
A supervised strategy for deep kernel machine

Florian Yger, Maxime Berar, Gilles Gasso and Alain Rakotomamonjy∗

LITIS EA 4108 - Université de Rouen / INSA de Rouen,
76800 Saint Etienne du Rouvray - France

Abstract. This paper presents an alternative to the supervised KPCA
based approach for learning a Multilayer Kernel Machine (MKM) [1]. In
our proposed procedure, the hidden layers are learnt in a supervised fash-
ion based on kernel partial least squares regression. The main interest
resides in a simplified learning scheme as the obtained hidden features are
automatically ranked according to their correlation with the target out-
puts. The approach is illustrated on small scale real world applications
and shows compelling evidences.

1 Introduction

Deep architectures represent a prominent research area in machine learning.
However, this approach was for a long time penalized by its inability to derive
an efficient learning method leading to a model with good generalization skills.
In that sense, flat architecture as kernel methods [2] were preferred. Recent
attention devoted to deep architectures stems from the so-called deep learning

strategy [3]. This strategy consists in layer-wise unsupervised pre-training fol-
lowed by a final supervised tuning [4, 5]. Doing so allows the hidden layers to
learn useful internal representations of data.

Another trend of deep learning consists in pre-training the hidden layers of
a deep model in a supervised way. This idea pursued in the 90’s was declined
in [6] where internal features was learnt by minimizing a Fisher discriminant
criterion. In the same streamline, Cho and Saul [1] has proposed the multilayer
kernel machines (MKM) which represents one attempt to bridge the gap between
deep architectures and kernel methods. First, these authors have proposed a
new family of kernel functions which mimic the behavior of an infinite size deep
architecture and turn a neural network into a flat structure trainable under
the convex optimization framework of SVMs. The so-designed kernel was also
applied to train the hidden layers of a deep network.

In the procedure highlighted by Cho and Saul, the hidden layers are greedily
trained by first applying a kernel PCA projection followed by features selection
based on mutual information with class labels and supervised cross-validation.
The obtained model proves competitive with usual deep architectures. However,
a major drawback is the complication of features selection stage which involves
a not easy setup of many hyper-parameters.

The main contribution of our paper it to alleviate this drawback by learning
each hidden layer using kernel partial least squares regression (KPLS) [7]. The

∗This work is funded in part by the FP7-ICT Programme of the European Community,
under the PASCAL2 Network of Excellence, ICT-216886 and by the French ANR Project
ASAP ANR-09-EMER-001.



interest of our proposal resides in a simplified learning scheme as the features
provided by KPLS are automatically ranked according to their covariance with
the target outputs. Therefore, we do not need to resort to any extra cross-
validation. As a side effect, the learnt features are more informative as shown
by the empirical evidences in Section 4.

2 Deep Kernel Machines

Assume a discriminative task with samples set D = {(xi, yi) ∈ R
q × R

p}
N

i=1
.

Deep kernel machines paradigm aims at learning useful features by stacking
successive layers. Each layer is issued from a nonlinear projection of output of
the previous layer using kernel method. Given a sample x the output of the ℓ-th
layer is the size mℓ vector hℓ(x) = g(hℓ−1(x)) where g is a nonlinear function.
Specifically, the j-th value of this vector is expressed as

hℓ
j(x) = 〈uj , φ

(

hℓ−1(x)
)

〉F (1)

with φ a mapping function which projects any input into the feature space F
and uj ∈ F . As usual in kernel methods, uj is expanded over the set of basis
functions {φ

(

hℓ−1(xi)
)

}Ni=1 and reads

uj =
N
∑

i=1

αj
iφ

(

hℓ−1(xi)
)

, ∀ j = 1, · · · ,mℓ (2)

where coefficients αj
i are to be sought at each stage of deep kernel machines learn-

ing. From equations (1) and (2), we obtain hℓ
j(x) =

∑N

i=1
αj
ik

(

hℓ−1(x),hℓ−1(xi)
)

where k stands for the kernel function. Once the last layer is built, the resulting
features are used to train any classifier.

Beyond the selection of the depth of the architecture, the issues of deep kernel
machines concern how to learn the coefficients vector α

j in (2) and to specify
the size of each hidden unit. The next section is devoted to the presentation of
existing solution and our proposed methodology.

3 Training of Multilayer Kernel Machines (MKM)

As mentioned previously, the architecture is learned layer by layer. The general
framework is given in Algorithm 1.

Existing solution [1] is a compound method that combines an unsupervised
learning followed by supervised model selection. In contrary, the approach we
promote here is simple, efficient and relies on KPLS, a supervised method. De-
tails about these methods are given below.

3.1 KPCA based MKM training

To learn each layer ℓ, the solution promoted by Cho and Saul [1] computes N
principal directions uj from which the best mℓ informative components are se-
lected. According to [2, Chapter 14], uj is an eigenvector and the corresponding



Algorithm 1 Learning of Multilayer Kernel Machine

[optional] Feature selection on raw data
for every layer ℓ do
Compute the principal directions uj (2) and corresponding hℓ

j(xi)
[optional] Rank and select the best principal directions
Output the representation hℓ(xi) for each training sample xi

end for

Apply any off-the-shelves classifier using features of the last layer

coefficients αj are solution of the eigenvalue problem λjα
j = Kℓα

j where λj is

the j-th eigenvalue of the centered kernel matrix Kℓ = (I−M) K̃ℓ (I−M) with
(K̃ℓ)ij = k

(

hℓ−1(xi),h
ℓ−1(xj)

)

and M a square matrix with entries all equal to
1/N . Once the N principal components (features) are extracted, only the most
interesting are retained. For this sake, the algorithm builds class-conditional and
marginal histograms to estimate feature’s mutual information with the class la-
bels and re-ranks the features accordingly. Then a kNN classifier is applied on
the first mℓ features and the validation error is recorded. This step is repeated
for different values of k and mℓ in order to select the best mℓ features.

This procedure deems quite complicated as it involves at each layer first
an unsupervised learning and then a trial and error approach to find the best
features. The method can be simplified considerably in the sense that the cross-
validation step can be rendered optional, depending on the used kernel projec-
tion. Our contribution is derived in that simplification sense and relies on KPLS
strategy without validation step. This matter is developed hereafter.

3.2 Supervised MKM learning

We propose to get rid of the feature selection and embed it in the projection
method. Therefore, the optional steps of algorithm 1 are no longer necessary.
This is achieved through kernel partial least squares procedure.

Partial Least Squares method (PLS) computes latent variables based upon
the eigenvectors of the empirical covariance matrix between the input and the
output variables. Extension to kernel framework were proposed and has been
used in the context of multiclass classification (see [7] for full details).

To train each layer of the MKM in a supervised way, KPLS searches for the j-

th feature
[

hℓ
j(x1) · · · h

ℓ
j(xN )

]⊤
the most correlated with the class labels. Hence,

to obtain uj in Equation 2, one solves the eigenvalue problem λjα
j = YY⊤K

j
ℓα

j

(for corresponding vector α
j) with K

j
ℓ obtained by deflating j − 1 times the

matrix Kℓ. In the previous relation, Y ∈ R
N×p stands for the class labels

matrix. The deflation process aims at making the matrixKℓ
j+1 orthogonal to the

subspaces generated by the previous features αj , as the information modelled by

the feature αj should not be used in the successive features : Kj+1

ℓ = H
j
ℓK

j
ℓH

j
ℓ

where H
j
ℓ = I −

K
j

ℓ
α

j
α

j⊤
K

j

ℓ

α
j⊤K

j

ℓ

2

α
j
. The next feature is extracted by repeating the



procedure with the deflated matrix K
j+1

ℓ .
This scheme considerably simplifies informative features extraction. Indeed,

as the features generated by KPLS are obtained iteratively and maximize their
covariance with the class-labels, a good guess of the importance ranking of the
learnt representations is directly obtained through the eigenvalue λj . Features
number selection is achieved by thresholding these eigenvalues (in practice at a
value of 10−15). We coded Y in a one-against-one strategy. Finally, as in [1],
we built on top of the last layer a Large Margin Nearest Neighbor classifier [8].

4 Experiments

In this section, we evaluate our learning approach on three multiclass datasets.
The first two datasets were created from the MNIST handwritten digit dataset
and were used as a benchmark by Cho and Saul [1] for their MKM. Finally, as
a proof of concept, our approach is tested on a texture recognition task.

Although any non-linear kernel could be applied, we follow Cho and Saul and
use arc-cosine kernel designed to mimic the behavior of an infinite size neural
network. Its expression is given by kn (x, z) = 1

π
‖x‖n‖z‖nJn (θ) with Jn (θ) =

(−1)
n
(sin θ)

2n+1
(

1

sin θ
∂
∂θ

)n (π−θ
sin θ

)

, the angular dependency θ = cos−1

(

〈x,z〉
‖x‖‖z‖

)

and n the order of the kernel (see [1] for details). Note that due to ill-conditioning
and stability issues, we did not explore order n > 1. Finally, let say that all
presented results are averages over 10 runs.

4.1 Digit recognition benchmark

Datasets mnist-back-image and mnist-back-random1 are composed of 28 × 28
grayscale handwritten digits which backgrounds were respectively filled with
random image patches or random value pixels. These datasets have the particu-
larity to show the largest error rate gap between shallow and deep architectures.
In the remainder, the reader should keep in mind that a random classifier would
have a 10% classification rate on those 10 classes problems.

In MKM algorithm, the action performed in the first layer consists in a fea-
ture selection. The images being centered, any feature selection method would
focus on the central pixels. Therefore, the number of features for the first layer
was limited to 300. Even if the subsequent layers were also restricted to 300
features, we observed in practice that less features were selected. We compare
the approach based on supervised selection of KPCA features [1] with our KPLS
features selection using the same experimental protocol. The results were ob-
tained using validation, training and test sets composed respectively of 500, 1000
and 2000 samples. Figure 1a depicts the error rates obtained for an increasing
number of layers by 4 deep kernel approaches on mnist-back-image dataset. For
this dataset, KPLS approaches clearly outperform the KPCA based approaches
and showed a lower and stable variance. On the other MNIST dataset, results

1Datasets and benchmark results available at http://www.iro.umontreal.ca/~lisa/icml2007

http://www.iro.umontreal.ca/~lisa/icml2007


1 2 3 4 5 6
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
MNIST background images

layer index

cl
as

si
fic

at
io

n 
er

ro
r 

ra
te

 

 

kPCA order 0

kPCA order 1

kPLS order 0

kPLS order 1

(a) mnist-back-image

1 2 3 4 5 6
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
MNIST background random

layer index

cl
as

si
fic

at
io

n 
er

ro
r 

ra
te

 

 

kPCA order 0

kPCA order 1

kPLS order 0

kPLS order 1

(b) mnist-back-random

Fig. 1: Mean classification error rate at each layer of the MKM .

highlighted in figure 1b reveal that none of the methods clearly perform better
than the others. Still, the variance of the KPLS approaches keeps on being low.

Notice that we have implemented the approach in [1] but we may have missed
some heuristics to speed up the algorithm. Hence, due to computational issues,
we shall only present results on small parts of the two MNIST datasets. As we
were unable to run the KPCA based MKM on the whole MNIST datasets, we
used subsets of those. This fact explains the difference in term of classification
error rate between our results and those reported in [1]. However, we retrieve the
global behavior of deep learning KPCA as exposed [1], even if our experiments
are in small scale setting.

4.2 Application to texture classification

First of all, it should be stated that the MKM methods are not dedicated to
texture recognition. They have been applied out of the box on the data in
order to illustrate the gap of performance between the approaches. The Brodatz
dataset consists of 112 textures of 640× 640 pixels (as illustrated in figure 2a),
among which we selected 29 images2 to generate our dataset. As it contains 29
classes, a random classifier should achieve a mean error rate around 96.6%.

Inspired by the protocol in [9], we split every texture into two non overlapping
parts and randomly extracted 16×16 patches. Validation, training and test sets
contained respectively 500, 1000 and 2000 samples.

On textures dataset, primary pixel selection could not be applied as for
MNIST datasets where informations are spatially localized. Hence, the results
for the first layer in figure 2b were obtained on raw textures. Here again, the
size of layers ℓ > 1 was limited to 300.

KPLS with order 0 kernel and KPCA with order 1 perform the best for this
dataset with the trophy for KPLS. However, the impact of the kernel choice is
completely different from the previous experiment and it may be explained by
the numerical instability we observed as the number of layers increases. Here
again, KPLS strategies have the lowest variance in error rate.

2We used the textures from D1 to D30 (except D14 that was missing in our dataset).



(a) Examples of Brodatz textures

1 2 3 4 5 6
0.7

0.75

0.8

0.85

0.9

0.95

Brodatz 29

layer index

cl
as

si
fic

at
io

n 
er

ro
r 

ra
te

 

 

kPCA order 0

kPCA order 1

kPLS order 0

kPLS order 1

(b) Experimental results

Fig. 2: Experimental results on Brodatz dataset.

5 Conclusion

In this paper, we proposed a simplified and fast learning scheme for multilayer
kernel machines based on KPLS. Experimental comparisons with the original
KPCA approach on three datasets validate our method. Moreover the empirical
computational cost for KPCA approach is higher (although not presented here).
However, some behaviors are still unexplained for both schemes and further
studies are still required to fully apprehend the impact of the chosen kernel on
the model accuracy. Also, among forthcoming issues to be addressed are the ap-
plication of other projection methods as for instance kernel CCA or combination
of KPLS and KPCA and the large-scale extension of our approaches.

References

[1] Y. Cho and L.K. Saul. Kernel methods for deep learning. In Advances in Neural Infor-

mation Processing Systems 22, pages 342–350, 2009.

[2] B. Schölkopf and A.J. Smola. Learning with kernels: Support vector machines, regulariza-

tion, optimization, and beyond. the MIT Press, 2002.

[3] G.E. Hinton and R.R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504, 2006.

[4] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise
training of deep networks. In Advances in Neural Information Processing Systems 19,
pages 153–160, 2007.

[5] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing
robust features with denoising autoencoders. In Proceedings of the 25th International

Conference on Machine Learning, pages 1096–1103, 2008.

[6] Régis Lengellé and Thierry Denœux. Training mlps layer by layer using an objective
function for internal representations. Neural Networks, 9(1):83 – 97, 1996.

[7] R. Rosipal, L.J. Trejo, and B. Matthews. Kernel PLS-SVC for linear and nonlinear classi-
fication. In Proceedings of the 20th International conference on Machine learning, pages
640–648, 2003.

[8] K. Weinberger, J. Blitzer, and L.K. Saul. Distance metric learning for large margin nearest
neighbor classification. In Advances in Neural Information Processing Systems 18, pages
1473–1480, 2006.

[9] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary learning.
In Advances in Neural Information Processing Systems 21, pages 1033–1040, 2008.


	Introduction
	Deep Kernel Machines
	Training of Multilayer Kernel Machines (MKM)
	KPCA based MKM training
	Supervised MKM learning

	Experiments
	Digit recognition benchmark
	Application to texture classification

	Conclusion

