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1. INTRODUCTION

In this paper, we shall consider a model of capital
accumulation and prove the existence of a support price path for
the optimal path of capital accumulation. The considered economic
model is a continuous time model of infinite horizom.

Under some assumptions of differentiability, we can
obtain a dual path for the optimal path by the Euler equatiom, or
by the maximum principle of Pontryagin [1962]. (See, for example,
Halkin [1974] and Haurie [1976].) In this paper, however, we
shall not make any differentiability assumptions. Instead, we
shall assume the appropriate convexity of the model, which is more
natural in economics than differentiability. Thus, our problem
is, so to speak, the "convex" problem of optimal control without
differentiability.

The convex problem of optimal control has been studied
by Rockafellar [1971] and Halkin [1972]. In non-differentiable
and convex models of finite horizon, they proved the existence of
a dual path for the optimal path which "supports" the Hamiltonian
function.‘ It is difficult to compare our argument directly with
their argument, since their formulations are much different from
ours. However, our results are more general and useful in the
following sense: First of all, the model considered in this
paper is of infinite horizon. Second, our optimality criterion

is a general one, that is, the so-called overtaking criterion

originally introduced by von Weizsacker [1965] and Gale | @67].

Third, we shall prove the existence of a dual price path whi&h

|

supports the value function as well as the Hamiltonian functjion.

This property of the support price path was established by
Benveniste and Scheinkman [1977] in a differentiable model with

a somewhat stronger "interiority" assumption on the optimal bath.

The fact that a price path supports both the value function| hnd
the Hamiltonian function is particularly useful in proving the
"turnpike" property of the optimal paths (see McKenzie [1976[).

The main result in the paper is Theorem I in

section 4, in which the existence of a dual price path for the
optimal path is proved. This theorem is a counterpart of tﬁa
support price lemma proved by McKenzie [1976, L.l] in a disclkete
time model. One of the key lemmas in our argument is Lemma [T

in section 7, which exactly corresponds to the "induction'
argument by Weitzman [1973] and McKenzie [1974 and 1976].| Of
course, since our model is in continuous time, their inductibn

procedure cannot be applied directly in our case. However, even
in the case of continuous time models, their method is quite

useful and actually makes the proof simpler and more elemenfary.

A proof which is similar to ours is found in Halkin [1972], but

his method seems to be effective only for finite horizon models.
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2. MATHEMATICAL NOTATION
Let N be the set of all positive integers. For each
n €N, R" denotes the n—dimensional Euclidean space. Whenn =1,
we write R instead of Rl. For any x, y € Rn, the inner product
of x and y is denoted by x°*y. The Euclidean norm of any x € R"
is denoted by (x|, i.e., [|x|| = Vx*x . For any subset U of RP,
int U denotes the interior of U in R" and co U denotes the convex
hull of U.
For any concave (or convex) function f: U+ R U {- «»} U {+ =}
defined on a convex subset U of Rp, symbol 3f(x) denotes the set of

all subgradients of function f at x € U, i.e.,

f(x) = {pe Rplf(x) - px 2 (or £) £(y) - p*y for all y € U}

2
A mapping F: U - 2R defined on a subset U of R" to the

family of all non-empty subsets of R£ is called a correspondence.

Correspondence F is called lower semi-continuous at x e U if, for

in U converging to X

any y_ € F(xo) and any sequence {xi}iEN

there exists a sequence {yi}i€ converging to Y, such that ¥y € F(xi)

N

for all i € N. The correspondence F is called lower semi-continuous

if F is lower semi-continuous at all x € U.
A function f: E + R" defined on a closed interval

n . . . R
E C R to R is called absolutely continuous if the restriction of

f on any compact interval is absolutely continuous in the usual
sense. Also, the derivative of f is denoted by £.
Any definitional term from measure theory, such as

"o

"integrable," '"measurable," and "almost every" should be interpreted

in the sense of Lebesgue.

3. THE MODEL
Let m € N be the number of different commodities
(capitals) in the economy. The technology of the economy is

R x R©
described by a correspondence Y: [0,®) + 2 mapping t

Fa o

[0,2) to a subset Y(t) of R™ x R™. The notation (x,y) € Y(t
means that at time t if we have amount x of commodities (caﬁmtalsbi
we can increase the amount of the commodities by y. Namely; the
pair (x,y) is a technologically possible combination of the
amount of capital stocg and the level of investment at time t.

m

Define a correspondence X: [0,®) -+ ZR by

X(t) = {x € Rwl(x,y) € Y(t) for some y € Rp}

Assumption I:
(i) The correspondence Y is lower semi-continuous and ¢onve;
valued, i.e., Y(t) is convex for all t € [0,).

(ii) dint X(t) # ¢ for all t € [0,»).

Social welfare at any point in time is represented|by
the instantaneous utility function u: GY + R, where GY is |the

"graph" of the correspondence Y, i.e.,
m m
Gy = {Gx,y,8) € B x R" x [0,@) | (x,y) € Y(6)}.

Namely, for each (x,y,t) € G,, u(x,y,t) is interpreted as the

Y
maximum level of social satisfaction that can be attained at|time ;

t if the amount of capital stock is x and the level of investment||]

is y.




Assumption II:

The function u is a continuous function such that, for

each t € [0,9), u(x,y,t) is a concave function in (x°y).

Remark 3.1:

Allowing u(x,y,t) to assume the value - «® on the
boundary of Y(t) (where the boundary is taken relative to the
smallest affine set containing Y(t)) would not be a more general
assumption since setting u(x,y,t) equal to - = is equivalent to
excluding (x,y) from Y(t). We can always perform this latter
operation because Y(t) is not necessarily closed. (Note that
such an operation does not destroy the convexity of Y(t) because

of the concavity of u(x,y,t).)

An absolutely continuous function k: [0,®) + R" is said

to be a feasible path between time r and time s, where r,s € [0,®)

s, if (k(t),i(t)) € Y(t) for almost every t € [r,s]. An

A

and r

absolutely continuous function k: [0,®) - Rm is called a feasible

path from time r, where r € [0,®), if (k(t),k(t)) € Y(t) for

almost every t € [r,»). For each x € R and r € [0,2), let A(x,r)

denote the set all feasible paths k from time r such that k(r) = x.

Assumption ITI:

If k is a feasible path from time r, then

S .
I u(k(t) ,k(t),t)dt < + «© for all s € [r,»).
T

The above assumption enables us to define a criteri%n
of optimality for feasible paths. A feasible path k, from tiﬁ@ T
is said to be overtaken by a feasible path k € A(k*(r),r) if |

there exist € > 0 and S, Z r such that

S

S . .
J u(k(t) ,k(t),t)dt > J u(k, (£),k, (£),t)dt + €
r

T

for all s > Sy° A feasible path k, from time r is called an

path from time r if k* is not overtaken by any k € A(k*(r),

Remark 3.2:

This kind of optimality criterion was introduced

Weizsacker [1965] and Gale [1967]. An optimal path as defi

here is commonly called a "weakly maximal" path by Brock [1

and McKenzie [1976].




4. NECESSARY CONDITIONS FOR THE OPTIMAL PATHS

Let k, be an optimal path from time O. Then, we can

define a function u: GY + R by

(4.1) u(x,y,t) = ulx,y,t) - ulk,(t),k,(t),t)
for each (x,y,t) € GY'
s .
If J u(k*(t),k*(t),t)dt > - o for all r,s € [0,®) with r = s, then
T

we can define a function V: B x[0,9) + R U {- ®} U {+ =} by

s .
(4.2) V(x,r) = sup [lim inf J u(k(t),k(t),t)dt]
keA(x,T) . gy lr -

for each (x,r) € B x[0,®).
For each r € [0,®), the "effective domain" of function V(.,r) is

deonted by D(r), i.e.,

(4.3) D(r) = {x € R®|V(x,r) > - =}.
Here, we should note that the above (4.1), (4.2), and
(4.3) are defined for a particular optimal path k, from time O,

and that they depend on the optimal path.

Remark 4.1:

The above-defined function V is commonly called the

value function, which was introduced by McKenzie [1976] in the

framework of overtaking-optimality criterion. We can easily check

that the function V has the following properties:

(i) For each r € [0,»), V(x,r) is a concave function over

all x € D(x).

(11) V(ky(t),t) = 0, and k,(t) € D(t) for all t € [0,%), jIn

particular, D(t) # ¢ for all t € [0,»).

(iii) If k is a feasible path between time r and time s,| then

\Y

s .
V(k(r),r) = f u(k(t),k(t),t)dt + V(k(s),s).
r

Although the function u is continuous by Assumpti(n II j

the function u may not be continuous since k, is not nerpeé'rily ‘

continuous. Therefore, we cannot identify the function g with £HE

function u. 3 i
Assumption IV: | 5
‘ f ﬁ

s . :
(1) j u(lk, () ,k, (t),£)dt > - = for all r,s € [0,®) with r 3
T ! f

(ii) k*(t) € int X(t) for all t € [0,»).
(iii) BV(k*(O),O) # ¢, where 3V(.,0) denotes the get Df all

subgradients for function V(.,0).

Theorem I:

uq

Let k, be an optimal path from time O satisfyin

Assumption IV. Then, under Assumption I, II, and 11T, for

)
—3
-]

pE aV(k*(O),O) there exists an absolutely continuous fypeétion

q,: [0,°) + K" with the following properties:

(i) q*(o) = P. ‘.

(ii) q*(t) € av(k*(t),t) for all t € [0,)

(1i1) - (qu(£),q.(t)) € au(k*(ﬁ),ﬂ*(t),t) for almost ev%ry t [g

[O,w) .




In the above, for each t € [0,®), symbols 3V(.,t) and
9u(.,.,t) denote the sets of all subgradients for functions
V(.,t) and u(.,.,t) respectively.

A proof of this theorem will be given later. The
theorem presented here is a counterpart of the theorem which was
proved by McKenzie [1976, L 1] in a discrete time model.

There are some new features in our theorem which are
not found in the usual duality theorems for continuous time
models. First, we have replaced the usual assumption of
finiteness of the utility integral over the infinite horizon
for all feasible paths by the weaker set —- Assumptions III and
IV (i), (diii).

Second, condition (i) of our theorem says that we can
choose any point in 3V(k,(0),0) as an initial price for the support
price path. That is, for any point in 3V(k,(0),0), there exists
a price path which starts from the point and supports the optimal
path.

Third, the theorem says that conditions (ii) and (iii)
hold at the same time. In other words, the price path q, supports
the value function V(.,t) as well as the utility function u(.,.,t)
at every time t. The existence of a price path with such a
property is not obvious in non-differentiable models.

Our theorem can be restated by using the Hamiltonian
equation. Define a function H: R™ x R™ x [0,) R U{ -} U
{ + =} by H(p.x,t) = Sup {u(x,y,t) + p-yl(x,y) € Y(t)}, for each

(p,x,t) € R* x R™ x [0,%).

Remark 4.3: |

10

Remark 4.2:

The function H is commonly called the Hamilitonian

function. It is well known that for each t € [0,), H(p,x,tj

is a convex function in p and is a concave function in x.

Theorem I':
Let k, be an optimal path from time O satisfying
Assumption IV. Then, under Assumptions I, II, and III, for any

pPE 8V(k*(0),0) there exists an absolutely continuous functidn

q,: [0,@) + R™ with the following properties:

(1) q,(0) = p.

(i1) q,(t) e aV(k,(t),t) for all t € [0,%).

(1i1) H(a,(£),k,(£),8) = ulky(£),k, (£),£) + q, () k() |
for almost every t € [0,%).

(i) k() € 3H(q,(£) K (£),£) for almost every t & [[O}).

v) - q*(t) € BZH(q*(t),k*(t),t) for almost every t g [0,®)

In the above, for each t € [0,©), symbols alﬁ(.,k;(t),t

and BZH(q*(t),;,t) denote the sets of all subgradients for fincti

H(.,k*(t),t) and H(q*(t),.,t) respectively.

Theorem I and Theorem I' are equivalent to each]other.
In order to show the equivalence, it suffices to prove that condi

(iii) of Theorem I implies conditions (iii), (iv), and (v) of
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Theorem I', and conversely that conditions (iii) and (v) of Therorem I''
imply condition (iii) of Theorem I. Although the verification is not
entirely trivial, we shall not include it since the equivalence is a
well-known fact.

The following theorem outlines a relation between the value
function and the utility function, which was proved under somewhat

stronger assumptions by Benveniste and Scheinkman [1971, Prop. 1].

Theorem II:
Let k, be an optimal path from time 0 satifsying Assumption IV.

Then, under Assumptions I, II, and IIIL, the following holds:
9V (k,(t),t) ¢ - Bzu(k*(t),k*(t),t) for almost every t € [0,®),

where symbol BZU(R*(t),.,t) denotes the set of all subgradients for
function u(k,(t),.,t) for each t € [0,=).
This theorem can be proved by using Theorem I. The proof

will be given in a following section.

12

5. THE OUTLINE OF THE PROOF OF THEOREM I

In order to prove Theorem I, it suffices to show thak thel)

following auxiliary theorem is true.

Auxiliary Theorem: |

Let k, be an optimal path from time O satisfying Ascumpt
Then, under Assumptions I, II, and II, for any p € 9V(k,(0), Oﬂ the
[0,1] + R™ with the

exists an absolutely continuous function q;

following properties:

1 a0 =p

(ii) (t) € 9V(k,(t),t) for all t € [0,1].

(iii) - (ql(t),ql(t)) € Bu(k (t), k, (t),t) for almost everw t e j

The auxilary theorem implies that since k, is also lim optli

q, ¥ [1,2] + R™ with the following properties:

q,(1) = q,(1).
qz(t) € 9V(k,(t),t) for all t e [1,2].

- (qz(t) q,(t)) € dulk, (t),k,(t),t) for almost every t

By repeating the same argument and constructing such a functﬂon
m .
q, ¢ [n-1,n] - R for each n € N, we can obtain an absolutely cont:

function q, : [0,®) Rm, which is defined by

q*(t) = qn(t) when t € [n-1,n].

path from time 1, there exists an absolutely continuous function /

Iv.

uous
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Obviously, by construction, function q, satisfies all the conditions
required in Theorem I. Thus, we know that the Auxiliary Theorem implies
Theorem I.

Furthérmore, we can easily show that the following two

propositions imply the Auxiliary Theorem.

Propesition I:

For all to € [0,»), there exist two numbers r, s € [0,®)
with r = td <s (r= to only when to = 0) such that there exist
feasible paths ki between time r and time s, i = 0, 1,..., m, with the

following properties:
(i) k,(t) € int co {ko(t),kl(t),...,km(t)} for all t € [r,s].

(ii) ]jju(ki(t),ki(t),t)dtl <w® for all i = 0,1,...,n.

Proposition II:

Suppose that there exist feasible paths ki between time
r and times, i = 0,1,...,m, satisfying conditions (i) and (ii) in
Proposition I. Then, for any p € 9V(k,(r),r) there exists an
absolutely continuous function q : [r,s] ~ R™ with the following

properties:

(1) q(xr) = p.
(ii) q(t) € BV(k*(t),t) for all t € [r,s].

(iii) - (q(e),q(t)) € du(lk,(t),k,(t),t) for almost every t € [r,s].

In fact, since [0,1] is compact, Proposition I{imblies

there exist finitely many pairs {ri, si} with T < ;5 i =:ﬂ,2,.
such that [0,1] c U iil Eri,si], and such that each pair'{fi, s

the desirable properties of the pair {r,s} in the propositisn.

loss of generality, we can assume that

0O=r <Ks, = r2 < s2 = r3 K oo < Sk—l = rZ < sl =11;

pair'{ri,si} successively from i = 1 to {4, we can construct

9 : [0,1] + 1™ desired in Auxiliary Theorem.

Thus, all we have to do is to prove Propositions [I and%

This will be done in the following two sections.

Remark 5.1:

Proposition II may be called "the local existenc

of a support price path. The proposition shows a sufficient con

for the existence of such a support price path, while Prop

insures that the sufficient condition is indeed satisfied.

sitiomu
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6. Proof of Proposition I

The following is one of the fundameéntal lemmas in our argument.

Lemma I:

For any (xo, o to) € Gy with x € int X(to), there exist two
nunbers r, s € [0, ) with r < t,<s (r = t, only when t = 0)
such that there exists an absolutely continuous function

h: [r, s] R™ with the following properties:

(1)  (n(t), n(t)) € ¥(t) for almost every t € [z, s].

.

(ii) The derivative h is a continuous function.

(311) (B(t,), B(ty)) = (x50 ¥,)-

Proposition I can be easily proved by this lemma. In fact, since
k*(to) € int X(to), there exist vectors vy, Vis «+e s Vp € int x(to) such
that k*(to) € int co {vo, Vi eees vm} c int X(to). Therefore, by Lemma I,
for each 1 = 0, 1, ..., m, there exist two numbers r., s, € [0, =) with
Ty Sty <s; (ry =t only when t = 0) such that there exists an abso-
Jutely continuous function hi: [ri, si] - R™ with the following properties:
(6.1) (hi(t), ﬁi(t)) € Y(t) for almost every t € [ri, si].

(6.2) The derivative h; is a contimuous function.
(6.3) hy(t)) = v,.

From (6.3), it follows that k*(to) € int co [ho(to), hl(to), cees
hm(to)}. Therefore, since ho, hl, ey hm’ and k, are continuous functions,
there exist two mumbers r, s € [0, ) withr, ST <t <s<s; forall

i=0,1, ..., m(r= t, only when t_ = 0) such that

(6.4) k,(t) € int co {ho(t), hy(t)s ..., hm(t)} for alllt [z, Q
For each i =0, 1, ..., m, define a function ki: [O, co)| - R
hi(f) for each t € [0, T)

ki(t) = hi(t) for each t € [r, s]

hi(s) for each t € (s, ).

Then, by (6.1), k ey km are feasible paths between tima r an{

O, kl,
time s, and,by (6.4), satisfy condition (i) of Proposition I . Also,|iy

(6.2) and Assumption II, for each i =10, 1, ..., m, u(k(t), Rg(t),

can be regarded as a continuous function of t € [r, s], and it%.inte‘

-
exists. Thus,.by definition of u and Assumptions IIT and IV(iﬂ, coW%ition

(ii) of Proposition I is proved. This completes the proof of Fropos

In order to prove Lemma I, we need the following three sublemmas.

Sublemma 6.1:

. m i
The correspondence X: [0, %) -+ ZR is lower semi—cbﬁ inuou
and convex-valued.
i

Proof: This sublemma is straightforward from Assuhpiion T|{i).

Sublemma 6.2:

For any x € R™ and t, € [0, =) with x € int x(tOS,lthereﬁ xist

a compact neighborhood U of X, and two numbers r, s ¢ [0, o] with

rsty <s (r= t, only when t_ = 0) such that

(x, t) € U x [z, s] implies x € int X(t).
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Proof: Suppose that this sublemma is not true. Then, there
exists a sequence [(xn, tn)}nEN in R™ x [0, =) converging to a point
(xo, to) with x € int X-(to) such that x ¢ int X(tn) for all n € N.
Since x € int X(to), we can find vectors Vg, Vi, ...y v, € X(to) such that
(6.5) X € int co £VO' Vir eees vm}.

Since the correspondence X is lower semi-continuous by Sublemma 6.1,
for each i =0, 1, ..., m, we have a sequence [ngnEN converging to A
such that v? € X(tn) for all n € N. Therefore, from (6.5), it follows
that X, € int co fvg, v?, ooy v;} for all sufficiently large n € N.
Since X(tn) is convex by Sublemma 6.1, this implies that x € int X(tn)
for all sufficiently large n € N. This is a contradiction.

Let Gx denote the "graph" of the correspondence X, i.e.,

Gy = {(xs 1) € R" x [0, =) | x € x(t)].
L m
Define a correspondence F: Gx i ZR by

F(x, t).= {y € " | (x, y) € Y(t)} for each (x, t) § Gy

Sublemma 6.73:

The correspondence F is convex-valued and lower semi-continuous

at any (xb. tb) € Gy with x € int X(to).

X

Proof: Suppose that x € int x(to), ¥, € F(xo, to), and that
a sequence [(xn, tn)}nEN in Gy coverges to (xo, to). Since x € int X(to),

there are (VO, wo), (Vl' wl), ceey (vm, wm) € Y(to) such that

(6.6) x, € int co [vo, Vis eees vm}.

Since the correspondence Y is lower semi-continuous by Assumpt

for each i =0, 1, ..., m, we have a sequence {(v?, Wg)}nEN
to (v;, w;) such that (v;‘, w;‘) € ¥(t ) for all n € N. Also,
(xo, yo) € Y(to), for the same reason, we have a sequence {(

3 ] L}
converging to (xo, yo) such that (xn, yn) € Y(tn) for all n

By (6.6), we know that there is a number €, > 0 such that,

all sufficiently large n € N,
(6.7)
Also, obviously, for all sufficiently large n € N, we have

(6.8) llx, - xJl < €/3 and llx} - x|l <€/3.

Therefore, in proving the lower semi-continuity of F, we can afsume|

loss of generality that (6.7) and (6.8) are true for all n €

For each n € N with x) # x» Pick a point x! such th

no_ ] - "
60/3 < “xn xo” <€ and x =6 x'+ (1 en)xn for some 0 <
And for each n € N with x' = x , let x" = x' and 6 = 1. Th
n n n n n
= ' - (]
case, x =0 x'+ (1 Bn)xn for all n € N. Clearly, 6, goes
to =, since x_ and x' converge to x .
n n 0
Moreover, for each n € N, pick a point y; such that
, n n < s . .
and yﬁ € co [wo, Wis ey w;}. This is possible, since ng'
w o s n n
by (6.7), xp € int co fvo, Vi
is a bounded segquence.
= ' - "
Let y = 6.y + (1 en)yn for each n € N. Then, (xn,

that is, y_ € F(xn, tn) for all n € N. Furthermore, y goes

i R . n n n
llx - xoﬂ < €, implies x € int co [vo, Vi eees vm}]clx(t

cees v;} for all n € N. - Clearly, [yif}

goes to =, since yﬁ converges to Yor en converges to 1, and {f }nEN

ion I
copverg.
since
b vy

it thout

N,

at

o, < 1.

erj),,_;in r

to 1 as goes

g yllE xCe )

-l <|glL, iee.,
31€N
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bounded. This proves the lower semi-continuity of correspondence F.
Moreover, correspondence F is easily shown to be convex-valued,
since correspondence Y is convex-valued.
Proof of Lemma I: Since x € int X(to), by Sublemma 6.2, we

have a compact neighborhood U of X and two numbers r', s' € [0, ) with
r'<t <s' (= t, only when t = 0) such that (x, t) € U x [z, s']
implies x € int X(t).
Define a correspondence F': U x [r', s'] - ZR by

e 1) = {yo} for (x, t) = (xb, to)

F(x, t)- for (x, t) # (xo. to).
By Sublemma 6.3, we can easily prove that correspondence F' is convex-
valued and lower semi-continuous. Therefore, by a continuous selection
theorem in Michael [1956, Th. 3.1“‘3, we have a continuous function
f: U x[r', s'] ~ R™ such that f(x, t) € F"(x, t) for all (x, t) € U x
[z, s']. Hence, by a well-known theorem on the existence of solutions
for ordinary differential equations (for example, see Filippov [1964,
Th.4]), we have two numbers r, s € [r', s'] with r < to <s(r-= to only
when to = r') and an absolutely continuous function h: [r, s] - R" such
that h(to) = x, and B(t) = £(n(t), t) for almost every t € [z, s].
(When r' = t,s we cannot apply such a theorem directly>to function f,
but to a continuous extension f' of f defined by

f(x, t) for (x, t) €U x [z', s"]

£'(x, t) =
f(x, r') for (x, t) €U x[z'-1, ').

Therefore, our argument is true even in the case of r' = to.)

By construction of function f, we have conditions

of Lemma I. Also, h(t) = £f(h(t), t) is continuous since £

Namely, we have condition (ii) of the lemma.

Q.E

1)

ig
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7. Proof of Proposition II
The following lemma will play a central role in our argument.
The lemma corresponds to the "induction" procedure by Weitzman [1973]

and McKenzie [19?4 and 1976] in discrete time models.

Lemma II:

Suppose that there exist feasible paths ki between time r and
time s, i=0, 1, ..., m, satisfying conditions (1) and (ii)
in Proposition I. Then, for any t', t" € [r, s:] with t' < "
and any p' € aV(k,(t'), t'), there exists p" € av(k,(t"), t")
such that

t" .
J't'u(k*(t), k,(t), t)dt - p'.k,(t') + p".k,(t")

>J u(k(t), k(t), t)at - p'.k(t') + p".k(t")
tl

for all feasible path k between time t'. and t".

Proof: By definition of the value function V, we have

"
v(k(t'), t') 2 u(k(t), k(t), t)at + v(k(t"), t")
tl
. for all feasible path k between time t' and time t". Also, since p' €
aV(k,(t'), t'), we have
V(k*(t'), t') - p'.k*(t') > v(x, t') - p'.x for all x € r™,

The above two inequalities imply that

t" |
(7:2) T G(8), k(2 o + V(2 ¢) - 2 e (41)

" i

> ak(t), k(t), t)at + v(k(t"), t") - p'.k(t") %
.bl

for all feasible path k between time t' and time t". %

Let a, denote the left-hand side of inequality (?l!) . De:f‘i

two subsets Cl and 02 of Rm{-l by

¢; = {(a, x) €Rx R" | x = k(t") and

i
|
f
|
|
|
!
|

i

‘ w>a - Jtt'a(i‘{(t),,é(_t) ) ’gbdt + .‘ k(')
for some £ea.sil-‘31e Path k ]béjpwgen l ime t'
a;ld» time, f;"} ‘
and - ' o |
¢, = {(a, x) €R x R" | x € D(¢") and a < V(x, %)}
We can easily check that both Cl and C2 are non-empty and cor}frex. lso,
from (7.1), it follows that they are disjoint. Therefore, by a we“ L known
separation theorem, we have a non-zero vector (w, - p") € R «B" SIH h that
" J
(7:2)  wloy = I BCe), KD, 30+ 2 (8] - 2 K(E)
i
> w(x, t") - p".x ‘
for all x € D(t") and all feasible path k between time t' andl time , !
" |
with | 'ﬁ(k(t), k(t), t)dt| < oo.
t |
Put k = k, in (7.2). Then, \
(7.3) W (ky(t"), ") - p".k, (") > W(x, ") - p".x for hll x : D(t").
1
I
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Also, put x = k,(t") in (7.2). Then,

(7.4) n[j‘t'ﬁ(k*(t), f:*(t), t)dt - p-.k'*(tn)] + p".k, (t")

znuvﬂuw.ﬂw,wu-pnuvn+pwuw>

for all feasible path k between time t' and time t" with

I a(k(t), k(t), t)at| < oo
tl

We can easily see that the particular forms of C1 and C2 imply
m > 0. Suppose that w = 0. Then, it follows from (7.4) that
.k (") > p".ki(t") for alli=0, 1, ..., m, where ky» ki, ooos Ky
are functions assumed to exist in this lemma. Therefore, since k., kl'
ceey km satisfy condition (i) of Proposition I, we can conclude that p" = O.
However, this is a contradiction to the premise that (w, - p") # 0. Thus,
we have proved that w > O.

Without loss of generality, we can put w = 1. Therefore, by (7.3),

we have p" € 3V(k,(t"), t"). Also, since w = 1, in (7.4) we can ignore

the condition of [/ u(k(t), k(t), t)dt| <. Moreover, by definition
.bl

of ﬁ, we can replace u in (7.4) by u. This completes the proof of Lemma IT..

Q.E.D.
Now let us begin to prove Proposition II. Pick p € aV(k,(r), r).

For each n € N, define a finite subset Tn of [z, s] by

T = {t €[z, s] | t=r+dez) 520, 0, ey 2T

2n

Apply Lemma II to each pair

[+ (o1)(sm)
2" 2

from i = 1 to 2". Then we have (2" +1)-tuple of vectors denotkd byl

[pn(t) | t€ Tn], where-pn(r) = p, such that

(7.5) p,(t) € aV(k,(t), t) forall t €T and

(7.6) fyﬂauxigw.wu—pgvyau0+p4vxhwﬂ

1"

R COF K(t), t)dt - p_(t').k(t") + p_(£") k(tH]

v

for all t', t" € Tn with t' £ t" and all feasible path k be?wHen tin

and time t".

We can prove the following:
(7.7) Set [pn(t) | n€Nand t € Tn} is bounded.

Suppose that this is not true. Then, there is an iafﬂnite

N0 of N such that for each n € N0 we can pick up tn € Tn and

towas n € N° goes to . Without loss of generality, we can
p,(t)

I+

t
[ uk (), K (8), t)at - pk(x) + p(t) k(£ ) I/llp (4
r |

t

1AV

for all n € No and all feasible path k between time r and timg S.

T+ l(S;r)} succebsivell

lim t =t and ifl‘ow= P, # 0. On the other hand, py |(7.6)

[ "a(k(8), K1), £)ab - p.k(x) + p(t) . k(t))] H§n(tn);

jlibset

N lthat

goes
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Therefore, in the limit, po.k*(to) > po.k(to) for all feasible path k

between time r and time s: By assumption of the existence of functions

ks kK, ...y k. satisfying condition (i) of Proposition I, we can conclude
that P, = 0. This is a contradictioon. Thus, (7.7) is proved.
Let T=U Tn' We can prove the following:
neN
(7.8) There is a bounded function 4yt T -+ R™ with the following
properties:

(1) q (=) = ».
(i1) qo(t) € aV(k,(t), t) for all t € T.
t"

(1i1) It|u(k*(t). ko(£), t)at - q (87) I (8") + a (£") .k, (")

RGO K(t), t)at - q (t').k(t") + q (£").k(z")

nv

for all t', t" € T with t' < t" and all feasible path k between

time t' and time t".

For each t € T,, we have a sequence [pn(t) | n>1and n€ NJ.

Since T, is a finite set, by (7.7) we can find an infinite subset Ny of

1
N such that for any t € T,, sequence [pn(t) | n€ Nl} converges to a point,
say qo(t). Then, for each t € T,, we have a sequence [pn(t) | n>2 and

n € Nl}. Again, since T, is a finite set, by (7.7) we have an infinite
subset N2 of Nl such that for any t € TZ’ sequence [pn(t) | n€ NZ}
converges to a point, say qo(t). (Although T, = T,, this notation is

consistent since Nl o NZ') By repeating this procedure, we have N1 = N2 o

N3 >, ... such that for any 1 € N and any t € Ti’ sequence Gpﬁ

converges to a point qo(t). Therefore, by picking up a number

each Ni’ we have an infinite subset of N denoted by N, = [nl,
such that if t € T, for some i € N, then sequence [pn(t) [ | é

n € N,} converges to qo(t). In this way, we can define a func

|

4, T - R™, which is bounded because of (7.7). Obviously, confiitic

of (7.8) holds, since pn(r) =pforalln€N. Ift€T, ile)

some 1 € N, then (7.5) is true for all n € N, with n> i. Sin

aV(k,(t), t) is closed, condition (ii) of (7.8) holds in the 1ji

|

if t', t" € T and t' < tf, then t', t" € Tj for some j € N. T
(7.6) is true for all n € N, with n > i. Thus, condition (ii%
holds in the limit. This completes the proof of (7.8). .

Suppose that function 4, is not continuous. Then, si?

. , " .
q, is bounded, there are sequences £tn}nEN and {tn}nEN converg

< tP for all n € N and lin (qo(t

point t such that t' <t
o n = oo

[o}

# 0. By condition (iii) of (7.8), we have 5.k*(to) > p.k(t))

feasible path k between time r and time s. By assumption of

of functions kj, K, ..., k satisfying condition (i) of Pro

we can conclude that p = 0. This is a contradiction. Thus) f
is proved to be a continuous function. Hence, since T is a|ds
of [r, s], function q, can be uniquely extended to a continuoi

say q: [r, s] - R™,

We can prove the following:
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(7.9) The continuous function q: [r, s] - R" satisfies the following
conditions: .
(1) a(r) =

(i1) q(t) € av(k,(t), t) for all t € [r, s].

(i) ft'u(k*(t). ke(t), t)at - q(t') I (8') + a(t") Iy (")

.t" .
zJ u(k(t), k(t), t)at - q(s').k(s") + q(t").k(¢")
tl
for all t', t" € [r, s] with t' < t" and all feasible path k

between time t' and time t".

Condition (i) of (7.9) obviously follows from condition (i) of

(7.8). Also, since function q is a continuous extension of function 4,
and since T is dense in [r, s], condition (iii) of (7.8) implies condition
(iii) of (7.9). To prove condition (ii) of (7.9), let x € int X(to) and
to € (r, s]. Then, by Lemma I, we have an absolutely continuous function
h: [r', to] i Rm, where r < r' < to' satisfying the following conditions:

(n(t), n(t)) € Y(t) for almost every t € [r', toj.

The derivative h is a continuous function.

h(to) = x.
Since T is dense in [r, s], we have a sequence [tn}nEN converging to to
such that t € TN (z', to] for all n € N. Therefore, by condition (ii)
of (7.8), for all n € N

V(e (t)s t)) = a(t) k() 2 V(n(t), t) - alt)).n(t ).

Namely, by definition of the value function, for all n € N

t
RGO ke(8), £)at + V(i (t))s b)) = a(t)).kL(d )
nto .
> [ u(n(t), a(t), t)at + v(n(t)), t)) - a(t ).n(
t

Thus, in the limit, V(k*(to), to) - q(to).k*(to) > V(xo, t,
This implies q(to) € aV(kg(to), to), since k*(to) € int x(t
Also, q(r) = p € aV(k,(z), r). Thus, condition (ii) of (7.

Now we can prove the following:

(7.10) The function q is absolutely contimuous.

By (7.9), we have
.t'l

L, u0e(8), Ry(8), £)at + a(67). (e (£7) - Iy (21))

t"

-4 a0y (), ky (1), t)at - q(8"). (K (") - K, (¢

1A%

(a(t") = at))(ky (") = Ky(t'))
for all t', t" € [r, s] with t' < t" and alli=0, 1, ...,

ko, kl' ceey km are functions which are assumed to exist in

[yl

n

L)
9) |

m,

P

Since functions ko, kl, ool

we can easily prove the following facts:

k satisfy condition (1) of Pr

(1) For all t', t" € [r, s] with t' < t",

max (a(t") - (6')).(k; (£") - k(') 2 0.
Osisn

oyl

on II.

I,
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(ii) There exists A > 0 such that Hki(t) - ky(t)ll = A for

all t € [r, s] and all i=0, 1, ..., m.

(iii) There exists 6 > 0 such that if v € R™ and t € [z, s],

then v.(k,(t) - ke (t)) > olivil.IIk, (t) - k,(t)ll for some i.

Also, there exists B > O such that ||q(t)Il < B for all t € [r, s], since

function q is continuous. Therefore, we can derive the following inequality:

" .
B0 10, &0, 918t + Bl (+") - 1,601

+

[AY]

v v

w

=3 max
2 ogizm v

ma,
. 0<i<m

= min ella(t") - a(e)Ilk (t1) - K (")l

- " . .
I lul(2), (), ©)lat + Bllk, (+) - k;(¢)il]
.t'l

u(l, (1), ky(t), t)at + q("). (ke(t") - K (t"))

- I, (), ki (£), t)at - a(s"). (ky (") - k;(5))]

x (") - a(t')) Oy (2') - ky(t'))

0<i<m

lla(t") = a(t*)ll

for all t',.t" € [r, s] with r' < t".

By the above inequality, since Lebesgue integrals are absolutely continuous

and since functions k,, k

k , km are absolutely continuous, we can

o ¥qr ce-

easily show that function q is absolutely continuous.

In order to complete the proof of Proposition II, by virtue of

(7.9) and (7.10), we have only to prove the following:

(7.11) - (a(t), a(t)) € au(k,(t), ﬁ*(t), t) for almost eve?

First we should note (see, for example, Natanson [195E

that for almost every to € Er, s)

t +0
o :
lim —%— Jou(k(t), k(t), t)dt = u(k*(to), K, (t
6-0+ :to
a(t_+0) - a(t )
lip —2—p— = q(t.), and
6-0+
k, (t +8) - k. (t )
* ¥ .
lim e = K (t,).
8-0+

For such a point t_ € [z, s), suppose that (xo, yo) € Y(to)

x, € int X(to). Then, by Lemma I, there exist a number s' wit

and an absolutely continuous function h: [to, s'] - R" satisﬁ i

following conditions:
(h(t), h(t)) € Y(t) for almost every t € [to, s']

h is a continuous function.

h(to) = xo.and h(to) =V,
Since functions u and h are continuous, we have
t°+9 )
lin =~/ u(n(t), h(t), t)at = uln(t,), At
G0+ t

o

u(xov yov to)
and
h(t0+e) - h(to)

1lim )
-0+ )

= h(to) = Yo

Furthermore, by condition (iii) of (7.9), for all 6 > 0 with

fis' < s
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ky(t,)

t +6
. 8) -
—%—J‘ ° u(k, (1), k(t), t)at + w.
t .
o
k (t +6) - k,(t)
+ q(t%6). B )9 o

t +0 _
—;—J‘ ° u(h(t), ﬁ(t), t)dt + w.n&o)

tO

(A%

h(t +8) - h(to)
a(t,+0) g

-+

Therefore, in the limit, we have
u(ke(t)), ky(t)s t) + () Ke(t) + alt) k()
2wy Y0 o) * Atk + alt )y,
This inequality holds for all (x, y) € Y(to). because, by convexity of
Y(to). any point (x, y) € Y(to) can be represented as a limit point of
a sgqypence {(xn. yn)}nEN with (xn. yn) € Y(to) and x_ € int X(to) for
alln € N. In fact, let (x, y) € 1(t,), (xo, y,) € x(to) and x € int X(t ).
For-each 0 < 0 ¥ 1, define (x5, y,) = 0(x, y) + (1-8)(x, y,). Then,
(xe. ye) € Y(to) and x4 € int x(to) for all 0 < 6 < 1, Thus, we have
proved that - (4(t,), a(t.)) € du(k,(t ), f{*(to), t,), i.e., (7.11).

This completes the proof of Proposition II.

8. Proof of Theorem II
: |
First we should note (see, for example, Natanson [1955, p.25501)
that for almost every t € Lo, =)
to+6
. 1 y . |
lim TI u(k,(t), k(t), t)at = u(k*(to). k*(to‘, » b )liAnd
=0t %o |
k (t +6) - k(v ) .
lip ——2 2ot Sk ().
] *\ "o
6-0+
Let t, be such a point and (k*(to), yo) € Y(to). Since k*(ta) € in (to),
by Lemma I there exist a number s > to and an absolutely continuous inction
h: [to, s] - R™ with the following properties:
(h(t), n(t)) € Y(t) for almost every t € [to, s].
h is a continuous function.
h(t)) = ky(t,) and B(t,) = v,
Since functions h and u are continuous, we have
to+e _
lin == u(n(t), B(t), t)at = u(n(s ), Kt ), t])
6-~0+ t
° .
= ulie(8)s ¥or )
and
h(t_+6) - h(t) .
1lim ___2___5~____2_ = h(to) =y,
-0+
Furthermore, since k, is also an optimal path from tiﬂe to,
Theorem I, for-any p € av(k*(to). td) there exists an absolutdly cotfinuous
function g : [to, «) + R™ such that
a(t) = p, and
-(q4,(t), a(t)) € du(k,(t), k(t), t) for almost every t €|l , ).




33

Therefore, for almost every t € [to. s]
u(k, (1), ke(t), ) + 4, (£) ke (£). + (1), (t)
2 u(h(t), h(t), t) + ¢ (t).n(t) + q (t).h(t).

By integrating this inequality, for all 6 > 0 with 6 < s-to we have
t +0
ft u(ky(t), ke(t)s )at - q (b)) ky(t)) + q (£+6) k()
[e]
0
>0 u(n(t), n(t), t)at - q () h(t ) + q (t,+6).h(t+0).

%

t +0 k,(t +8) - k(¢
._g;_fto u(k*(t). }.(*(t), t)d‘b + qO(tO+e)' ( o+ )e * 0)
. .
t +6 . n(t +6) - h(t
;{%ﬂouwuxuw.ﬂM+QJ%”%l£“%‘iﬁl

[¢]

Thus,-in the 1limit, we have

ulk,(t))s B (b)) t)) + k(8 ) 2 ulk,(t ), yo» t)) + B-¥,-
Namely, - p, € aég(k*(to). k*(to), to). Hence, we have

V(k(t ) t ) = = dulk(t))s Ku(t)), ).

This completes the proof of Theorem II.

M. WL ﬂos, American Elsevier, N.Y., p.271-287.

Natansont I. P., Ll955] "Theory of Functions of a Real Var1nh

‘Management Science, 19, p.783-789.
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