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ABSTRACT 
 

 
We have devised, implemented and tested a fast, spatially accurate technique for calculating the high-dimensional 

deformation field relating the brain anatomies of an arbitrary pair of subjects. The resulting 3D deformation map can be 

used to quantify anatomic differences between subjects or within the same subject over time, and to transfer functional 

information between subjects or integrate that information on a single anatomic template. The new procedure is based 

on developmental processes responsible for variations in normal human anatomy, and is applicable to 3D brain images 

in general, regardless of modality. Hybrid surface models known as Chen surfaces (based on superquadrics and 

spherical harmonics) are used to efficiently initialize 3D active surfaces, and these then extract from both scans the 

developmentally fundamental surfaces of the ventricles and cortex. The construction of extremely complex surface 

deformation maps on the internal cortex is made easier by building a generic surface structure to model it. Connected 

systems of parametric meshes model several deep sulci whose trajectories represent critical functional boundaries. 

These sulci are sufficiently extended inside the brain to reflect subtle and distributed variations in neuroanatomy 

between subjects. The algorithm then calculates the high-dimensional volumetric warp (typically with 3842x256x3 ≈ 0.1 

billion degrees of freedom) deforming one 3D scan into structural correspondence with the other. Integral distortion 

functions are used to extend the deformation field required to elastically transform nested surfaces to their counterparts 

in the target scan. The algorithm’s accuracy is tested, by warping 3D MRI volumes from normal subjects and 

Alzheimer’s patients, and by warping full-color 10243 digital cryosection volumes of the human head onto MRI 

volumes. Applications are discussed, including the transfer of multi-subject 3D functional, vascular and histologic maps 

onto a single anatomic template, the mapping of 3D brain atlases onto the scans of new subjects, and the rapid 

detection, quantification and mapping of local shape changes in 3D medical images in disease, and during normal or 

abnormal growth and development. 

 
Key Words: 3D image warping, brain mapping, surface and volume transformations, surface fitting, active contours, 
Chen Surfaces, spherical harmonic interpolation, geometric modeling. 
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Introduction: The Elastic Warping Problem 
 

Deep anatomical structures are often visualized and analyzed with the help of non-invasive medical imaging 

procedures. To aid in the identification of the imaged anatomic regions, a considerable amount of research has been 

directed towards the development of 3-dimensional standardized atlases of the human brain [1,2,3]. These provide an 

invariant reference system and the possibility of template matching, allowing anatomical structures in new scans to be 

identified and analyzed. Atlases also provide a precise quantitative framework for multi-modality brain mapping and 

serve as a guide in planning stereotaxic neurosurgical procedures. 

 

Nevertheless, no two people’s brains are the same, and this presents a challenge for any attempts to create 

standardized atlases. Even in the absence of any pathology, neural structures will vary between individuals not only in 

shape and size, but also in their orientations relative to each other [4]. Such normal variations have severely 

complicated the goals of comparing functional and anatomic data from many subjects, and of developing standardized 

atlases of the human brain.  

 

In view of the complex structural variability between individuals, a fixed brain atlas will fail to serve as a faithful 

representation of the brains of new subjects. It would, however, be ideal if the atlas could be elastically deformed to fit 

a new image set from an incoming patient. Deformable atlases [5,6,7] not only account for the anatomical variations 

and idiosyncrasies of each individual patient, but they offer a powerful strategy for exploring and classifying age-

related, developmental or pathologic variations in anatomy. 

 

This paper advances a fast, spatially accurate, surface-based approach for the elastic warping of anatomical images, 

applicable to 3D image sets in general, regardless of modality. Unlike previous techniques, the new method takes 

account of certain developmental processes which are responsible for the variations in neuroanatomy between 

normal individuals. The new algorithms arose out of previous work in which new methods were developed for 

quantifying the variations in shape and location of cortical and subcortical brain structures [8,9]. In particular, connected 

systems of parametric meshes were used to model the internal interfaces of deep structures in a population of normal 

brains, and a probability space of random transformations, based on the theory of Gaussian random fields, was 

developed to reflect the observed variability in stereotaxic space of the connected system of anatomic surfaces 

[9,10,11]. A digital brain atlas, incorporating precise statistical information on the positional and geometric variability of 

important functional interfaces, was used to generate probability maps quantifying the severity of local structural 

variations in the anatomy of new subjects [10].  
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The new warping algorithm presented here uses a similar approach to model connected surface systems inside the 

brain, but it also calculates a 3D deformation field which can be used to non-linearly register one brain with another (or 

with a neuroanatomic atlas). The resultant deformation fields can subsequently be used to transfer physiologic data 

from different individuals to a single anatomic template, enabling functional data from different subjects to be compared 

and integrated.  

 

The procedure calculates the volumetric warp of one brain image into the shape of another, by interpolating the 

deformation field required to elastically transform nested surfaces to their homologues, automatically extracted from the 

source and target data sets. The algorithm capitalizes on several existing methods for extracting surfaces from image 

volumes, and for modeling the surface dynamics of deformable biological tissue. The technique extends to the brain an 

existing high-fidelity surface estimation procedure which has already proved effective in modeling the dynamics of the 

heart. A similar algorithm for recovering 3D closed surfaces from noisy images has recently been successful in head 

and face modeling [11] and automated 3D image segmentation [12,13]. The algorithm specifies in detail the 

transformations mapping homologous surfaces from one 3D data set to another, and calculates the global warp of the 

tissue between them using a fast and spatially accurate interpolation scheme. In addition, a computationally fast 

algorithm for manipulating surfaces, previously described [14] and implemented in our laboratory, is extended to 

determine volume warps. It uses distance fields associated with the fundamental surfaces to evaluate integral 

distortion functions, which represent the induced effect of surface distortions on points in their vicinity. Since several 

of the inherent difficulties in current density-based warping approaches can be circumvented by the surface-based 

approach presented here, we begin by briefly examining the basic elements of current density-based strategies for 

elastic warping.  

 

I. Density-Based Approaches  

 
Density-based approaches to elastic matching carry out local comparisons between an atlas and a target scan, before 

computing the optimal elastic transformation mapping one image volume onto the other. Such methods discard all 

information except small regional patterns in intensity, which are compared in both data sets. The information in the 

atlas, A, and the target scan, P, is conventionally stored in a 3D array, with a gray-scale intensity value aijk ε  A and pijk 

ε  P associated with each voxel position aijk and pijk in the atlas and target pattern (as the coordinates i, j, k  take values 

in the range 1 to p, q and r respectively). The aim is to deform the intensity distribution in the atlas so that the result 

correlates well with that of the target pattern. Basically, the similarity S[T(A),P] is computed between all sorts of 

deformed versions of the atlas {T(A) TεT } and the target pattern P, and the best map T* is defined as the one for 

which this similarity function is maximized. 
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To accommodate fine anatomic variations, all successful warping transforms need to be of extremely high spatial 

dimension [6]. This is because complex profiles of contraction or dilation of the atlas, at an extremely local level, are 

required to deform it into the shape of the target anatomy. To ensure that the topology and connectivity of the atlas are 

maintained under these complex transformations, the atlas image A is typically considered to be embedded in a 3D 

deformable medium with elastic [15,16,17] or viscous fluid [5,18] mechanics. This medium is subjected to certain 

distributed internal forces, causing it to become even more similar to P. For each 3D point x in the atlas, a local 

similarity function S(x,x+u) is defined, whose value is the normalized intensity correlation between a fixed-size 

neighborhood centered at x in the atlas, and a neighborhood of the same size centered at location x+u in the 3D target 

image. A local internal force F(x) drives the medium of the atlas into register with the target image. Its value at x is 

made proportional to the gradient vector of the local similarity function, causing the local similarity to increase. ∇∇ S is 

calculated at each x by assuming a second-order Taylor series approximation for S(x,x+u), in the neighborhood of a 

pre-computed local maximum of the function at S(x,x+u*) [16]. 

 

The image is deformed until these external forces reach equilibrium with the internal restoring forces generated by the 

elasticity of the supporting material. The displacement field x⇒x+u at equilibrium is given by the set of Navier-Stokes 

equations for fixed x: 

µ∇∇ 2ui(x) + (λ+µ)[∂θ/∂xi] + Fi(x) = 0,     (i = 1, 2, 3), (1) 

where θ = ∂u1/∂x1 + ∂u2/∂x2 + ∂u3/∂x3 � ∇∇·u(x) is the cubical dilation, where F(x) � (F1, F2, F3)
T is the external 

force [namely k.∇∇ S at each point x � (x1, x2, x3)
T in the coordinate system before deformation], and where Lamé’s 

elastic constants λ and µ refer to the elastic properties of the body. These 3 partial differential equations can be solved 

iteratively on a finite grid, and interpolated trilinearly to obtain a continuous displacement field u(x). If U: x⇒x + u(x), 

then U(A) becomes the final warped atlas.  

 

Serious shortcomings of these warping algorithms were revealed and explored by Christensen et al., in [18,19]. Since 

the 1980s, linear models of the energetics of the deformed media included the linearly elastic [5,16,17], Laplacian 

[20,21] and biharmonic (or thin-plate [21,22,23]) models, all of which are limited by small deformation assumptions. 

The deformable media develop restoring forces proportional to the deformed distance, and result in a displacement field 

of artificially low magnitude, leaving the atlas incompletely warped onto the target scan. In [18], to overcome these 

limitations of the elastic model, the energetics of the medium was relaxed to obey viscous fluid  mechanics, after an 

initial parametrically-defined solution to the elastic equilibrium equations was achieved with 100 iterations of a 

stochastic gradient search. The transformation was then refined by solving the viscous fluid differential equation:  
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α∇2v(x,t)+β∇[∇T{v(x,t)}] =  F(x),  (2) 

 

where F(x) is the driving force (per unit volume) which deforms the atlas into the shape of the target anatomy, and α 

and β are viscosity constants. This equation describes the instantaneous velocity of the deforming atlas at location x at 

time t. The velocity v(x,t) is related to the displacement field u(x,t) by the equation: 

 

v(x,t) = {∂u(x,t)/∂t} + v(x,t) •∇{u(x,t)}, (3) 

 

and was solved at 500 time points to generate the final transformation. As the atlas deforms to match the target over 

time, the driving force goes to zero, which causes the velocity to go to zero and gives the final match.  

 

Although the results of this complex technique are very spectacular [5,17-19], it is noted in [24] that the registration of 

two 128×128×148 volumes took 9 hours on a 64×64 MPP 12000Sx/model 200 MASPAR (Massively Parallel Machine) 

achieving an impressive 0.8 billion floating point operations per second (0.8 GigaFLOPS). Similarly, although 

computation time is not mentioned in [16], the method relies on correlation, which is known to be time-consuming, even 

in 2D [25]. In particular, having ∇∇ S in the expression for the internal force F(x) is inevitable, but inconvenient 

computationally, especially when the correlation function S is so complex. This function contains integrals which are 

approximated by projection onto an orthonormal basis of functions of radial direction such as spherical harmonics, or (in 

[16]) onto the 3-dimensional Hermite functions ψp(x1)ψq(x2)ψr(x3), (p, q, r ∈ N), where the ψi are Hermite polynomials 

ψi(t)=[Hi(t).exp(-t2/2)]/[2i.i!.√π]1/2, and Hi(t)=(-1)iexp(t2)[Dt
n{exp(-t2)}], for t∈(-∞,∞). Finally, warping 

transformations based on continuum mechanics are determined only when the elasticity or viscosity coefficients are 

specified, and the selection of a pair of values for the visco-elastic parameters λ, µ, α, β is essentially arbitrary, in 

default of any biological information on what choice might be appropriate. The resultant need to optimize these 

additional parameters is expensive computationally, especially when a separate set of differential equations has to be 

derived and solved for each voxel. 

 

In conclusion, several of the drawbacks and inherent difficulties with density-based elastic warping techniques can be 

circumvented by devising 3D surface-based approaches to the registration problem. These are considered next, and 

have many distinct advantages: 

 

1. Speed: Compact representation of the 3D deformation field allows us to perform accurate high-dimensional warping 

in a reasonable amount of time (c. 30 minutes), on conventional UNIX workstations; 
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2. Embryology: Developmentally relevant surfaces can be isolated to constrain the warp, justifying the algorithm from 

an anatomic standpoint, and exploiting inherent biological information in the scans;  

3. Fidelity: High spatial acuity of the warp is guaranteed at the surface interfaces used to constrain the warp, and 

these include many critical functional interfaces such as the ventricles and cortex, as well as numerous 

cytoarchitectonic and lobar boundaries in 3 dimensions.  

II. Surface-Based Approaches 

 

The overall scheme of the strategy adopted here is as follows: (i) choose relevant surfaces to model; (ii) model these 

surfaces; (iii) calculate the appropriate surface transformations; and (iv) calculate the global volume warp. The method 

capitalizes on two existing surface estimation techniques [13,26]. The technique pioneered in [26] has not previously 

been used to deal with neuroanatomical surfaces, although it has proven successful in modeling the dynamics of the left 

ventricular surface of the human heart. In the next section, we discuss our selection of surfaces in the brain which are 

important from a developmental point of view (namely, the cerebral cortex, and the portion of the ventricular system 

lateral to the interventricular foramen of Monro in each hemisphere). A separate warp is calculated for each 

hemisphere, since the two hemispheres develop independently, without interaction, and eventually become separated 

anatomically (except at the corpus callosum) by a midline interface of cerebrospinal fluid. It will therefore suffice to 

describe the warping strategy as it applies to a single hemisphere, say the left one, without loss of generality. The same 

procedure is subsequently applied to the other hemisphere. For each hemisphere, then, analytically-defined Chen 

Surfaces are fitted through anatomical landmarks to provide initial estimates of the biologically relevant surfaces in 

each image. These estimated surfaces are subsequently molded more precisely to the anatomical contours using a 

Euler-Lagrange evolution process [12]. In this method, each surface relaxes to a minimal energy state in a system of 

potentials associated with the image space. With these refined surfaces represented in analytical form, separate 

surface warps can be computed, mapping the lateral ventricles, cortex and an internal connected system of deep sulcal 

surfaces, from the atlas to the target scan. The transformation of the material between the fitted surfaces in the atlas is 

then calculated using weighted distortion functions and spherical harmonic interpolation. 

 

III. The Search for Deformable Surfaces: An Embryologist’s Suggestion 

 

The first step in designing a surface-based warping strategy is to decide which surfaces to model. Any serious 

consideration of the spatial relations between the brain structures in the normal adult human should take into account 

their developmental history. Cortical neurogenesis is a highly stereotyped and well-understood process whose onset 

occurs around embryonic day 23 in humans. 

 

The entire brain is generated by proliferation of the embryonic neural tube, which is basically a tubular sheath of cells 

surrounding a central fluid-filled cavity. The different rates of growth and proliferation of this sheath of cells produce 

on-going elastic deformations of its inner and outer surfaces. Once the fluid-filled precursors of the lateral ventricles 
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have protruded out, one on each side, the evolution of the cortical surfaces is constrained medially by an equal and 

opposing pressure due to the tissue of the other hemisphere. On each side, the evolution of the outer surface O is also 

constrained by the external pressure of the developing cranium, and this results in the complex folding and invagination 

of the cerebral cortex, whose final morphology is only loosely stereotyped across different individuals. The inner 

germinal surface I for each hemisphere becomes the respective lateral ventricle at maturity. The lateral ventricles are 

very readily discerned in magnetic resonance images, due to the drastic difference between the proton density and 

relaxation times of the ventricular system, which is filled with cerebrospinal fluid, and the tissue which surrounds it. 

 

The lateral ventricles are useful landmarks for understanding the regional anatomy of the cerebral hemispheres. During 

development, the enormous proliferation of cells in the cerebral hemispheres forces the lateral ventricles and many 

other major structures in the brain into a characteristic C-shape [27]. This process is illustrated in Fig. 1. Since this 

proliferation causes different regions of the enclosed material to expand physically at different rates, the inner and outer 

limiting surfaces are continuously deformed until they become quite irregular. In later developmental stages, however, 

four stereotypical features on the lateral ventricles become distinct - the body, and the frontal, occipital and inferior 

horns (Fig. 2). In what follows, we will represent the mature geometry of the inner and outer developmental surfaces in 

the left hemisphere by I*(∞) and O*(∞). (The * indicates closed surfaces in 3D, while the ∞ suggests convergence 

to a mature morphology, for time-varying surfaces I*(t) and O*(t).) Exactly the same arguments may be applied to the 

cerebral cortex and lateral ventricle in the right hemisphere, which are modeled and warped independently, using the 

same algorithms. To be precise (and suppressing the ‘∞’), I* will represent the mature geometry of the left lateral 

ventricle alone, considered as an autonomous system, notionally closed off from the third ventricle at the lateral tip of 

the foramen of Monro. O* will represent the parenchyma of the cerebral cortex in the left hemisphere, closed off 

medially, at its midline interface with cerebrospinal fluid in the interhemispheric vault, the midline division in the human 

brain.  

 

A useful first step in characterizing the neuroanatomical variations between two individuals might be to analyze the 

differences in the mature geometry of these two fundamental developmental surfaces. Any major surface variation, 

malformation or idiosyncrasy in an individual’s I* or O*, relative to the same surfaces in a standard 3D atlas, might 

fundamentally alter the spatial configuration and geometry of all the intervening structures relative to the atlas.  

 

Although by no means the only source of anatomic variability between individuals, the instantaneous morphology of 

these two primary surfaces in each hemisphere over time will very largely govern the potential spatial relations and 

initial accretion points of newly-developing structures.  

 

IV. Surface Fitting 
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 (a). Initial Estimates: Fitting a Chen Surface through a set of Anatomical Landmarks 

 

The warping technique proposed here requires the identification of the surfaces I* and O* in the atlas, and their 

counterparts in the target scan. It yields an explicit analytical form for each surface in its respective image space, with 

respect to a spherical coordinate system. Both the external cortical surface O* and lateral ventricles I* are extracted 

automatically from each scan using an extension of the widely-used Cohen and Cohen active surface method [12,28]. 

This method attracts an initial estimate of each surface to anatomic boundaries, or edges, in the surrounding 3D image, 

molding the initial surface accurately onto the local anatomical contours. The initial estimates required by this procedure 

are supplied in the form of a Chen surface construct, which is obtained by fitting an algebraically-defined surface 

through a set of manually-defined points. In [26], Chen et al. developed a powerful, hierarchical method for capturing 

the chief dynamic and deformational activity of the left ventricle of the human heart in the course of a cardiac cycle. 

We use a variant of this approach to fit two surfaces through manually-defined points on the surface of the lateral 

ventricles and on the cerebral cortex, respectively. 

 

In magnetic resonance images, the large difference in relaxation parameters between neural tissue and cerebrospinal 

fluid makes it possible to isolate manually a large number of fiducial points on the convex hulls of our two fundamental 

surfaces. (A structure’s convex hull is defined as the convex surface, with the smallest volume, containing the 

structure in question [29].) The convex hull is used, because it is regular enough to be easily characterized as a member 

of the family of surfaces designed by Chen et al., and is sufficiently close to the actual ventricular surface for this 

surface to serve as a boundary condition in the Euler-Lagrange evolution equation. The surface of the ventricular 

system (Fig. 2) has a sufficiently stereotyped geometry for numerous points on its convex hull to be defined, e.g. the 

rostral tips of the frontal and temporal horns, as well as points along the calcar avis, the interface of the ventricular 

atrium (or trigone) with each wing of the ambient cistern, on the isthmus of the cingulate gyrus, and on the 

hippocampal fissures. Note that the exact location and distribution of these manually-defined points is not critical, since 

the surface fitted through them is only used as a rough initial estimate, which the active surface algorithm distorts 

towards the actual structure boundaries. Moreover, the points picked on the ventricles and external cortex in the two 

scans need not be homologous (i.e., need not correspond anatomically), nor do they need to correspond to known 

functional landmarks. This is because these fiducials serve as a temporary estimate, and are not used in our final 

derivations of point-to-point mappings between surfaces. 

 

Fitting a Chen Surface through a General Set of Fiducials 

 

The obvious limitations of such simple shape modeling primitives as spheres and cylinders suggest that the global shape 

of any convex surface might first be approximated using a superquadric  surface [30]. Superquadrics are a 

parametrized family of shapes, widely used for shape representation in computer graphics, and capable of modeling a 
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large set of standard building blocks including not just spheres, cylinders and parallelepipeds, but also shapes in 

between. A superquadric surface is the spherical product of 2 superquadric curves and can be defined in vector form1 

[see note 1] as follows: 

S(ϕ,θ) = [x, y, z] =  [axcosε1(θ)cosε2(ϕ),  aycosε1(θ)sinε2(ϕ),  azsinε1(θ)]; ϕ∈[-π,π], θ∈[-π/2, π/2]; (4) 

i.e., [(x/ax )2/ε2 + (y/ay)2/ε2]ε2/ε1 + (z/az)2/ε1 = 1,  or  �(�( x/ax, y/ay )� p , z/az )�q = 1,  (5) 

where ax , ay, az denote the length of the superquadric along the x, y and z axes, and where�( ., .)�p and �( ., .)�q are 

the 2/ε1- and 2/ε2-norms on R
2
 respectively. Since the intrinsic axial symmetry of these superquadrics places a 

substantive limitation on what they can (as yet) model, we further extend the basic modeling repertoire to include 

tapered versions ττ (S) of all the surfaces S we have so far in our inventory of primitive shapes [q.v., [26]]. Tapering of 

a superquadric about any one axis, say the z-axis, can be modeled in extreme generality by the deformation map ττ : 

(x,y,z)→(fx(z), fy(z), z), where the tapering functions fx(z) and fy(z) are stipulated to be piecewise linear functions of z. 

 

For each surface to be fitted, the centroid and distribution of the fiducials lying on it are used to generate a mutually 

orthogonal 3D coordinate system fixed to the biological surface. Relative to this new coordinate system, the positions of 

our fiducials are re-computed, and the best fitting superquadric is determined as follows. Among various optimization 

schemes for recovering superquadrics from data points, a common one is based on the inside-outside function, which 

for each point (x,y,z) in the neighborhood of a superquadric S is defined as: 

 fS(x,y,z)  =  [ (x/ax)2/ε2 + (y/ay)2/ε2 ]ε2/ε1  + (z/az)2/ε1 .  (6) 

As in [28], the superquadric chosen is the one for which the objective function ΣΣ i=1 to nfS(xi,yi,zi)-12  is minimized, 

where the summation is carried out over all n fiducial points, and where the function fS depends on the superquadric 

under examination. 

 

Because this superquadric is axially symmetrical, it fails to capture certain local furrows, grooves and other features in 

the real anatomical surface. Accordingly, an additional local surface estimation scheme is used, in which the residual 

distances of the data from the fitted superquadric surface are computed. Although these distances represent the 

deviations between the superquadric and the real surface only at certain (fiducial) points, a residual surface function rε(

θ,ϕ) is calculated, representing the distance by which the superquadric is in error, in any radial direction. This residual 

surface can be arbitrarily closely approximated with a finite linear combination of spherical harmonics.2 These 

spherical harmonics are then added to the basic superquadric to produce a composite function which very precisely 

replicates the local nuances of the real anatomical surface. 

 

Given n fiducial points given in Cartesian coordinates as (xi, yi, zi), i=1 to n, their spherical coordinates are  
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[ϕ i , θi, rd(ϕ i,θi)] = [ tan-1 (yi/xi),   tan-1 ({√[ xi
2+yi

2]}/z),   √[ xi
2+yi

2+zi
2] ];  ϕ i∈[-π,π], θi∈[-π/2, π/2];      (7)  

On the fitted superquadric, the points rS(ϕ i,θi) in the same radial directions as those given above have Cartesian 

coordinates 

S(ϕ i,θi) = [x, y, z]=   

[fx(θi).axcosε1(θi)cosε2(ϕ i),  fy(θi).aycosε1(θi)sinε2(ϕ i),  azsinε1(θi) ]; ϕ i∈[-π,π], θi∈[-π/2, π/2]. (8) 

and spherical coordinates 

[ϕ i , θi, rd(ϕ i,θi)] = [ ϕ i,  θi,  √[ {fx(θi).axcosε1(θi)cosε2(ϕ i)}2 + {fy(θi).aycosε1(θi)sinε2(ϕ i)}2 + {azsinε1(θi)}2  ] ], 

 (9) 

where fx(θi) = fy(θi) = kazsinε1(θi)+1. Consequently, the n points rε(ϕ i,θi) = rd(ϕ i,θi)-rS(ϕ i,θi) can be used to fit our 

residual surface function rε(ϕ,θ), which is supposed to represent the distance by which the fitted superquadric is in 

error, in any radial direction. Now the radius r(ϕ,θ) of an arbitrary surface in a spherical coordinate system can be 

written as a linear sum of spherical harmonic basis functions: 

r(ϕ,θ)   ≈  ΣΣ n=1 to N ΣΣ m=0 to n [ AnmUnm(ϕ,θ)+BnmVnm(ϕ,θ) ]; (10) 

Anm and Bnm are real coefficients, while the functions2 Unm(ϕ,θ) and Vnm(ϕ,θ) are defined in a spherical coordinate 

system as 

Unm(ϕ,θ)= cos mϕ Pnm(cos θ)         

Vnm(ϕ,θ)= sin mϕ Pnm(cos θ),      (11) 

where  Pnm(.) is the associated Legendre function Pnm(x)=(1-x2)m/2Dx
mPn(x), with Pn(x)={1/(2nn!)}.Dx

n(x2-1)n. 

The size of the coefficient set determines the fidelity with which the harmonic expansion can capture the local details of 

the biological surface, now conceived as a kind of fine tuning or modulation superposed on the fundamental 

superquadric originally fitted to the data. The residual surface rε(ϕ,θ) ≈ ΣΣ  i =1 to M αα iBi(ϕ,θ) is interpolated using 25 

basis functions Bi(ϕ,θ) and coefficients αα i, the values of these coefficients being determined by minimizing the 

objective function  ε({αα i}i=1 to M) = ΣΣ j=1 to n [rε(ϕ j,θj)-ΣΣ i=1 to M αα iBi(ϕ j,θj)]2. Our final model of the global shape of 

the biological surface in question is now readily obtained by adding this interpolated residual surface to the superquadric 

fitted earlier, yielding V(ϕ,θ) = rs(ϕ,θ)+rε(ϕ,θ); ϕ∈[-π,π], θ∈[-π/2, π/2]. For convenience of expression, any surface 

fitted in this way though a convex set of fiducials will be termed a Chen surface. Loosely speaking, the surface is a 

superquadric with spherical harmonics modulated onto it. 

 

By applying this surface-fitting procedure to our four sets of fiducials on the convex hull of O* and I*, in both A and P, 

namely {fi(A;O*)}, {fj(A;I*)}, {fi(P;O*)}, {fj(P;I*)}, a pair of Chen surfaces is generated for a given hemisphere in 

each image, C{fi(A;O*)}, C{fj(A;I*)}, C{fi(P;O*)} and C{fj(P;I*)}. These surfaces provide boundary conditions for 
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four independent sets of Euler-Lagrange evolution equations, which mold the estimated surfaces more faithfully onto 

the anatomical contours. 

 

 (b). Energy-Minimizing Surfaces in Systems of Potential Attractors:  

Molding Surfaces onto Anatomical Contours 

 

Many methods for segmenting images into meaningful components are based on the fact that some biological 

parameter varies drastically at the interface between two different structures. If this parameter is represented in the 

image by the relative intensity of different pixels, we can search for edges between regions by thresholding on the value 

of a gradient operator, and deriving a binary edge image. Now imagine all the points in the edge image to be highly 

charged points in space, which would tend to attract any oppositely-charged surfaces in the vicinity towards them. 

Cohen’s idea [12] is to imagine letting inflated, charged balloons deform through this system of attraction potentials, 

their surfaces being gradually distorted and stretched as they are sucked towards all the attractive edge points, finally 

coming to equilibrium (like soap bubbles in a wire mesh) when their surface energy is minimized.  

 

Let Ω be the tile [0,1] × [0,1] in R
2
.  

A surface v is defined by a mapping v: Ω→R
3
, i.e., (s,r)→v(s,r)  = (x(s,r), y(s,r), z(s,r)), and the associated energy is 

given by the real-valued functional 

E(v)= ∫Ω   w10∂v/∂s2 + w01∂v/∂r2 + 2w11∂2v/∂s∂r2 + w20∂2v/∂s22 + w02∂2v/∂r22 dsdr + ∫ΩP(v(s,r)) 

dsdr. (12) 

Here P is the potential produced at each point on the surface by the system of external attractors, and the other terms 

measure the smoothness of the fitted surface v. P is defined as -∇∇ I2 , where I is the binary edge image convolved 

with a Gaussian of the form {-exp(-�h�2)}, where h is any point in our image space. The definition P(v(s,r)) = -

∇∇ I(v(s,r))2 is extended by trilinear interpolation from the image grid to the continuous domain. Its form ensures that 

our surface is maximally attracted by the minima of the potential, i.e., by edges, which create local maxima in the 

gradient of the image intensity. The surface energy functional, defined on a class V of elastically deformed versions of 

v, is minimized when forces on the surface are in equilibrium. The final position of the surface is given by the solution3 

(as t→∞) of the Euler-Lagrange evolution equation: 

∂v/∂t -∂/∂s(w10∂v/∂s)-∂/∂r(w01∂v/∂r)+2∂2/∂s∂r(w11∂2v/∂s∂r)   

+∂2/∂s2(w20∂2v/∂s2)+∂2/∂r2(w02∂2v/∂r2)  = Ftotal(v),   (13) 

Here Ftotal(v) = -∇∇ P(v)+Fballoon(v) is the sum of the external forces applied to the surface, and Fballoon is a special 

additional force of the form k1.n(s,r), where n(s,r) is the unit vector external and normal to v at v(s,r), and k1 is the 

force’s amplitude [q.v. [28] for details]. This surface dynamics equation is seen as describing the deformation over 
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time of the surface of a balloon located in the same space as the image. This balloon first expands, but it is soon 

stopped by the strongly attractive forces of any potential minima it encounters, which are associated with edges in the 

image. The expanding surface can also pass by any noise points or weak edges it meets in the image, since these points 

first become singularities in the surface, before being removed by the regularization process as the surface progresses 

over a few iterations.  

 

The initial estimate for the anatomical surface in question is supplied in analytical form as a Chen surface, which is 

subsequently molded more faithfully to the anatomical contours by using it as the boundary condition of the evolution 

procedure described above. In certain cases, where the gross anatomical asymmetry of the brain is not substantial, 

each equilibrium surface in the left hemisphere can be reflected in the interhemispheric plane to provide a boundary 

condition for the evolution process which extracts the homologous surface in the contralateral hemisphere. This change 

of variables surmounts the need to derive a second pair of Chen surfaces for the contralateral hemisphere, greatly 

accelerating the computational task of surface formation.  

 

 

 

 

 

V. Mapping the Internal Cortex  

 

For both the atlas and target images, the above algorithms use the positions of our fiducial points to compute an 

elaborate replication of the cortical and lateral ventricular surfaces in the left hemisphere of both the target anatomy 

and the atlas. 

 

However, since much of the human cortex is buried deep in the cortical folds or sulci, connected systems of parametric 

meshes were also used to model the internal course of the following cortical structures in both hemispheres: the parieto-

occipital sulcus, the anterior and posterior rami of the calcarine sulcus, the cingulate and marginal sulci, the 

supracallosal sulcus and the Sylvian fissure (Fig. 3). The internal surfaces of these major sulci were modeled in 3D as 

deep internal structures, using a multi-resolution parametric mesh approach [8-10]. As major functional interfaces in the 

brain, these primary sulci are easily identifiable in 3D brain images. As well as marking critical gyral and lobar 

boundaries, the chosen sulci penetrate deeply enough into the brain to form a natural partition of its cellular architecture. 

Consequently, their internal trajectories are sufficiently extended inside the brain to reflect subtle and distributed 

variations in neuroanatomy between individuals [9,10].  
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Interactive outlining of deep sulci in sagittally reformatted images resulted in a sampling of approximately 15000 points 

per sulcus, capturing the details of each sulcal surface at a very local level. Each sulcal surface was converted 

automatically into parametric mesh form as described in earlier work [9,10], using software developed in our laboratory. 

Briefly, a parametric grid of 100x150 uniformly spaced points, which act as nodes in a regular rectangular mesh, is 

stretched over the digitized surface (Fig. 4). Each resultant surface mesh is analogous in form to a regular rectangular 

grid, drawn on a rubber sheet, which is stretched to match all data points. This scheme provides a means for converting 

dense systems of points, sampled during outlining, into fully parametric surfaces which can be analyzed, visualized and 

compared geometrically and statistically. The mesh construction algorithm can be found in [10]. Finally, the equilibrium 

surfaces v∞{fj(A;I*)} and v∞{fj(P;I*)}, representing the lateral ventricles in A and P, were each converted into a 

closed connected system of 4 parametric meshes representing the ventral and dorsal surface boundaries of the rostral 

and inferior horns, respectively (see Fig. 3).  

 

VI. Surface Warp Calculation: Displacement Maps on the Extracted Surface Systems  

 

This section describes the automatic construction of point-to-point surface maps describing the displacements needed to 

map individual surfaces in the atlas onto their counterparts in the target scan. In each hemisphere, the 6 meshes 

{Mi}i=1to6 representing internal sulcal surfaces, as well as the 4 meshes {Vi}i=1to4 jointly representing the lateral 

ventricles I*, were defined on a parametric grid of the same resolution (100x150). (The external cortex will be treated 

separately in a moment.) Consequently, the relationship between two ventricular components or between two sulci of 

the same type can be represented as a map which displaces one surface onto another, in a 3D coordinate space. This 

map is illustrated in Fig. 5. For each and every point on a surface mesh M1, and every point on a similar mesh M2, the 

two points were matched if they had the same grid location within their respective surfaces. For each such association, 

the discrepancy was computed as a 3D displacement vector between corresponding nodal points. Ultimately, this 

procedure yielded a full displacement map for every pair of surfaces of the same type.  

 

As for the external cortex, let v∞{fi(A;O*)} and v∞{fi(P;O*)} be the equilibrium surfaces to which the Chen surfaces 

C{fi(A;O*)} and C{fi(P;O*)} converged, respectively. The displacement map transforming the external cortex of the 

atlas onto its counterpart in the target image is already partially determined (by the sulcal displacement maps) on a set 

of external curves {Ki}i=1to4 = v∞{fi(A;O*)}∩{Mi}i=1to6 in each hemisphere of the atlas. These 8 superficial curves, in 

each image, where the sulcal surface meshes interface with the external cortical surface, represent lobar boundaries on 

the external surface of each brain. A new method was developed to interpolate the displacements already defined on 

these cortical landmark curves across the cortical surface of the atlas, so as to yield a continuous point-to-point 

transformation mapping one external cortex to the other.  
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Since v∞{fi(A;O*)} and v∞{fi(P;O*)} are given in spherical polar coordinates, it is "natural that the displacement fields 

[i.e., in warping A onto P] are expressed as the longitudinal and latitudinal coordinates' variations for each point; these 

functions are in turn functions of spatial position, or functions of the longitudinal and latitudinal coordinates since the 

radial component of a given point is fixed by the constraint that the point is on the estimated surface." [26]. In other 

words, the surface warp mapping points on the surface O* from the atlas to the target scan is completely determined 

by specifying the appropriate change in spherical angle occurring at each spherical angle in the atlas. The resultant 

surface transformation function [∆∆ ϕ,∆∆ θ](ϕ(kj),θ(kj)) is known at the nodal points kj∈Ki on the superficial curves in 

the atlas, and can therefore be calculated elsewhere on the surface, as follows. 

 

Let ϕ(kj*)=ϕ(kj)+∆∆ ϕ(ϕ(kj),θ(kj)) and θ(kj*)=θ(kj)+∆∆ θ(ϕ(kj),θ(kj)), where kj* is the point in the target image onto 

which the nodal point kj is mapped by the displacement map defined already on the sulci. Then the functions ∆∆ ϕ(ϕ(a),

θ(a)) and ∆∆ θ(ϕ(a),θ(a)) (for any point a∈v∞{fi (A;O*)}) both inject the unit sphere into the reals, and can therefore 

also be approximated by spherical harmonics, just as rε(ϕ,θ) was approximated earlier. In fact the vector function  

[∆∆ ϕ,∆∆ θ](ϕ(a),θ(a)) will be approximated by [ΣΣ i=1 to M λλ iBi(ϕ,θ),ΣΣ  i=1 to M µµ iBi(ϕ,θ)], where the λλ i, µµ i minimize 

both  

ε({λλ i}) = ΣΣ  j=1 to n [∆∆ ϕ(ϕ(kj),θ(kj))-ΣΣ i=1 to M λλ iBi(ϕ j,θj)]2    

 and ε({µµ i})= ΣΣ  j=1 to n [∆∆ ϕ(ϕ(kj),θ(kj))-ΣΣ i=1 to M µµ iBi(ϕ j,θj)]2.  (14) 

The primary summations are carried out over all the j=1 to n nodes kj in a given hemisphere of the atlas, as before. 

Consequently, the surface warp WO: v∞{fi (A;O*)}→v∞{fi (P;O*)} will be given by  

 

WO:(r,ϕ,θ) → (r*, ϕ+[∆∆ ϕ(ϕ,θ)], θ+[∆∆ θ(ϕ,θ)]) ∀ (r,ϕ,θ) ε  v∞{fj (A;O*)}, (15) 

 

where r* is the point on v∞{fi(P;O*)} at steric angle (ϕ+[∆∆ ϕ(ϕ,θ)],θ+[∆∆ θ(ϕ,θ)]), and where the angular shifts [∆∆ ϕ,

∆∆ θ](ϕ,θ) are calculated for the deformation of the surface v∞{fi(A;O*)}. 

 

VII. Volume Warp Calculation: 

Extension of 3D Deformation Fields between Surface Systems 

 

For simplicity, let’s now denote by F  = {Si}i=1toN the family of N surfaces in the left half-space of the atlas on which 

surface warps are now defined (N=11, here). In other words, F = {Si}i=1toN  = O∪{Mi}i=1to6∪I, where O= 

v∞{fi(A;O*)} is the external cortex, {Mi}i=1to6 are the deep sulcal meshes, and I = {Vi}i=1to4 are the meshes 

representing components of the lateral ventricle, all in the left half-space of the atlas. Now let the region between I and 
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O in the atlas be called A, and the region in the target image lying between v∞{fj(P;I*)} and v∞{fi(P;O*)} be called P.  

Since the surface warps W(Si) are already specified for mapping the ventricular system and cortex from atlas to target 

scan, we need to interpolate a volume warp W:A→P which is at least continuous, and agrees with the surface warps 

W(Si) when warping points on the surfaces Si in the atlas. For each surface, we denote associated displacement maps 

by: 

Wi'(x) = W i(x) - x, ∀x εε  Si, ∀Si ∈ F. (16) 

For convex closed surfaces S εε  R
3
, we can show that for each point p exterior to S, there is a unique nearest point 

npS(p) εε  S such that d(p,npS(p)) = inf{d(p,pS) pS ε  S}, [where d(p,pS) is the Euclidean distance between p and pS]. 

Accordingly, let δS(p) be this shortest distance from p to S. Similarly, for our non-convex surfaces Si ∈ F, let npi(x), 

(for an arbitrary point x in the atlas), denote the nearest point on surface Si to x, and let δi(x) = d(x,npi(x)) be the 3D 

distance of x from this nearest point, with the proviso described in note 4 for cases where there is no unique near 

point.4 

 

Let γi(x) ε  [0,1] be defined as the set of weights {1/δi(x)}/Σi=1 to N {1/[δi(x)]}. Here, the numerator controls the 

weight exerted by the ith surface in the final deformation at point x, and is designed to be smaller when the surface is a 

larger distance δi(x) from x; the denominator normalizes the resulting set of weights so that they sum to 1 at every x 

[31]. A simple ‘weighted-average’ volume warp is illustrated in Fig. 6 (left panel). The appropriate transformation of 

the atlas is given by the 3D displacement field: 

W'(x) = Σi=1 to N  γi(x).Wi '(npi(x)), ∀x εε  A. (17) 

[The global warp would then be x + W'(x) = W(x) εε  P.] This function, however, is not in general continuous. We 

therefore propose an alternative definition for W'(x), which is not only continuous, but also allows W'(x) to be 

influenced by a range of surface points on each of the surfaces Si. As before, let  i = 1 to N, and let δi(x) = 

d(x,npi(x)). Let rc = min{Rc, min{δi(x)}i=1 to N }, where Rc is a constant, and consider the closed sphere r εε  B(x,rc), 

for each x εε  A. This is shown in Fig. 6 (right panel). Then let 

W'(x) = Σi=1 to N  γi(x).Di '(npi(x)), ∀x εε  A, (18) 

where the Di are distortion functions generated by each surface, given by 

Di(x) =     ∫  r∈B(  x ;Rc)  wi(x,δi(r)).Wi'(npi(r))  dr   ;  (19) 

                                                                             ∫r∈B(x ;Rc)  wi(x,δi(r))  dr            
the weight functions wi(x, δi(r)) are defined as  

wi(x, δi(r)) =  exp (-{[d(npi(r),x)]/ δi(x)}2). (20) 
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These weight functions, which are monotone decreasing with respect to δi(r), control the degree to which W'(x) is 

influenced by points on the surrounding surfaces Si, depending on their distance from x. In another approach, 

Moshfeghi et al. [32] compute the distortion at x due to surface points z by using a weight function exp{-(�x-z�/β)]. 

They supply the arbitrary constant β manually, and integrate for all z on the surface. We prefer to select Rc, as this 

limits the support of the integrand and therefore permits efficient computation. The resulting algorithm is also 

cooperative, in that many common elements of the arrays Wi'(npi(r)) are used to calculate the distortion functions Di 

for x, and for other points close to x, avoiding extra evaluation.  

 

As before, we define x + W'(x) = W(x) εε  P. Separate 3D displacement vectors are calculated for every voxel in the 

image lattice, resulting in a transformation of extremely high dimension (typically 384x256x384x3 ≈ 0.1 billion degrees 

of freedom). The warp W specifies the final warped version of the left side of the atlas. Identical fitting and 

transformation routines are also applied to the corresponding developmental surfaces in the right hemisphere of the 

atlas, and the union of these two transformations specifies the final warped version of the atlas.  

 

VIII. Implementation and Results 

 

A battery of tests was carried out to evaluate the behavior of the algorithm on a wide range of real and simulated data. 

In the tests that follow, the starting image (previously referred to as the atlas, A) will be referred to as the reference 

image, and this will be warped onto a target image of the same dimensions. 

 

(a). Simulated Data 

 

Fig. 7(a) shows a single 384x256 pixel 2D slice image containing a hollow gray object, with a black regular grid ruled 

over it every 16 pixels. This image was copied 256 times, in the direction of viewing, to create a single 384x256x256 3D 

reference image. A similar copying procedure was applied to the image shown in Fig. 7(b), creating a 3D target image 

of 384x2562 pixel resolution. The target object shown (Fig. 7(b)) has the same external boundary as the reference 

object, but the left and right hand sides of its internal boundary have been contracted to coincide with a cylinder of 

radius 80 pixels, whose axis runs perpendicular to, and through the center of, the 2D section shown. Manual outlines of 

the inner and outer surfaces of the reference and target objects were digitized, converted to parametric mesh form, and 

used to constrain the deformation of the reference image onto the target. Fig. 7(c) shows the result of this deformation 

in the form of a 2D axial section through the warped 3D image. Note that the reference object is carried accurately 

through this relatively large deformation, and is brought into register with the target object. The magnitude of the 3D 

deformation field was also calculated by the warping algorithm and a 2D slice through this field is shown in the form of 

a color-coded map (in the coordinate system of the target image) in Fig. 7(d). Note that this smooth warping field is not 

perfectly symmetrical, because the object boundaries constraining the warp were contoured manually. 
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(b). Warping of 3D MRI Brain Volumes 

 

Two 3D (384x256x384 resolution) T1-weighted fast SPGR (spoiled GRASS) MRI volumes were acquired from a 

patient with clinically determined Alzheimer’s disease (Fig. 8(a)), and an age-matched normal subject (Fig. 8(b)). The 

3D MRI volumes were acquired on a GE Signa 1.5T clinical scanner with TR/TE 14.3/3.2 msec, flip angle 35°, FOV 

25cm and contiguous 1mm thick axial slices covering the entire brain. The two scans were corrected for differences in 

relative position and size by transformation into standardized Talairach stereotaxic space, using the steps specified in 

the Tala irach atlas [33]. (This transformation is by no means a prerequisite for warping, but it was applied here to test 

the ability of the algorithm to recover subtle non-linear anatomic differences between scans which cannot be factored 

out by readily-available linear stereotaxic transformations.) Parasagittal slices from both 3D volumes are shown, each 

taken at a level 7.0 mm left of the midsagittal plane. To aid visual comparison, several structural boundaries, taken from 

the same sagittal slice of the target scan, are shown superimposed on the reference scan. Note, in particular, the large 

difference between the two anatomies in the extent of the lateral ventricle at this level, and the differences in the 

cortical boundaries, especially in frontal areas. Note also the far less convoluted cingulate sulcus, atrophied cerebellum, 

and more ventral position of the posterior calcarine sulcus in the target scan.  

 

Fig. 8(c) shows the result of warping the reference anatomy into the shape of the target. (Due to the high degree of 

cerebellar atrophy, the cerebellar surface was also used to control the deformation field in this case.) Note the precise 

non-linear registration of the cortical boundaries, the desired reconfiguration of the major sulci, and the contraction of 

the ventricular space and of the cerebellum. Both global and local differences in anatomy have been accommodated by 

the transformation. Note also the smooth continuation of the deformation throughout the rest of the anatomy (cf. the 

effect on the phantom grid in Fig. 7(c)). Next, the two in-slice components of the 3D volumetric warp were applied to a 

regular grid drawn on the reference image before warping. This grid was then passively carried along in the resultant 

deformation. The complexity of the recovered deformation field is shown by its effect on this grid in Fig. 8(d). Note 

especially the large deformation of the transformed grid in the cerebellar region, and the complexity of the warping field 

in the posterior frontal and cingulate areas, corresponding to subtle local variations in anatomy between the two 

subjects. 

 

The generic surface decomposition of the target anatomy is shown in Fig. 3. To monitor the smooth transition to the 

surrounding anatomy of the deformation fields initially defined on the surface systems, additional software was 

developed to represent the magnitude of the warping field on the surface anatomy of the target brain, as well as on an 

orthogonal plane slicing through many of these surfaces at the same level as the anatomic sections. The results of this 

experiment are shown in Fig. 8(e). Note the smooth continuation of the warping field from the complex anatomic 

surfaces into the surrounding volume architecture of the target brain. As expected, the deformation is particularly 

pronounced in the frontal, ventricular and cerebellar areas.  
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(c). Inter-Modality Warping of 3D Cryosectioned Brain Volumes onto 3D MRI Brain Volumes 

 

The capacity of the warping algorithm to warp 3D anatomic imagery acquired in one modality (high-resolution 

cryosection imaging) onto a target scan from another modality (3D SPGR MRI) was also tested. A normal, post 

mortem human head was cryoprotected and sectioned at 50 µm increments, and the specimen blockface was digitally 

imaged at 10242 pixel resolution [34]. The resulting image sequence was reformatted (after down-sampling) to generate 

a 384x256x384 24-bit full-color reference volume, which was subsequently transformed into Talairach stereotaxic 

space. This 3D digital reference volume was warped onto the same 3D target volume as was used in the 3D MRI-to-

MRI test (Fig. 8(a)). Fig. 9(a) shows a sagittal slice from the cryosectioned head, taken 7.0 mm left of the midsagittal 

plane. Outlines of the target MRI volume (shown in Fig. 9(a)) are superimposed on the anatomy to illustrate the 

anatomic differences before warping. Note especially the smaller cuneus and ventricles in the cryosection image (Fig. 

9(a)), as well as a greater degree of arching in the corpus callosum and numerous differences in sulcal morphology at 

this level.  

 

The result of warping the 3D cryosectioned image into the shape of the target MRI anatomy is shown in Fig. 9(b), with 

the same cortical and ventricular landmarks of the target anatomy superimposed. Note, in particular, the reconfiguration 

of the sulci (which would only be possible with a high-dimensional warping technique), and note the degree to which the 

reference corpus callosum is deformed into the shape of the target callosum. The result of applying the in-plane 

components of the recovered deformation to a regular grid in the same space as the reference anatomy is shown in Fig. 

9(c). Note how different the deformation field is from that observed in the MRI-to-MRI experiment. 

 

(d). Accuracy of the 3D Warp 

 

The ability of the warping algorithm to correctly deform anatomic images into structural correspondence was assessed 

by manually labeling pairs of well-defined corresponding points in a range of reference and target scans. The distance 

between these pairs of anatomically homologous points was then compared before and after the warping algorithm was 

carried out. The results of this test, for landmarks both near to and far from the control surfaces, are presented in Table 

1 (N=6, for each of the 8 structures). The algorithm reduced the discrepancy between anatomic landmarks to as little 

as 0.5-2 mm, even for structures whose initial coordinates were up to 5 mm from their counterparts in the target scan. 

 

 

 

(e). Computation Speed 
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The computation of 3D deformation fields relating two anatomies was greatly accelerated by carrying out the 

calculations on a multi-scale/multi-resolution 3D octree-spline grid [35]. This hierarchical data structure and multi-

resolution strategy permit rapid coarse-to-fine refinement of the deformation field, and the generation of intermediate 

images using 3D spline interpolation. Within minutes, reasonable estimates of the final deformed images can be 

generated on demand, for specified slices throughout the warped reference volume. As the resolution of the octree-

mesh is increased, the algorithm adjusts finer and finer details as subtler differences between the reference and target 

anatomy are accommodated. A 1152-parameter 3D spline estimate of the deformation of a single 2D slice is typically 

obtained within 240 seconds on a standard 200 MHz DEC alpha workstation. 30 minutes of computation time are 

required to compute a 6912-parameter estimate of the 3D deformation field for warping a full volume (calculations 

being performed on a regular octree grid of size 16x12x12). 

 

IX. Discussion 

 
We have devised, implemented and tested a fast and spatially accurate technique for calculating the high-dimensional 

deformation field relating the brain anatomies of an arbitrary pair of subjects. The resulting 3D deformation map can be 

used to quantify anatomic differences between subjects or within the same subject over time, and to transfer functional 

information between subjects or integrate that information on a single anatomic template.  

 

In the past, comparing data from different subjects or patient subpopulations has been made difficult because cortical 

topography and the internal geometry of the brain vary so greatly. Transforming individual datasets into the shape of a 

single reference anatomy, or onto a 3D digital brain atlas, removes subject-specific shape variations, and allows 

subsequent comparison of brain function between individuals [18]. Conversely, the same algorithm can be used to 

transfer all the information in a 3D digital brain atlas onto the scan of any given patient, while respecting the intricate 

patterns of structural variation in their anatomy. Such deformable atlases [5,6,7] can be used to carry 3D maps of 

functional and vascular territories into the coordinate system of different patients, as well as information on tissue types 

and the boundaries of cytoarchitectonic fields and their neurochemical composition. Thirdly, 3D warping algorithms 

provide a method for calculating local and global shape changes and give valuable information to scientists studying 

normal and abnormal growth and development [36]. 

 

As in the massively-parallel viscous fluid model [5,17-19], and unlike some other warping approaches, our surface-

based strategy allows for large deformations while maintaining the continuity and connectivity of the warped image. 

Chen surface constructs are used to efficiently initialize 3D active surface snakes, which then automatically extract 

from both scans the developmentally fundamental surfaces of the ventricles and cortex. The analysis of extremely 

complex cortical topography in 3D image ensembles is made easier by building a generic surface structure to model the 

internal cortex. Sclaroff and Pentland [37] first proposed a model recovery framework which incorporates wavelet-
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based displacement maps to add fine detail to a solid model described by deformable analytic implicit functions. In our 

formulation, surface-based displacement maps are fundamental to Chen surface construction [26] and to the definition 

of the 3D warp on connected systems of parametric surfaces. These models permit efficient storage of local shape and 

deformation details at different scales [37], and subsequently allow a compact representation of anatomic variability 

[8,9]. The parametric form of the underlying surface models, as well as the positive definite Jacobian property [38] of 

the derived volumetric warp, enable us to derive statistics on the mapping of surfaces and volumes, using standard 3D 

statistical machinery [8,9] and the theory of Gaussian random fields [10]. This approach has recently allowed us to 

develop a surface-based aid for the detection and mapping of subtle abnormalities of shape and volume in the brains of 

patients with metastatic tumors [10]. Finally, recent developments in our laboratory have enabled pre-mortem 

anatomical/functional scanning and post mortem cryosection imaging of the same individual [39]. 3D warping 

algorithms, which correct for global and local post mortem anatomic change, will, in the very near future, allow direct 

correlation of 3D neurochemical and cytoarchitectural maps with 3D PET, SPECT and functional MRI data obtained 

from the same individual in vivo [40].  

 

The ultimate goal of brain mapping is to provide a framework for integrating functional and anatomic data across many 

subjects and modalities. This task requires algorithms to map functional data from different subjects and between 

modalities onto a single anatomic template, and to map 3D atlases and digital brain databases onto the scans of new 

subjects. The surface mapping and volume warping algorithms presented here provide a basis for the generation of 

anatomical templates and expert diagnostic systems which retain and exploit information on inter-subject variations in 

brain architecture. 

…………………………………………………………… 
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Appendix: Technical Notes 

 
1. Superquadrics. Parameters ϕ and θ correspond to latitude and longitude angles in an object-centered spherical 
coordinate system, with θ in the xy plane, and ϕ the angle between the xy plane and the vector S(ϕ,θ); ax, ay, az define 
the size of the superquadric along the x, y and z directions, and ε1 and ε2 are the squareness parameters along the z 
axis and in the xy plane respectively. 



 22

2. Spherical Harmonics. The spherical harmonics Unm(ϕ,θ) and Vnm(ϕ,θ) are a doubly infinite set of functions 
forming a separable, orthogonal basis of continuous single-valued functions, complete on the sphere. The surfaces 
capturable by spherical harmonics must all be positive functions on the sphere, which is another way of saying that 
they must form a closed surface with the origin in their interior, and consist of points which are in one-to-one 
correspondence with the points of the sphere. A good way to think of them is as functions of radial direction (ϕ,θ), 
which take values in the range [0,∞). Since the function rε(ϕ,θ) will actually be negative where the real surface lies 
inside the fitted superquadric, an arbitrary base value bo is added to all sample points so that the interpolated residual 
surface is strictly positive. bo is set equal to {ax+ay+az}/3, where the ai are the lengths of the fitted superquadric along 
each of the 3 coordinate axes [26]. This sphere of radius bo is then subtracted back out again after the spherical 
harmonic approximation has been carried out.  
3. Active Surfaces. The equilibrium surfaces are expressed in a discrete basis of continuous functions, these solutions 
being found [28] by a variational method with finite elements. This technique uses the Finite Difference Method to 
discretize the Euler-Lagrange evolution equation in time, after using a Finite Element Method to discretize this equation 
in space. Spatial discretization is achieved by representing the solution to the associated variational problem 
analytically, as a finite linear combination of basis functions for the smooth Sobolev space C1 ∩H0

2([0,1]). 
4. Surface Near-Points. For non-convex surfaces, there is not in general a unique nearest point npi(x) to an arbitrary 
xεε A, so in the algorithm, in cases where (for i = 1 to N) there are n>1 points {npi,k(x)}k=1 to n on Si with d(x, npi,k(x)) 
= inf{d(x, xS)xSεSi}, we stipulate that Wi'(npi(x)) is to be replaced by the arithmetic mean  

(1/n).Σk=1 to n Wi'(npi,k(x)).  (21) 
δ(npi(x)) will then be δ(npi,k(x)) for any k . Similarly, for x,r εε  A, if there are n>1 points {npi,k(r)}k=1 to n on surface Si 
with d(r, npi,k(r)) = inf{d(r, rS)rSεSi }, we replace the term d(npi(r),x) by the mean distance 

(1/n).Σk=1 to n d(npi,k(r),x). (22) 
……………………………………………. 
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Figures and Figure Legends for 

A Surface-Based Technique for Warping 3-Dimensional Images of the Brain: 

 

Fig. 1.  

 

Development of the Human Brain at 2, 3, 5 and 7 Months of Embryonic Age. Due to cellular proliferation during 

development, the chief structures of the brain are distorted into a characteristic C-shape. The lateral ventricles are 

continuously transformed (arrows) into an arched shape in synchrony with many other structures. These include a 

major functional unit, located on the floor of the lateral ventricles (shaded), consisting of the caudate  and putamen. 

The hippocampal formation, and the parahippocampal and cingulate  gyri of the limbic system are similarly 

transformed [not shown]. The hippocampus arches under the temporal horn of the ventricles (q.v., Fig. 2, arrow 6). 

The two aforementioned gyri are formed on the medial surface of each cerebral hemisphere. (Adapted from [27] and 

F. Hochsetter, Beitrage zur Entwicklungsgeschichte des menschlichen Gehirns, Bd. II, F. Deuticke, Wien und 

Leipzig, 1929.) 

Fig. 2.  

 

The Mature Morphology of the Lateral Ventricles and Cerebral Cortex. (A) represents the human brain as seen 

from the right hand side, with the right ventricle shaded. When viewed from the front (B), the lateral ventricle I 

(shaded) and cerebral cortex O (dashed lines) in each hemisphere (here, the left one) are seen as nested closed 

surfaces. The frontal, occipital and temporal extremities (arrows 1, 2, 3) and atrium (4) of the lateral ventricles are 

shown; the tail of the caudate  (5) and the foot of the hippocampus (6) project to form the roof and floor of the 

temporal horn, and the corpus callosum roofs over the atrium (7). 

 

Fig. 3.  

 

Connected Surface Systems used to Control the 3D Warp. The complex internal trajectory of the deep structures 

controlling the 3D deformation field are illustrated here. Surface models of deep anatomic structures in the right 

hemisphere of a 3D T1-weighted SPGR MRI scan of an Alzheimer’s patient are shown here, in the context of a 
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transparent surface-rendered model of the exterior cerebral cortex. Deep sulcal surfaces include: the anterior and 

posterior rami of the calcarine sulcus (CALCa/p), as well as the cingulate (CING), parieto-occipital (PAOC) 

supracallosal (CALL) sulci and the Sylvian fissure (SYLV). Also shown are the superior and inferior surface of the 

frontal horn (VTSs/i) and inferior horn (VTIs/i) of the right lateral ventricle. Color-coded profiles show the magnitude 

of the 3D deformation maps warping these surface components onto their counterparts in a 3D SPGR MRI scan of a 

normal, age-matched control subject. 

 

 

Fig. 4.  

 

Mesh Construction. The outlining process generates a densely-sampled set of points which are known to be located 

on the internal surface of a sulcus (indicated by isolated points, above right). These points, however, are not 

distributed uniformly on the sulcal surface. Homologous point isolation involves the molding of a lattice-like mesh onto 

the geometric profile of the surface. The concept is similar to that of a regular net being stretched over an object. The 

imposition of an identical regular structure on surfaces from different subjects allows surface statistics to be derived. 

Points on each surface with the same mesh coordinate occupy similar positions in relation to the geometry of the 

surface they belong to, and are therefore regarded as homologous.  

 

Fig. 5.  

 

3D Displacement Map shown on a 3D Representation of the Right Cingulate Sulcus. Local discrepancies 

between individual sulci in the atlas and target scans can readily be calculated. Both the magnitude and direction of 

such surface discrepancies are indicated by arrows that originate at points defined by the mesh in the atlas. Notice that 

the mesh in this figure contains a reduced number of points for the convenience of illustration. The map shown 

displaces a representation of the right cingulate sulcus onto the equivalent surface in another 3D brain volume.  

 

Fig. 6.  

 

Volume Warp Calculation. Two methods are shown. The simple weighted-average method (left) can be improved 

(right) by expressing W’(x) as a weighted linear combination of distortion functions associated with each surface. 

Within a surface Si, the relative contribution of each surface point in the projected patch {npi(B(x;rc))} to the elastic 

transformation at x is given a relative weight wi. The distortion at x due to surface Si is given by  

Di(x) = {∫B wiWi’ dr}/{∫B wi dr}. The volume warp W’(x) will be a weighted average of the Di, depending on the 

relative distance γ(x) of x from its near-points on each surface. 

 

Fig. 7.  
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Axial slice images are shown, from 3842x256 image volumes of (a) a geometric test object, containing nested surfaces, 

whose dimensions are described in the main text; (b) a target object with the same 3D topology; and (c) the result of 

warping the test object onto the target. (d) shows the magnitude of the required deformation fie ld (in the coordinate 

system of the target image) indicating that the test object is carried accurately through this relatively large deformation, 

and is brought into register with the target object.   

 

 

Fig. 8. 

 

MRI-to-MRI Experiment. T1-weighted MR sagittal brain slice images from (a). the target scan and (b). the reference 

anatomy; (c). result of warping the reference anatomy into structural correspondence with the target; (d). 

transformation applied to a regular grid in the reference coordinate system. Note that the continuous 1-to-1 mapping 

property of the warping transformation kept all of the structures connected and prevented them from being broken 

apart. This accounts for the slight striations seen above the cerebellum in the warped image, since its juxtaposition with 

the lingual cortex is maintained under the transformation. The deformed grid also shows that structures were not 

broken apart, because the grid lines are continuous and connected. (e) represents the magnitude of the 3D deformation 

field on the surface anatomy of the target brain, as well as on an orthogonal plane slicing through many of these 

surfaces, 7mm into the right hemisphere.  Note the smooth continuation of the warping field from the complex anatomic 

surfaces into the surrounding brain architecture, and the highlighting of the severe deformations in the pre-marginal 

cortex, ventricular and cerebellar areas.  

Fig. 9. 

 

Inter-modality Warping: 3D Digital Cryosection Volumes mapped onto 3D MRI volumes. Sagittal brain slice 

images from (a) a digitally-imaged, cryosectioned whole human head; (b) the result of warping the cryosectioned head 

image into structural correspondence with the 3D MRI dataset shown in Fig. 8(a); and (c) transformation applied to a 

regular grid in the reference coordinate system. Note the reconfiguration of the major sulci, and the degree to which the 

reference corpus callosum is transformed into the shape of the target callosum. Note how different the deformation 

field is from that obtained in the MRI-to-MRI experiment [Fig 8(d),(e)]. 

 
Table 1 

 
3D Distance (in mm) between Corresponding Points in Reference and Target Scans.  

 
 
Structure (N=6, for each structure)    Before Transformation  After Transformation 
 

I.  On family of control surfaces: 
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1.  Frontal horn, lateral ventricle (anterior tip)   2.27 ± 0.76   0.54 ± 0.38 
2.  Cuneal point, occipital lobe‡    4.10 ± 1.00   1.26 ± 0.27 
3.  Marginal branch, cingulate sulcus (superior limit)‡  4.74 ± 0.78   1.29 ± 0.69 
II.  Off  family of control surfaces: 
4.  Hippocampus (rostral tip)     3.90 ± 1.91   1.32 ± 1.04 
5.  Superior temporal sulcus (lateral limit)   3.26 ± 0.60   1.88 ± 1.67 
6.  Insula (posterior limit)     4.25 ± 1.73   2.65 ± 1.35 
7.  Superior rostral sulcus (frontal limit)‡   3.10 ± 2.38   2.32 ± 1.18 
8.  Interthalamic adhesion     1.26 ± 0.60   0.85 ± 0.54 

‡ measured at medial wall of hemisphere 
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