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Abstract

We propose in this work a patch-based image labeling method relying on a label propagation
framework. Based on image intensity similarities between the input image and an anatomy
textbook, an original strategy which does not require any non-rigid registration is presented.
Following recent developments in non-local image denoising, the similarity between images is
represented by a weighted graph computed from an intensity-based distance between patches.
Experiments on simulated and in-vivo MR images show that the proposed method is very
successful in providing automated human brain labeling.

Index Terms

brain MRI; image segmentation; non-local approach; label propagation

l. Introduction

Automated brain labeling [28], [7], [24], [23] is a crucial step in neuroimaging studies since
it provides a segmentation map of contiguous meaningful brain regions. Label propagation
(also called label fusion) is a way to segment an image and it is usually performed by
registering one or several labeled images to the image to be segmented. The labels are then
mapped and fused using classification rules to produce a new label map of the input image
[301, [15], [31, [2], [16], [81, [33], [35], [26], [38], [34], [25], [19]. The principle of such
registration-based labeling approach is shown in Figure 1. This segmentation approach is
highly versatile since the main prerequisite is an anatomy textbook, 7.e. a set of measured
images (such as Magnetic Resonance (MR) imaging or Computerized Tomography (CT))
and the corresponding label maps. The use of label propagation has been extensively
investigated for automatic brain MR segmentation, especially for structures such as
hippocampus, caudate, putamen, amygdala, etc., and cortex areas. The keypoints of
registration-based label propagation approaches concern the accuracy of the non-rigid
registration, the fusion rules [11], [30], [36], [15], [3], the selection of the labeled images
[37], [2], [35] and the labeling errors in primary manual segmentation.

Because of the use of a registration algorithm, one makes the implicit (and strong)
assumption that there exists a one-to-one mapping between the input image and all the
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anatomical images of the textbook. In the case where no one-to-one mapping is possible, a
registration-based labeling framework propagates incorrect labels. Moreover, local incorrect
matching due to inherent registration errors can also lead to segmentation errors. Finally, as
shown in a recent evaluation study [22], there is a non-negligible discrepancy in term of
quality of matching between non-rigid registration techniques. Thus, even if several
algorithms are now freely available, the non-rigid registration procedure remains a complex
step to setup and it is usually quite CPU time consuming.

In this work, following recent developments in non-local image denoising [6], [17], we
propose an alternate strategy for label propagation which does not require any non-rigid
registration. The proposed algorithm makes use of local similarities between the image to be
labeled and the images contained in the anatomy textbook. The key idea is similar to a fuzzy
block matching approach which avoids the constraint of a strict one-to-one mapping. The
method described in this article has been developed irrespective of a similar patch-based
approach recently proposed by Coupé et al. [10]. The contributions of our work can be
summarized as follows: 1) a patch-based framework for automated image labeling, 2)
investigation of several patch aggregation strategies (pair-wise vs group-wise labeling and
pointwise vs multipoint estimation), 3) comparison of fusion rules (majority voting rule vs
STAPLE [36]), 4) application to human brain labeling using publicly available simulated
(Brainweb) and in-vivo (IBSR and NAO-NIREP) datasets, 5) comparison with a non-rigid
registration-based technique.

Il. Patch-based Label Propagation

A. Patch-based Principle

Recently, Buades et al. [6] have proposed a very efficient denoising algorithm relying on a
non-local framework. Since then, this non-local strategy has been studied and applied in
several image processing applications such as non-local regularization functionals in the
context of inverse problems [20], [27], [14], [29], [31] or medical image synthesis [32].

Let us consider, over the image domain Q, a weighted graph w that links together the voxels
of the input image 7with a weight w(X, y), (X, Y) € Q2. This weighted graph wis a
representation of non-local similarities in the input image 1.

In [6], the non-local graph wis used for denoising purpose using a neighborhood averaging
strategy (called non-local means (NLM)):

Zyeow (X, YI(y)

¥x € Q, Li,(x)=
X s T (X) Z}'E!!“"’(x‘y)

1

where wis the graph of self-similarity computed on the noisy image 7, LY) is the gray level
value of the image 7at the voxel y and 1, is a denoised version of I

The weighted graph reflects the similarities between voxels of the same image. It can be
computed using a intensity-based distance between patches [9]:

A =16

ONBG2

NE Py (s,l.)-' 70y

wix,y)=/ (2)

where P(X) is a 3D patch of the image /centered at voxel X; fis a kernel function (fx) = ¥
in [6]), Vis the number of voxels of a 3D patch; o is the standard deviation of the noise and
Bis a smoothing parameter. With the assumption of Gaussian noise in images, 8 can be set
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to 1 (see [6] for theoretical justifications) and the standard deviation of noise o is estimated
via pseudo-residuals as defined in [13].

B. Label Propagation

In this work, we propose to investigate the use of such a non-local patch-based approach for
label propagation. Let 7 be an anatomy textbook containing a set of T1-weighted MR
images Z and the corresponding label maps £: 7 = {( %, £),i=1, ---, n}.

1) Weighted Graph and Label Propagation—Let us consider, over the image domain
Q, a weighted graph w; that links together voxels X of the input image /and voxels y of the
image Z. with a weight w(X, ), (X, y) € Q2. w;is computed as follows:

s L6 = 7))’

X E50ix I‘_W'E.'/}A‘ﬁi {

“‘F(x! y):f 2N‘[)ro-_~2

3

This weighted graph wy;is a representation of non-local similarities between the input image
Zand the image % of the textbook (see Figure 2).

The assumption on which the proposed method relies is the following one: if patches of the
input image 1 are locally similar to patches of the anatomy textbook, they should have a
similar label. The label propagation procedure is then performed using the set of graphs
{w;} =1, ..., p Which reflects the local similarities between Jand { Z} 1, ...

In the context of denoising [6], Buades ef al. assume that every patch in a natural image has
many similar patches in the same image. Thus, the graph wis computed between each voxel
of the input image (which has led to the term “non-local” algorithm): w= { (X, ¥), V(X, y) €
Q?}. This is because of the assumption that similarities can be found in the entire image /.
However, in the context of human brain labeling, the location of the brain structures is not
highly variable and it is then not desirable to go through the entire image domain Q to find
good examples for the segmentation of a specific part of a brain. In this work, the graph is
computed using a limited number of neighbors: w= {w(X, y), VX € Q,y € ~(X)}, where ~
(X) is the neighborhood of the voxel X. The size of the considered neighborhood V is
directly related to the brain variability. The influence of this parameter is evaluated in the
Section III-B.

2) Pair-wise Label Propagation—For clarity sake, let start with an input image /and a
textbook 7 which contains only one anatomical image and the corresponding labeled image:
T =( I, £) (this is the basis of pair-wise label propagation techniques). Using the patch-
based approach described previously, the image /can be labeled using the following
equation:

Ix € O, L(x) Zye W% NLWY)
¥x € LA )=— haa .
E_,:.‘,,V,:K:}l‘(x. Y) @)

where £(Y) is a vector of [0, 11M (M is the total number of labels) representing the
proportions for each label at the voxel y in the image £ (this notation unifies the case where
the anatomy textbook contains hard or fuzzy label maps). Thus, L(X) = (/{(X), h(X), -, Iys
(X)) are the membership ratios of the voxel X with respect to the M labels, such that Xz 7 (X)
=1 and IiX) € [0, 1], VK € [[1, M]]. Then, for each voxel X of [ the equation (4) leads to a
fuzzy labeling of the input image 7since L(x) € [0, 1]1™. A hard segmentation H of the
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image /can be obtained by taking the component of L(X) with the highest value. The
hardening of the fuzzy label vector L(X) to get a binary label vector H(X) is done as follows:

1 ith=|lLw||, (5)
0 otherwise.

hfc (X) = {

Now, let us consider a textbook 7 containing z pairs of images: 7 = {( &, &), i=1, -, n}.
The most straightforward approach is to perform 2 times the pair-wise procedure previously
described, leading to n fuzzy segmentations {L(X)} =1, ... (or 7 hard segmentations

{H{X)} =1, ..., n)- Then, these nlabel maps can be fused using a classifier combination
strategy [21]. Thus, for instance, under the assumption of equal priors and by hardening the
fuzzy label maps L;to get a set of hard segmentations {H;} 1, ..., ,, the final labeling A(X) at
the voxel X can be obtained by applying the majority voting (MV) rule:

: n . JER—. " n e
L(x)= 1 1fzé=1fr;k(x)_mdxj:lEézlk,j(x) ©
0 otherwise.

where A;;is a binary value corresponding to the label ; of the image 7 at the voxel x and A(X)

The pair-wise labeling approach using the majority voting rule to fuse the labels is described
in Algorithm 1. A version of this pair-wise technique using STAPLE as the final label fusion
is also evaluated in the Section III.

3) Group-wise Label Propagation—We propose to study a group-wise combination
strategy which takes all the images of the textbook to produce a fuzzy labeling. Indeed, the
Equation (4) can be applied for an arbitrary number of labeled images:

S8 o WK ) ZY)

?:l Z.‘;Eu‘x’:xiw!i(x’ y)

¥x € Q, L(x)= )

Again, this leads to a fuzzy labeling which can be thresholded to obtain a hard labeling by
taking the maximum of each vector L(X):

L ifhm=[Lol,
0 otherwise. ®

hfc (X) = {

In this case, the final segmentation A can be set to L (resp. H) if a final fuzzy (resp. hard)
labeling is desired. Unlike the pair-wise approach, the weight of each label map % is
automatically set by using the local patch-based similarity measure (see Equation (3)) with
the input image Z There is no need to apply a classifier combination strategy. This is
described in Algorithm 2.

C. Pointwise and Multipoint Estimation

In the previous section, according to the classification proposed by Katkovnik ef al. in [17],
the patch-based labeling techniques (both pair-wise and group-wise) provide pointwise
estimates (Equations (4) and (7)). This means that the pairwise and group-wise methods
estimate one label vector L for every voxel X. However, since the patch-based similarity
measure is the core of the proposed labeling methods, one can obtain a label patch estimate
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at each considered voxel. This is called a multipoint label estimator. In contrast to the
pointwise estimator, a multipoint estimator gives the estimate for a set of points (in our case,
a patch).

For instance, a multipoint estimate for the group-wise labeling method is given by:

"

VxeQP,0=) > wix P, M)

i=1ye. 4 (x)

where Fr,(Y) is a 3D patch of the label map £: centered at the voxel y, and P;(X) is one
multipoint label estimate centered at the voxel X. Thus, by going through the entire image
domain Q, one label patch estimate is obtain for each voxel. Since there is an overlap
between all these label patches (each containing NV voxels), for every voxel X € Q, we have
Nlabel estimates. Indeed, the label patch estimate of each voxel y which belongs to the
patch AX) contributes to the final label estimate of the voxel X. These N estimates can then
be aggregated using a combination classifier. In this work, we have used the majority voting
rule to fuse these N estimates.

As suggested in [9], it is possible to speed-up the algorithm by considering a subset Q* of
the image domain Q with the constraint that there is at least one label estimate for each
voxel. For instance, by using patches of size 3 x 3 x 3 voxels, one can consider only voxels
with even spatial index (in each dimension) which leads to a speed-up of 8. Such an
approach (denoted as fast multipoint in this article) is evaluated in the Section III. Moreover,
for pointwise and multipoint estimation, based on the mean and variance of patches [9], a
voxel preselection can be used to avoid useless computation.

Finally, several patch-based label propagation algorithms can be derived from the proposed
framework depending of the following choices: pair-wise (PW) vs group-wise (GW), point-
wise vs (possibly fast) multipoint estimates, majority voting (MV) rule vs STAPLE.

lll. Experiments

A. Evaluation Framework

In this work, experiments have been carried out on three publicly available image datasets:
Brainweb [4], the Internet Brain Segmentation Repository (IBSR) database and the NAQ
database developed for the Non-rigid Image Registration Evaluation Project (NIREP). These
three complementary image datasets provide different challenges for label propagation
techniques: Brainweb dataset is used to mainly evaluate the separation power between 2
principal brain structures (white matter and gray matter), IBSR is a well known dataset for
segmentation algorithms evaluation since it contains 32 brain structures (white matter,
cortex, internal gray structures such as hippocampus, caudate, thalamus, putamen, etc.), and
the NAO dataset which has been originally created for registration evaluation purpose,
provide also a good evaluation framework for cortical parcellation algorithms.

The Brainweb dataset! is a set of 20 T1-weighted simulated data with these specific
parameters: SFLASH (spoiled FLASH) sequence with TR=22ms, TE=9.2ms, flip angle=30
deg and 1 mm isotropic voxel size. Each anatomical model consists of a set of 3-
dimensional tissue membership volumes, one for each tissue class: background, cerebro-
spinal fluid (CSF), gray matter (GM), white matter (WM), fat, muscle, muscle/skin, skull,

1hup://mou]dy‘bic.mni.mcgill .ca/brainweb
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blood vessels, connective (region around fat), dura matter and bone marrow. Example
images from the Brainweb dataset are shown in Figure 3 (first column).

For the IBSR dataset?, the MR brain data sets and their manual segmentations are provided
by the Center for Morphometric Analysis at Massachusetts General Hospital. It contains 18
images of healthy brains and the corresponding segmentation of the whole brain into 32
structures. Example images from the IBSR dataset are shown in Figure 3 (second column).
The following pre-processing has been applied on IBSR images: 1) N3-based bias field
correction using MIPAV3, 2) ITK-based histogram matching using 3DSlicer?, 3) affine
registration using ANTS? [5]. For each image to segment, all the images of the anatomy
textbook are registered to this current image. Then, the label maps are also transformed
(using a nearest neighbor interpolation). A total of 18*17 affine registrations have been
performed.

The evaluation database NAOO consists of a population of 16 annotated 3D MR image
volumes corresponding to 8 normal adult males and 8 females. The 16 MR data sets have
been segmented into 32 gray matter regions of interest (ROIs) (see Figure 3 (third column).
MR images were obtained in a General Electric Signa scanner operating at 1.5 Tesla, using
the following protocol: SPGR/50, TR 24, TE 7, NEX 1 matrix 256 x 192, FOV 24 cm. 124
contiguous coronal slices were obtained, with 1.5 or 1.6 mm thick, and with an interpixel
distance of 0.94 mm. Three data sets were obtained for each brain during each imaging
session. These were coregistered and averaged post hoc using Automated Image
Registration (AIR 3.03, UCLA)’. The final data volumes had anisotropic voxels with an
interpixel spacing of 0.7 mm and interslice spacing of 1.5 — 1.6mm. All brains were
reconstructed in three dimensions using Brainvox®. Before tracing ROISs, brains were
realigned along a plane running through the anterior and posterior commissures (i.e., the
AC-PC line); this ensured that coronal slices in all subjects were perpendicular to a
uniformly and anatomically defined axis of the brain. The following preprocessing has been
applied on NAO images: 1) N3-based bias field correction using MIPAV, 2) ITK-based
histogram matching using 3DSlicer.

As it is usually used for label propagation method evaluation, for each aforementioned
dataset, a leave-one-out study is performed. Each image is separately selected as the image
to be segmented. Using the provided segmentations of the remaining images as the anatomy
textbook, label propagation is performed to obtain a segmentation of the considered image.
In all cases, the Dice Index (DI) overlap is used as a segmentation quality measure:

2.TP

= (10
27prrpiEnN

where 7Pis the number of true positives, FPis the number of false positives and FJN, the
number of false negatives. The Dice index is computed for hard segmentations.

B. Neighborhood ~, Patch P and B

Experiments were carried out on the Brainweb dataset to determine the influence of the size
of the neighborhood & (which can be viewed as a local search area for similar patches), the

2hup://www.cma.mg,h‘harvard‘edu/ibsr
http://mipav.cit.nih.gov
4hup://www.slicer‘org
Shttp://www.picsl.upenn.edu/ANTS
6hup://www.nirep.org
http://bishopw.loni.ucla.edu/air5
8hllp://www.nier‘Qrg/projects/brainvox
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size of the patches Pand the smoothing parameter 8 (Equation 2). A pair-wise label
propagation approach with the MV rule to fuse label maps has been used to determine the
optimal parameter set. We found that the highest overlap value for both gray matter and
white matter is obtained with the smallest size of patches (z.e. 3 x 3 x 3 voxels), the lower
value of B(0.5) and large neighborhood A (the dice index stabilizes at a neighborhood size
of 11 x 11 x 11 voxels). These findings are similar to some results obtained for image
denoising [9] or image reconstruction [31]. Bis a noise level dependent parameter. While
the lowest value of B provides the best overlap results on Brainweb images (which are
almost noiseless), we have found that a value of 1 is more appropriate for in-vivo brain MR
images. In the next sections, the following setting has been used: a patch size of 3 x 3 x 3
voxels, a neighborhood size of 11 x 11 x 11 voxels, and B = 1.

C. Influence of the size of the anatomy textbook

The evolution of the mean Dice index with respect to the size of the anatomy textbook has
also been studied. This experiment has been carried out on the IBSR dataset, using up to 30
image permutations for each image to label. The behavior of the fast multipoint patch-based
approach is compared with a non-rigid registration-based method (using ANTsS [5], with the
following command line: ANTS 3 -m PR[target.nii, source.nii, 1, 2] -i 100x100x10 -o
output.nii -t SyN[0.25] -r Gauss[3,0] and the majority voting rule as label fusion strategy).
In both cases, it has been found that increasing the size of the anatomy textbook provides
higher overlap values (which stabilize quickly around 8 images). Figure 4 shows the
evolution of the mean Dice index with respect to the number of images contained in the
anatomy textbook. For all the results shown in the next sections, the maximum number of
images has been used.

D. Pointwise vs blockwise

Comparison of pair-wise (using the majority voting rule for label fusion) vs group-wise
approaches is shown in Table I for the Brainweb images, in Table II for IBSR and in Table
VI for NAO-NIREP. We have also compared three types of estimators: pointwise vs
multipoint vs fast multipoint. As mentioned in [17] ( “7n multipoint image estimation a
weighted average of a few sparse estimates 1s better than single sparse estimate alone”), the
results obtained on the three datasets suggest that the use of a multipoint estimator leads to
the best segmentation (7.e. the highest overlap measures). Finally, the pair-wise approach
and the group-wise approach lead to very similar results.

E. Aggregation strategy

For the label fusion step, the majority voting rule is compared to the simultaneous truth and
performance level estimation (STAPLE) [36]. STAPLE estimates the performance of each
classifier iteratively and weights it accordingly, relying on an expectation-maximization
(EM) optimization approach. We used the implementation provided by T. Rohlfingg. As
already reported in [3], STAPLE based fusion rule does not necessary lead to higher Dice
coefficients compared to the majority voting rule.

F. Comparison with previously reported results

The results obtained on the IBSR dataset are reported in Table V (highest Dice coefficients
are in bold). In this table are also shown results reported in the literature, including non-rigid
registration-based approaches and segmentation techniques. This experiment clearly shows
that the proposed patch-based framework is very competitive with respect to recently
published methods.

9hup://www.slan ford.edu/rohlfing/software/index.html
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G. Computational Time

Table VII shows the comparison of the computational time for a non-rigid registration-based
approach (using ANTs [5]) and the proposed patch-based techniques. We choose ANTs as it
has been ranked as one of the best among fourteen non-rigid registration algorithms [22].
The use of pointwise or multipoint estimator leads to higher computational time than using
non-rigid registration. However, the fast multipoint approach provides a very time efficient
algorithm. Moreover, the multi-threading of the proposed label propagation method is
particularly adapted due its blockwise nature. As eight processors were used for our
experiments, the computational time with multi-threading is about 8 times smaller. In this
case, the propagation of one label image with the fast multipoint estimator can be performed
in about 1mn.

H. Visual Evaluation

Figures 5 and 6 show visual comparison between the proposed patch-based approach with a
non-rigid registration-based approach (ANTs + majority voting). The first row of this figure
corresponds to the mean image obtained using the T1-weighted MR images of the anatomy
textbook. Such mean image is one way of visual evaluation used for non-rigid registration
algorithms. The proposed patch-based method can also provided such mean image by
simply using intensities (instead of labels) of the images contained in the textbook. The
second row corresponds to obtained brain segmentation. This figure illustrates well the fact
that the proposed technique allows one to get a better delineation of brain structures (and
especially the cortex for instance).

I. Combining patch-based strategies and registration-based techniques

The main purpose of the proposed patch-based method is to avoid long time computation
due to non-rigid registration. However, one can wonder if the two techniques should
cooperate to reach better results. To one side, one of the advantages of the patch-based
approach is to possibly consider multiple examples within the same image of the anatomy
textbook. The consequence of the local search windows use is to relax the one-to-one
constraint usually involved in non-rigid registration-based label propagation approaches.
Experiments on the IBSR dataset have clearly shown that the use of the patch-based
approach leads to very satisfactory segmentation results for brain structures with sharp
contrast. On the other side, the use of one-to-one constraint leads to a topologically
regularized segmentation. We have experimentally observed that this aspect is important for
cortex parcellation. Indeed, the delineation of cortical areas does not rely on intensity
contrast within the cortex. It appears then that the intensity similarity assumption which the
patch-based approach relies on is not sufficient to provide the highest quality cortical
parcellation.

Table VIII shows the mean Dice index obtained on the NAO-NIREP dataset using the
multipoint pair-wise patch-based approach, a non-rigid registration-based technique using
ANTs (using majority voting or STAPLE as fusion rule) and the mixed approach. This latter
technique simply consists in fusing the labeling obtained with a non-rigid registration
algorithm, with the hard cortical mask obtained with a patch-based technique. The mixed
approach clearly leads to higher Dice index compared to the two other techniques (which
provide similar overlap scores separately). It is also interesting to note that in the combining
approach, STAPLE seems to provide a better label fusion framework than the majority
voting rule. Figure 7 presents a cortex parcellation result using the combined approach with
STAPLE.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 April 04.
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IV. Discussion

Label propagation is a versatile image segmentation technique which can be applied to a
large variety of images. In this work, we focus on the development of a new label
propagation framework applied to automated human brain labeling. A patch-based label
propagation has been proposed whose purpose is to relax the one-to-one constraint existing
in non-rigid registration-based techniques. Indeed, this image similarity-based approach can
be seen as a one-to-many block matching technique. It allows the use of several good
candidates (i.e. the most similar patches) to estimate label patches. Several patch-based
algorithms have been derived depending on the patch aggregation strategies and the label
fusion rules (if needed). Comparison with previously proposed non-rigid registration-based
methods on publicly available in-vivo MR brain images has shown a great potential of this
method.

The proposed approach is also related to supervised learning methods which try to learn the
link between image intensity patches and label patches. In our work, instead of learning the
link between image intensity and labels, the label estimation relies on a weighted graph
which represents directly the similarity between intensity of the input image and intensity of
the anatomy textbook images. As mentioned in the Introduction, the work presented in this
article shares similarities with the one done by Coupé et al. [10]. Indeed, they have proposed
a patch-based strategy relying on a group-wise technique for label fusion. The main
methodological differences concern the smoothing parameter in the definition of patch
weights and the voxel pre-selection. About validation, they have investigated one
aggregation strategy (group-wise) on two regions of interest: hippocampus and lateral
ventricles (on a non-publicly available dataset).

The experiments on three freely available T1-weighted MR image datasets (Brainweb,
IBSR, NAO-NIREP) have shown that the proposed framework can lead to high quality
segmentation of a large number of brain structures. It has been shown that CPU time
consuming non-rigid registration steps can be avoided. The proposed patch-based technique
does not require an accurate correspondence between the input image and the anatomy
textbook. The usual assumption of one-to-one mapping is relaxed by using local search
windows. Further work may investigate the use of more complex similar patch search steps.
For instance, using a rotation-invariant patch match is one of the possible extensions of the
proposed method (in particular when considering large patches), while keeping in mind that
it might increase the CPU time. However, the results obtained with translation-based patch
match are already very competitive with respect to existing methods. Some possible
methodological extensions are local adaptivity of patch size and search window size, choice
of kernel function fand the use of graph operators.

As the algorithm relies on the assumption of similar intensities between the input image and
the anatomy textbook, the segmentation accuracy may depend on the contrast of the
structure to segment or intensity variations (such as intensity bias). Intensity variations
might disturb the search process of similar patches, which would lead to a final labeling
obtained with less relevant patch examples. The sensitivity of intensity variations can be
captured by the smoothing factor beta. However, using a fixed global value of Sin
conjunction with common correction techniques such as intensity bias correction and
histogram matching, the proposed algorithm provides very satisfactory results. Also for the
IBSR data, it can be noticed that the segmentation of the pallidum is not as good as the
segmentation of other brain structures. The reason for failure is that this structure has no
clear contrasted boundaries in MR T1-weighted images. Thus, contrary to registration-based
techniques which can propagate spatial relations of the structures, a pure intensity-based
method such as the one proposed in this work cannot provide a satisfactory delineation of
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the pallidum. This assertion is corroborated by the experiments performed on the NAO-
NIREP dataset. Because of the key assumption of intensity similarity, a non-rigid
registration-based label propagation approach outperforms the proposed patch-based
method. In this context of cortex parcellation, we have shown that these two techniques can
be complementary. In particular, the joint use of non-rigid registration and patch-based
strategy can significantly improve the segmentation result. Thus, further work may explore
the incorporation of a regularization term and prior information such as spatial relations or a
topological atlas into the patch-based framework.

Contrary to registration-based techniques, especially for the group-wise approach using a
patch selection, if there is no correspondence between the input and the anatomy textbook
(i.e. the image similarity is lower than the threshold used in the patch selection step), no
label is propagated. This prevents an incorrect label being introduced in the estimation of the
final label image. Thus, further work is to evaluate the robustness of this label propagation
method to images which contain lesions or tumors, and to use this patch-based technique to
potentially detect these pathological patterns. Another research direction concerns the use of
a database of images as IBSR to segment pathological images. Such a “cross-site” study will
analyze the robustness of the method in the presence of large anatomical variability,
including the initial affine registration, intensity and shape variations, and the research of
examples in the anatomy textbook.

Finally, as mentioned in other works [37], [2], [35] and as shown in the experiments
performed on the Brainweb dataset, the label image can be estimated using a subset of the
anatomy textbook (the observed convergence rate is about 10 example images). This remark
leads to the issue of atlas selection, 7.e. identifying a subset of representative examples in the
textbook with respect to the input image. This can be particularly important when using a
large anatomy textbook to avoid useless heavy computational burden.
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Fig. 1.

Principle of registration-based label propagation methods. The input data (shown with green
borders) are an anatomy textbook (7.e. a set of NV anatomical images with the corresponding
label maps), and one anatomical image I The set of anatomical images of the textbook is
(non-linearly) registered to the input image 7, and each label map is deformed with respect to
the estimated transformation H,. The final image segmentation (shown with red borders) is
then obtained by fusing all the deformed label maps (shown with blue borders).
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Weighted graph building. The set of graphs { w;} 1, ..., ,1s a representation of non-local
interactions between the input image /and the images { %} ... ,of the textbook. ¥:(X) is
the neighborhood of the voxel X in the image Z.
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Fig. 3.

MR image datasets used for the evaluation and the corresponding segmentation. First
column: Brainweb database, second column: IBSR database, third column: NAO-NIREP
database.
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Mean dice index with respect to the number of images used for label propagation Left:
patch-based approach, right: registration-based approach using ANTS (using, for each case,
majority voting to fuse labels). (a): left white matter, (b): left cortex, (c): left thalamus, (d):

left hyppocampus.
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Fig. 5.

Visual evaluation of brain segmentation results (IBSR, image #7). First row: T1-weighted
images, second row: corresponding segmentation, third row: misclassified voxels. Left:
ground-truth, middle: patch-based technique, right: non-rigid registration-based approach
(using ANTS).
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Fig. 6.
Surface rendering of segmentation results (IBSR, image #7). Left: ground-truth, middle:
patch-based technique, right: non-rigid registration-based approach (using ANTS).
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Fig. 7.
Visual evaluation of cortex parcellation results (NAO-NIREP, image #6). First row: ground
truth, second row: combination technique (ANTSs + patch + STAPLE).
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Fig. 8.
Surface rendering of cortex parcellation results (NAO-NIREP, image #6). First row: ground
truth, second row: combination technique (ANTs + patch + STAPLE).
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Comparison (using the mean Dice index) of aggregation strategies (majority voting vs STAPLE) on the IBSR
dataset, using a multipoint estimation approach. When structures are separated into left/right, two overlap
scores are reported. Highest overlap rates are shown in bold.

brain structure (left/right) | pair-wise patch + MV | pair-wise patch + STAPLE | group-wise patch

Cerebral WM
Cerebral Cortex
Lateral Ventricle
Inferior Lat Vent
Cerebellum WM
Cerebellum Cortex
Thalamus
Caudate
Putamen
Pallidum

3rd Ventricle
4th Ventricle
Brain Stem
Hippocampus
Amygdala

CSF

Accumbens area

Ventral DC

0.92-0.92
0.95-0.95
0.93-0.92
0.61 - 0.56
0.88-0.88
0.95-0.95
0.89-0.89
0.87-0.87
0.88 - 0.87
0.71 - 0.69
0.81
0.85
0.94
0.83-0.83
0.76-0.74
0.69
0.66 - 0.63
0.82-0.82

0.92-0.92
0.95-0.95
0.92-0.91
0.53-0.51
0.88-0.88
0.95-0.95
0.88 - 0.88
0.86 - 0.86
0.86 - 0.85
0.70 - 0.68
0.80
0.78
0.94
0.79 - 0.80
0.72-0.70
0.66
0.65 - 0.63
0.83-0.83

0.93-0.92
0.95-0.95
0.93-0.92
0.60 - 0.56
0.88-0.88
0.95-0.95
0.89-0.89
0.88-0.89
0.89-0.89
0.79-0.79
0.80
0.84
0.93
0.83-0.83
0.75-0.75
0.68
0.68 - 0.66
0.82-0.82
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Comparison (using the mean Dice index) of aggregation strategies (majority voting vs STAPLE) on the NAO-
NIREP dataset, using a multipoint estimation approach. When structures are separated into left/right, two

overlap scores are reported. Highest overlap rates are shown in bold.

brain structure (left/right) | pair-wise patch + MV | pair-wise patch + STAPLE | group-wise patch

Occipital Lobe
Cingulate Gyrus

Insula Gyrus

Temporal Pole

Superior Temporal Gyrus
Infero Temporal Region
Parahippocampal Gyrus
Frontal Pole

Superior Frontal Gyrus
Middle Frontal Gyrus
Inferior Gyrus

Orbital Frontal Gyrus
Precentral Gyrus
Superior Parietal Lobule
Inferior Parietal Lobule

Postcentral Gyrus

0.79-0.81
0.77-0.80
0.85-0.88
0.83-0.87
0.75-0.74
0.84-0.84
0.82-0.84
0.82-0.82
0.80-0.81
0.78-0.77
0.70-0.75
0.84-0.84
0.76-0.74
0.75-0.73
0.78-0.74
0.70- 0.65

0.75-0.74
0.77-0.78
0.84 - 0.87
0.81-0.86
0.75-0.74
0.82-0.81
0.80-0.83
0.81-0.81
0.79 - 0.80
0.78-0.76
0.70-0.74
0.83-0.83
0.74-0.73
0.74-0.73
0.77-0.74
0.64 - 0.59

0.78 - 0.80
0.76 - 0.79
0.84 - 0.87
0.82-0.86
0.74-0.73
0.83-0.83
0.81-0.83
0.81-0.80
0.80-0.80
0.78-0.76
0.69 - 0.74
0.83-0.83
0.75-0.73
0.74-0.72
0.77-0.73
0.69 - 0.63
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Algorithm 1

Pair-wise labeling method using the majority voting rule

inputs: an image 7and an anatomy textbook 7 = {( %i, £), i=1, -, n}
ouput: a label image A
for all x EQ do
for i=1to ndo
Compute LX) using Equation (4)
Compute H{X) using Equation (5)
end for
Compute A(X) by aggregating the set of labels { H}} ;... , (Equation (6))

end for
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Algorithm 2

Group-wise labeling method

inputs: an image 7and an anatomy textbook 7 = {( %i, £), i=1, -, n}
ouput: a label image A
for all x EQ do

Compute L(X) using Equation (7)

Compute H(X) using Equation (8)

AX) — HX)

end for
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