)

of loops predicted in the 50% down-sampled matrix are also
predicted in the original datasets, while 88% (6788/7683) of the
loops predicted in the 10% down-sampled matrix are predicted in
the original dataset. Even when we used the 1.5% down-sampled
matrix, 85% of the predicted loops overlap with loops predicted in
the original matrix as well (Fig. 4b, c).

APA analysis of predicted loops at varying sequencing depths
showed similar enrichment of contact signals compared to
surrounding pixels (Fig. 4d and Supplementary Fig. 13). As
sequencing depth decreased, validation rates of predicted loops
remained similar while their distance distributions tended toward
shorter range (Supplementary Fig. 8b) and retained a majority of
loops predicted by HiCCUPS in the same maps (Supplementary
Figs. 14, 15).
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We noticed that both HiCCUPS and Fit-Hi-C showed more
sensitivity to sequencing depths compared with Peakachu
(Supplementary Figs. 8a and 14a). For example, at 1.5% down-
sampling, HiCCUPS could only identify 655 loops (3.6-fold less
than Peakachu) even with the most lenient parameters, and Fit-
Hi-C only detected 1,732 interactions after specifying an FDR <
0.1. However, only 79% (519/655) and 83% (1433/1732) of
HiCCUPS and Fit-Hi-C loops could be validated by at least one
ChIA-PET or HiChIP dataset at this sequencing depth (Supple-
mentary Fig. 16a).

Since we have pretrained 11 models ranging from 30 million to
2 billion read depths, we wanted to investigate whether it is
necessary for our users to train a new Peakachu model each time
with exactly the same sequencing depths. First, we compared
three pretrained models: 100% vs. 90% (2 billion vs 1.8 billion),
and 80% vs 90% (1.6 billion vs. 1.8 billion reads). The overlap
between each set of prediction is ~85% (Supplementary Fig. 17a);
this variation is comparable to the predictions from two biological
replicates with similar sequencing depth (14.6% variation,
sequencing depth 382 million vs 389 million, Supplementary
Fig. 17b). We then evaluated the variation of models trained at
more disparate sequencing depths (30 million, 200 million and
1.8 billion) (Supplementary Fig. 17c). We still observed reason-
able overlap between models trained from different sequencing
depths. Therefore, we believe for any new Hi-C experiments,
choosing the pretrained models with the closest sequencing depth
will yield satisfactory results.

Peakachu models are transferrable in different cell types. To
test whether models trained in one cell type can be applied in
other cell types, we first used the model trained in GM12878
CTCF ChIA-PET to predict loops in the human chronic lym-
phocytic leukemia cell line K562 (~500 million cis-reads)8 and in
mouse embryonic stem cells (1.9 billion cis-reads)51. To match
the sequencing depths in K562 and mESC, we used models
trained with 20% and 90% GM12878 Hi-C reads and CTCF
ChIA-PET examples (Fig. 5). In K562, we predicted 13,566
chromatin loops: 37% (5,076/13,566) of which contain con-
vergent CTCF binding sites and 41% (5623/13,566) with CTCF
binding at both anchors, and an additional 45% (6066 loops)
having CTCF binding at one anchor (Fig. 5b). We predicted
14,842 loops in mESC: 41% (6102 of 14,842) contained con-
vergent CTCF binding sites and an additional 44% (6546 of
14,842) had one CTCF anchor (Fig. 5e). Both sets of predictions
contained regulatory elements in at least 80% of candidate loops
(Fig. 5c, f).

Next, we compared predicted loops in K562 from the model
trained with GM12878 CTCF ChIA-PET with a model trained
with K562 CTCF ChIA-PET52. Overall, the predictions are highly
similar. A total of 13,566 candidate loops were predicted by the
GM12878 model vs 13,515 by K562 model. 78% (10,571/13,566)
of GM12878 model and 78% (10,571/13,515) of loops from the
K562 model are the same. Their percentage of convergent CTCF
binding sites and percentage of enrichment of cis-regulatory
elements are consequently similar as well (Fig. 5b, c).

To further validate the transferability of Peakachu models, we
compared loops predicted in mESC by models trained with either
GM12878 CTCF ChIA-PET or mESC SMC1 HiChIP13. Again,
the total number of predictions was similar, with 14,842
candidate loops from the GM12878 model and 13,791 from the
mESC model. Of these, 10,242 were the same, representing 69%
of predictions from the GM12878 model and 74% of those from
the mESC model (Fig. 5d). While the total overlap was slightly
less than the comparable K562 analysis, we found that both sets
of mESC predictions had similar distributions for both CTCF

binding site orientations (Fig. 5e), and that regulatory elements
were slightly more enriched in the model trained with mESC
SMC1 HiChIP (Fig. 5f).

With K562 and mESC loops serving as a proof-of-concept for
transferable GM12878-trained models in other cell types and
species, we next predicted interactions in 53 additional Hi-C
datasets ranging from 25 million to 3.6 billion cis-reads using
models trained with down-sampled GM12878 contact maps
(Supplementary Data 2). We found that the majority of the
predicted loops (>87.5%) are located within the same TADs
(Supplementary Fig. 18) and APA analysis shows there are strong
enrichment of Hi-C signals for the loops predicted in all the
datasets (Supplementary Fig. 19). Furthermore, to investigate
whether differential chromatin loops are associated with
differential gene expression, we first compared loops predicted
in GM12878 and K562 cells. By requiring at least 2-fold changes
in the Peakachu probability score for a loop, we identified 1134
GM12878-specific loops and 1075 K562-specific loops (Supple-
mentary Fig. 20). Interestingly, we found that genes located in
GM12878-specific loops were also expressed at a higher level in
GM12878, while genes in K562-specific loops had higher
expression level in K562 cells. We also performed a similar
analysis between GM12878 and IMR90, and made a similar
observation (Supplementary Fig. 20). These results suggest loops
predicted by Peakachu are closely related to gene regulations and
biological functions.

Applying Peakachu on DNA SPRITE and Micro-C data. We
were interested in Peakachu’s potential to perform cross-platform
comparisons. To this end, we tested the performance of Peakachu
in Micro-C10, a variant of Hi-C protocol capable of higher con-
tact resolutions, and DNA SPRITE18, which interrogates chro-
matin interactions by using a split-pool procedure and assigning a
unique sequence barcode for each chromatin contact. We
downloaded the H1-ESC Hi-C and Micro-C data53 from the 4DN
data portal and the GM12878 DNA SPRITE data from Quinodoz
et al.18. In both cell lines, CTCF ChIA-PET data are available and
were used as positive training sets for Peakachu models trained
for Hi-C, Micro-C, and SPRITE (Fig. 6). We used the same
parameters and search space for all analyses.

In Micro-C, we predicted a total of 16,298 loops, which is
higher than the number of loops we predicted in Hi-C data
(11,247). This is potentially due to the fact that Micro-C improved
upon the Hi-C protocol by using a different crosslinker and
fragmenting chromatin with higher-resolution enzyme MNase10.
74% (8315/11,247) of the Hi-C loops and 51% of the Micro-C
loops are the same (Fig. 6a). Interestingly, the Micro-C predicted
loops contain a higher convergent CTCF ratio (58% vs 34%,
Fig. 6b) and in general, a higher CTCF binding rate. Micro-C
predicted loops also contain a slightly higher percentage of
enhancer-promoter or enhancer-enhancer interactions (Fig. 6c).

The DNA SPRITE dataset for GM12878 contains 135 million
cis-reads, resulting in a contact map that was quite sparse
compared to the Hi-C map comprised by 2 billion reads. To the
best of our knowledge, we are not aware of any successful effort
that can identify loops from this set of SPRITE data. Here by
training and applying the Peakachu model, we were able to
predict 1731 loops, 77% (1338/1731) of which can be validated by
Hi-C predicted loops (Fig. 6d). The majority of SPRITE loops in
this dataset (66%, 1140 of 1731) are within 250 kb, potentially due
to the sparsity of the contact map. Compared with Hi-C, loops
identified in SPRITE have lower convergent CTCF ratios (Fig. 6e)
but have similar percentages of interactions between cis-
regulatory elements (Fig. 6f). To further validate the SPRITE
loops predicted by Peakachu, we compared them with four
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orthogonal types of data, including CTCF ChIA-PET, RAD21
ChIA-PET, SMC1 HiChIP, and H3K27ac HiChIP datasets, and
found that 85% (1475/1731) of SPRITE loops could be supported
by at least one source (Supplementary Fig. 21).

Overall, these analyses show that a general data-driven
framework can produce viable decision functions to classify
loops in a platform-agnostic manner, especially for deeply
sequenced contact maps.

Discussion
Here we present Peakachu, a machine-learning framework to
predict chromatin loops from genome-wide contact maps. To the
best of our knowledge, all current loop detection algorithms are
based on searching for statistically enriched interactions against a
global or local background, and vary in choices of statistical
model and background definitions21–29. By learning from
enrichment-based platforms such as ChIA-PET/HiChIP or
Capture Hi-C, Peakachu can detect high-quality loop interactions
from genome-wide interaction data such as Hi-C and SPRITE,
even at low sequencing depths.

In total, we tested five sets of interactions to train our model,
including CTCF ChIA-PET, RAD21 ChIA-PET, Smc1 HiChIP,
H3K27ac HiChIP, and promoter Capture Hi-C (Supplementary
Figs. 22 and 23). We noted that the CTCF ChIA-PET model
predicts more long-range loops, while the H3K27ac HiChIP

model predicts more short-range loops which link distal reg-
ulatory elements to their potential target genes. Examining the
Random Forest feature importance, we found that the most
important predictor in a CTCF model is the center pixel, while
the H3K27ac model is additionally driven by lower-left pixels
(Supplementary Fig. 24). We also noted that although Capture
Hi-C is different from antibody-based assays, the models trained
with Capture Hi-C also performs well and the results are com-
parable to models trained with ChIA-PET and HiChIP data
(Supplementary Figs. 22 and 23), suggesting that Peakachu is
robust to different types of positive training dataset.

Further, one potential extension of this framework will be
training with interactions from more orthogonal data types for
the study of higher-order chromatin organization, such as
HiFISH imaging data. To evaluate how many positive training
data points needed to train a Peakachu model, we manually
picked ~200 annotated loops (Supplementary Data 3) and found
it was enough for Peakachu to train a model to perform genome-
wide predictions (Supplementary Fig. 25), indicating that Pea-
kachu is readily applicable to train a working model with only
several hundred positive data points.

Since there have been data augmentation methods38,54 to
enhance the data resolution of Hi-C data, we evaluated whether
they can help further improve the performance of Peakachu. For
this purpose, we first down-sampled GM128787 Hi-C matrix at
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1.5 and 10%, and then enhanced them genome-wide with Boost-
HiC54, a method based on detecting the shortest path on the
contact graph. We observed that Boost-HiC can help Peakachu
identify more loops compared with un-boosted Hi-C matrices
(Supplementary Fig. 16). Depending on the augmentation rate,
the overall validation rate of loops from boosted Hi-C matrices
can be lower, which may be a reasonable trade-off depending on
the design of the study.

By comparing the performance of Peakachu, HiCCUPS, and
Fit-Hi-C, we found that although a large proportion of predic-
tions are shared by all three methods, each method detects a
unique set of chromatin loops with various distance distributions,
CTCF binding, and validation ratios by orthogonal datasets. This
result suggests that the complete set of chromatin loops might not
follow the same interaction pattern and be captured by a single
method. The major improvement of Peakachu is its robustness to
sequencing depth, which makes it applicable for predicting
chromatin loops in Hi-C data with only ~30 million intrachro-
mosomal reads.

The number of techniques for chromosome conformation
study continues to grow, and there are still platforms such as
DNA SPRITE that lack dedicated algorithms for chromatin
loop detection. Here we show the generalizability of our fra-
mework by demonstrating its performance in a DNA SPRITE
data matrix. In future studies, we will apply Peakachu frame-
work in more available platforms to investigate advantages and
pitfalls of each technique in loop detecting and hope to unveil

the complete picture of loop-level structure in mammalian
genomes.

Methods
Peakachu Framework. Fitting a Peakachu model requires two components: a Hi-C
matrix binned to 10 kb and an interaction list that defines a positive training set.
For every interaction in the list, a corresponding 11 × 11 window centered at the
interaction is collected from the Hi-C matrix. The ratio of the center pixel to the
lower-left quadrant (P2LL) of this window is used as an indicator variable prior to
training, and the minimum P2LL for the positive class is set to 0.1. In other words,
samples from the input training list are rejected if their Hi-C value is less than 10%
of the average value within the loop. After collecting the positive class, a com-
parable number of windows with random coordinates and nonzero centers are
collected to define a negative class.

Each sample is decomposed into a vector of 2n+ 1 features, where n is the
radius of a sample’s feature space. With n= 5, 243 features are constructed from
11×11 windows. One hundred and twenty-one of these represent the values of each
pixel in an 11 × 11 window. Another 121 represent the relative ranks of each pixel
within the window. A final variable, P2LL, is appended to each vector of features.
Using scikit-learn, the training set is then used as input to fit a random forest of
100 decision trees and each tree is trained on a random combination of 15–20
features. To avoid the overfitting problem, the whole dataset is split into a separate
training and test dataset in a chromosome-wise manner, i.e., 22 chromosomes are
used to train a model that is used to make final predictions in 1 hold-out
chromosome. Therefore, the final predicted loops would never be used/seen during
training. During the training, we use a 3-fold cross-validation grid search to find
the optimal hyperparameters (including splitting criterion, maximum tree depth
and class weights) that yield a satisfying generalization performance. Matthew’s
Correlation Coefficient is used as the primary metric for selecting the best model.

Trained models can be applied to contact maps of the same platform as the
training matrix. Peakachu defines feature vectors for all nonzero pixels within a
given genomic span, and scores each using the predict_proba method provided by
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Fig. 6 Cross-platform comparison of Peakachu loops in different tissue types. a Overlap of loops predicted in H1ESC by Micro-C and Hi-C, using the

same CTCF ChIA-PET training set. b Patterns of CTCF binding site orientations in predicted loops. c Regulatory elements at anchor loci of predicted loops.

d–f Repeat analysis comparing DNA SPRITE with Hi-C in GM12878, using the same CTCF ChIA-PET training set. Source data are available in the Source

Data file.
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the scikit-learn library. Usually, highly scored pixels are found grouped together,
and only one representative pixel is reported from each cluster. To select
representative pixels, we developed a greedy algorithm entailing two steps: first,
define 1D loop anchor regions enriched for highly scored (P > 0.9) pixels, then run
DBSCAN between any two connected anchor regions. The identification of the
loop-enriched anchors was performed by counting the candidate pixels and finding
peaks along the chromosomes. Specifically, we applied the find_peaks and
peak_widths functions from Python’s Scipy package to locate the peak summits
and estimate the peak widths, respectively.

Performance test of different machine-learning frameworks. To train a model
best separating defined training sets, we tested 6 machine-learning frameworks
implemented in scikit-learn: Gaussian Naïve Bayes, Perceptron, Logistic Regres-
sion, SVM (linear kernel), SVM (rbf kernel) and Random Forest. All frameworks
used a similar strategy described above to train a model for each chromosome
independently using data from the rest of the 22 chromosomes. Except for
Gaussian Naïve Bayes, we used the same grid search approach to find the optimal
hyperparameters for all frameworks during the training. Below are hyperpara-
meters tuned for each framework:

(1) Perceptron: penalty/regularization and class weights
(2) Logistic Regression: penalty, C (inverse of regularization strength), class

weights and the Elastic-Net mixing parameter
(3) SVM (linear kernel): the loss function, C and class weights
(4) SVM (rbf kernel): C and class weights
(5) Random Forest: splitting criterion, maximum tree depth and class weights

The prediction performance of each framework was measured by Matthews
Correlation Coefficient (MCC), Accuracy (ACC), Receiver Operating
Characteristic (ROC) Curves and Area Under the ROC curve (AUC). As shown in
the Supplementary Fig. 27, Random Forest achieved best prediction performance
and consumed relatively less training time for both CTCF and H3K27ac training
sets used in this study.

Peakachu probability tuning. Since Peakachu models are standard random for-
ests, the assigned probability value for each pixel can be used as a filtering criterion.
Lowering the probability threshold always generates more loops with less ChIA-
PET/HiChIP dataset support, while higher probability thresholds achieve fewer but
better-quality loops. For most predictions in GM12878 of this work, we set the
cutoff to 0.97 and 0.92 for the CTCF model and the H3K27ac model, respectively.
In Supplementary Fig. 17a, b, the probability was tuned to obtain a similar number
of loops as the model trained with 90% of Hi-C reads. Similarly, in Supplementary
Fig. 17c, the probability for the models trained with 90% or 1.5% of Hi-C reads was
tuned according to the model trained with 10% of Hi-C reads. The cutoffs used in
other cell lines are detailed in Supplementary Data 2.

Loop detection with HiCCUPS and Fit-Hi-C. We used four kind of HiCCUPS
settings in this work: (1) When comparing with Peakachu and Fit-Hi-C, we tuned
the −f and −t parameters to make the number of loops uniquely predicted by each
method similar. (2) When testing HiCCUPS performance on the down-sampled
contact maps, we first ran HiCCUPS with the default parameters (Supplementary
Fig. 14), which generally outputted less than 1/3 of the Peakachu loops at each
down-sample rate. (3) We also tuned the parameters to make HiCCUPS detect a
similar number of Peakachu loops with 100% Hi-C reads and then applied identical
parameters (−f 0.37 −t 1.4,1,1,1) to the rest of the down-sample rates (Supple-
mentary Fig. 15). (4) At the 1.5% down-sample rate (~30 million reads), no loops
could be detected even with the lenient parameters used in (3); therefore, we
further tuned the parameters to −f 0.9 −t 3.6,1,1,1 and identified 655 loops
(Supplementary Fig. 16).

Fit-Hi-C was run on the 10 kb Hi-C matrices with the following settings: −p 2
−m 10 −U 3,000,000 -L 50,000. The results of the 2nd spline pass were then
filtered with the q-value cutoff < 1e-5 (Supplementary Fig. 8a). To make a fair
comparison with Peakachu and HiCCUPS on the 100% matrix, we sorted the
detected interactions by p-values and performed the same pooling algorithm used
by Peakachu. At the 1.5% down-sample rate, we changed the q-value cutoff to 0.1
because no interactions remained with q-value < 1e-5.

Down-sample Hi-C reads to a specified ratio. The contact maps were down-
sampled using a binomial probability without re-mapping. For the down-sample
rate α (0<α<1), we iterated each nonzero pixel in the full contact matrix Mij and
designated the count frequency a random integer number generated from a
binomial distribution of parametersMij and α, whereMij is the contact count of the
100% Hi-C matrix between bin i and bin j.

Enrichment analysis of TFs and histone modifications. To validate that Pea-
kachu loops can also involve factors other than CTCF and H3K27ac, we down-
loaded the ENCODE ChIP-Seq peak files for 133 transcription factors (TFs) and 10
histone modifications in GM12878. Then a fold enrichment score was calculated
for each TF or histone modification at loop anchors. Briefly, we first identified non-
redundant loop anchors from Peakachu-predicted loops in GM12878. For each TF

or histone modification, we iterated this anchor list and counted the number of
anchors that overlapped at least one ChIP-Seq peak. Then we randomly shuffled
the loops to generate 50 controls and repeated the same procedure for each control.
For every control, the genomic distance distribution and the number of random
loops on each chromosome stayed the same, and the interval between the two ends
of each random loop did not overlap any gaps in the reference genome (hg19).
Finally, the fold enrichment score was calculated by dividing the number of
anchors containing ChIP-Seq peaks by the average number of random loci con-
taining ChIP-Seq peaks (Fig. 2f).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All datasets used in this work are summarized in Supplementary Data 1. The Hi-C

contact maps of GM12878 and K562 were obtained from ftp://cooler.csail.mit.edu/

coolers/hg19/. The DNA SPRITE contact map for GM12878 was obtained from 4DN

data portal with accession code 4DNFIUOOYQC3. The Hi-C contact map of H1-ESC

was obtained from 4DN data portal with accession code 4DNFI6HDY7WZ. The Micro-C

contact map of H1-ESC was obtained from 4DN data portal with accession code

4DNFI9GMP2J8. The CTCF ChIA-PET interactions in GM12878 were obtained from

Tang et al.24. The Rad21 ChIA-PET interactions in GM12878 were obtained from

Heidari et al.39. The SMC1 HiChIP interactions in GM12878 were obtained from

Mumbach et al.13. The H3K27ac HiChIP interactions in GM12878 were obtained from

Mumbach et al.40. The promoter Capture Hi-C interactions in GM12878 were obtained

from Cairns et al.28. The CTCF ChIA-PET interactions in K562 were obtained from

ENCODE with accession code ENCFF001THV. The SMC1 HiChIP interactions in

mouse ESC were obtained from Mumbach et al.13. The CTCF ChIA-PET interactions in

H1-ESC were obtained from 4DN data portal with accession code 4DNESR9S8R38. All

aforementioned positive training datasets can be found at https://github.com/tariks/

peakachu/tree/master/training-sets. The enhancer and promoter loci in GM12878, K562,

H1-ESC, and mouse ESC were extracted from public ChromHMM annotations in

ENCODE and can be found at https://github.com/tariks/peakachu/tree/master/analysis/

annotations. The genome-wide CTCF motifs in human and mouse were obtained from

https://bcm.app.box.com/v/juicerawsmirror/folder/11363582187. The predicted

chromatin loops in 56 Hi-C datasets can be downloaded from the 3D Genome Browser

(http://3dgenome.org). Source data are provided with this paper.

Code availability
We used cooler 0.8.5 to store and extract contact matrices. We used Juicer 1.11.09 for

HiCCUPS loop detections. For Fit-Hi-C, we used the version 2.0.7. We used deeptools

3.1.3 to generate the heatmaps in Supplementary Fig. 7. We used hicpeaks 0.3.4 to

generate APA plots. The peakachu source code, the down-sampling script, the

interaction pooling scripts and the pretrained models are available in GitHub under the

MIT License: https://github.com/tariks/peakachu.
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