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Abstract. The Support Kernel Machine (SKM) and the Relevance Ker-
nel Machine (RKM) are two principles for selectively combining object-
representation modalities of different kinds by means of incorporating
supervised selectivity into the classical kernel-based SVM. The former
principle consists in rigidly selecting a subset of presumably informa-
tive support kernels and excluding the others, whereas the latter one
assigns positive weights to all of them. The RKM algorithm was fully
elaborated in previous publications; however the previous algorithm im-
plementing the SKM principle of selectivity supervision is applicable only
to real-valued features. The present paper fills in this gap by harnessing
the framework of subdifferential calculus for computationally solving the
problem of constrained nondifferentiable convex optimization that oc-
curs in the SKM training criterion applicable to arbitrary kernel-based
modalities of object representation.

1 Introduction

In pattern recognition, the term ”modality” is employed when speaking about
a specific kind of mathematical computer-perceptible object representation. In
terms of the measured modality, the hypothetical set of ”all” real-world ob-
jects of interest ω ∈ Ω is represented by the outputs of the respective sensor
as generalized features x(ω) ∈ X in some sensor-specific scale X. In the sim-
plest case, when the scale is the set of real numbers X = R, the objects are
represented by values of a real numerical feature. Multimodal pattern recogni-
tion systems utilize several distinct feature modalities, often with different scales(
xi(ω)∈Xi, i ∈ I = {1, ..., n}), to represent specific phenomena [1].

Feature scales Xi may be quite complicated, so that frequently the only way
of treating real-world objects ω∈Ω is via pair-wise comparison of their features(
xi(ω′), xi(ω′′)

)
using modality-specific functions Ki(x′

i, x
′′
i ) defined in the re-

spective scales Xi×Xi → R. A function K(x′, x′′) is said to be a kernel if it
forms a semidefinite matrix for any finite collection of objects. It is well known
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that a kernel embeds the scale of the respective feature Xi into a hypothetical
linear space X̃i ⊇ Xi in which it plays the role of inner product.

In particular, when xi(ω) ∈ Xi = R, the natural kernel will be the prod-
uct Ki(x′

i, x
′′
i ) = x′

ix
′′
i . Support Vector Machines (SVMs), originally designed

for two-class pattern recognition learning in R
n, actually combine real-valued

modalities by employing a joint kernel K(x′, x′′) =
∑n

i=1 x′
ix

′′
i . This analogy

is exploited by multi-kernel SVMs when more sophisticated kernel-represented
modalities are to be combined [3,4,5].

When fusing several modalities of object representation, the necessity to mod-
erate the inevitable overfitting threat makes it absolutely necessary to combine
modality-specific features in a selective mode. We consider here the general case
of kernel-induced feature scales

{
X̃1, ..., X̃n

}
treated as hypothetical linear clo-

sures X̃i ⊇ Xi of arbitrary scales
{
X1, , ..., Xn

}
with respective kernels defined

over each of them
{
Ki(x′

i, x
′′
i ), x′

i, x
′′
i ∈ Xi

}
. The kernel-based approach removes

the mathematical distinction between different kinds of feature scales X̃i, so that
the kernel selection will boil down to the usual feature selection in the particular
case of natively real-valued features X̃i = Xi = R.

There exist many feature (kernel) selection techniques classed in the literature
as filters, which are applied to the feature set independently of classification
technique, and wrappers, which consider feature selection in conjunction with
classification [2].

It is the latter way of combining multiple kernels we keep to in this paper.
More specifically, we further elaborate the methodology of selectivity supervision
by a priori assigning the desired level of selectivity, ranging from the complete
absence of selection to the adoption of only singular features. In our previous
papers [6,7], a way of achieving this range of behaviours was roughly outlined
as the idea of incorporating selectivity into the two-class kernel-based Support
Vector Machine.

Two principles of incorporating selectivity into the SVM proposed in [6] were
called Support Kernel Machine (SKM) and Relevance Kernel Machine (RKM).
The former principle consists in rigidly selecting a subset of presumably infor-
mative support kernels and excluding the others, whereas the latter one assigns
positive weights to all of them.

An algorithm for implementing the RKM principle of selectivity supervision is
elaborated in [6] and tested in [7] on the practical problem of signature verifica-
tion by kernel-based fusing on-line and off-line modalities of signature represen-
tation. However, the algorithm described in [6] is applicable only to real-valued
features xi∈Xi =R.

The purpose of the present paper is to fill in this gap. The idea consists in har-
nessing the framework of subdifferential calculus [10] for computationally solving
the problem of constrained nondifferentiable convex optimization that occurs in
the SKM training criterion applicable to arbitrary kernel-based modalities of
object representation. This approach allows us to explicitly show the mechanism
of selecting the support kernels and excluding the redundant ones relative to the
given training set.
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2 The Support Kernel and the Relevance Kernel
Machines

Let
{
xj =(x1j, ..., xnj), yj , j=1, ..., N

}
be the training set of real-world objects{

ωj ∈Ω, j =1, ..., N
}

each of which is represented by the class-membership index
yj = y(ωj) ∈ {−1, 1} and the values of n modality-specific features measured
in the respective scales xij = xi(ωj) ∈ Xi with kernel functions Ki(x′

i, x
′′
i ) :

Xi×Xi→R defined in them. A broad construction of the SVM was proposed in
[5,6,7] as an instrument for making the Bayesian decision on the discriminant
hyperplane

∑n
i=1 Ki(ai, xi)+b ≷ 0 in the Cartesian product of the kernel-induced

hypothetical linear space a = (a1, ..., an) ∈ X̃1× ...×X̃n, b ∈ R, with an arbitrary
a priori density of orientation distribution Ψ(a) = Ψ(a1, . . . , an).

It was shown that, under some natural assumptions on the pair of class-specific
a priori distribution densities ϕ

(
x|y =±1, (a, b)

)
defined by the same discrimi-

nant hyperplane in the combined linear feature space x=(x1, ..., xn) ∈ X̃1 × X̃n

(see [5,6,7] for details), the Bayesian estimate of the hyperplane parameters
(a, b)=(a1, ..., an, b) is the solution of the following optimization problem:

⎧
⎪⎪⎨

⎪⎪⎩

− lnΨ(a1, ..., an)+c
N∑

j=1

δj → min
(
ai∈X̃i, b∈R, δj ∈R

)
,

yj

(
n∑

i=1

aixij +b

)
� 1−δj, δj � 0, j = 1, ..., N.

(1)

It is only the penalty −ln Ψ(a1, ..., an) that distinguishes this generalized training
criterion from the classical SVM

∑n
i=1a

2
i + C

∑N
j=1 δj → min

(
a = (a1, ..., an) ∈

R
n, b∈R, δ1, ..., δn∈R

)
for real-valued feature vectors xj =(x1j , ..., xnj)∈R

n.
Two parametric families of a priori densities Ψ(a1, . . . , an |μ) were proposed

in [6] as two different means of endowing the training criterion (1) with the
ability to emphasize informative object-representation modalities and suppress
redundant ones under the desired selectivity level which grows with increasing
parameter μ�0, starting from the full absence of selectivity (ie retaining all the
original modalities when μ=0).

These two parametric families had led in [6] to different modality-selective
training criteria named the Relevance Kernel Machine (RKM) with supervised
selectivity

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

JRKM(a1, r1, ..., an, rn, b, δ1, ..., δN |μ) =
n∑

i=1

[(
1/ri

)(
Ki(ai, ai) + 1/μ

)
+
(
1/μ + 1 + μ

)
ln ri

]
+

C
N∑

j=1

δj → min
(
ai∈X̃i, ri ∈ R, b∈R, δj ∈R

)
,

yj

(
n∑

i=1

Ki(ai, xij) + b

)
�1−δj, δj �0, j=1,..., N, ri �ε>0, i = 1, ..., n,

(2)

and the Support Kernel Machine (SKM) with supervised selectivity
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

JSKM(a1, ..., an, b, δ1, ..., δN |μ) =
n∑

i=1

q(ai |μ)+ C
N∑

j=1

δj → min
(
ai∈X̃i, b∈R, δj ∈R

)
,

q(ai |μ) =

{
2μ
√

Ki(ai, ai) if
√

Ki(ai, ai) � μ,

μ2 + Ki(ai, ai) if
√

Ki(ai, ai) > μ,

yj

(
n∑

i=1

Ki(ai, xij) +b

)
�1−δj, δj�0, j=1, ..., N.

(3)

We consider here only these two training criteria themselves and omit the
Bayesian reasoning resulting from their respective a priori assumptions. The
statistical justification is to be found in [6].

The Relevance Kernel Machine (2) and the Support Kernel Machine (3) are
generalized versions of the classical SVM which implement two different princi-
ples of kernel-based modality selection.

The RKM emphasizes some modalities and relatively suppresses the others
by assigning continuous positive weights ri >0 to the respective kernels i ∈ I =
{1, ..., n} in the resulting discriminant hyperplane

∑

j: λj>0

yjλj

∑

i∈I

riKi(xij , xi) + b ≷ 0 (4)

applicable to any new object x(ω)=
(
xi(ω)∈Xi, i = 1, ..., n

)
.

Contrary to this, the SKM displays a pronounced inclination toward complete
exclusion of a fraction of kernels. It partitions the entire set of modality-specific
kernels into two subsets, that of support kernels Isupp = {i : ri > 0} ⊆ I, which
occur in the resulting discriminant hyperplane, and that of excluded ones I \
Isupp = {i : ri =0}.

3 A Smooth Dual Formulation of the Nondifferentiable
SKM Training Problem

For any training set
{
(xij , i ∈ I), yj , j = 1, ..., N

}
, where I = {1, ..., n} is the

set of all modalities, the objective function JSKM (ai, i ∈ I, b, δj, j = 1, ...N | μ)
in (3) is convex in its range of definition X̃1× X̃n× R × R

N , and the inequality
constraints carve out a convex region in it. Thus, the SKM problem is that of
convex optimization.

We denote as λj � 0 and πj � 0 the Lagrange multipliers at the inequality
constraints, respectively, yj

(∑n
i=1 Ki(ai, xij) + b

) − 1 + δj � 0 and δj � 0. The
convex problem (3) can be shown to be a regular one [10], and, so, it is equivalent
to that of finding the saddle point of its Lagrangian

L(ai, i∈I, b, δj , λj , πj , j=1, ...N |μ) =
1
2
JSKM (a1, ..., an, b, δ1, ..., δN |μ)−

−
N∑

j=1

πjδj −
N∑

j=1

λj

[
yj

(
∑

i∈I

Ki(ai, xij) + b

)
− 1 + δj

]
→

→
{

min
(
ai∈X̃i, i∈I, b∈R, δj ∈R, j =1, ..., N

)
,

max
(
πj �0, λj �0, j = 1, ..., N

)
.

(5)
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If
[(

ãi, i∈I, b̃, δ̃j , , j =1, ...N
)
;
(
λ̃j , π̃j , j =1, ...N

)]
is a saddle point, its left part(

ãi, i∈I, b̃, δ̃j , , j=1, ...N
)

is a solution of the SKM problem (3), and vice versa,
each of its solutions

(
ãi, i∈I, b̃, δ̃j, , j =1, ...N

)
is the left part of a saddle point

of the Lagrangian (5).
Expanding the objective function in (5) in accordance with (3) gives the de-

tailed expression of the Lagrangian:

L(ai, i∈I, b, δj , λj , πj , j=1, ...N |μ) =
1
2

(
∑

i∈I

q(ai |μ)+C
N∑

j=1

δj

)

−
N∑

j=1

πjδj−
N∑

j=1

λj

[
yj

(
∑

i∈I

Ki(ai, xij)+b

)
−1+δj

]
.

(6)

It is convenient to introduce special notations for each sum of constituents that
depend on the ith modality-specific element ai of the entire direction vector
a=(a1, ..., an):

Li(ai, λj , j = 1, ..., N |μ) =
1
2
q(ai |μ) − Ki

(

ai,
N∑

j=1

yjλjxij

)

. (7)

In these terms, the Lagrangian (5) or (6) will have the form

L(ai, i∈I, b, δj , λj , πj , j =1, ...N |μ) =

∑

i∈I

Li(ai, λj , j = 1, ..., N |μ) +
N∑

j=1

(
C

2
− πj − λj)

)
δj −

−
(

N∑

j=1

yjλj

)

b +
N∑

j=1

λj .

(8)

Finding the saddle point of the Lagrangian is equivalent to maximizing the dual
function of the Lagrange multipliers

W (λj , πj , j=1, ..., N |μ) =
N∑

j=1

λj + min
ai∈X̃i, b∈R, δj∈R

L(ai, i∈I, b, δj , λj , πj , j=1, ...N |μ) .
(9)

However, the minimum value of the second term in (8) exists only if the Lagrange
multipliers satisfy the inequalities C/2 − πj − λj = 0, or, with the restrictions
πj � 0,

0 � λj � C

2
, j = 1, ..., N. (10)

Analogously, the third term of (8) has the minimum only if

N∑

j=1

yjλj = 0. (11)
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Thus, the dual function

W (λj , j=1, ..., N |μ) =
N∑

j=1

λj +
∑

i∈I

min
ai∈X̃i

Li(ai, λj , j = 1, ..., N |μ) (12)

is to be maximized under constraints (10) and (11).
To accomplish the formulation of the dual problem, it is required to deter-

mine how the minimum values of the functions Li(ai, λj , j = 1, ..., N | μ) (7)
with respect to ai depend on the Lagrange multipliers λi for each of the modali-
ties i ∈ I. But these functions contain, in their turn, nondifferentiable functions
q(ai |μ) (3), which makes it necessary to use the notions of subgradient and sub-
differential, instead of the usual gradient, to formulate the minimum condition
of a convex function [10].

Definition 1. Vector d ∈ X̃ in a linear space X̃ with inner product K(x′, x′′)
is called a subgradient of the convex function f : X̃ → R at point a ∈ X̃ if the
inequality f(x) − f(a) � K(d, x−a) holds for all x∈X̃.

Definition 2. The set of all subgradients of convex function f : X̃→R at point
a∈X̃ is called the subdifferential ∂f(a) ⊆ X̃ at this point.

Property. The condition that the subdifferential at point a∈X̃ contains the null
element φ∈∂f(a) ⊆ X̃ is necessary and sufficient for this point to be a minimum
point of convex function f .
The latter property creates a mathematical basis for a closed form of the smooth
optimization problem (12) dual to the original nondifferentiable SKM prob-
lem (3). This is a problem of maximizing a linear function of N + n variables,
namely, N Lagrange multipliers λj and n auxiliary variables ξi, under quadratic
and linear constraints.

Theorem 1. The problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

W (ξi, i∈I, λj , j=1, ..., N) =
1
2
∑

i∈I

ξi + C
N∑

j=1

λj → max,

ξi � μ2−
N∑

j=1

N∑

l=1

yjylKi(xij , xil)λjλl, ξi � 0, i ∈ I,

N∑

j=1

yjλj = 0; 0 � λj � C

2
, j = 1, ..., N,

(13)

is dual to the SKM training problem (3).

The proof depends upon the following lemma which is a result of immediate ap-
plication of the prevoiusly formulated property of an arbitrary nondifferentiable
convex function to the functions Li(ai, λj , j = 1, ..., N |μ) in (12).
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Lemma 1. The minimum of function Li(ai, λj , j = 1, ..., N |μ) (7) with respect
to variable ai∈X̃i is reached at the points

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ãi =ηi

N∑

j=1

yjλjxij , ri =1, if Ki

(
N∑

j=1

yjλjxij ,
N∑

j=1

yjλjxij

)

>μ2,

ãi =ηi

N∑

j=1

yjλjxij , 0�ri �1, if Ki

(
N∑

j=1

yjλjxij ,
N∑

j=1

yjλjxij

)

=μ2,

ãi =φi, if Ki

(
N∑

j=1

yjλjxij ,
N∑

j=1

yjλjxij

)

<μ2,

(14)

defined in terms of the linear operations and the null element induced by the
respective kernel Ki(x′, x′′) in the hypothetical linear space X̃i. At each such
point,

min
ai∈X̃i

Li(ai, λj , j = 1, ..., N |μ) = Li(ãi, λj , j = 1, ..., N |μ) =

1
2

min

{

0; μ2 − Ki

(
N∑

j=1

yjλjxij ,
N∑

j=1

yjλjxij

)}

.
(15)

4 The Resulting Discriminant Hyperplane and Support
Kernels

Assume the dual optimization problem (13) has been solved. Only the Lagrange
multipliers λ1�0, ..., λN�0 are of interest, so the auxiliary values π1�0, ..., πn �0
may be dropped. In accordance with (14), the discovered solution partitions the
set of all kernels I = {1, ..., n} into three subsets:

I+ =

{

i∈I :
N∑

j=1

N∑

l=1

yjylKi(xij , xil)λjλ l > μ2

}

,

I0 =

{

i∈I :
N∑

j=1

N∑

l=1

yjylKi(xij , xil)λjλ l = μ2

}

,

I−=

{

i∈I :
N∑

j=1

N∑

l=1

yjylKi(xij , xil)λjλ l < μ2

}

.

(16)

Theorem 2. The optimal discriminant hyperplane defined by the solution of the
SKM training problem (3) has the form

∑

j:λj>0

yjλj

(
∑

i∈I+

Ki(xij , xi) +
∑

i∈I0

riKi(xij , xi)

)

+ b ≷ 0, (17)

where the numerical parameters {0�ri �1, i∈I0; b} are solutions of the linear
programming problem
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2μ2
∑

i∈I0
ri + C

n∑

j=1

δj → min(ri, i ∈ I0; b; δ1, . . . , δN ),

∑

i∈I0

(
N∑

l=1

yjylKi(xij , xil)λ l

)
ri+yjb +δj � 1−∑

i∈I+

N∑

l=1

yjylKi(xij , xil)λ l,

δj � 0, j = 1, . . . , N, 0 � ri � 1, i ∈ I0.

(18)

5 The Subset of Support Kernels

The solution (r̂i, i ∈ I0; b̂; δ̂1, . . . , δ̂N) of the linear programming problem (18) is
completely defined by the training set X =

{
xj =(x1j , ..., xnj), yj , j=1, ..., N

} ∈
X1× ... ×Xn ⊆ X̃1× ... ×X̃n. As is seen from criterion (18), some of coefficients
(r̂i, i∈ I0) may equal zero if the respective constraints 0 � ri are active at the
solution point.

However, it can be shown that, if all the linear spaces X̃i are finite-dimensional,
the subset of such configurations {X} is of zero Lebesgue measure in the linear
space X̃1×...×X̃n. Thus, if the training set is considered as random points defined
by a continuous probability distribution, the inequalities r̂i > 0 are met almost
certainly for all i∈I0.

This means that without any loss of generality the constraints {0 � ri �
1, i ∈ I0} may be omitted in (18), and, yet, all kernels i ∈ I0 will occur in
the discriminant hyperplane (17) with nonzero weights. It is natural to call the
subset Isupp =I+∪ I0 ⊆ I the set of support kernels .

The structure of the subsets of kernels (16) explicitly reveals how the subset of
support kernels Isupp is affected by the parameter μ in the training criterion (3).

If μ = 0, the set of evident support kernels I+⊆I coincides with the entire set
I = {1, . . . , n}. In this particular case, the function q(ai | μ) in (3) is quadratic
q(ai |μ) = const + Ki(ai, ai) for all ai ∈ X̃i, and the training criterion does not
differ from the usual SVM without selectivity properties; all the initial kernels
are support ones because they all occur in the resulting decision rule.

As μ grows, more and more kernels appear in the set I− of evident nonsupport
kernels (16), and, correspondingly, the set of support kernels Isupp =I+∪ I0 gets
smaller.

Unlimited growth of the selectivity parameter μ →∞ drives, finally, all the
kernels into I−, so that no support kernels remain at all: Isupp = ∅.

6 Adjusting the Selectivity Parameter

The selectivity parameter 0 � μ < ∞ is a structural parameter of the SKM
training criterion. It determines a sequence of nested classes of training-set mod-
els whose dimensionality diminishes as μ grows, starting from the usual SVM
model if μ = 0. As it is not determined a priori, at present, the most effective
method for choosing the value of a structural parameter is Cross-Validation that
is based on directly estimating the generalization performance of the training
method.
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pRKM
CV (µ) — RKM

pSKM
CV (µ) — SKM

↓

↑

µ

Error rate

Fig. 1. The result of cross-validation on the lung cancer data set for increasing values
of selectivity level µ

7 Experiments on Real-World Data

For the real data experiment, we used the lung cancer data set from the UCI
repository [11]. The data set contains feature vectors of N = 32 patients parti-
tioned into two subsets N+1 = 9 and N−1 = 23, respectively, those diagnosed
and those not diagnosed with pathological lung cancer. Each vector consists of
n=56 features (a number exceeding the size of the available training set).

As the data set does not contain a test set, the relationship between the gener-
alization performance of the algorithms and the selectivity level μ was estimated
by the cross-validation method. The results of the experimental evaluation are
shown in Fig. 1.

For small values of μ, both techniques are equivalent to the usual SVM applied
to all n=56 variables, so that, the respective error rates have the same value 0.38.

The minimum achievable error rate for the RKM is 0.187, whereas for the
SKM it equals 0.219. For the optimal levels of selectivity μ, both techniques
decrease their error rates by a factor of 2, but the weights estimated by RKM
appreciably differ from zero at 4 features out of 56, whereas SKM retains only 2
of them. This extra feature dimensionality appears to be advantageous for the
RKM over the SKM, with a minimum error rate of 0.187 against 0.219.

Finally, when μ becomes too large, both RKM and SKM remove all features,
and the error rate of recognition tends towards an asymptotic level of 0.281
determined by the ratio N1/N−1 between the numbers of representatives of the
classes in the training set.

8 Conclusions

The Support Kernel Machine (SKM) and the Relevance Kernel Machine (RKM)
are two different methods for selectively combining kernel-based modalities of
arbitrary kind in multimodal pattern recognition. The former consists in rigidly
selecting a subset of presumably informative support kernels and excluding the
others, whereas the latter assigns positive weights to all the kernels.

The names Support Kernel Machine and Relevance Kernel Machine arise from
an analogy with the distinction between the Support Vector Machine (SVM) [8]
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and the Relevance Vector Machine (RVM) [9], which differ from each other by
the binary verses weighted modelling of the occurance of the training-set objects
in the linear decision rule.

The experimental evaluation indicates that the SKM and RKM methods dis-
play quite similar generalization performance albeit with a slight quantitative
superiority attributable to the RKM. However, the SKM appears to produce
this performance with a greater parsimony of modalities.
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