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1. INTRODUCTION 

In this paper, we shall consider a model of capital 

accumulation and prove the existence of a support price path for 

the optimal path of capital accumulation. The considered economic 

model is a continuous time model of infinite horizon. 

Under some assumptions of differentiability, we can 

obtain a dual path for the optimal path by the Euler equation, or 

by the maximum principle of Pontryagin [1962]. (See, for example, 

Halkin [1974] and Haurie [1976].) In this paper, however, we 

shall not make any differentiability assumptions. Instead, we 

shall assume the appropriate convexity of the model, which is more 

natural in economics than differentiability. Thus, our problem 

is, so to speak, the "convex" problem of optimal control without 

differentiability. 

The convex problem of optimal control has been studied 

by Rockafellar [1971] and Halkin [1972]. In non-differentiable 

and convex models of finite horizon, they proved the existence of 

a dual path for the optimal path which "supports" the Hamiltonian 

function. It is difficult to compare our argument directly with 

their argument, since their formulations are much different from 

ours. However, our results are more general and useful in the 

following sense: First of all, the model considered in this 

paper is of infinite horizon. Second, our optimality criterion 

is a general one, that is, the so-called overtaking criterion 

2 

originally introduced by von Weizsacker [1965] and Gale [19:T]. 

Third, we shall prove the existence of a dual price path whi¢h 

supports the value function as well as the Hamiltonian fujct±1.on. 

This property of the support price path was established b�[ 
Benveniste and Scheinkman [1977] in a differentiable mode] with 

a somewhat stronger "interiority" assumption on the optimJ1 :nath. 

The fac< 'h-' a price pa<h •uppor<• bo<h 'he value func'+ 'hnd 

the Hamiltonian function is particularly useful in proving the 
I 

"turnpike" property of the optimal paths (see McKenzie [19760). 

The main result in the paper is Theorem I in 

section 4, in which the existence of a dual price path fori the 

op,imal pa'h i• pr�ed. Thia 'heor� ''a coun<erpar' of <h 

support price lemma proved by McKenzie [1976, L.l] in a disc�ete 

time model. One of the key lemmas in our argument is Lernla'[I 

in section 7, which exactly corresponds to the "induction" 

argument by Weitzman [1973] and McKenzie [1974 and 1976]. 

course, since our model is in continuous time, their inductibn 

procedure cannot be applied directly in our case. Howevet,: 

in the case of continuous time models, their method is quit' 

useful and actually makes the proof simpler and more elemln I 
A proof which is similar to ours is found in Halkin [1972], 

his method seems to be effective only for finite horizon lo 
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2. MATHEMATICAL NOTATION 

Let N be the set of all positive integers. For each 
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n E N, Rn denotes the n-dimensional Euclidean space. When n = 1, 

we write R instead of R1. For any x, y E Rn, the inner product 

of x and y is denoted by x•y. The Euclidean norm of any x E Rn 

is denoted by llx ll, i.e., llx ll = rx:X" .  For any subset U of Rn, 

int U denotes the interior of U in Rn and co U denotes the convex 

hull of U. 
For any concave (or convex) function f: U +RU {- 00} U {+ 00} 

defined on a convex subset U of Rn, symbol 3f (x) denotes the set of 

all subgradients of function f at x EU, i.e., 

3f (x) {p E Rn i f (x) - p•x � (or�) f (y) - p•y for all y EU} 
t 

A mapping F: U + 2R defined on a subset U of Rn to the 

family of all non-empty subsets of Rt is called a correspondence. 

Correspondence F is called lower semi-continuous at x
0 

E U if, for 

any y E F (x ) and any sequence {x.}. N in U converging to x ,o o 1 1E o 
there exists a sequence {y.}. N converging to y such that y. E F (x.) 1 1E o 1 1 
for all i E N. The correspondence F is called lower semi-continuous 

if F is lower semi-continuous at all x E U. 
A function f: E + Rn defined on a closed interval 

E c R to Rn is called absolutely continuous if the restriction of 

f on any compact interval is absolutely continuous in the usual 

sense. Also, the derivative of f is denoted by f. 
Any definitional term from measure theory, such as 

"integrable," "measurable," and "almost every" should be interpreted 

in the sense of Lebesgue. 

3. THE MODEL 

Let m E N be the number of different commoai 

(capitals) in the economy. The technology of the 

described by a correspondence Y: [O,oo) + 

[0,00) to a subset Y (t) of Rm x Rm. The notation 

means that at time t if we have amount x of commodities 

we can increase the amount of the commodities by y. 

pair (x,y) is a technologically possible combination 

amount of capital stock and the level of investment 

� Define a correspondence X: [O,oo) + 2 by 

X (t) = {x E Rm l (x,y) E Y (t) for some y E Rm} 

Assumption I: 

(i) The correspondence Y is lower semi-continuous 

valued, i.e., Y (t) is convex for all t E [0,00). 

(ii) int X (t) #�for all t E [O,oo). 

Social welfare at any point in 

the instantaneous utility function u: Gy + R, where Gy
"graph" of the correspondence Y, i.e., 

Gy { (x,y,t) E Rm 
x Rm 

x [0,00)1 (x,y) E Y (t)}. 

Namely, for each (x,y,t) E Gy, u (x,y,t) is interpreted as 

maximum level of social satisfaction that can 

t if the amount of capital stock is x and the 

is y. 
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Assumption II: 

The function u is a continuous function such that, for 

each t E [O,oo), u (x,y,t) is a concave function in (x•y). 

Remark 3.1: 

Allowing u (x,y,t) to assume the value - 00 on the 

boundary of Y (t) (where the boundary is taken relative to the 

smallest a·ffine set containing Y ( t)) would not be a more general 

assumption since setting u (x,y,t) equal to is equivalent to 

excluding (x,y) from Y (t). We can always perform this latter 

operation because Y (t) is not necessarily closed. (Note that 

such an operation does not destroy the convexity of Y (t) because 

of the concavity of u (x,y,t).) 

An absolutely continuous function k: [0,00) + Rm is said 

to be a feasible path between time r and time s, where r,s E [0,00) 

and r � s, if (k (t),k. (t)) E Y (t) for almost every t E [r,s]. An 

absolutely continuous function k: [O,oo) + Rm is called a feasible 

path from time r, where r E [0,00), if (k (t),k (t)) E Y (t) for 

almost every t E [r,oo). For each x E Rm and r E [0,00), let A (x,r) 

denote the set all feasible paths k from time r such that k (r) = x. 

Assumption III: 

If k is a feasible path from time r, then 

Js
u (k (t),k(t),t)dt < + 00 for all s E [r,00). 

r 
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The above assumption enables us to define a criterion 

of optimality for feasible paths. A feasible path k* from b�e r 

is said to be overtaken by a feasible path k E A (k* (r),r) ik 
there exist E > 0 and s � r such that 0 

ru (k(t),k(t);t)dt > ru (k* (t),k* (t),t)dt + E 
r r 

for all s > s0• A feasible path k* from time r is 

path from time r if k* is not overtaken by any k E 

Remark 3. 2: 

called a):i :r...--···::liHI I A (k* (r) ,1r) 

This kind of optimality criterion was introduced 1·by1von 

Weizsacker [1965] and Gale [1967]. An optimal path as def:ime' 

here is commonly called a "weakly maximal" path by .Brock [J9lP] 

and McKenzie [1976]. 
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4. NECESSARY CONDITIONS FOR THE OPTIMAL PATHS (ii) V (k* (t),t) = O, and k* (t) E D (t) for all 

Let k* b: an optimal path from time O. Then, we can I particular, D (t) *¢ for all t E [0,00). 

define a function u: � + R by (iii) If k is a feasible path between time r and 

(4.1) u (x,y,t) u (x,y,t) - u (k* (t),k* (t),t) 

for each (x,y,t) E �· 
JS • 

V (k (r),r) � u (k (t),k (t),t)dt + V (k (s),s). 
r 
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In 

JS • 

If u (k* (t),k* (t),t)dt > - oo for all r,s E [0,00) with r � s, then Although the function u is continuous by sump[t:i:cjm II 
r 

we can define a function V: Rm x[O,oo) + R U {- oo} U {+ oo} by 

(4. 2) V (x,r) JS • 

sup [lim inf u (k (t),k (t),t)dt] 
kEA (x, r) . s-roo r · 

for each (x,r) E Rm x[O,oo). 

For each r E [0,00), the "effective domain" of function V (.,r) is 

deonted by D (r), i.e., 

(4.3) D (r) = {x E Rm J V (x,r) > - oo}. 

Here, we should note that the above (4.1), (4.2), and 

(4.3) are defined for a particular optimal path k* from time O, 

and that they depend on the optimal path. 

Remark 4.1: 

The above-defined function V is commonly called the 

value function, which was introduced by McKenzie [1976] in the 

framework of overtaking-optimality criterion. We can easily check 

that the function V has the following properties: 

(i) For each r E [O,oo), V (x,r) is a concave function over 

all x E D (r). 

the function ii may not be continuous since k* is not nece:ss<j.rily 

continuous. Therefore, we cannot identify the function 

function u. 

Assumption IV: 

rs . 
(i) l u (k* (t),k* (t),t)dt > - oo for all r,s E [O,oo) r 

(ii) k* (t) E int X (t) for all t E [O,oo). 

(iii) 3V (k* (O),O) *¢, where 3V (.,O) denotes 

subgradients for function V (.,O). 

Theorem I: 

Let k* be an optimal path from time 0 

Assumption IV. Then, under Assumption I, II, and 

p E 3.V (k* (O),O) there exists an absolutely continuous 

q*: [O,oo) +Rm with the following properties: 

(i) q* (O) = p. 

(ii) q* (t) E 3V (k* (t),t) for all t E [0,00) 

(iii) - (q* (t),q* (t)) E au (k* (�),k* (t),t) for almost y t [O,oo). 



In the above, for each t e: [0,00), symbols a.V(.,t) and 

au(.,.,t) denote the sets of all subgradients for functions 

V(.,t) and u(.,.,t) respectively. 

A proof of this theorem will be given later. The 
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theorem presented here is a counterpart of the theorem which was 

proved by McKenzie [1976, L l] in a discrete time model. 

There are some new features in our theorem which are 

not found in the usual duality theorems for continuous time 

models. First, we have replaced the usual assumption of 

finiteness of the utility integral over the infinite horizon 

for all feasible paths by the weaker set -- Assumptions III and 

IV (i) , (iii) . 

Second, condition (i) of our theorem says that we can 

choose any point in ()V(k*(O),O) as an initial price for the support 

price path. That is, for any point in ClV(k*(O),O), there exists 

a price path which starts from the point and supports the optimal 

path. 

Third, the theorem says that conditions (ii) and (iii) 

hold at the same time. In other words, the price path q* supports 

the value function V(.,t) as well as the utility function u(.,.,t) 

at every time t. The existence of a price path with such a 

property is not obvious in non-differentiable models. 

Our theorem can be restated by using the Hamiltonian 

equation. Define a function H: Rm x Rm x [O,oo) + R U { - oo} U 

{ + oo} by H(p.x,t) = Sup {u(x,y,t) + p•y l (x,y) E: Y(t)}, for each 

(p,x,t) E: Rm x Rm x [O,oo). 

Remark 4.2: 

function. 

The function H is commonly called the Hamilitonian, 

It is well known that for each t E [0,00), H(p,x Jt) 

is a convex function in p and is a concave function in x. 

Theorem I': 

Let k* be an optimal path from time 0 satisfying 
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Assumption IV. Then, under Assumptions I, II, and III, for ajny 

p E: ()V(k*(O),O) there exists an absolutely continuous funchidn 

q*: [O,oo) +Rm with the following properties: 

(i) q*(O) p. 

(ii) q*(t) E ()V(k*(t),t) for all t E: [O,oo). 

(iii) H(q*(t),k*(t),t) u(k*(t),k*(t),t) + q*(t)·k*(tO 

for almost every t E [O,oo). 

(iv) k* �t) e: a1H(q*(t) ,k*(t) ,t) for almost every t E: l[O t00) • 

(v) - q*(t) e: a2H(q*(t) ,k*(t) ,t) for almost every t ,E O,oo) 

In the above, for each t E: [0,00), symbols o1H(.r�rt), 

and a2H(q*(t),;,t) denote the sets of all subgradients for fhnct' 

H(.,k*(t),t) and H(q*(t),.,t) respectively. 

Remark 4.3: 

Theorem I and Theorem I' are equivalent to each ! otber. 

f 

In order to show the equivalence, it suffices to prove that 

(iii) of Theorem I implies conditions (iii), (iv), and (v) 

and :on 
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Theorem I1, and conversely that conditions tiii) and (v) of Therorem I' 

imply condition (iii) of Theorem I. Although the verification is not 

entirely trivial, we shall not include it since the equivalence is a 

well-known fact. 

The following theorem outlines a relation between the value 

function and the utility function, which was proved under somewhat 

stronger assumptions by Benveniste and Scheinkman [1971, Prop. l] . 

Theorem II: 

Let k* be an optimal path from time 0 satifsying Assumption IV. 

Then, under Assumptions I, II, and III, the following holds: 

aV(k*(t),t) C - a2utk*(t),k*lt),t) for almost every t E [0,00), 

where symbol a2u(k*(t),.,t) denotes the set of all subgradients for 

function u(k*(t),.,t) for each t E [O,oo). 

This theorem can be proved by using Theorem I. The proof 

will be given in a following section. 

5. THE OUTLLNE OF THE PROOF OF THEOREN: l: 
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In order to prove Theorem I, it suffices to show ttha� the 

following auxiliary theorem is true. 

Auxiliary Theorem: 

I I I 
Let k* be an optimal path from time 0 satisfying As�umpt' 

Then, under Assumptions I, Ir, and II, for any p E aV(k*(O) lo)! the 

exists an absolutely continuous function q1 : [O,l] + Rm wibh lthe 

following properties: 

(i) q1(0) p 

(ii) q1(t) E oV(k*(t),t) for all t E [O,l] . 

(iii) - (q1(t),q1(t)) E au(k*(t),k*(t),t) for almost eler 

The auxilary theorem implies that since k* is alfo 

path from time 1, there exists an absolutely continuous functLon 

t E 

.n 0 

q2 : [1,2] +Rm with the following properties: 

q2(1) ql(l). 

q2(t) E oV(k*(t),t) for all t E (1,2] .

(q2lt),q2tt)) E ou(k*(t),k*(t),t) for almost eve t 

By repeacing che a�e arg�c and ou�cruocing a�h a f�lc,un 

q : [n-1,n] +Rm for each n E N, we can obtain an absolutll� con n 

function q* : [0,00) + Rm, which is defined by 

q*(t) qn(t) when t s  [p.-1,n] . 

IV. 

n,l] . 

al 

,2] .  

uous 
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Obviously, by construction, function q* satisfies all the conditions 

required in Theorem I. Thus, we know that the Auxiliary Theorem implies 

Theorem I. 

Furthermore, we can easily show that the following two 

propositions imply the Auxiliary Theorem. 

Proposition I: 

For all t E (0,00), there exist two numbers r, s E [O,oo ) 0 

with r � t0 < s (r = t0 only when t0 = OJ such that there exist 

feasible paths k. between time r and time s, i = 0, 1, . • .  , m, with the 
. i 

following properties: 

(iJ k*(t) E int co {k0(t),k1(t), • • •  ,km(t)} for all t E [r,s] . 

(ii) 1/r
su(k.(t),k.(t),t)dt� < 00 for all i = 0,1, • . •  ,m. i i 

Proposition II: 

Suppose that there exist feasible paths ki between time 

r and times, i = 0,1, ... ,m, satisfying conditions (i) and (ii) in 

Proposition I. Then, for any p E oV(k*(r),r) there exists an 

absolutely continuous function q : [r,s] +Rm with the following 

properties: 

(i) q(r) = p. 

(ii) q(t) E oV(k*(t),t) for all t E [r,s] . 

(iii) - (q(t),q(t)J E ou(k*(t),k*(t),t) for almost every t E [r,s] . 

Iii ] 

In fact, since [O,l] is compact, :Proposition Ili�pliea 

there exist finitely many pairs {r., s.} with r. < s., i = �,2,. i i i i 
such that [O,l] c U .

�
1 rr.,s.], and such that each pair {r

·
t ' s  :i;= i l, 

. • 1 the desirable properties of the pair {r,s} in the propositi n. 

loss of generality, we can assume that 

0 rl < sl = r2 < s2 r 3 < . . .  < s t-1 = rt < s � = 11 ;· 

Since p E oV(k*(0),0) by assumption, by applying Propositio 

pair' {r.,s.} successively from i = 1 to 2, we can constrlc i i 

q1 : [0,1] + rm desired in Auxiliary Theorem. 

2 ti 

h t e 

at 

. � . 

as 

.hout 

:each 

ction 

Thus, all we have to do is to prove Propositioas· II andllll!III. 

This will be done in the following two sections. 

Remark 5.1: 

Proposition II may be called "the local existenc� theo 

of a support price path. The proposition shows a suf f icle t coj��tion 

for the existence of such a support price path, while Prlp sitiJ�llI 

I insures that the sufficient condition is indeed satisfied. 



6. Proof of Proposition I 
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The following is one of the fundamental lemmas in our argument. 

Lemma I: 
For any (x , y , t )  E Gy with x E int X(t ), there exist two0 0 0 0 0 
numbers r, s E [o, oo) with r � t0 < s (r = t0 only when t0 = 0)
such that there exists an absolutely continuous function 
h: [r, s] ... Rm with the following properties:
(i) (h(�), h(t)) E Y(t) for almost every t E [r, s].
(ii) The derivative h is a continuous function. 

(iii) (h(t0), h (t0)) = (x0, Y0).

Proposition I can be easily proved by this lemma. In fact, since

�=(t ) E int X(t ), there exist vectors v0, v1, . • .  , v E int X(t ) such
� 0 ·· O  m 0 

that k*(t0) E int co [v0, v1, . . •  , vm} c: int X(t0). Therefore, by Lemma I, .

for each i = O, 1, • • •  , m, there exist two numbers r., s. E [o, oo) withl. l. 

r. < t < s. (r. = t only when t = 0) such that there exists an abso-i = 0 l. l. 0 0 
lutely continuous function h.: [r., s.]--> Rm with the following properties:l. l. l. 

(6.1) 
(6.2) 
(6.3) 

(h.(t), h.(t)) E Y (t) for almost every t E [r., s.].
l. l. J. l.  

The derivative hi is a continuous function.

hi(to) = vi.

From (6.3), it.follows that k*(t0) E int co [h0(t0), h1 (t0), • • •  ,

hm(t0)}. Therefore, since h0, h1, ... , hm' and k* are continuous functions,

there exist two numbers r, s E [o, oo) with ri � r � t0 < s � si for all

i = O, 1, • . .  , m (r = t only when t = o) such that0 0 

(6.4) k*(t) E int co [h0 (t), h1(t), • • .  , hm(t)} for all lt! 
For each i = O, 1, . • •  , m, define a function k.: [o, oo� I -> Rl. {h .. (±) 

k.(t) = h�(t)l. l. 

h.(s) l. 

for each t E [o, r)

for each t E [r, s]
for each t E (s, oo) . 

Then, by (6.1), k0, k1, ... , km are feasible paths between tim� r a 

tiEe s, aOO, l\Y (6 :4), satfafy noDlition {i) of Propnsition r ·.J· Also, 
(6.2) and Assumption II, for each i = 0, 1, ... , m, u(ki(t), l k

1
.(t), 

can be regarded as a continuous function of t E [ r, s] , and it . irr 
exists. Thus, . by definition of ii and Assumptions III and IVt i)I, co

 (ii) of Proposition I is proved. This completes the proof of 1ropo 
In order to prove Lemma I, we need the following thrke: subl

Sublemma 6.1: 
m 

The correspondence X: [o, oo) --> ZR is lower semi-cpriilinu 
and convex-valued. 

Proof: This sublemma is straightforward from Assuinpilion -
Q.E.D 

Sublemma 6.2: 
I For any x E Rm and t E [o, oo) with x E int X (t D, lther 0 0 0 01 ' 

a compact neighborhood U of x0 and two numbers r, s 

r < t < s (r = t only when t = 0) such that= 0 0 0 
(x, t) EU x [r, s] implies x E int X (t).

[o, 

1 
tion 

ion I. 
s. 

i). 

xist 
with 
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Proof: Suppose that this sublemma is not true, Then, there 

exists a sequence ( (x , t )} EN in Rm x [o, oo) converging to a pointn n n 
(x , t )  with x E int X(t ) such that x ¢ int X:(t ) for all n E N. o o o o n n 
Since x E int X(t ), we can find vectors v0, v1, ... , v E X(t ) such that o o m o 
(6.5) x0 E int co (v0, v1, ... , vm}.

Since the correspondence X is lower semi-continuous by Sublemma 6.1,

for each i = O, 1, •.. , m, we have a sequence (v�} EN converging to v.1 n 1 

such that v� E X(tn) for all n E N. Therefore, from (6.5), it follows

that xn E int co [v�, v�, ••• , v:} for all sufficientfy large n E N. 
Since X(t ) is convex by Sublemma 6.1, this implies that x E int X(t ) n n n 
for all sufficientfy large n E N. This is a contradiction.

� 
Let GX denote the "grapll," of the correspondence X, i.e.,

Gx = ((x, t) E Rm x [o, oo) I x E X (t)}.

Rm
Define a correspondence F: GX .... 2 by 

m . F (x, t) = (y E R I (x, y) E Y(t)} for each (x, t) � GX.

Sublemma 6.3: 
The correspondence F is convex-valued and lower semi-continuous 
at arry (x , t.) E GX with x E int X(t ).0 0 0 0 

Proof: Suppose that x E int X(t ), y E F(x , t ), and that 
-- 0 0 0 0 0  

a sequence ((x , t )} EN in GX coverges to (x , t ). Since x E int X(t ),n n n o o o o 
there are (v0, w0), (v1, w1), ... , (vm' wm) E Y(t0) such that 

(6.6) x0 E int co (v0, v1, . . • , vm}.
Since the correspondence Y is lower semi-continuous by Assumpt;f.on Illl�l:I.), 
for each i = O, 1, • • •  , m, we have a sequence ((v�, w�)}nEN 1lo�verg 
to (v . , w.) such that (v�, w�) E Y(t ) for all n E N. Also, �1nce 1 1 1 1 n 
(x , y )  E Y(t ), for the same reason, we have a sequence ((lx'I y')I o o o I n n 
converging to (x , y )  such that (x', y') E Y(t ) for all n IE

 
o o n n n 

By (6.6), we know that there is a nuinber E > 0 sue� t*at, 0 ' 
all sufficientfy large n E N, 
(6. 7) llx - x0 i l < E0 implies x E int co ( v�, v�, ... , v;JI cl X( tn
Also, obviously, for all sufficiently large n E N, we have
(6.8) llx - x ll < E /3 and llx' - x ii < E /3.n o  o ·. n o  o 
Therefore, in proving the lower semi-continuity of F, we cart assum·  loss of generality that (6.7) and (6.8) are true for all n 6 N 

For each n E N with x' -I. x , pick a point x" such tJatnT n n 
E /3 < llx" - x II < E and x = 6 x' + (1-6 )x" for some 0 < 6 < 1.o n o o n n n  n n = n= 
And for each n E N with x' = x , let x" = x' and 6 = 1. Tliezi . inn n n n n 1·· 
case, x = 6 x' + (1-6 )x" for all n E N. Clearfy, 6 goes to 1 asn n n  n n n 
to oo, since xn and x � converge to x0•

N 

thout 

goes 

Moreover, for each n E N, pick a point y" such that x', y"�
�l 

Y(t ) 1 f 111111¥ 
and y � E co ( w�, w�, ... , w�}. This is possible� since llx � 011 :tll : , i. :. ,
by (6. 7), x � E int co ( v�, v� , ... , v;} for all n E N. Cle 1 l , (Yn,�ihEN 
is a bounded sequence. 

Let y = 6 y' + (1-6 )y" for each n E N. Then, (x 'I y··r) E y;l':it ), n , n n n n n Ill n 
that is, y E F (x , t ) for all n E N. Furthermore, y goes t y n n n n n o 
goes to oo, since y' converges to y , 6 converges to 1, and �I i. } EN n o n  • n 
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bounded. This proves the lower semi-continuity of correspondence F. 
Moreover, correspondence F is easily shown to be convex-valued, 

since correspondence Y is convex-valued.
Q.E.D. 

Proof of Lemma I: Since x E int X(t ), by Sublemma 6.2, we0 0 
have a compact neighborhood U of x and two numbers r', s' E [o, oo) with0 
r' � t0 < s' (r' = t0 only when t0 = o) such that (x, t) E g x [r', s']

implies x E int X(t).
Rm

Define a correspondence F' : U x [ r' , s'] -+ 2 by { [yo}
F'(x, t) = 

F(x, t)· 

for (x, t) = (x , t )0 0 
for (x, t) r (xo' to).

By �ublemma 6.3, we can easily prove that correspondence F' is convex-
valued and lower semi-continuous. Therefore, by a continuous selection
theorem in Michael [1956, Th. J.l'"], we have a continuous function 

m , 
f: U � [r', s']-+ R such that f (x, t) E Fi(x, t) for all (x, t) E U  x
[r', s']. Hence, by a well-known theorem on the existence of solutions
for ordinary differential equations (for example, see Filippov [1964, 
Th.4]), we have two numbers r, s E [r', s'] with r � t0 < s (r = t0 only
when t0 = r') and an absolutely continuous function h: [r, s] -+Rm such
that h (t0) = x0 and h(t) = f(h(t), t) for almost every t E [r, s].
(When r' = t I We Cannot apply SUCh a theorem directly to function f, 0 
but to a continuous extension f' of f defined by 

f' (x, t) = { f(x, t) 
f (x, r') 

for (x, t) E U  x [r', s']
for (x, t) E U  x [r'-1, r').

Therefore, our argument is true even in the case of r' = t0.)

By construction of function f, we have conditions 
of Lemma I. Also, n (t) = f(h(t), t) is continuous
Namely, we have condition (ii) of the lemma. 

and 
corr 

0 

i) 
ous. 
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The following lemma will play a ce,ntral role in our argument. 
The lemma corresponds to the "induction" procedure by Weitzman [1973]
and McKenzie [1974 and 1976] in discrete time models. 

Lemma II: 

Suppose that there exist feasible paths ki between time r and
.time s, i = O, 1, • . •  , m, satisfying conditions (i) and (ii)
in Proposition I. Then, for arry t', t" E [r, s] with t' ;;; t"
and arry p' E oV(.\t*(t�). t'), there exists p" E oV(k*(t"), t") 
such that 

t" J u(k*(t), k*(t), t)dt - p'.k*(t') + p".k*(t") 
t' 

t" ?:! u(�(t), k(t), t)dt - p'.k(t') + p".k(t") - t' 
for all feasible path k between time t '.and t". 

Proof: By definition of the value function V, we have 
t" 

V(k(t'), t')?: J ii(k(t), k(t), t)dt + V(k(t"), t") - t' 
for all feasible path k between time t' and time t". Also, since p' E 
av(k*(t'), t'), we have 

V(k*(t'), t') - p'.k*(t') � V(x, t') - p'.x for all x E Rm.
The above two inequalities imply that 

(7.1) 
t" J u{k*( t), k*( t), t)dt + V(k*( t"), t") - p' .k*( �·) 
t' 

t" ?: J u(k(t), k(t), t)dt + V(k(t"), t") - p'.k(t') - t' 
for all feasible path k between time t' and time t". 

two 
Let a.* denote the left-hand side of inequality ( 7. �) ., I Def 

m+l subsets c1 and c2 of R by
cl= [(a., x) E R x Rm I x = k(t") and

2 

t" 
o: >a.* - J ii(k(t), h:(t),I t)dt +lllWt.kCt') 

' ·t' 

and 

for SOme feasib:!.e path k lb�iW!'Jeµllllllll.me t I 

and time �"} 

c2 = [(a., x) ER x Rm I x E D(t") and a.;;; V(x, t'f} 
We can easily check that both c1 and c2 are non-empty and coi;ivex. llllMLso, 
from (7.1), it follows that they· are disjoint. Therefore, by l a we@[�known 
separation theorem, we have a non-zero vector (rr, - p") E R x Rm suilh that

t" 
(7.2) n[a.* - J u(k(t), k.(t), t)dt + p'.k(t')J - p".k(ii") . t' . 

?: rrV(x, t") - p" .x 
for all x E D(t") and all feasible path k between time t' andl tim 

� 
with IJ ii(k(t), k(t), t)dtl < oo .  

t' 

Put k = k* in (7.2). Then, 
(7.3) rrV(k*(t"), t"� - p".k*(t") � rrV(x, t") - p".x fclr:�ll �lll�ID(t''). 



Also, put x = k*(t") in (7.2). Then, 

t" ' 
(7.4) n[J ii(k*(t), Ii:*(t), t)dt - p'.k*(t')] + p".k*(t")

t' 
t" 

� n[J ii(k(t), k(t), t)dt - p'.k(t')] + p".k(t")- t' 
for all feasible path k between time t' and time t" with 

� IJ ii(k(t), k:(t), t)dtl < oo. 
t' 

23 

We can easily see that the particular forms of c1 and c2 imply

TI � 0. Supp?se that TI= 0. Then, it follows from (7.4) that 
p".k*(t") � p".ki(t") for all i.= O, 1, • . .  , m, where k0, k1, • • .  , km
are functions assumed to exist in this lemma. Therefore, since k0, k1,

. . •  , k satisfy condition (i) of Proposition I, we can conclude that p" = O.m 
However, this is a contradiction to the premise that (TI, - p") f O. Thus,
we have proved that TI > O.

Without loss of generality, we can put TI= 1. Therefore, by (7.3),
we have p" E oV(k*(t"), t"). Also, since TI= 1, in (7.4) we can ignore 

t" 
the condition of IJ ii(k(t), k(t), t)dtl < oo. Moreover, by definition

t' 
of ii, we can replace u in (7.4) by u. This completes the proof of Lemma II .. 

� 
Now let us begin to prove Proposition II. Pick p E oV(k*(r), r).

For each n E N, define a finite subset T of [r, s] by n 

Tn = [t E [r, s] I t = r + i(s-r), i = O, 1, ... , 2n}.
2n 

Apply Lemma II to 

from i = 1 to 2n.

. (i-1) ( s-r) i(s-r)} , .each pair [r + , r + successiv 
2n 2n I Then we have (2n +1)-tuple of vectors de�o�ed 

[p (t) I t ET }, where p (r) = p, such thatn n n 
(7.5) p (t) E oV(k=(t), t) for all t ET and n � n 

t" 
(7.6) J u(k*(t), k*(t), t)dt - p (t').k*(t') + p (t")J)�") 

t' n n • 
t" 

4 

::: J u(k(t), k(t), t)dt - p (t').k(t') + p (t").k(t l'!) 

for all t'� t:« T0 with t' � t" and :ll fo�iblo :ia:h k bJiJ•n tJJ/ljj t'
and time t". 

We can prove the following: 

(7.7) Set [p (t) I n E N and t E T } is bounded.n n 

Suppose that this is not true. Then, there is an il�nite 
N of N such that for each n E N we can pick up t E T and l lP ( t o o n n I n_ 
to 00 as n E N goes to oo. Without loss of generality, we can ass I 

• 

0 

• Pn( tn)  1 hm tn = to and hm ii ( t )II = Po r o. On the other hand, r·.! (7 .6
n-+oo n--oo Pn n 

t  n • , 

[J
r 

u(k*(t), k*(t), t)dt - p.k*(r) + pn(tn).k*(tnp�11Pn( 

t 
� [J nu(k(t), k(t), t)dt - p.k(r) + p (t ).k(t )JYll� (t - n n n  i'fn n r 

for all n E N and all feasible path k between time r and tiTiia s. 0 

bset 

goes 
that 

have 
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Therefore, in the limit, p .k*(t ) > p .k(t ) for all feasible path k0 0 = 0 0 
between time r and time S• By assumption pf the existence of functions 
k0, �· ... ,km' satisfying condition (i) of Proposition I, we can conclude

that p = 0. This is a contradictioon. Thus, (7,7) is proved.0 

(7.8) 

Let T = U T • We can prove the following:
nEN n 

There is a bounded function q : T - Rm with the following0 
properties: 
(i) q (r) = P· 0 
(ii) q0(t) E oV(k*(t), t) for all t ET.

t" 
(iii) J u(k*(t), k*(t), t)dt - q (t').k*(t') + q (t").k*(t") 

t' 0 0 

t" ;:: J u(k(t), k(t), t)dt - q (t').k(t') + q (t").k(t") - t' 0 0 

for all t', t" ET with t';;; t" and all feasible path k between 
time t' and time t". 

For each t E T1, we have a sequence (pn(t) I n � 1 and n E N}.
Since T1 is a finite set, by (7.7) we can find an infinite subset N1 of
N such that for any t E T1, sequence (pn(t) I n E N1} converges to a point,
say q0(t). Then, for each t E T2, we have a sequence (pn(t) I n � 2 and
n E N1}. Again, since T2 is a finite set, by (7.7) we have an infinite
subset N2 of N1 such that for any t E T2, sequence (pn(t) I n E N2}
converges to a point, say q0(t). (Although T1 c T2, this notation is
consistent since N1 :::i N2.) By repeating this procedure, we have N1 :::i N2 :::i 

NJ :::i, • • •  such that for any i E N and any t E Ti' sequence flp�lt) I
converges to a point q (t). Therefore, by picking up a numJe� n. � o 

I i each Ni' we have an infinite subset of N denoted by N* = [n1, ' r,2, 
such that if t E Ti for some i E N, then sequence (pn(t) I A� i a

n EN*} converges to q (t). In this way, we can define a flnb�ion a I , q0: T - Rm, which is bounded because of (7.7) . Obviously, cobaiti 
of (7.8) holds, since p (r) = p for all n E N. If t ET, i le',
some i E N, then (7.5) �s true for all n E N* with n;:: i. Ji:

av(k*(t), t) is closed, condition (ii) of (7.8) holds
-
in thl 

if t', t" ET and t' < t", then t', t" ET. for some j E N. 'rth.' ere:fi! 
= J 

(7.6) is true for all n EN* with n � i. Thus, condition (�i�) of
holds in the limit. This completes the proof of (7.8) . 

Suppose that function q is not continuous. Then, since f 
q is bounded, there are sequen:es [t'} EN and [t"} EN convL�ing 0 n n  n n  I ;  point t such that t' < t < t" for all n E N and lim (q (ti')! 1- q o n = o = n n;->oo o nl , o

f. O. By condition (iii) of (7.8) , we have p.k*(t0) � p.k(t0)ilfor 
I feasible path k between time r and time s. By assumption of �he e 

of functions k0, �· • • •  , km satisfying condition (i) of Prbpdsiti" 
., can onnolude that P - 0. This is a cnntradictinn, ThJ, ju�t 
is proved to be a conti�ous function. He�e, since T ie a �nse j 
of [r, s], function q0 can be uniquely extended to a continua s ful 

say q: [r, s] - Rm.
We can prove the following: 

6 

EN) 

... } 

i(i) 
for 

lso, 

.8) 

tion 
'a 
)) 

tence 
I, 
qo
et 

ion, 

-p 
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(7�9) The continuous function q: [r, s] �Rm satisfies the following
conditions: 

(i) q(r) = p. 

(ii) q(t) E oV(k*(t), t) for all t E [r, s]. 

t" 
(iii) J' u(k*(t), k*(t), t)dt - q(t').k*(t') + q(t").k*(t")

t' 
t" 

2'.' J' u(k(t), k(t), t)dt - q(t').k(t') + q(t").k(t") - t' 
for all t', t" E [r, s] with t';:;; t" and all feasible path k 
between time t' and time t". 

Condition (i) of (7,9) obviously follows from condition (i) of
(7,8). Also, since function q is a continuous extension of function q 0
and since T is dense in [r, s], condition (iii) of (7.8) implies condition

(iii) of (7,9). To prove condition (ii) of (7,9), let x E int X(t ) and0 0 
t E (r, s]. Then, by Lemma I, we have an absolutely continuous function0 
h: [r', t J �Rm, where r :5 r' � t ,  satisfying the following conditions:0 - . 0 

(h(t), h(t)) E Y(t) for almost every t E [r', t ].0 
The derivative h is a continuous function.
h(t0) = x0,

Since T is dense in [r, s], we have a sequence [t } EN converging to t n n o
such that t E T  n (r', t J for all n E N. Therefore, by condition (ii)n o 
of (7.8)1 for all n E N

V(k*(t ), t ) - q(t ).k*(t ) > V(h(t ), t ) - q(t ).h(t ).n n n n =  n n n n 
Namely, by definition of the value function, for all n E N

t 0
J' u(k*(t), k*(t), t)dt + V(k*(t ), t ) - q(t )

t o o n 
n 
to

� J' u(h(t), h(t), t)dt + V(h(t0), t0) - q(tn)
tn

Thus, in the limit, V(k*(t0), t0) - q(t0).k*(t0) � V(x0,
This implies q(t ) E oV(k*(t ), t ), since k*(t ) E int0 0 0 0 
Also, q(r) = p E oV(k*(r), r) •. Thus, condition (ii) of 

(7.10) 

Now we can prove the following: 

The function q is absolutely continuous. 

By (7.9), we have
t" 

J' u(k*(t), k*(t), t)dt + q(t").(k*(t") - k*(t'))t' 
t" 

- J' u(k.(t), k . (t), t)dt - q(t").(k .(t")
t' l. l. l. 

� (q(t") - q(t')).(ki(t') - k*(t'))
for all t', t" E [r, s] with t' :5 t" and all i = O, 

k0, k1, ...  ,km are functions which are assumed to exist
Since functions k0, k1, • • •  ', km satisfy condition (i) of
we can easily prove the following facts: 

(i) For all t', t" E [r, s] with t' :5 t",

max (q(t") - q(t')).(k . (t') - k*(t'))? O. 
o;:;;i� l. 

8 

n)

q( t)!�ll�X0 • 

.pt ion. 
ed. 

whe 
pos n II. 

I, 



(ii) There exists A. >  0 such that ilki(t) - k*(t)ll '.;;;A. for

all t E [r, s] and all i = O, 1,, ... , m.

:.!.9 

(iii) There exists 9 > 0 such that if v E Rm and t E [r, s],

then v.(ki(t) - k*(t)) '.;;; 9llvll.llki(t) - k*(t)ll for some i.

Also, there exists 13 > 0 such that llq(t)ll ;;:; 13 for all t E [r, s], since
function q is continuous. Therefore, we can derive the following inequality: 

t" (�l)[J l u(k*(t), k*(t), t) jdt + i3ilk*(t")  - k*(t')ll]/\. t' 
. t" 

+ 1..! Ei�JJ.:
t,lu(ki(t), ki(t), t) ldt + i3llki(t")  - ki(t')ll]

t" . ;;;; �a inax [J u(�(t), k*(t), t)dt + q(t").(k*(t") - k*(t'))
�i� t' 

t" 
- J u(k.(t), k.(t), t)dt - q(t" ).(k.(t")  - k.(t'))] 

t' 1 1 
. 

1 1 

'.;;; �9 ma::i: (q(t")  - q(t')).(k.(t') - k*(t'))
Q<i<m · · · ·. J, 

. 
= = 

'.;;; . �9 min 9llq(t")  - q(t')ll.llk.(t') - k*(t')il
· ' �i�m 1 

;;;; llq(t")  - q(t')ll 
for all t' ,:.t" E [r, s] with r' ;;:; t".

By the above inequality, since Lebesgue integrals are absolutely continuous 

and since functions k*' k0, k1, • • .  , km are absolutely continuous, we can

�asily show that function q is absolutely continuous. 
In order to complete the proof of Proposition II, by virtue of 

(7.9) and (7.10), we have only to prove the following: 

(7.11) - (q(t), q(t)) E ou(k*(t), k*(t), t) for almost 

First we should note (see, for example, Natanson 

that for almost every t0 E [r, s)
t +a 

. 1 0 • 

lim �9 J u(k*(t), k*(t), t)dt = u(k*(t ),
9->0+ : t 0 

0 
. �(t +9) - q(t )

lim .o 0 9->0+ a = q(t0), and

k (t +9) - k*(to)
= 

k (t ).
* 0 * 0 lim El 9->()+ 

For such a point t E [r, s), suppose that (x , y ) E 0 0 0 
x E int X(t ). Then, by Lemma I, there exist a number s'0 0 -

0 

t Eillllll fr, s J.

, p.�jjil'.t]) 

t 

s' < s 

and an absolutely continuous function h: [ t , s' J -+ Rm "'"-t.11.,-r·;r 0 
following conditions: 

(h(t), h(t)) E Y(t) for almost every t E [t0,

h is a continuous function • 

h(t ) = x and h(t ) = y • 0 0 0 0 
Since functions u and h are continuous, we have 

t +9 

and 

1 0 • 

lim �9� J u(h(t), h(t), t)dt = u(h(t ),
� t 0 

0 

h(t0+9) - h(to)
= h(t0) = Y01lim El 9->()+ 

= u(x , y , t )0 0 0 

Furthermore, by condition (iii) of (7.9), for all 9 > 0 < o' 



1 
to+a . q(t +e) - q(t ) 

�e�f u(k*(t), k*(t), t)dt + 0 
e 

0 .k*(t0)
t 0

+ q{to+e).
k*{\+e)

_
- k*(\) 

t +eo • q(t +e) - q(t ) 
� �J u(h(t), h(t), t)dt + 0 9 ° .h(t0)

to

+ q{t +e) 
h(to+e) - h(t )

0 • 

0 

Therefore, in the limit, we have 

u(k=(t ), k=(t ), t ) + q(t ).k=(t ) + q(t ).k*(t ) 
� 0 � 0 0 0 � 0 0 0 

> u(x , y ,  t ) + �(t .).x + q(t ).y ."' o  o o ':I. a  o o· o 
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This inequality holds for all (x, y) E Y(t0), because, by convexity of
Y(t0), any point (x, y) E Y(t0) can be represented as a limit point of

a s@qu.ence [(x , y )} EN with (x , y ) E Y(t ) and x E int X(t ) forn n n n n  o n o 
all n E N. In fact, let {x, y) E Y(t ), (x , y ) E y(t ) and x E int X(t ),0 0 0 0 0 0 
For·�ch 0 < 0 <;! 1, define (Jfe• Ye)= 0(x, y) + (l-e)(x0, y0). Then,

(x0, Ye) E Y(t0) and x6 E int X(t0) for all 0 < e < l, Thus, we have
proved that - (q(t0), q(t0)) E ou(k*(t0), k*(t0), t0), i.e., (7.ll).

This completes the proof of Proposition II. 

8. Proof of Theorem II

First we should note (see, for example, Natanson 

that for almost every t E [o, oo) 0 
t +e 

. 1 0 • 

lim �e� J u(k*(t), k*(t), t)dt = u(k*(t ), 
9--0+ t 0 

0 
k (t +e) - k*(to) 

= 
k 

(t ).
* 0 * 0 lim a 9--0+ 

Let t0 be such a point and (k*(t0), y0) E Y(t0). Since

by Lemma I there exist a number s > t0 and an absolutely

h: [t , s] � Rm with the following properties:0 
(h(t), h(t)) E Y(t) for almost every t E [t0, s].

h is a continuous function. 

h(t ) = k*(t ) and h(t ) = y • 0 0 0 0 
Since functions h and u are continuous, we have 

t +e 

l 

p.2Ji�LI) 

t l:lllll:!nd 0 

E in-tl.lllllll( t0),
nction 

0 
lim -e

1 J u(h(t), h(t), t)dt = u(h(t ), h(t ),l�J) 
9--0+ t 0 0 

and 

0 

h(to+e) - h(to)
"' h(to) =Yolim e 9--0+ 

= u(k*(t0), Y0•

Furthermore, since k* is also an optimal path from 

Theorem I, for· any p E oV(k*(t ), t.) there exists an. 0 0 0 
function q : [t , oo) --. Rm such that0 0 

q {t )=-p and0 0 0 
-(q0(t), q{t)) E ou(k*(t), k*(t), t) for almost

to' 
ly c�linuous 

t Ellllll�0, 00) . 



Therefore, for almost every t E [t , s]0 
u{k*(t), k*(t), t) + q0(t).k*(t). + q0(t).k*(t)
� u(h(t), h(t), t) + q0(t).h(t) + q0(t).h(t).

By integrating this inequality, for all a> 0 with a� s-to we have
tff 
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0 • ! u(k=(t), k=(t), t)dt - q (t ).k*(t ) + ·q (t +a).k=(t +a)
t = = 0 0 0 . 0 0 = 0 

i.e., 

0 
t +a0 

> ! u(h(t), h(t), t)dt - q (t ).h(t ) + q (t +a).h(t +a). 
= t 0 0 0 0 0 0 

0 

t +a 
1 0 • 

�0� ! . u{k*(t), k*(t), t)dt
to . 

+ q (t +a)
k*(to+a) - k (t )

0 0 • 

* 0 

t +a 
� �! 0 

u(h(t), h(t),
to 

t)dt + qo(to+a).
h(to+a)

_
- h(to)

Thus,:in the limit, we have 

Namely, 
u{k=(t ), k=(t ), t ) + p .k=(t ) > u(k=(t ), y , t ) t p .y .= 0 = 0 0 0 = 0 = � 0 0 0 0 0 

- p E a-2-4 (k=(t ), k=(t ), t ). Hence, we haveo , = o = o  0 

av(k=(t ), t ) c:: - a-2u{k=(t ), k=(t ), t ).= 0 0 = 0 = 0 0 
This completes the proof of Theorem II. 
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