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Automated Incident Detection (AID) is an important part of Advanced Traffic Management and Information Systems

(ATMISs). An automated incident detection system can effectively provide information on an incident, which can help

initiate the required measure to reduce the influence of the incident. To accurately detect incidents in expressways, a

Support Vector Machine (SVM) is used in this paper. Since the selection of optimal parameters for the SVM can improve

prediction accuracy, the tabu search algorithm is employed to optimize the SVM parameters. The proposed model is

evaluated with data for two freeways in China. The results show that the tabu search algorithm can effectively provide

better parameter values for the SVM, and SVM models outperform Artificial Neural Networks (ANNs) in freeway incident

detection.
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1. Introduction

In freeway traffic monitoring and control, the detection

and verification of incidents is very important. When

incidents happen, they can destroy the normal traffic

flow and lead to a traffic jam. Rapid and reliable

detection is an effective method to reduce the impacts

of incidents and guarantee the safety of the freeway as

much possible. Thus, the freeway incident detection

problem is in freeway and arterial traffic management

systems, and has been the subject of research in the

past several decades. Automated Incident Detection

(AID) is an important component in many Advanced

Transportation Management and Information Systems

(ATMISs). Using AID is attempted to detect freeway

incidents such as accidents, stalled vehicles, spilled loads,

temporary maintenance and construction activities. Many

scholars have done a lot of work on freeway incident

detection methods for several decades.

In the incident detection study, some technologies

like time-series (Ahmed and Cook, 1982) and the decision

tree for pattern recognition (Chen and Wang, 2009) have

been used. In the literature, Ahmed and Cook (1982)

presented time-series analysis techniques for automatic

incidents detection. The model attempted to provide

short-term forecasts of traffic occupancies based on the

associated 95% confidence limits and an incident was

detected if the observed occupancy value was out of

the confidence limits. Chen and Wang (2009) applied

a decision tree learning for freeway automatic incident

detection. In this research, the traffic data of volume,

speed, time headway and occupancy at both upstream and

downstream detectors are used for incident detection.

Recently, neural networks have been widely applied

in incident detection. Srinivasan et al. (2005)

presented three neural network models for freeway

incident detection, which consisted of a multi-layer

feed-forward network, a basic probabilistic network and

a constructive probabilistic network. Jin et al. (2002)

attempted to propose a constructive probabilistic neural

network for detecting freeway incidents, in which there

is a mixture Gaussian model and a dynamic decay

adjustment algorithm used to construct the model.

Artificial Neural Networks (ANNs) are a

mathematical model or a computational model motivated
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by emulating the intelligent data processing ability

of human brains. A neural network consists of an

interconnected group of artificial neurons, and it

processes information using a connectionist approach

to computation. That is, the synaptic weights can be

adjusted in a learning process to reflect the input–output

relationship for the analyzed system automatically (Hagan

et al., 1996; Wei and Wu 1997). ANNs appear to be a

promising approach to describe complex systems due to

their versatile parallel distributed structures and adaptive

learning processes. However, it has been commonly

reported that ANN models require a relatively large

amount of training data to analyze the distribution of an

input pattern, while the performance of the ANN can to be

deteriorated for a small data pool. Moreover, it is difficult

for it to generalize the results due to its overfitting nature.

The SVM is a very specific type of learning

algorithm characterized by capacity control of the

decision function, the use of kernel functions, and the

sparse solution (Cristianini and Shawe-Taylor, 2000;

Vapnik 1999; 2000; Jelen et al., 2008; Mahmoud, 2011;

Sumi et al., 2012; Peter, 2013). Like ANNs, SVMs also

depend on the similarity between historic and real-time

traffic patterns. The SVMs can generally produce

better prediction results due to the over-fitting avoidance

ability and the high generalization performance. One

disadvantage of SVMs is that it requires a large amount of

computation time for a large training database (Cao et al.,

2003). However, it has provided some breakthroughs and

plausible performances, such as traffic-pattern recognition

(Ren et al., 2002), head recognition (Reyna et al., 2001),

travel time prediction (Wu et al., 2004; Yu et al., 2006;

2010; 2012) and incident detection (Yuan and Cheu,

2003). These successful applications motivate us to apply

SVMs for solving the incident detection problem.

The parameters in the SVM govern the training

process and the values have a profound effect on the

performance of the SVM. Therefore, there are many

works on parameter determination for the SVMs. Lin et

al. (2006) attempted to optimize appropriate parameters

for an SVM prediction model by using the structural risk

minimization principle. Zhang et al. (2010) developed

Ant Colony Optimization (ACO) to select optimal

parameters for the SVM. Lin et al. (2008) introduced

particle swarm optimization to optimize the parameters in

the SVM. Hou and Li (2009) attempted to determine the

values for parameters in the SVM by using an evolution

strategy with covariance matrix adaptation. Yao et al.

(2010) tried to use a shuffled complex evolution algorithm

to optimize the parameters for SVMs. Lorena et al. (2008)

proposed genetic algorithms to optimize a set of parameter

values for SVMs. Lebrun et al. (2008) proposed tabu

search to build a selection of the hyperparameters for

SVMs. The tabu search algorithm is a higher level

heuristic algorithm for solving combinatorial optimization

problems by allowing the search to explore solutions.

These solutions do not decrease the objective function

value only where these solutions are not forbidden. It

has been successfully applied to solving some classic

compounding optimization problems (Augugliaro et al.,

2002; Bortfeldt et al., 2003; Falco et al., 1994; Ho and

Haugland, 2004; Talbi et al., 1998; Yao et al., 2013). The

present paper attempts to find the appropriate parameters

in SVMs by using the tabu search algorithm.

Most of the AID methods indirectly judge traffic

event existence through identifying abnormal changes

of traffic flow parameters. Induction coil detector AID

system are most widely used to get traffic flow parameters

due to the lowest cost. However, the induction coil

detector also has its disadvantages. For example, incidents

involve some time to get a nearest detector. Moreover, the

induction coil detector is not suitable for the low traffic

flow. So the traffic management department is not highly

concerned about them. The incident detection system

based on the induction coil usually uses parameters such

as flow, market share, etc., and in some cases it also needs

time to detect all kinds of accidents between the upstream

and downstream speed parameters.

This paper presents a prediction model based on

the SVM for freeway incident detection, and the tabu

search algorithm is used for parameters optimization for

the SVM. The structure of this paper is as follows.

Section 2 provides a brief introduction to a prediction

model of the SVM, and parameter optimization for the

tabu search algorithm is presented. Section 3 contains a

case study and some computational results; and lastly, the

conclusions are provided in Section 4.

2. Support vector machine for the incident

detection problem

2.1. Support vector machine for regression. The

SVM is a non-probabilistic binary linear classifier, which

can be adjusted to map the input–output relationship for a

non-linear system. By applying a set of high dimensional

linear functions, the SVM shows strong resistance to the

over-fitting problem and high generalization performance.

Given the training data set

{xk, yk}, k = 1, 2, . . . , s,

xk ∈ R
m is the input data and yk ∈ R

n is the actual

value. The SVM estimates the relationships between the

input and the output by the following function:

f(x) = 〈w, x〉 + b, w, x ∈ R
m, b ∈ R

n. (1)

Here, 〈w, x〉 is the feature of the inputs. The coefficients

w and b are estimated by the so-called regularized risk
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functional:

min J = 1

2
‖w‖

2
+ C

s
∑

i=1

(ξ∗i + ξi)

subject to
⎧

⎨

⎩

yi − 〈w, x〉 − b ≤ ε + ξi,

〈w, x〉 + b − yi ≤ ε + ξi,

ξ∗i , ξi ≥ 0.

(2)

The first term, 1

2
‖w‖2

, is called the regularized term

and is used as a measurement of function flatness. C is a

regularization constant to determine the trade-off between

the training error and the generalization performance.

Two positive slack variables ξ, ξ∗ are used to cope with

infeasible constraints of the optimization problem. The

parameter is used to reflect that the loss equals zero if the

forecast value is within the “ε-tube”.

This constrained optimization problem is solved

using the following primal Lagrangian form:

L =
1

2
‖w‖

2
+ C

s
∑

i=1

(ξ∗i + ξi) −

s
∑

i=1

(ηiξi + η∗

i ξi)

−

s
∑

i=1

αi(ε + ξi − yi + 〈w, xi〉 + b)

−

s
∑

i=1

α∗

i
(ε + ξ∗ − yi + 〈w, xi〉 + b).

(3)

Here, L is the Lagrangian and ηi,η
∗

i , αi, α∗

i are

Lagrange multipliers. Hence the dual variables in (3) have

to satisfy the following nonnegativity constraints:

ηi, η
∗

i , αi, α
∗

i ≥ 0. (4)

The above problem can be converted into a dual one

where the task is to optimize the Lagrangian multipliers,

αi and α∗

i . The dual problem contains a quadratic

objective function of αi and α∗

i with one linear constraint:

maxJ7 = −
1

2

s
∑

i=1

(α∗

i − αi)(α
∗

j − αj)〈xi, xj〉

+

s
∑

i=1

α∗

i (yi − ε) −

s
∑

i=1

α∗

i (yi + ε)

subject to
⎧

⎪

⎪

⎨

⎪

⎪

⎩

s
∑

i=1

αi =
s

∑

i=1

α∗

i ,

0 ≤ αi ≤ C,

0 ≤ α∗

i ≤ C.

(5)

Let

ω =

s
∑

i=1

(αi − α∗

i )xi. (6)

Thus

f(x) =
s

∑

i=1

(αi − α∗

i )〈xi, xj〉 + b. (7)

By introducing kernel function K(xixj), Eqn. (8) can be

rewritten as follows:

f(x) =

s
∑

i=1

(αi − α∗

i )K(xi, xj) + b. (8)

The kernel function is proven to simplify the use of a

mapping. The value of K(xixj) is equal to the inner

product of two vectors xi and xj in the feature space φ(xi)
and φ(xj), that is, K(xi, xj)= φ(xi) φ(xj). By the use

of kernels, all necessary computations can be performed

directly in the input space, without having to compute the

map φ(x). More details on SVMs are given Vapnik (1999)

and Cao et al. (2003).

2.2. Tabu search algorithm for parameter optimiza-

tion of SVMs. The kernel function is the core of the

SVM which helps it to get an optimal solution. In

general, the RBF kernel, as a nonlinear kernel function,

is a reasonable first choice (Dong et al., 2005). The

parameters C, ε and σ are key elements of the RBF

kernel and directly exert considerable influence on the

generalization ability of the SVM. The parameter C

controls the trade-off between the margin and the size of

the slack variables (Shawe-Taylor and Cristianini, 2004).

If the value of C is too large, the classification accuracy

rate is very high in the training phase, but very low in

the testing phase. Otherwise, if the value of C is too

small, the classification accuracy rate is unsatisfactory.

The parameter σ has an effect on the partitioning outcome

in the feature space. If the value of σ is too large,

it will lead to over-fitting. If the value of σ is too

small, it will lead to under-fitting (Pardo and Sberveglieri,

2005). The parameter ε reflects the range of the prediction

deviation. If the value of ε is too large, it will results

in the solutions to be more independent of the existing

data. If the value of ε is too small, it will result in

overfitting. So parameter optimization is an important

factor for improving the prediction accuracy of the SVM.

The tabu search algorithm is applied to optimize the

parameters in the SVM.

Initial solution. In this study, the determination of

the initial solution in the tabu search algorithm is to

optimize the parameters (C, ε and σ) for the current

SVM model. Firstly, an initialization solution is presented

by random. To reduce the search space referring to

previous literature using the SVM (Yu et al., 2006; 2011),

it is recommended to introduce the constraints of the

three parameters which respectively attribute to the range

C ∈[2−5, 25] , ε∈[2−5, 25], and σ∈[2−5, 25] . The

solution is computed by appending the nearest unused
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neighbor values of the three parameters with respect to the

minimum sum of the Root Mean Squared Error (RMSE)

which is adopted in this paper,

RMSE =

[

1

n − p

n
∑

i=1

(yi − ŷ)

]1/2

, (9)

where ŷ is the prediction value for the model, yi is the

observed value n is the number of observations and p is

the number of model parameters. The initial solution will

be evaluated by appending the nearest unvisited neighbor

with respect to the minimum sum of the negative root

squared error. The process repeats until all the neighbors

are visited.

Neighborhood. Like the nearest neighbor search, the

neighborhood of our tabu search algorithm is also based

on a 2-opt exchange. In this paper, the 2-opt operation

is adopted to expand the search space by exchanging

information between two solutions.

Tabu criteria. The tabu criteria, if applied

unconditionally, sometimes reject worthwhile candidates.

To avoid this situation, an aspiration criterion is used

to override the tabu restriction. When a tabu neighbor

has a cost lower than the lowest status, a tabu move is

permitted. If all candidate solutions are part of the tabu

list and they all fail to meet the criterion, the candidate

with higher permanency time in the Tabu list is selected

for the move.

Termination. In this paper, the search continues until

RMSEn − RMSEn−1 < 0.0001 or the number of

generation reaches the maximum number of generations

Tmax.

2.3. Applying the SVM for freeway incident de-

tection. The input data are to be fed to the SVM to

identify the relation between the input and the output.

Thus, it is important to normalize the input data. In

freeway incident detection, the traffic conditions like

weather or time-of-day have more influence on the traffic

flow. Furthermore, the upstream and the downstream,

the upstream occupancy, upstream volume, downstream

occupancy, downstream volume and segment can describe

the state of traffic along the freeway. Therefore, weather,

time-of-day, occupancy and volume of the upstream and

downstream are selected as the input data which are easy

to reflect the variation of the incidents. The number of

the segment selected for prediction is assumed as t. The

prediction window m is used to describe the influence of

the m-th segment far from the current segment t (Fig. 1).

Thus, the proposed SVM model is the structure shown in

Fig. 2. The input vector (x) consists of weather (x1),

time-of-day (x2), segment (x3), the upstream occupancies

(x1) on the segments t, t − 1, t − 2, . . . , t − m, the

downstream occupancies on the segments t + 1, t +
2, . . . , t + m, the upstream volumes on the segments

t, t − 1, t − 2, . . . , t − m, the downstream volumes on

the segments t + 1, t + 2, . . . , t + m. The outputs (y) of

the models are the incident detection results of the target

segment.

3. Case study

The SVM model for freeway incident detection is tested

with the data of the Shenda freeway and the Heda freeway

in the Liaoning province. The Shenda freeway leads

from Shenyang city to Dalian and is the first freeway

in China mainland. The total length is 400 km. The

Heda freeway leads from Jixi to Mudanjiang and its total

length is 1390 km. In the numerical test, one section of

the Shenda freeway (from Dalian city to Pulandian city)

and one section of the Heda freeway (from Dalian city to

Zhuanghe city) are taken as the test bed. The lengths of

the two sections are 88 km and 174 km, respectively. The

routes of the two sections are shown in Fig 3.

3.1. Data collection and processing. To acquire the

loop detector data at the two sections, we conducted

an experiment on the two sections simultaneously, from

April 16 to 20, 2012. There are double lanes in one

direction, the vehicle speed is assumed as 60 km/h, and

the vehicle flow is about from 1500 to 2000 vehicles/h.

The interval between two test points is from 500 to

700 m. The loop detector data about the time-of-day,

weather, segments, occupancy about all the segments

Fig. 1. Prediction configuration of the routes.

Fig. 3. Information on the two freeways.
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Fig. 2. Framework of the proposed SVM model.

and all the volumes from all the tested segments were

collected at 30-second intervals. The data collected from

all the lanes at a station were fed into the SVM models.

There are 140 incidents and 164 incidents from the two

sections in the whole process of the experience. Easy

data are divided into three sub-sets, which represent

training samples, testing samples and inspection samples,

respectively. There are about 70% samples for training,

30% samples for testing and the remaining samples are

for inspection.

3.2. Determination of the prediction window m.

The prediction window m is selected to reflect the

influence from the m-th segment far to the current one.

The choice of the prediction window m is typically a

compromise between the ability to track changes in the

input data. A long horizon m is used when the learning is

in the steady state and there is no obvious model variation,

while a small one is used which will lead to large errors.

Thus, a too large and a too small prediction window m

will affect the prediction accuracy. To determine the value

of the prediction window m based on the data of the

two sections, the prediction errors from the SVM with

different m are shown in Figs. 4 (a) and (b).

From Fig. 4, it can be found that the horizon m is

5–8, and the RMSE of the SVM model is almost the

same. This indicates that lengthening the horizon m again

cannot improve the prediction accuracy. Thus, the horizon

m = 5 is selected in this paper.

3.3. Tabu search algorithm for parameter iden-

tification. In this paper, the parameters of the tabu

search algorithm used for freeway incident detection are

as follows. The length of tabu is 5. The tabu search

algorithm was coded in Visual C++. Net 2003 and

executed on a PC equipped with 512 MB of RAM and a

Pentium processor running at 1000 MHz. The tabu search

algorithm continues running 10 times under the same

condition. The computation results for 10 times are shown

in Fig. 5. From Fig. 5, it can be seen that the prediction

error decreases fast before the 640-th generation, and then

it changes smoothly. The least prediction error appears

at about the 720-th generation, and then it remains almost

unchanged. It can be also found that the calculation results

for the ten times are almost equal. This suggests that

the tabu search algorithm has good convergence and the

results with the least prediction error correspond to the

optimization for three parameters, that is, C = 3.1042,

ε = 0.0032 and σ = 1.1732, for the freeway incident

detection model.

3.4. Computational results. The performance of an

AID model is often evaluated by the following three

indices (Srinivasan et al., 2005):

1. Detection Rate (DR), defined as the ratio of the

number of incidents correctly detected to the total

number of incidents known: DR = (no. of incidents

detected/total no. of incident cases) 100%.

2. False Alarm Rate (FAR), defined as the ratio of the

number of false alarm cases to the total number

of applications or decisions made by the algorithm.

FAR = (number of false alarms/total number of

incident-free input patterns) 100%.

3. Mean Time-To-Detect (MTTD) is the average time

an algorithm takes to detect incidents,

MTTD =
1

n

n
∑

i=1

(tid − tio), (10)
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Fig. 4. Comparison of the prediction window m: section from Dalian to Pulandian (a), section from Dalian to Zhuanghe (b).

where tid is the time when the incident was detected,

tio is the time when the incident occurred and n is

the number of correctly detected incident cases.

4. MisClassification Rate (MCR) is the percentage of

misclassified patterns out of the total number of input

patterns. MCR = (number of wrongly classified

input patterns/total number of input patterns) 100%.

To test the effect of the support vector machine, a

standard three-layer artificial neural network is used for

predicting the freeway incidents. Before applying ANN

models, the input parameters of the ANN model need to

be determined using an experiment as SVM identification.

The combinations of the input parameters of ANN models

are the same as for the SVM experiment. The test results

of the ANN and SVM based on the two sections from two

freeways are shown in Tables 1 and 2.

From Tables 2 and 3 it can be found that the detection

speed of the neural network is slightly faster than that

for the support vector machine, but the detection rate,

the false positive rate and the misclassification rate of the

SVM are superior to those the artificial neural network.

A higher detection rate can effectively reduce negative

efficiency which is brought by a transportation incident.

A low false positive rate also saves the system operation

cost. Thus, the results suggest that our SVM model is an

Table 1. Performance of the SVM and the ANN on the section

from Dalian to Pulandian.

Method DR FAR MTTD MCR

SVM 96.2 4.24 73.4 3.52

ANN 92.9 5.08 71.2 4.63

Table 2. Performance of the SVM and the ANN on the section

from Dalian to Zhuanghe.

Method DR FAR MTTD MCR

SVM 95.7 4.82 72.6 3.50

ANN 93.6 4.96 70.7 4.71

effective method for freeway incident detection.

In addition, to examine the effectiveness of the

tabu search algorithm proposed in this paper, the

computational results of the SVM with the tabu search

algorithm (SVM-T) and the original SVM are compared.

Furthermore, the mean time-to-detect is used to be

computed and compared for the SVM model with the tabu

search algorithm and without it. The comparison results

are shown in Fig. 6.

From Fig. 6 it can be observed that, among the

three methods, the detection performances of SVM-T and

the SVM are better than that of MTTD. This can be
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Fig. 5. Fitness of each calculation by the tabu search algorithm.
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Fig. 6. Comparison results for MTTD, the SVM and SVM-T.
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explained by the fact that the SVM uses the structural

risk minimization principle to minimize the generalization

error, while MTTD uses the average time to detect

incidents, which is not suitable for the input–output

non-linear relationship, especially for data of a relatively

small size. Furthermore, compared with the SVM and

SVM-T, it can be seen that the tabu search algorithm can

greatly improve the detection performance of SVM. This

is because the parameters optimized by the tabu search

algorithm are more suitable for the freeway incident

detection. Based on the results of Fig. 5, it can be attained

that the tabu search algorithm can improve the detection

performance of the SVM and the proposed SVM-T is

effective for freeway incident detection.

4. Conclusions

The paper attempted to use support vector machines for

freeway incident detection. To improve the prediction

performance of the SVM, a tabu search algorithm was

used to optimize the parameters for the SVM. The

prediction model was tested on the data of two freeways

in China to validate the feasibility and efficiency of the

model. The results show that the tabu search algorithm

has good convergence and relative stable performance.

Furthermore, to evaluate the prediction performance of the

proposed SVM, an ANN is used on the same data as the

SVM. The comparison results with the proposed SVM and

ANN suggest that the former provides a lower prediction

error and a longer time. This indicates that the proposed

SVM is a powerful tool for freeway incident detection.
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