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Abstract—In this paper, we investigate an approach based
on support vector machines (SVMs) for detection of microcal-
cification (MC) clusters in digital mammograms, and propose a
successive enhancement learning scheme for improved perfor-
mance. SVM is a machine-learning method, based on the principle
of structural risk minimization, which performs well when applied
to data outside the training set. We formulate MC detection as
a supervised-learning problem and apply SVM to develop the
detection algorithm. We use the SVM to detect at each location
in the image whether an MC is present or not. We tested the
proposed method using a database of 76 clinical mammograms
containing 1120 MCs. We use free-response receiver operating
characteristic curves to evaluate detection performance, and
compare the proposed algorithm with several existing methods.
In our experiments, the proposed SVM framework outperformed
all the other methods tested. In particular, a sensitivity as high
as 94% was achieved by the SVM method at an error rate of one
false-positive cluster per image. The ability of SVM to outperform
several well-known methods developed for the widely studied
problem of MC detection suggests that SVM is a promising
technique for object detection in a medical imaging application.

Index Terms—Computer-aided diagnosis, kernel methods, mi-
crocalcifications, support vector machines.

I. INTRODUCTION

I
N THIS paper we propose the use of support vector machine

(SVM) learning to detect microcalcification (MC) clusters

in digital mammograms. SVM is a learning tool originated in

modern statistical learning theory [1]. In recent years, SVM

learning has found a wide range of real-world applications,

including handwritten digit recognition [2], object recognition

[3], speaker identification [4], face detection in images [5], and
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text categorization [6]. The formulation of SVM learning is

based on the principle of structural risk minimization. Instead

of minimizing an objective function based on the training

samples [such as mean square error (MSE)], the SVM attempts

to minimize a bound on the generalization error (i.e., the error

made by the learning machine on test data not used during

training). As a result, an SVM tends to perform well when

applied to data outside the training set. Indeed, it has been

reported that SVM-based approaches are able to significantly

outperform competing methods in many applications [7]–[9].

SVM achieves this advantage by focusing on the training

examples that are most difficult to classify. These “borderline”

training examples are called support vectors.

In this paper, we investigate the potential benefit of using

an SVM-based approach for object detection from medical im-

ages. In particular, we consider the detection of MC clusters in

mammograms. There are two main reasons for addressing this

particular application using SVM. First, accurate detection of

MC clusters is itself an important problem. MC clusters can be

an early indicator of breast cancer in women. They appear in

30–50% of mammographically diagnosed cases. In the United

States, women have a baseline risk of 5%–6% of developing

cancer; 50% of these may die from the disease [10]. Second,

because of the importance of accurate breast-cancer diagnosis

and the difficulty of the problem, there has been a great deal

of research to develop methods for automatic detection of MC

clusters. Therefore, the problem of MC cluster detection is one

that is well understood, and provides a good testing ground

for comparing SVM with other more-established methods. The

strong performance of SVM in our studies indicates that SVM

indeed can be a useful technique for object detection in medical

imaging.

In the proposed approach, MC cluster detection is accom-

plished through detection of individual MCs using an SVM clas-

sifier. MCs are small calcium deposits that appear as bright

spots in a mammogram (see Fig. 1). Individual MCs are some-

times difficult to detect due to their variation in shape, orien-

tation, brightness and size (typically, 0.05–1 mm), and because

of the surrounding breast tissue [11]. In this paper, an SVM is

trained through supervised learning to classify each location in

the image as “MC present” or “MC absent.”

A difficult problem that arises in training a classifier for MC

detection is that there are a very large number of image loca-

tions where no MC is present, so that the training set for the

“MC absent” class can be impractically large. Thus, there arises

an issue of how to select the training examples so that they

well represent the class of “MC absent” locations. To solve this
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Fig. 1. (left) Mammogram in craniocaudal view. (right) Expanded view showing MCs.

problem we propose a solution that we call successive enhance-

ment-learning (SEL) to select the training examples. SEL se-

lects iteratively the “most representative” MC-absent examples

from all the available training images while keeping the total

number of training examples small. Numerical results demon-

strate that this approach can improve the generalization ability

of the SVM classifier.

We developed the proposed SVM approach using a database

of 76 clinical mammograms containing 1120 MCs. These

mammograms were divided equally into two subsets, one used

exclusively for training and the other exclusively for testing.

Compared to several other existing methods, the proposed

approach yielded superior performance when evaluated using

free-response receiver operating characteristic (FROC) curves.

It achieved sensitivity as high as 94% with only about one

false-positive MC cluster per mammogram. This figure of merit

is difficult to compare with previous reports in the literature

because, as we will show, the sensitivity measure depends

strongly on the way MC clusters are defined. However, within

each of our studies we maintained a uniform definition for

clusters to allow for meaningful comparisons.

The rest of the paper is organized as follows. A brief review

of the literature on MC detection is provided in the remainder

of this section. A background on SVM learning is furnished in

Section II. The use of an SVM for MC detection is formulated

in Section III. An evaluation study of the proposed SVM ap-

proach is described in Section IV, and the experimental results

are presented in Section V. Finally, conclusions are drawn in

Section VI. A proof of convergence of the proposed SEL scheme

is given in the Appendix.

There exist many methods for MC detection (a thorough

review of various methods can be found in Nishikawa [12]).

There is also a commercial computer-aided diagnosis system

developed (e.g., high detection sensitivity is claimed in

[13]). The following is a brief review of some representative

methods for detection of MCs. Karssenmeijer [14] developed

a statistical Bayesian image analysis model for detection

of MCs. Nishikawa et al. [15] investigated a method based

on a difference image technique followed by morphological

post-processing. Wavelet-based approaches have been pro-

posed in [16]–[18]. In [16], a decimated wavelet transform and

supervised learning are combined for the detection of MCs,

while in [17] and [18] an undecimated wavelet transform and

optimal subband weighting are used. A detection scheme is

proposed in [19] for the automatic detection of clustered MCs

using multiscale analysis based on the Laplacian-of-Gaussian

filter and a mathematical model describing an MC as a bright

spot of a certain size and contrast. Dengler et al. [20] used

methods based on a weighted difference-of-Gaussian (DoG)

filter for spot detection and morphological operators to extract

shape features. Gurcan et al. [21] developed a method based on

higher order statistics. Cheng et al. [22] applied fuzzy logic for

MC detection. Pfrench et al. [23] presented a two–dimensional

adaptive lattice algorithm to predict correlated clutters (i.e., the

tissue structure) in the mammogram. Li et al. [24] proposed

using fractal background modeling, taking the difference

between the original and the modeled image, which results

in enhanced MC detection. Bankman et al. [25] developed a

method based on region-growing in conjunction with active

contours, wherein the seed points are selected as the local

maxima found by an edge-detection operator. Mixed wavelet

components, gray-level statistics, and shape features were used

to train a two-stage multilayer neural network (TMNN) for

detection of individual MC objects [26]. Recently, Bazzani

et al. [27] proposed a method for MC detection based on

multiresolution filtering analysis and statistical testing, in

which an SVM classifier was used to reduce the false detection

rate. This approach is quite different from ours in that it used
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extracted image features (including area, average pixel value,

edge gradient, degree of linearity, and average gradient) as

the basis for detection, while our approach does not attempt

to extract any explicit image features. Instead, we directly use

finite image windows as input to the SVM classifier, and rely

on the capability of the SVM to automatically learn the relevant

features for optimal detection.

II. REVIEW OF SVM LEARNING FOR CLASSIFICATION

In this paper, we treat MC detection as a two-class pattern

classification problem. At each location in a mammogram, we

apply a classifier to determine whether an MC is present or not.

We refer to these two classes throughout as “MC present” and

“MC absent.” Let vector denote a pattern to be classi-

fied, and let scalar denote its class label (i.e., ). In

addition, let , denote a given set of

training examples. The problem is how to construct a classi-

fier [i.e., a decision function ] that can correctly classify an

input pattern that is not necessarily from the training set.

A. Linear SVM Classifiers

Let us begin with the simplest case, in which the training pat-

terns are linearly separable. That is, there exists a linear function

of the form

(1)

such that for each training example , the function yields

for , and for . In other

words, training examples from the two different classes are

separated by the hyperplane .

For a given training set, while there may exist many hyper-

planes that separate the two classes, the SVM classifier is based

on the hyperplane that maximizes the separating margin be-

tween the two classes (Fig. 2) [7], [9]. In other words, SVM

finds the hyperplane that causes the largest separation between

the decision function values for the “borderline” examples from

the two classes. Mathematically, this hyperplane can be found

by minimizing the following cost function:

(2)

subject to the separability constraints

for

or

for (3)

Equivalently, these constraints can be written more compactly

as

(4)

This specific problem formulation may not be useful in prac-

tice because the training data may not be completely separable

by a hyperplane. In this case, slack variables, denoted by ,

can be introduced to relax the separability constraints in (4) as

follows:

(5)

Fig. 2. SVM classification with a hyperplane that maximizes the separating
margin between the two classes (indicated by data points marked by “�”s and
“
”s). Support vectors are elements of the training set that lie on the boundary
hyperplanes of the two classes.

Accordingly, the cost function in (2) can be modified as follows:

(6)

where is a user-specified, positive, regularization parameter.

In (6), the variable is a vector containing all the slack variables

, .

The modified cost function in (6) constitutes the so-called

structural risk, which balances the empirical risk (i.e., the

training errors reflected by the second term) with model com-

plexity (the first term) [28]. The regularization parameter

controls this trade-off. The purpose of using model complexity

to constrain the optimization of empirical risk is to avoid

overfitting, a situation in which the decision boundary too

precisely corresponds to the training data, and thereby fails to

perform well on data outside the training set.

B. Nonlinear SVM Classifiers

The linear SVM can be readily extended to a nonlinear classi-

fier by first using a nonlinear operator to map the input pat-

tern into a higher dimensional space . The nonlinear SVM

classifier so obtained is defined as

(7)

which is linear in terms of the transformed data , but non-

linear in terms of the original data .

Following nonlinear transformation, the parameters of

the decision function are determined by the following

minimization:

(8)

subject to

(9)

C. Solution of SVM Formulation

Using the technique of Lagrange multipliers, one can show

that a necessary condition for minimizing in (8) is that
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the vector is formed by a linear combination of the mapped

vectors , i.e.,

(10)

where , , are the Lagrange multipliers

associated with the constraints in (9).

Substituting (10) into (7) yields

(11)

where the function is defined as

(12)

The Lagrange multipliers , , are solved

from the dual form of (8), which is expressed as

(13)

subject to

(14)

(15)

Notice that the cost function is convex

and quadratic in terms of the unknown parameters . In

practice, this problem is solved numerically through quadratic

programming.

Analytic solutions of (13) are not readily available, but it

is still informative to examine the conditions under which an

optimal solution is achieved. The Karush–Kuhn–Tucker opti-

mality conditions for (13) lead to the following three cases for

each :

1) . This corresponds to . In this case,

the data element is outside the decision margin of the

function and is correctly classified.

2) . In this case, . The data ele-

ment is strictly located on the decision margin of .

Hence, is called a margin support vector of .

3) . In this case, . The data element

is inside the decision margin (though it may still be

correctly classified). Accordingly, is called an error

support vector of .

Note that most of the training examples in a typical problem

are correctly classified by the trained classifier (case 1), i.e., only

a few training examples will be support vectors. For simplicity,

let , , , denote these support vectors and

their corresponding nonzero Lagrange multipliers, respectively,

and let denote their class labels. The decision function in (11)

can, thus, be simplified as

(16)

Note that the decision function is now determined directly by

the support vectors , , which are determined

by solving the optimization problem in (13) during the training

phase.

D. SVM Kernel Functions

Notice that the nonlinear mapping from to never

appears explicitly in either the dual form of SVM training in

(13) or the resulting decision function in (16). The mapping

enters the problem only implicitly through the kernel function

, thus, it is only necessary to define , which im-

plicitly defines . However, when choosing a kernel func-

tion , it is necessary to check that it is associated with

the inner product of some nonlinear mapping. Mercer’s theorem

states that such a mapping indeed underlies a kernel pro-

vided that is a positive integral operator [28], [29], that

is, for every square-integratable function defined on the

kernel satisfies the following condition:

(17)

Examples of kernels satisfying Mercer’s condition include poly-

nomials and radial basis functions (RBFs), which will be dis-

cussed in Section III.

III. SVM FORMULATION FOR MICROCALCIFICATION

DETECTION

In this section, we present a supervised SVM learning frame-

work for detection of MCs in which an SVM is first trained

using existing mammograms. The ground truth of MCs in these

mammograms is assumed to be known a priori. A detailed for-

mulation of the SVM learning framework is presented in the

following discussion. A performance evaluation of the method

is presented in Section IV.

A. Input Feature Vector

Individual MCs are well localized in a mammogram; there-

fore, to detect whether an MC is present at a given location, it

is sufficient to examine the image content within a small neigh-

borhood around that location. Thus, we define the input pattern

to the SVM classifier to be a small pixel window cen-

tered at the location of interest.

The window should be chosen large enough to contain an

MC, but small enough to avoid potential interference from

neighboring MCs. A small window size is also favorable

for computational reasons. In our study, the mammograms

were digitized at a resolution of 0.1 mm/pixel, and we chose

. Our experiments indicated that the results were not

very sensitive to the choice of (e.g., similar performance

was achieved when was used).

To suppress the image background and, thus, restrict intra-

class variation among the training patterns, we begin by ap-

plying a sharp high-pass filter to each mammogram. This filter

was designed as a linear-phase finite impulse response filter

with 3-dB cutoff frequency and length 41. As an

example, we show in Fig. 3 the result after filtering the mammo-

gram in Fig. 1 with this filter. The filter appears to be effective

in reducing the inhomogeneity of the background.
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Fig. 3. The mammogram in Fig. 1 after background removal by a high-pass
filter designed for the purpose.

To summarize, if we let denote the entire mammogram, and

be a windowing operator that extracts the window

centered at a particular location, then the input feature vector

is extracted as follows:

(18)

where denotes the high-pass filter for background removal.

Note that the vector is of dimension (81 in this study), and

is formed at every image location where an MC is to be detected

[the fact that varies with location is not explicitly indicated in

(18) for notational simplicity].

The task of the SVM classifier is to decide whether the input

vector at each location is an MC pattern or not

.

B. SVM Kernel Functions

The kernel function in an SVM plays the central role of im-

plicitly mapping the input vector (through an inner product) into

a high-dimensional feature space. In this paper, we consider two

kernel types: polynomial kernels and Gaussian RBFs. These are

among the most commonly used kernels in SVM research, and

are known to satisfy Mercer’s condition [28]. They are defined

as follows.

1) Polynomial kernel:

(19)

where is a constant that defines the kernel order.

2) Gaussian RBF kernel:

(20)

where is a constant that defines the kernel width.

Notice that in both cases the kernel function serves essen-

tially as a similarity measure between and . In particular,

the polynomial kernel function in (19) assumes its maximum

when and are aligned in the same direction (with their re-

spective lengths fixed); while the Gaussian RBF kernel function

in (20) assumes its maximum when and are identical. The

associated parameters, order in (19) and width in (20), are

determined during the training phase.

C. Preparation of Training Data Set

The procedure for extracting training data from the training

mammogram set is as follows. For each MC location in a

training-set mammogram, a window of image pixels

centered at its center of mass is extracted; the vector formed by

this window of pixels, denoted by , is then treated as an input

pattern for the “MC present” class ( . “MC absent”

samples are collected ( similarly, except that their

locations are selected randomly from the set of all “MC absent”

locations in the training mammograms. In this procedure, no

window in the training set is allowed to overlap with any other

training window. The reason for using only a random subset of

“MC absent” examples is that there are too many “MC absent”

examples to be used at once practically.

D. Model Selection and SVM Training

Once the training examples are gathered, the next step is to

determine the SVM decision function in (16). In this process,

we must decide the following variables: the type of kernel func-

tion, its associated parameter, and the regularization parameter

in the structural risk function. To optimize these parameters,

we applied -fold cross validation [8] to the training-mam-

mogram set. This procedure consists of the following steps.

First, divide randomly all the available training examples into

equal-sized subsets. Second, for each model-parameter set-

ting, train the SVM classifier times; during each time one of

the subsets is held out in turn while all the rest of the subsets

are used to train the SVM. The trained SVM classifier is then

tested using the held-out subset, and its classification error is

recorded. Third, the classification errors are averaged to obtain

an estimate of the generalization error of the SVM classifier. In

the end, the model with the smallest generalization error will be

adopted. Its performance will be evaluated using FROC analysis

(Section IV).

As explained in Section II, the training of the SVM classifier

is accomplished by solving the quadratic optimization problem

in (13). While in principle this can be done using any existing

general-purpose quadratic programming software, it should be

noted that the number of training examples (hence, the number

of unknowns) used in this study is large (on the order of several

thousand). Fortunately, numerically efficient algorithms have

been developed for solving the SVM optimization problem [8].

These algorithms typically take advantage of the fact that most

of the Lagrange multipliers in (13) are zero. In this paper, we

adopted a technique called successive minimal optimization

(SMO) [30]–[32]. The basic idea of this technique is to opti-

mize the objective function in (13) iteratively over a pair of

variables (i.e., two training samples) at a time. The solution can

be found analytically for each pair, thus, faster convergence can

be achieved. We found in this study that the SMO algorithm

is typically five to ten times faster than a general-purpose

quadratic optimization algorithm.
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E. Insight on the SVM Classifier

Consider the SVM decision function in (16), which is ex-

pressed in terms of the support vectors , .

Let denote the number of support vectors that belong to the

“MC present” class and, for notational simplicity, let them be

denoted in an ordered fashion as , . Then, we

can rewrite as

(21)

Replacing by the inner product of the mapping in

(12) and making use of the symmetry of the inner product, we

obtain

(22)

Defining

(23)

we have

(24)

Note that, when expressed as in (24), the SVM decision func-

tion assumes the form of a template-matching detector in the

nonlinear-transform space : the vector can be viewed as

a known template, against which the input pattern is com-

pared in the space. A careful examination of the form of the

template provides further insight to the SVM classifier. The

first sum in (23) is composed of support vectors from the “MC

present” class, while the second sum consists of those from the

“MC absent” class. Naturally, a large positive matching score

is expected when an input pattern is from the “MC present”

class; similarly, a large but negative matching score is expected

when is from the “MC absent” class.

Furthermore, by definition, support vectors are those training

examples found to be either on or near the decision boundaries

of the decision function. In a sense, they consist of the “border-

line,” difficult-to-classify examples from each class. The SVM

classifier then defines the decision boundary between the two

classes by “memorizing” these support vectors. This in philos-

ophy is quite different from a neural network, for example, that

is based on minimization of MSE.

In an interesting study in [33], where a neural network was

trained for MC detection, it was reported that better performance

was achieved when the neural network was trained with a set of

“difficult cases” (identified by human observers) than with the

whole available data set. In our method, the “difficult cases” are

automatically identified by the SVM during training.

F. Successive Enhancement Learning

The support vectors define the decision boundaries of the

SVM classifier; therefore, it is essential that they well repre-

sent their respective classes. As mentioned earlier, in a mam-

mogram there are vastly more examples available from the “MC

absent” class than from the “MC present” class. Yet, in training

only a small fraction of them can practically be used. As such, a

potential concern is whether this fraction of randomly selected

training samples can represent the “MC absent” class well.

To address this issue we propose an SEL scheme to make

use of all the available “MC absent” examples. The basic idea

is to select iteratively the “most representative” “MC absent”

examples from all the available training images while keeping

the total number of training examples small. Such a scheme im-

proves the generalization ability of the trained SVM classifier

(as shown experimentally in Section IV). The proposed algo-

rithm is summarized below. A proof of convergence of the pro-

posed algorithm is given in the Appendix.

SUCCESSIVE ENHANCEMENT-LEARNING ALGORITHM:

1. Extract an initial set of training ex-

amples from the available training im-

ages (e.g., through random selection).

Let denote

this resulting set of training examples.

2. Train the SVM classifier

with .

3. Apply the resulting classifier

to all the mammogram regions (except

those in ) in the available training

images and record the “MC absent” lo-

cations that have been misclassified as

“MC present.”

4. Gather new input examples from the

misclassified “MC absent” locations;

update the set by replacing “MC ab-

sent” examples that have been classified

correctly by with the newly col-

lected “MC absent” examples.

5. Re-train the SVM classifier with the

updated set .

6. Repeat steps 3–5 until convergence is

achieved.

In Step 1, the training set size is typically kept small for

numerical efficiency. Consequently, the training examples rep-

resent only a small fraction of all the possible mammogram re-

gions. The purpose of steps 3 and 4 is to identify those difficult

“MC absent” examples in the training mammograms that were

not included in the initial training set . In Step 4, there may be

several ways for gathering the new “MC absent” examples. One

is simply to select the most-misclassified “MC absent” loca-

tions [i.e., those with the most positive values of ]. This is

referred to as the greedy approach. An alternative would be to

select randomly among all those misclassified “MC absent” lo-

cations. In our studies, we experimented with both approaches.

In Step 6, the numerical convergence of the algorithm is deter-

mined by monitoring the change in support vectors during each

iteration.
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IV. PERFORMANCE EVALUATION STUDY

A. Mammogram Data Set

We developed and tested the proposed algorithm using a data

set collected by the Department of Radiology at The University

of Chicago. This data set consists of 76 clinical mammograms,

all containing multiple MCs. These mammograms are of dimen-

sion 1000 700 pixels, with a spatial resolution of 0.1 mm/pixel

and 10-bit grayscale. Collectively, there are a total of 1120 MCs

in these mammograms, which were identified by a group of ex-

perienced mammographers. These mammograms were obtained

at The University of Chicago which are representative of cases

that contain clustered MCs that are difficult to detect.

In this study, we divided the data set in a random fashion into

two separate subsets, each of which consisted of 38 images. One

of these subsets was used exclusively during the training phase

of the proposed algorithm, and is hereafter designated as the

training-mammogram set; the other subset was used exclusively

during the testing phase, and is designated as the test-mammo-

gram set. At no time was a test-set image used in any way in the

training procedure, and vice versa.

B. Performance Evaluation Method

To summarize quantitatively the performance of the trained

SVM classifier, we used FROC curves [34]. An FROC curve is

a plot of the correct detection rate (i.e., true-positive fraction)

achieved by a classifier versus the average number of false pos-

itives (FPs) per image varied over the continuum of the decision

threshold. An FROC curve provides a comprehensive summary

of the trade-off between detection sensitivity and specificity.

We constructed the FROC curves by the following proce-

dure. First, the trained SVM classifier was applied with varying

thresholds to classify each pixel in each test mammogram as

“MC present” or “MC absent.” Because several neighboring

pixels may be part of an MC, it is necessary next to group

the pixels classified as “MC present” to form MC objects. This

was accomplished by a morphological processing procedure de-

scribed in [15], where isolated spurious pixels were removed.

Finally, MC clusters were identified by grouping the objects that

have been determined by the algorithm to be MCs.

In our implementation, we adopted a criterion recommended

by Kallergi et al. [35] for identifying MC clusters. Specifically,

a group of objects classified as MCs is considered to be a true

positive (TP) cluster only if: 1) the objects are connected with

nearest-neighbor distances less than 0.2 cm; and 2) at least three

true MCs should be detected by the algorithm within an area of

1 cm . Likewise, a group of objects classified as MCs is labeled

as an FP cluster provided that the objects satisfy the cluster re-

quirement but contain no true MCs. It was reported [35] that

such a criterion yields more-realistic performance than several

other alternatives.

It bears repeating here that, to ensure a realistic evaluation,

the FROC curves in this study were all computed using only the

test-mammogram set. As mentioned before, this set of 38 mam-

mograms, chosen randomly, was held aside at the beginning of

the study, and was never used by any of the training algorithms.

C. Other Methods for Comparison

For comparison purposes, the following four existing

methods for MC detection were also considered in this study:

1) image difference technique (IDT) [15]; 2) DoG method

[20]; 3) wavelet-decomposition (WD)-based method [17], [18];

and 4) a TMNN method [26]. We selected these because they

are well-known methods that are representative of two main

approaches that are widely used: template-matching techniques

and learning-based methods.

The following is a summary of the parameter values we used

when implementing the four methods for comparison. For the

DoG method, the values of the kernel width used for the

positive and negative Gaussian kernels were 0.75 and 4, re-

spectively. The weight associated with the positive kernel was

0.8. For the WD method, four-octave decomposition was used

where an additional voice was inserted between octaves 2 and

3, and one between octaves 3 and 4. For the TMNN method, a

three-layer feed-forward neural network with six neurons in the

hidden layer was used in the first stage; and another three-layer

feed-forward neural network with eight neurons in the hidden

layer was used for the second stage. The 15-component feature

vector described in [26] was used.

While it was nearly impossible to obtain the globally optimal

parametric setting for each algorithm, care was taken in our im-

plementation so that it is as faithful to its original description

in the literature as possible. Whenever feasible, these methods

were typically run under multiple parameter settings and the one

yielding the best results was chosen for the final test.

A final note is that both the WD and TMNN methods are

learning-based, thus training was required. The same training-

mammogram set was used for these methods as for the proposed

SVM method. All the methods were evaluated using the same

test-mammogram set.

V. EXPERIMENTAL RESULTS

A. SVM Training and Model Selection

The training-mammogram set contained 547 MCs. Conse-

quently, 547 examples were gathered for the “MC present” class

from this set of mammograms. In addition, twice as many “MC

absent” examples were selected by random sampling from these

mammograms. Thus, there were 1641 training examples in total.

A tenfold cross-validation procedure was used for training and

testing the SVM classifier under various model and parametric

settings.

We also experimented with using an increased number of

“MC absent” examples in training (e.g., up to five times more

than the number of MC examples), but no significant improve-

ment was observed in the generalization error of the resulting

SVM classifier. We believe this is largely due to the redundancy

among the vast collection of “MC absent” examples. This partly

motivated our proposed SEL training scheme for the SVM clas-

sifier. In this regard, the SEL is an informed scheme for selecting

the “MC absent” samples for training, making use of both the

current state of the SVM classifier in training and all the avail-

able “MC absent” samples.
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In our evaluations, we used generalization error as a figure of

merit. Generalization error was defined as the total number of

incorrectly classified examples divided by the total number of

examples classified. Generalization error was computed using

only those examples held-out during training.

In Fig. 4(a), we summarize the results for the trained SVM

classifier when a polynomial kernel was used. The estimated

generalization error is plotted versus the regularization param-

eter for kernel order and . Similarly, in Fig. 4(b)

we summarize the results when the Gaussian RBF kernel was

used; here, the estimated generalization error is plotted for dif-

ferent values of the width (2.5, 5, and 10).

For the polynomial kernel, we found that the best error level is

achieved when and is between 1 and 10; interestingly,

a similar error level was also achieved by the Gaussian RBF

kernel over a wide range of parameter settings (e.g., when

and is in the range of 100–1000). These results indicate that

the performance of the SVM classifier is not very sensitive to

the values of the model parameters. Indeed, essentially similar

performance was achieved when was varied from 2.5 to 5.

Having determined that the SVM results do not vary signifi-

cantly over a wide range of parameter settings, we will focus for

the remainder of the paper on a particular, representative con-

figuration of the SVM classifier, having a Gaussian RBF kernel

with and .

Some insight about the SVM classifier can be gained by

looking at the support vectors produced by the training pro-

cedure. The number of support vectors in the representative

case that we studied was approximately 12% of the total

number of training examples and the training time is around

7s (implemented in MATLAB on a Pentium III 933-MHz PC).

Fig. 5 shows some examples of the support vectors obtained

for both “MC present” and “MC absent” image windows.

For comparison, some randomly selected examples from the

training set are also shown. Note that, as expected, some of

the support vectors indeed appear to be the difficult-to-classify,

“borderline” cases; i.e., the “MC present” support vectors are

MCs that could be mistaken for background regions, and the

“MC absent” support vectors are background regions from the

training set that look like MCs.

B. Effect of Successive Enhancement Learning

The SVM classifier (with the representative parameters

described previously) was then further trained using the pro-

posed SEL scheme on the training mammogram set. For this

purpose, a total of additional 50 000 nonoverlapping, “MC

absent” sample windows were randomly selected from the

training-mammogram set. Collectively these samples together

with the previous 1641 training samples cover as much as

15% of the total training-mammogram areas. The proposed

SEL scheme was then applied with this set of 50 000 samples.

Note that this slightly deviates from the original description

of the SEL scheme in that only a subset of the mammogram

background areas (rather than all the mammogram regions)

were used. We find this is sufficient to demonstrate the effect

of the SEL scheme. For testing the resulting trained SVM,

5000 additional nonoverlapping, “MC absent” samples were

randomly selected from the remaining mammogram areas of

(a)

(b)

Fig. 4. Plot of generalization error rate versus regularization parameter C
achieved by trained SVM classifiers using (a) a polynomial kernel with orders
two and three and (b) a Gaussian RBF kernel with width � = 2:5; 5; and 10.

the training-mammogram set. These 5000 samples were then

used to compute the generalization error rate of the trained

SVM classifier with SEL. Both the greedy approach and

random selection were tested. Up to misclassified

“MC absent” samples were selected during each iteration.

In Fig. 6, we show a plot of the generalization error rate

achieved by the trained SVM classifier for the first nine iter-

ations. Note that in both cases there is a significant drop in the

generalization error rate after the first two iterations, and dimin-

ishing gain from subsequent iterations. We believe this indicates

that most of the “difficult” “MC absent” examples were effec-

tively selected by the proposed SEL scheme during the first

two iterations. Also, note that the random SEL approach out-

performed the greedy method in Fig. 6. This is possibly due

to the fact that the latter always selects the most misclassified

samples during each iteration, which may not necessarily be

most representative of the “MC absent” class; on the other hand,
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Fig. 5. Examples of 9 � 9 image windows and support vectors. Image windows with and without MCs are shown at top-left and bottom-left, respectively.
Support vectors representing the “MC present” and “MC absent” classes of image windows are shown at top-right and bottom-right, respectively. Note that the
SVs represent the borderline examples from each class that are difficult to categorize (“MC present” SVs could be mistaken for “MC absent” image regions; “MC
absent” SVs might be mistaken for MCs. The support vectors shown are for the case of a SVM with Gaussian kernel (� = 5, and C = 1000).

Fig. 6. Plot of generalization error rate of the trained SVM classifier using
SEL versus the number of iterations.

the random approach selects samples from all the misclassified

samples, leading to the possibility of selecting more-representa-

tive samples as the iterations progress. This random SEL trained

SVM was used in the rest of the evaluation study.

C. Performance Evaluation

The performance of the proposed SVM approach, along with

the other methods, is summarized by the FROC curves in Fig. 7.

As can be seen, the SVM classifier offers the best detection re-

sult, and is improved by the proposed SEL scheme. The SVM

achieves a sensitivity of approximately 85% when the false-pos-

itive (FP) rate is at an average of one FP cluster per image.

The FROC results obtained here for WD and IDT filteringare

very similar to those described in the original reports of these

methods [15], [17], [18]. For the DoG method (for which no

FROC information is given in its original report), the detection

rate is close to that of the IDTF when the FP rate is around

two FP clusters per image. This is not surprising because both

methods operate under a similar principle (the detection ker-

nels in both cases behave like a bandpass filter). In addition,

the FROC results indicate that the TMNN method outperforms

the other three methods we compared (WD, IDTF, and DoG)

when the FP rate is above one FP cluster per image. The nu-

merical FROC results we obtained for the TMNN are somewhat

different from those in its original report. There are several pos-

sible explanations: 1) the mammogram set used was different;

2) the detection criterion for MC clusters used in performance

evaluation was different; and 3) in the original work [26] the

MC clusters used for training were also included in testing.

In Fig. 8, we demonstrate that the method of defining

MC clusters has an influence on the FROC curves, making

it difficult to compare reported results in the literature that

were derived using various criteria. The results in Fig. 8,

which differ from those in Fig. 7, were obtained when the

nearest-neighbor-distance threshold for MC cluster detec-

tion was increased from 0.2 cm to 0.3 cm. In particular, the

sensitivity of the SVM approach increased to nearly 90% at
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Fig. 7. FROC comparison of the methods tested. A higher FROC curve
indicates better performance. The best performance was obtained by a
successive learning SVM classifier, which achieves around 85% detection rate
at a cost of one FP cluster per image. The nearest neighbor distance threshold
used for cluster detection is 0.2 cm.

Fig. 8. FROC curves of the methods tested. The best performance was
obtained by a successive learning SVM classifier, which achieves around 90%
detection rate at a cost of one FP cluster per image. The nearest neighbor
distance threshold used for cluster detection is 0.3 cm.

an FP rate of one FP cluster per image. Similarly, when the

nearest-neighbor-distance threshold is increased further to

0.5 cm, the sensitivity of the SVM approach increased to as

high as 94% while the FP rate remains at one FP cluster per

image. The FROC curves in this case are shown in Fig. 9. Note

that, while different criteria may affect the numerical FROC

results, the relative ordering of performance of the methods is

preserved.

VI. CONCLUSION

In this paper, we proposed the use of an SVM for detection

of MCs in digital mammograms. In the proposed method, an

Fig. 9. FROC curves of the methods tested. The best performance was
obtained by a successive learning SVM classifier, which achieves around 94%
detection rate at a cost of one FP cluster per image. The nearest neighbor
distance threshold used for cluster detection is 0.5 cm.

SVM classifier was trained through supervised learning to test

at every location in a mammogram whether an MC is present

or not. The formulation of SVM learning is based on the prin-

ciple of structural risk minimization. The decision function of

the trained SVM classifier is determined in terms of support

vectors that were identified from the examples during training.

The result is that the SVM classifier achieves low generaliza-

tion error when applied to classify samples that were not in-

cluded in training. In addition, the proposed SEL scheme can

further lead to improvement in the performance of the trained

SVM classifier. Experimental results using a set of 76 clinical

mammograms demonstrate that the proposed framework is very

insensitive to the choice of several model parameters. In our

experiments, FROC curves indicated that the SVM approach

yielded the best performance when compared to several existing

methods, owing to the better generalization performance by the

SVM classifier.

APPENDIX

PROOF OF THE SUCCESSIVE ENHANCEMENT LEARNING

ALGORITHM

In this section, we provide a proof for the convergence of the

proposed successive enhancement learning (SEL) algorithm.

This proof follows a similar approach to one given by Osuna

et al. [5] for a decomposition strategy for SVM training with

a large data set. Here, we apply it to prove convergence of the

proposed SEL algorithm.

Let , , denote a

subset of the training examples, and let ,

, , denote the remainder of the

training set so that the entire training set is represented by

.
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Thus, the original dual problem in (13) can be extended as

follows:

(A-1)

subject to

for (A-2)

and

(A-3)

Observe that the original problem in (13) now becomes

only a subproblem of (A-1). Indeed, let

denote an optimal solution to (13), i.e., solution of training

the SVM with subset . Let denote the vector formed

by , with for

. Then automatically satisfies both the

constraints in (A-2) and (A-3) and, thus, is a feasible solution

to (A-1).

Let denote a margin support vector from the “MC ab-

sent” class obtained when the SVM is trained with , that is,

and . In addition, let denote the

index set of those examples in that have been selected to

update the training set . Note that these examples have been

misclassified by the trained .

Let be a positive constant such that . Now

consider a vector , having

components

otherwise.

(A-4)

Then

From (A-4), we have and, thus

(A-5)

Let

(A-6)

(A-7)

and

(A-8)

Noting that is symmetric, we have

(A-9)

Furthermore, since , we have

(A-10)

Noting that and for , we obtain

(A-11)

and

(A-12)

Therefore

(A-13)

When is chosen sufficiently small, the second-order term in

(A-13) is negligible and, thus

(A-14)

By selection, we have for . Thus,

. Therefore, the extended objective function in

(A-1) can be further improved by training the SVM with the

newly updated set . A successive application of this procedure

will eventually lead to an optimal solution of (A-1), which im-

plies that the generalization error of the trained SVM will also

be improved.

This proof also shows that, when retrained with the updated

set , a reasonable choice of the starting point for the optimiza-

tion algorithm is .
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