

A Supervised Visual Wrapper Generator for Web-Data Extraction

Xiaofeng Meng, Haiyan Wang, Dongdong Hu
School of Information

Renmin University of China,
Beijing 100872, China
xfmeng@ruc.edu.cn

Chen Li
School of Information and CS

University of California, Irvine,
CA 92697-3425,USA

chenli@ics.uci.edu

Abstract

Extracting data from Web pages using wrappers is a
fundamental problem arising in a large variety of
applications of vast practical interest. In this paper, we
propose a novel schema-guided approach to wrapper
generation. We provide a user-friendly interface that
allows users to define the schema of the data to be
extracted, and specifies mappings from a HTML page to
the target schema. Based on the mappings, the system
can automatically generate an extraction rule to extract
data from the page. Our approach to wrapper generation
can significantly reduce the work of human beings in
this process. And the user never have to deal with the
internal extraction rule, or even familiarity with the
details of HTML.

1 Introduction
The World Wide Web has become one of the most
important connections to various information sources. A
large proportion of the Web data is embedded in HTML
documents. This language serves the visual presentation
of data in browsers, not for automated, computer-
assisted information management systems. If data from
different sources needs to be integrated, it is necessary
to develop special and often complex programs to
extract data from Web pages. To achieve this goal,
people have developed wrappers [6], which are
specialised programs that can automatically extract data
from Web pages and convert the information into a
structured format. The main issues of wrapper
generation include (1) to identify semantics of the data
contained in an HTML document and, (2) to establish
the mappings between its structure and its semantics.

Different methods have been proposed to automate
the wrapper-generation process. These works can be
classified into three categories [2]: manual wrapper
programming languages [6], machine learning
approaches [1, 4, 7, 8] and supervised interactive
wrapper generation [2, 10, 13]. In the first category,
wrappers are programmed manually so that it is difficult
to use by layperson. The second approaches have
drawbacks of limited expressive power and the large
number of required example pages. The last category
includes XWRAP [10] and LIXTO [2]. XWRAP makes
some progresses in user-friendly interactive method. But
it does not appropriately take into account the user’s
view of HTML pages and possible changes of them.
And LIXTO differs from the internal extraction rule and

user defined schema. Under the user defined target data
schema, we used XQuery[17] expression for
representing extraction rule internally, which provides
more powerful and precise ability for Web wrappers.

In this paper, we propose a novel schema-guided
approach to wrapper generation. We provide a user-
friendly interface that allows users to define the schema
of the user target data, and specify mappings (see
Section 3.2) from an HTML page to the target schema.
Since different user may perhaps want different data
from a Web page, so user defined schema can help a
user expresses her target more precisely. Meanwhile,
while building the mappings from the HTML page to
the target schema, the user can also add additional
conditions to make higher accurate, e.g. annotations of
data items (see Section 3.2.1), or context conditions of
the data items, and so on. All of these conditions will be
recorded as predicates (XPath [16]) in the mappings (see
Section 3.2.2). Based on the mappings, the system can
automatically generate a wrapper to extract data from
the page. The internal XQuery [17] based extraction rule
is invisible to the user. After the user generate an initial
wrapper, if she is not satisfied with the extracted results,
she can select more instances (Rule Refining) and the
system will automatically merge the initial and the new
extraction rule. Intensive experiments on real-world
Web pages show that this approach to wrapper
generation can significantly reduce the work of human
beings in this process and get satisfactory precisions.
What’s more, ordinary users who are not familiar with
wrappers can also easily master the procedure of
wrapper generator with SG-WRAP.

The rest of this paper is organized as follows.
Section 2 describes the architecture of our system.
Section 3 presents our approach of schema-guided
wrapper generation. Section 4 provides the discussion of
related works. In Section 5 we conclude the paper and
discuss future research directions.

2 System Architecture
Figure 1 depicts the architecture of our SG-WRAP

[11, 12] system. The system consists of five major
components: Preprocessor, Schema Acquirer, Rule
Generator, Rule Refiner and Wrapper Generator.

Preprocessor is responsible for setting up the
environment for the system. It fetches the Web page
using the URL given by the user. The fetched HTML
page is displayed before user in the browser for the next
steps.

Another input of the system is a user-defined schema
for extracted data, which is obtained by the Schema
Acquirer. A user defined schema can be saved in a
Schema Base to be used later, or shared for other
sources from which the same kinds of data to be
extracted.

Rule Generator generates data extraction rule by an
induction algorithm on the user assigned mappings
between schema elements and HTML document data
nodes, which takes the list of mapping instances as input
and returns a candidate rule by incorporating the similar
mapping rule instances into a new extraction rule.

 Rule Refiner generates an XML document by
applying the induced rule on the input page. From the
displayed document, a user determines whether the
current extraction rule correctly extracts required data
from the source page. If not, she can identify more
mapping instances. The induction process will repeat
and the Refiner will merge the previously generated
rules with the refined rules. The system will display a
new version of result to the user for checking. This
refining process continues until the user is satisfied with
the data extracted.

After all the steps are taken, Wrapper Generator
materializes the extraction rule into Java program and
outputs it for repeatedly usages.

3 Supervised Visual Wrapper Generation
In this section we describe our approach to

generating wrapper rules to extract data from HTML
pages. The main idea of the approach is the following. A
user defines the structure of her target information by
providing an XML schema in the form of a DTD. Given
an HTML page, by using a GUI toolkit, the user creates
mappings from useful values in the HTML page to the
corresponding schema elements. Internally the system
parses the HTML page into a tree, and generates the
corresponding mappings from the HTML tree to the
schema tree. Using these mappings the system can

generate a tree pattern and output an extraction rule.
This section depicts the details of the process.

3.1 Specifying Mappings Using GUI
To extract data from a set of HTML pages sharing

the same layout, a user first defines the structure of the
target data by providing an XML schema tree in the
form of a DTD. She inputs the schema by either (1)
providing a DTD file; or (2) building the schema tree
using the toolkit provided by the system; or (3)
modifying an existing schema to meet her own
requirements. The schema reflects the user's view of the
XML document to be generated. The positions of
elements in the schema tell the system how to organize
the extracted data. Given an HTML page, the goal of the
system is to generate a rule to extract data from the page
and generate a document conforming to the schema. In
addition, the rule should be able to extract data from
other pages that share the same structure as the given
page.

As an example, suppose the user wants to extract
book information from the book pages at www.buy.com
A sample page is shown in Figure 3. The user specifies
the following DTD, whose tree representation is shown
in Figure 2.

After the user provides an HTML page (e.g., by
typing in an URL), she can use a GUI interface (shown
in Figure 3) to create mappings from data items on the
HTML page to the corresponding schema elements. The
left-hand side displays the HTML page, and the right-
hand side presents the tree structure of the DTD schema.
The user first uses the mouse to highlight the region of
an interesting data value, such as a book title, author,
and price. (In Figure 3, she has highlighted a book
author David Flanagan in the HTML page.) For such a
highlighted value, the system displays a list of candidate
annotations in the page. An annotation is the contents of
a text node or several text nodes in the page that could
possibly describe the content of this value. For this book
author, the system suggests the string “Author” before
David Flanagan as a candidate annotation. The user
can either choose one of the system-suggested
annotations, or select an annotation by manually

<!ELEMENT BookList (Book+)>
<!ELEMENT Book(Title,PubDate,Price,Authors)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT PubDate (#PCDATA)>
<!ELEMENT Price (#PCDATA)>
<!ELEMENT Authors (Author+)>
<!ELEMENT Author (#PCDATA)>

Figure 2: Target DTD schema.

Rule Refiner

Rule Generator
HTML Tree

Preprocessor

User-defined
Schema

Loader

Parser

Mapping Acquirer

Apply

Schema Acquirer

Schema Base

Rule Inductor

Refinement
Refined Rule

Interaction

Schema
Information

URL

XML
i

Rule

Wrapper Generator

Wrapper Code

Release Rule
Refining flow
Processing flow

Figure 1: SG-WRAP: The system Architecture

Legend:

highlighting a string on the page. Table 1 shows the
final annotations of a few data values. Notice that the
annotation of a value could be empty.

After selecting the annotation for a data item on the
HTML page, the user highlights a corresponding
element in the schema tree, and a mapping is created
from the data value to this schema element. In Figure 3,
the user has selected a schema element author for the
data element David Flanagan. Note that while
highlighting HTML data elements, the user needs to
make sure that these elements belong to the same data
entity, e.g., the price and title of the same book. Then
the system can generate a rule to extract the values of
the book.

3.2 Generating an Extraction Rule
After the user creates these mappings, the system

generates an extraction rule. The rule can also be used to
extract data from other book pages with the same
structure. The system generates the rule in three steps:
(1) parsing and representing the HTML page as a tree;
(2) generating mappings from the HTML tree and the
schema tree; and (3) computing a tree pattern from the
HTML tree to generate an extraction rule. Here we
explain these steps in detail. Notice these steps are
executed internally in the system, and they are
transparent to the user.

3.2.1 Step 1: Creating an HTML Tree
The HTML document is parsed to a tree

representation. A non-leaf node corresponds to a pair of
HTML tags, such as “<tr>…</tr>”. Nodes are ordered
according to their occurrence sequence in the HTML

page. Each leaf node is either of type PCDATA, or a
single tag such as “<tr>”.

Figure 4 shows the parsed tree of the HTML page
given in Figure 3. This tree representation follows the
specification of the Document Object Model (DOM)
[14]. A primary advantage of this representation is that
we can uniquely define an element in the tree with an
XPath expression. For example, the following XPath
expression

/body/table[0]/tr[2]/td[0]/table[1]/tr[0]/td[2]/table[0]/
tr[1]/td[0]/table[0]/tr[5]/td[3]/table[0]/tr[5]/td[0]/a[0]
/b[0]/text()

identifies the data value David Flanagan in the HTML
page. In the expression, method “text()” selects all the
text of the children of the context node. (See XPath [16]
for more detail.)

Suggesting Annotations: After the user highlights a
data value in the HTML page, the system suggests
candidate annotations for this value using several
heuristics. For example, we can use the surrounding
strings of the data value, or if the data value appears in a
table, we can suggest strings in the first row of the table.
According to the HTML specification [15], we may use
the tag <th> to show the difference between the table
head and the table content. In the following table in an
HTML page, the string Manufacturer is a possible
annotation of data values Dell and Apple. The string
Price can be a candidate annotation of data values
$1,380 and $1,520.

Manufacturer Price
Dell $1,380

Apple $1,520
After the user chooses an (possibly empty)

annotation for an HTML data item, the system adds the
annotation to the path of the item with the function
“contains” provided by XPath. This method is used to
mark the annotation of the data value. The first
parameter of “contains” shows the location of
annotation corresponding to the data value and the
second one is the annotation string.

Figure 3 GUI

Table 1: Annotations for HTML data values

Data values in HTML page Annotations

David Flanagan Author
O'Reilly & Associates Inc. Publisher
3/1/2002 Publish Date
$25.17 Our Low Price
Java in a Nutshell None

Figure 4 DOM Tree

3.2.2 Step 2: Computing Mappings from HTML
Tree to Schema Tree

For each mapping from a data value to a schema
element, the system computes the corresponding
internal mapping from the HTML tree node to the
schema element. Formally, each internal mapping is a
tuple in the form M(D, HP, SP), in which:

• D: is the HTML data value.
• HP: is the XPath expression of D in the

HTML tree (meaning “HTML path”).
• SP: is the path of the corresponding leaf

node in the schema tree (meaning “schema
path”).

The following are the internal mappings for those
mappings specified by the user in Figure 3.

 M1(D: “Java in a Nutshell”,
HP: …/td[3]/table[0]/tr[1]/td[0]/a[0]/b[0]/text()[0],
SP: BookList/Book/Title).

M2(D: “3/1/2002”,
HP: …/td[3]/table[0]/tr[6]/td[0]/span[0]/b[0][contains(

/parent/preceding-sibling::text()[0], “Publish
Date”)]
/text(),

SP: BookList/Book/PubDate).

M3(D: “$25.17”,

HP: …/td[3]/table[0]/tr[3]/td[0]/span[0]/b[0][contains(/
parent/parent/preceding-sibling/b::text()[0], “Our
Low Price”)]/text();

SP: BookList/Book/Price).

 M4(D: “David Flanagan”,
HP: …/td[3]/table[0]/tr[5]/td[0]/a[0]/b[0][contains(/par

ent/parent/parent/preceding-
sibling/nobr/b::text()[0], “Author:”)]/text();

SP: BookList/Book/Authors/Author).
Note that each HP path is not just a sequence of

HTML tags. Instead, it is an XPath expression
containing more information such as the annotation of
the value and the position of the annotation in the
HTML tree. The preceding-sibling axis [17] contains all
the preceding siblings of the context node; if the context
node is an attribute node or namespace node, the
preceding-sibling axis is empty. It is an axis of XPath.

3.2.3 Step 3: Computing an Extraction Rule
After computing the internal mappings from the

HTML tree to the target DTD tree, the system computes
an extraction rule by generating a tree pattern from the
tuples in the mappings. The computed rule is shown in
Figure 5.

This rule is an FLWR expression of XQuery [17].
By applying this expression on the HTML page, we can
generate an XML document of the DTD. In general, in
an extraction rule:

• A schema element marked with symbol “+” or
“*” (e.g., BookList) corresponds to a clause of
“FOR … RETURN …”.

• Any other element (e.g., Author, Price, etc.)
corresponds to a clause of “LET … RETURN …”.

The structure of the rule is based on the DTD
schema. For each LET or FOR clause, the system fills in
the appropriate XPath on the HTML tree based on the
internal mappings.

The extraction rule is generated by calling a
recursive function, genPattern(). This function takes a
schema element e as an input parameter, and generates a

{LET $blist := document ($d)
RETURN
<Booklist>

{FOR $b IN
 $blist/body/table[0]/tr[2]/td[0]/table[1]/tr[0]/td[2]

table[0]/tr[0]/td[0]/table[0]/tr
 RETURN

 <Book>
{FOR $t IN

$b/td[3]/table[0]/tr[1]/td[0]a[0]/b[0]/text()[0]
RETURN<Title> $t</Title>

}
{LET $p = $b/tr[3]/td[0]/span[0][contains(contains(/parent

 /parent/preceding-sibling/b::text()[0],"Our Low Price")]
 /b[0]/text()[0]

RETURN<Price> $p </Price>
}
{ LET $d = $b/tr[6]/td[0]/span[0]/b[0][contains(/parent/

prediding-sibling/b::text()[0], “Publish Date”)]/text()
RETURN<PubDate>$d<PubDate>

 }
{FOR $auths IN $Book

RETURN
<Authors>{

FOR $a IN
$auths/tr[5]/td[0]/a[contains(/parent/parent/parent/
preceding-sibling/nobr/b::text()[0],"Author")]/b[0]
/text()
RETURN<Author> $a</Author>

}
}
</Authors>

</book>
 }

</booklist>
}

Figure 5: An extraction rule.

Global variable: Mappings MS;
Procedure genPattern(DTD element e, HTMLTree H)
{

G = {mappings in MS whose SP includes e};
P = common path of mappings in G;
If (e is marked with '*' or '+' in the DTD)

P = generalizePath(P); /* generalize the common
path in order to extract similar data values */

st = subtree identified by the P;
sp = subpattern identified by the P;
i = 0;
for each child element c of e do {

/* generate the sub pattern for each c*/
sp[i++] = genPattern (c, st); // recursive call

}
R = construct the rule using P and sp;
return R;

}

Figure 6: Algorithm genPattern()

corresponding XPath pattern in the HTML tree. This
pattern is used in the clause of this element e in the final
extraction rule, and it extracts data values to construct a
subtree of this schema element. The system generates an
extraction rule by calling this function passing the DTD
root element.

Figure 6 shows the algorithm genPattern(). This
algorithm starts from the root of the DTD tree and
finally computes the extraction rule by recursively
calling itself on the children of the current DTD element.
It has two input parameters: (1) a schema element and (2)
the current HTML subtree corresponding to the schema
element. It outputs a XPath pattern for this schema
element. The algorithm first finds all the mappings
whose SP paths contain this element. Then it computes a
common path of the subtrees in the HTML tree that can
include these mappings. A common path is the exactly
same parts of the XPath expression. Next, if the element
is marked by symbol “*” or “+” in the schema tree,
there may be multiple subtrees that contain the input
mappings of the current instance, but we do not know
their exact paths in the H tree. Thus the algorithm
searches similar subtrees at the same level of this
corresponding node. To represent all the matched
subtrees, the algorithm tentatively generalizes the
original common path by removing predicates at one or
more steps. At last, the generalized common path is used
to generate the rule for this element. If the element is not
a leaf, the algorithm calls itself recursively for each of
its child elements. The rules returned are added to the
current rule as subrules.

Let us use the schema element BookList in Figure
3 to illustrate how the rule in Figure 5 is generated by
calling the function genPattern() from the DTD root
element BookList. The system first considers the four
internal mappings M1, M2, M3, and M4 to find whose
SP paths all include this element. Their common path is

/body/table[0]/tr[2]/td[0]/table[1]/tr[0]/td[2]/table
[0]/tr[1]/td[0]/table[0]/tr[5]/td[3]/table[0]

Since the element of BookList has a child element,
Book, the algorithm calls itself recursively using with
the Book element and the subtree corresponding to the
element of BookList. This element is marked with
“+” in the DTD schema, thus the generalizePath(P) is
called and we generalize the path to this subtree by
searching its similar sibling subtrees. The following is
the result of generalizePath(P), in which the “tr” in bold
face is the generalized node.

body/table[0]/tr[2]/td[0]/table[1]/tr[0]/td[2]/table
[0]/tr[1]/td[0]/table[0]/tr/td[3]/table[0]
The algorithm calls itself recursively for each of the

four children of the element Book. It computes one rule
for each of them and adds the new rule as a subrule. If
the schema element does not have a corresponding
HTML node, the algorithm will not find mappings
whose SP paths contain this element. Thus the computed
rule will not contain this schema element.

Finally the rule in Figure 5 is generated. The final
rule is a source-specific program that can be used to
extract data from other pages with the similar structure

as the given page. For example, the rule generated from
the sample page in Figure 3 should also be used to
extract data from other book pages of the web site with
the same structure.

3.3 Refine Wrappers
In the previous sections, we have induced a tree pattern
for a single page from a single instance. While it’s
possible that the user happens select a bad instance.
Let’s look at Figure 5, e.g. we find that the selected
instance should contains book title, price and authors.
But a user may happen to select an instance only
contains information of title and price. In other word,
the user selected an instance containing insufficient
information. Thus the finally induced extraction rule
may fail to extract the information of authors of from
other parts of the page.

What’s more, if we want to apply the wrapper on a
set of pages with the similar structures, e.g. a set of
pages from the same search engine of www.buy.com,
we may possibly find that the wrapper fail to correctly
extract all the data items, a few data items are perhaps
missed because of some tiny difference in structures
comparing with the common structure. For instance, we
find that the data items of authors contains a hyperlink
on them in this example page, but it’s quite possible that
in another page the data items of authors do not contains
hyperlink because of the web site hasn’t store the
information of this author.

The Rule Refiner of SG-WRAP also provides an
interface for testing the generated wrapper. The user can
apply the wrapper on the example pages and examine
that if the results are satisfactory, otherwise, she can
take the following step for refining wrappers.

To deal with the first case, the user selected a bad
instance, with the module of Rule Refiner (see Section
2), if a user finds that the results are not satisfactory, she
can select more instances and induce extraction rules
from them. Then the SGWRAP system can
automatically integrate these extraction rules. Since our
extraction rule uses XQuery expression, it’s easy to
integrate two extraction rules. The process is the
following:

 If the rule from new instances contains new
predicates for a certain data item, the predicates
are added into the extraction rule.

 If the new rule contains a new path to a data
item, the path is added into the extraction rule.

Also, to perfectly extract data items from a set of
pages with similar structure, a user may need to select
instances from another page, and then the system can
automatically integrates the extraction rules.

4 Related Work
Several wrapper generation methods have been
discussed in the literatures. TSIMMIS [6] introduced a
logical template-based approach to constructing
wrappers by example but the wrapper output has to obey
the document structure. The project of ARIADNE [7] at
University of Washington presents a semi-automatic

wrapper construction method that treats documents as
token flow and takes LEX and YACC to deal with the
semantic units and the nested structure of Web page.
Some machine learning approaches are introduced to
data extraction. STALKER [8] specializes general
SkipTo sequence patterns based on labeled HTML
pages. Kushmerick et al. [9] create robust wrappers
which base on predefined extractors; their visual support
tool WIEN receives a set of training pages. Their
approaches do not use the HTML tree so that they have
restricted capabilities to deal with HTML. In general,
machine learning approaches have drawbacks of limited
expressive power and the large number of required
example pages. Recently, supervised interactive wrapper
generation approaches are developed. W4F [13]
developed a toolkit to help the developers to generate
wrappers and used Nested String Language(NSL) to
encode the information extraction rules. However, the
developer requires expertise with both HEL and HTML
to program extraction rule manually. XWRAP [10] uses
a procedural rule system and provides limited expressive
power for pattern definition. The user cannot label the
desired data items directly on the browser-displayed
document. LIXTO [2] proposed a visual method for data
extraction. It provides visual facilities for imposing
external or internal conditions to a pattern. However,
these conditions are not automatically added into a
pattern; instead, it is specified by the user. Furthermore,
their endeavors do not appropriately take the user’s view
of HTML pages and possible changes of them into
account.

5 Conclusion and Future Work
In this paper, we propose a schema-guided

supervised visual wrapper generation approach for Web-
data extraction. The toolkit SGWRAP was developed to
semi-automatically generate Web wrapper particularly
for extracting locally well-formatted data from Web
HTML pages. In contrast to extracting small locally
well-formatted data, large text information elements in
Web pages pose several new problems. In order to
automatically generate the wrappers capable of
extracting large information elements such as news story
documents from Web pages, SG-WRAP should be
extended in the future.

6 Acknowledgements
This research was partially supported by the grants

from 863 High Technology Foundation of China under
grant number 2002AA116030, the Natural Science
Foundation of China (NSFC) under grant number
60073014, 60273018, the Key Project of Chinese
Ministry of Education (No.03044) and the Excellent
Young Teachers Program of M0E，P.R.C (EYTP)．

7 References
[1] Ashish N, Knoblock C A. Wrapper generation for

semi-structured Internet sources. SIGMOD Record,
1997, 26(4): 8-15.

[2] Baumgartner R, Flesca S, Gottlob G..Visual Web
Information Extraction with Lixto. In Proceedings
of the Very Large Data Bases; 2001, 119-128.

[3] Brin S. Extracting patterns and relations from the
world wide web. In International WebDB
Workshop, Valencia, Spain, pages 172-183, 1998.

[4] Doorenbos R, Etsionoi O, Weld D S. A scalable
comparison-shopping agent for the world-wide-
web. In Proceedings of the First International
Conference on Autonomous Agents, 1997, 39-48.

[5] Gupta A., Harinarayan V., Quass D., and
Rajaraman A. Method and apparatus for
structuring the querying and interpretation of
semistructured information. United States Patent
number 5,826,258, 1998.

[6] Hammer J, Brenning M, Garcia-Molina H,
Nestorov S, VassalosV, Yerneni R. Template-
based wrappers in the TSIMMIS system. In
Proceedings of ACM SIGMOD Conference, 1997,
532-535.

[7] A. Knoblock, K. Lerman, S. Minton, and I. Muslea.
Accurately and Reliably Extracting Data from the
Web: A Machine Learning Approach. Bulletin of
the IEEE Computer Society Technial Committee
on Data Engineering, 1999

[8] Knoblock C A, Lerman K, Minton S, Muslea I.
Accurately and Reliably Extracting Data from the
Web: A Machine Learning Approach. Bulletin of
the IEEE Computer Society Technical Committee
on Data Engineering, 2000, 23(4): 33-41.

[9] Kushmerick N, Weil D, Doorenbos R. Wrapper
induction for information extraction. In
Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI), 1997, 729-735.

[10] Liu L, Pu C, Han W. XWRAP: An XML-enabled
Wrapper Construction System for Web
Information Sources. In Proceedings of ICDE,
2000, 611-621.

[11] Meng X F, Lu H J, Wang H Y, Gu M Z. SG-
WRAP: A Schema-Guided Wrapper Generator.
Demonstration in ICDE, 2002, 331-332.

[12] Meng X F, Lu H J, Wang H Y, Gu M Z. Schema-
Guided Data Extraction from the Web. Journal of
Computer Science and Technology (JCST),
2002,17(4).

[13] Sahuguet A, Azavant F. Building Light-Weight
Wrappers for Legacy Web Data-Sources Using
W4F. In Proceedings of VLDB, 1999, 738-741.

[14] DOM Document Object Model (DOM) Level 2
Core Specification http://www.w3.org/TR/DOM-
Level-2-Core

[15] HTML 4.01 Specification,
http://www.w3.org/TR/html401/

[16] XML Path Language (XPath) 2.0,
http://www.w3.org/TR/xpath20/

[17] XQuery 1.0: An XML Query Language,
http://www.w3.org/TR/xquery/

