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Abstract—Multi-organ segmentation is a critical step in 

Computer-Aided Diagnosis (CAD) system. We proposed a 

novel method for automatic abdominal multi-organ 

segmentation by introducing spatial information in the 

process of supervoxel classification. Supervoxels with 

boundaries adjacent to anatomical edges are separated from 

the image by using the Simple Linear Iterative Clustering 

(SLIC) from the images. Then a random forest classifier is 

built to predict the labels of the supervoxels according to 

their spatial and intensity features. Thirty abdominal CT 

images are used in the experiment of segmentation task for 

spleen, right kidney, left kidney, and liver region. The 

experiment result shows that the proposed method achieves 

a higher accuracy of segmentation compares to our previous 

model-based method.  

Index Terms—multi-organ segmentation, computer-aided 

diagnosis, supervoxel, random forest 


I. INTRODUCTION

Medical images are important information source for 

clinical diagnosis of physicians. However, the 

examination of the medical images is a time-consuming 

task for physicians, which may furtherly lead to 

misdiagnosis and missed diagnosis. With the 

development of computer technique and machine 

learning, Computer-Aided Diagnosis (CAD) has 

developed into a practicable technique to extract useful 

information of patients as well as providing more 

objective opinion for diagnosis of physicians, in addition 

to their own experiment. Organ segmentation is one of 

the key tasks in CAD among many fundamental medical 

image processing tasks. The volume data obtained from 

the segmentation can be used in 3-D organ reconstruction, 

pathological analysis, disease tracking and so on clinical 

practice. In recent years, a new requirement of multi-

organ segmentation is rising along with the evolution 
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from organ-based to organism-based approaches in 

modern medical diagnosis, and the analysis of multiple 

organ can also be helpful for comprehensive diagnosis or 

pre-operative planning and guidance in CAD system [1]. 

Multi-organ segmentation methods are generally 

developed from single organ segmentation in which field 

statistical atlas and shape model are widely used. Shimizu 

et al. [2] proposed an atlas guided segmentation method 

on twelve organs with level-set refinement. Twelve 

organs are simultaneously extracted from non-contrast 

3D abdominal CT images, by using abdominal cavity 

standardization process and segmentation of roughly atlas 

guided segmentation with Expectation Maximization 

(EM) algorithm based parameter estimation and the 

following multiple level set fine segmentation. In [3], 

Chu et al. used spatially-divided probabilistic atlas to 

reduce the inter-subject variance in organ shape and 

position with global and local weight assigned and 

conducted the segmentation incorporating a Maximum A 

Posterior (MAP) estimation and a graph cut method. 

Okada et al. [4] constructed a hierarchical multi-organ 

statistical atlas with constrains for multi-organ inter-

relationships embedded by introducing prediction-based 

conditional shape–location priors from Organ Correlation 

Graph (OCG). The predictor organs are pre-segmented 

and used to guide the segmentation of the remaining 

organs hierarchically by the conditional shape–location 

priors. This method increases the accuracy as well as 

extend the applicability to various imaging conditions 

without supervised intensity information.  These atlas and 

shape model based methods show better robustness in 

favor of the prior knowledge obtained from the training 

set. However, more accurate registration is required to 

match the pre-trained atlas to the test image, and shape 

correspondence within the training set is necessary for 

shape models.  

Instead of training models, deep convolutional neural 

network learning technique are also introduced to this 
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field, benefited from their outperformed semantic 

segmentation ability based on the mechanism of feature 

extraction using multiple convolution layers. Zhou et al. 

[5] used a Fully Connection Network (FCN) to realize a 

sematic segmentation of nineteen anatomical structures. 

Roth et al. [6] used a cascaded 3-D FCN to improve the 

inaccuracies of smaller organs and vessel in a coarse-to-

fine approach. For the problem of small, partially 

annotated dataset in deep learning training process, weak 

supervised training are combined in recent methods. 

Zhou et al. [7] proposed a Prior-aware Neural Network 

(PaNN) using anatomical priors on organ sizes and 

domain-specific knowledge in the training process. In [8], 

Wang et al. focused on the training sample selection 

problem instead of network architecture. A Relaxed 

Upper Confident Bound (RUCB) strategy for sample 

selection was proposed to mitigate the influence of 

annotation errors during the training process and increase 

the segmentation performance. To relieve the inaccuracy 

on small organ and vessel, which is caused by imbalance 

of background and foreground differentiation, and lower 

layers, the coarse-to-fine strategy was employed in [9] 

and [10]. The accuracy of the multi-organ segmentation 

tasks is tremendously improved by the deep neural 

networks, benefit by the automatically selected features. 

However, the training of deep networks requires large 

calculation resources and manually labeled training data, 

which is difficult to obtain. The overfitting and gradient 

vanishing are still or even more serious problems for deep 

neural networks applied to medical image segmentation 

tasks, especially for 3-D tasks. 

To reduce the complexity of methods that directly 

operated on massive voxels in 3-D images, supervoxel 

pre-segmentation is introduced to the image segmentation 

field. Supervoxel is a set of voxels with similar intensities 

locations and textures, which is separated from a 3-D 

image volume [11]. In [12], Takaoka et al. proposed a 

supervoxel based graph cut method for multi-organ 

segmentation. Tong et al. proposed a patch-based 

segmentation framework for the abdominal multi-organ 

segmentation. Dictionaries and classifiers are used to 

generate a subject-specific probabilistic atlas and the 

graph-cuts method is combined. Local information is 

obtained from local voxel-wise atlas selection to inter-

subject variability problem [13]. In [14], Soltaninejad et 

al. proposed a brain tumor segmentation method from 

MRI brain image using random forest classifier for 

supervoxel textures. The individually over-segmented 

supervoxel are the tiniest elements in these methods for a 

further process, which merges the similar voxels and 

lower the requirement of calculation for 3-D image 

processing. 

In this article, we present a supervoxel and random 

forest based method for automatic multi-organ 

segmentation from abdominal CT images. After an 

adjustment of quality, each image is separated into a 

group of supervoxels and a classifier for them is trained 

by extracted spatial and intensity features to label the 

image volume and conduct the segmentation. In Section 

II, the proposed method is described, including 

preprocessing, supervoxel clustering, feature extraction, 

and random forest model. Section III presents our 

experiment on random forest classification and image 

segmentation result. In Section IV, the method and 

experiment result are discussed with a conclusion of the 

research followed. 

II. METHOD 

In this section, an automatic multi-organ segmentation 

method is introduced, as shown in Fig. 1. Firstly, a 

preprocessing on original image data is performed to 

acquire equidistant volumes and unified intensity of each 

voxels. Then, the 3-D images are participated into 

supervoxels, each of which can be categorized as label 

representing background, or other organs. Then, some 

features of distinctiveness are extracted from the 

participated supervoxels and fed to a random forest 

trainer to obtain a classifier for supervoxels label. Finally, 

given a test image, each of the participated supervoxels 

can be labelled by the classifier as background or other 

organs and the final segmentation result can be obtained 

by merging the supervoxels of the same label. 

 

Figure 1.  Flowchart of the proposed method. 

A. Preprocessing 

The preprocess step of images including two aspects: 

volumetric operation and intensity operation. The voxel 

spacing in the transverse planes images from the original 

dataset varies among each case, which makes the 3-D 

ratio of the CT scan different from these in the real world. 

To remove this difference and recover the real spatial 

pattern of the patients, the images are uniformly 

resampled to 2 mm in each direction. Also, to emphasize 

the object organ and enhance the contrast of the images, a 

histogram equalization is performed to the images by 

referring the histogram of a chosen case from the training 

set before a windowing operation on the intensities from 

a Hounsfield scale (HU) from -256 to 256. 

B. Supervoxel Clustering 

After the preprocessing, the images are separated into 

smaller units of supervoxels. As the CT images data are 

Supervoxel generation 

Feature extraction 

Random forest model based 

segmentation 

Start 

Image preprocessing 

End 
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organized in tensors of rank 3, it is natural and convenient 

to develop algorithms based on the smaller cubic patches. 

However, the shapes of anatomical structures are 

irregular, and the cubic division of the image may lead to 

isolation of the identical tissues and organs. In thus 

process, many useful connectivity information and 

communal features of the same region are ignored. 

Instead of using cubic patches, supervoxel that formed by 

adjacent voxels of similar intensity can be a better 

minimal unit for medical image analysis. 

In our research, the Simple Linear Iterative Clustering 

(SLIC) [15] is used to generate the supervoxel division. 

The voxels of an image are clustered into 𝑘  groups of 

supervoxels by using k-means method, in which the voxel 

intensities and spatial positions are used to measure the 

distance between voxels. The distance of intensity 𝑑𝑐 and 

position 𝑑𝑝  between the 𝑖 -th and 𝑗 -th voxel can be 

defined as: 𝑑𝑐 = √(𝑐𝑖 − 𝑐𝑗)2
 

𝑑𝑝 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑖 − 𝑧𝑗)2
      (1) 

where 𝑐𝑖 and 𝑐𝑗 are the grayscale intensity of the 𝑖-th and 𝑗-th voxel;  (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) and (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) the position of the 𝑖-
th and 𝑗 -th voxel respectively. A comprehensive 

measurement of the intensity distance 𝑑𝑐  and position 

distance 𝑑𝑝, represented as 𝐷 is used in practice: 

𝐷 = √(𝑑𝑐)2 + (𝑑𝑝𝑆 )2 𝑚2                      (2) 

where 𝑆 represents the sampling interval. The 𝑚 in (2) is 

a constant helps balance the importance of intensity and 

spatial distance, which also influences the irregularity of 

the obtained supervoxels. When 𝑚 is smaller, the edges 

of the obtained supervoxel are more coincided to the real 

boundaries of existing tissues or organs, while 𝑚 is larger 

the edges are tended to approach regular grids and the 

shape of the supervoxel would be more regular. 

The number of supervoxel 𝑘 is decided by the floored 

quotient of voxel number in the image, 𝑁𝑣 , and the 

interval 𝑆:  𝑘 = ⌊𝑁𝑣𝑆3⌋                                  (3) 

The clustering of supervoxel is an iterative process. At 

first, 𝑘 centers of supervoxel are initialized at the voxel of 

minimal gradient within each equally divided grid of the 

input image. Then for each center of the initial grids, its 

distance to each voxel within a range (set as a 2𝑆 × 2𝑆 ×2𝑆 region) are calculated and the voxels are assigned to 

the nearest cluster. In each iteration, the centers are 

recalculated, and the voxels are reassigned until the 

residual error converges. 

C. Feature Extraction 

After the supervoxels are obtained, suitable features 

are required to distinguish supervoxels as the organs or 

background. In our method, the spatial position and 

statistical intensity features are considered beneficial for 

the supervoxel classification.  

As the abdominal organ of interest shares similar 

anatomical relations in the abdominal cavity, the same 

organ in different cases of patients processes an 

approximate position. We introduce the position of the 

central voxel from each supervoxel as the spatial feature, 

which are previously normalized according to the image 

size. Also, the intensity features are varied for 

supervoxels that belongs to different tissues, organs or so 

on matters. While the difference of intensity among 

different images are reduced in the preprocessing, a 

gradient map of the image can furtherly help decrease the 

influence from the data diversity caused by many 

imaging environments. The maximum, minimum, and 

mean of the intensity value and gradient value are 

calculated as intensity features. The three position 

features, three intensity features and three intensity 

gradient features form the feature vector for each 

supervoxel. 

D. Random Forest 

After the supervoxels are obtained, suitable features 

are required to distinguish supervoxels as the organs or 

background. In our method, the spatial 
Random forest [16] is a classification model using 

bagged decision trees in which the attributes at each node 

are chosen randomly as well. The whole training set are 

firstly sampled into 𝑁𝑡 sampling sets, each of which are 

composed of 𝑛𝑠 random samples. Then 𝑁𝑡 decision trees 

are trained separately from the sampling sets. In the 

training process of the decision trees, the optimal 

attributes in each node are selected from a random 

sampled subset of the attribute set. For the multiclass 

classification task, the result can be obtained by a voting 

from the results of each decision tree. The randomness 

from the bagging and attributes help increase the 

generalization ability. 

In our method, each set of training data for a random 

forest classifier contains supervoxels obtained from all 

the image data. The attribute space is a nine-dimension 

vector containing nine features extracted by using the 

method described in Section II.C. The labels of each 

supervoxel, which indicate the category that the current 

supervoxel belongs to, are decided by the maximum of 

the voxel labels within the supervoxel. The label space 

contains five labels: background, spleen, right kidney, left 

kidney, and liver. In the segmentation procedure, an 

abdominal image is firstly separated into supervoxels by 

using the SLIC algorithm, and the supervoxels are 

classified and labeled as corresponding background or 

organs with the trained random forest classifier. The 

labels of the supervoxels from the random forest are 

distributed to their voxels and a labeled multi-organ 

segmentation result is obtained. 

III. EXPERIMENT 

A. Data Preparation 

In our experiment, a dataset from the “Multi-atlas 

labeling beyond the cranial vault-workshop and challenge” 
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[17] was used to evaluation the proposed method. In the 

dataset, 30 cases of abdominal CT images were acquired 

from the Vanderbilt University Medical Center (VUMC). 

Thirteen abdominal organs were manually labeled and the 

labels of voxels which were not organs of segmentation 

targets were excluded in the experiment, i.e. organs 

labeled except for spleen, right kidney, left kidney or 

liver, are relabeled as background. 

B. Supervoxel Classification 

The supervoxels partitioned from each image were 

classified by the random forest multiclass classifier into 

five labels: ‘background’, ‘spleen’, ‘right kidney’, ‘left 
kidney’, and ‘liver’ from the training set. To measure the 
performance of the classifier, several evaluators were 

used on the classification results. As the research focus 

on organ segmentation and there is an extreme imbalance 

of supervoxel number of organs or background, we only 

analysis the relative measurement on four organs, except 

for background. For each organ, four basic measurements 

counting numbers of correctly or wrongly classification 

samples (supervoxels) are used: TP (True Positive),  FN 

(False  Negative),  FP  (False  Positive), and TN (True

Negative). The definition is as below: 

TP: number of supervoxels belong to the organ and 

were correctly classified as the organ; FN: number of 

supervoxels belong to the organ but were wrongly 

classified as the other organ or background; FP: number 

of supervoxels do not belong to the organ but were 

wrongly classified as the organ; TN: number of 

supervoxels do not belongs to the organ and were 

correctly classified as the other organ or background. 

The accuracy and specificity are used to evaluate the 

classification of supervoxels. The evaluators referred 

before are calculated as: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 = 𝑇𝑁𝑇𝑁+𝐹𝑃                          (4) 

The mean accuracy and specificity are shown in Table 

I. 

TABLE I.  MEAN ACCURACY AND SPECIFICITY 

Organ 
Metric 

Accuracy Specificity 

Spleen 0.6711 0.9990 

Right 

Kidney 
0.3822 0.9997 

Left 

Kidney 
0.3168  0.9997 

Liver 0.7891 0.9997 

C. Organ Segmentation 

To evaluation the result of segmentation task, the 

Sorensen–Dice coefficient (DSC) is used to gauge the 

similarity of the segmentation by out method and the 

ground truth from the training set: 𝐷𝑆𝐶 =  2|𝑃∩𝐺||𝑃|+|𝐺|                             (5) 

where 𝑃  and 𝐺  are the voxel numbers of segmentation 

result and ground truth, respectively. DSC ranges from [0,1] and a higher DSC represents a better segmentation 

result. In the experiment, we compared the segmentation 

result with our previous research [18] using random 

forest regressor and statistical shape model. The mean 

DSC of spleen, right kidney, left kidney, and liver 

segmentation results are shown in Table II. Compared 

with the previous method, the segmentation accuracy is 

increased by using the proposed method. 

TABLE II.  MEAN DSC OF EACH ORGAN 

Organ 
DSC 

Previous method [18] Proposed method 

Spleen 0.351 0.635 

Right 

Kidney 
0.310 0.443 

Left 

Kidney 
0.343 0.370 

Liver 0.571 0.808 

IV. DISCUSSION AND CONCLUSION 

The supervoxel clustering is a crucial step in the 

method. A fundamental requirement for an appropriate 

supervoxel is that its boundaries must fully cover the 

edges of organs. As the supervoxels are the tiniest 

inseparable element in our method, voxels within the 

supervoxel must process a communal label. That is to say, 

each voxel on the edges of the ground truth must be 

included in the set of all the supervoxel boundaries. 

Hence, a larger number of over segmentations supervoxel 

is required. 

The preprocessing for supervoxel separation focuses 

on preserving edge information and individual intensity 

information of each small supervoxel, as well as dividing 

region of diverse intensities so that the supervoxel 

clustering can capture tiny edges and distinguish regions 

of different organs. Hence, usual image smoothing 

operations to remove noise are not performed in this 

process, but introduced in the feature extraction stage. 

Feature extraction is another key step in supervoxel 

classification. Proper feature can be used to distinguish 

supervoxels belong to different organs. In abdominal CT 

images, the anatomical knowledge is learned by the 

correspondent relevance between fixed adjacent tissue 

and organs which are represented by the normalized 

spatial coordinate feature. However, as the widespread 

existence of physical differences and body postures, the 

current spatial feature can only provide information 

within limited precision. More complicated structural 

relativities combining adjacent supervoxels can be more 

effective. 

12

Journal of Image and Graphics, Vol. 9, No. 1, March 2021

©2021 Journal of Image and Graphics



 

 

Figure 2.  Comparison of ground truth (left) and segmentation result 

(right), spleen, right kidney, left kidney, and liver are declined in red, 

green, blue, and cyan, respectively. 

Two groups of segmentation result (on the right) and 

ground truth from manually delineation (on the left) are 

compared in Fig. 2. In the top group, a redundant tissue 

belongs to the background is misclassified as left kidney, 

which is adjacent in position and similar in intensity. In 

the bottom group, some of the regions belong to liver and 

spleen are misclassified as background, even the texture 

of the missed regions is similar. This is probably 

influenced by the inaccurate spatial features arise from 

the unaligned images, where improvement is required in 

the future. 

Except for alignment in the preprocess of images, 

feature extraction is another importance process in this 

frame. The feature used in the proposed method relies on 

statistical intensity and their gradient value with limited 

size. To extract more representative features and 

distinguish supervoxels better, some more complicated 

features extraction method that combines local intensity 

and gradient from different directions can be applied to 

the supervoxel. As the 3-D super voxel are irregular 

shapes that contains voxels of uncertain quantity, a proper 

improvement is required to fit the traditional feature 

extraction method that are regularly applied to square or 

cubic cells of images.  

When not focusing on the feature of individual 

supervoxels, the global anatomical priors can also be 

introduced to the classification and segmentation scheme. 

In the proposed method, only the spatial position of each 

single supervoxel are considered as feature. However, for 

each of the supervoxels that belong to a specific organ, it 

is adjacent to at least one supervoxel of the organ. The 

spatial relevance of these adjacent supervoxels can be 

taken into consideration, which helps maintain the 

integrity of the organ.  

The anatomical priors can also be used to refine the 

segmentation result after the supervoxel classification by 

referring statistical atlas which comprising shape or 

appearance of organs. Given a coarse segmentation result 

from the classification, like shown in the Fig. 2, a 

matching is required to fusion the anatomical shape 

models or atlases. In this procedure, the inter-individual 

variability is still a challenge and statistical atlas with 

adequate specification ability is required.  

In this article, a random forest classifier based method 

is proposed for multi-organ segmentation from abdominal 

CT images. The images are clustered into small units of 

supervoxels with similar intensities and positions. A 

group of spatial and intensity features are extracted to 

distinguish supervoxels by using a random forest 

classifier. The experiment result shows an improvement 

in segmentation accuracy especially for spleen and liver 

compared to our previous shape model based method. To 

reduce missed segmentation, more distinguishable 

features are required to represent the differences of object 

organs and background in the future work. 
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