
 Open access  Journal Article  DOI:10.1002/NME.1754

A surface Cauchy-Born model for nanoscale materials — Source link 

Harold S. Park, P. A. Klein, Gregory J. Wagner

Institutions: Vanderbilt University, Sandia National Laboratories

Published on: 03 Dec 2006 - International Journal for Numerical Methods in Engineering (John Wiley and Sons Ltd)

Topics: Surface energy, Surface stress, Surface-area-to-volume ratio, Interatomic potential and Length scale

Related papers:

 A continuum theory of elastic material surfaces

 Surface Cauchy-Born analysis of surface stress effects on metallic nanowires

 Size-dependent elastic properties of nanosized structural elements

 Quasicontinuum analysis of defects in solids

 Atomistic calculations of elastic properties of metallic fcc crystal surfaces

Share this paper:    

View more about this paper here: https://typeset.io/papers/a-surface-cauchy-born-model-for-nanoscale-materials-
1vpu2twseb

https://typeset.io/
https://www.doi.org/10.1002/NME.1754
https://typeset.io/papers/a-surface-cauchy-born-model-for-nanoscale-materials-1vpu2twseb
https://typeset.io/authors/harold-s-park-5cgfifx5fb
https://typeset.io/authors/p-a-klein-2utvyhbxto
https://typeset.io/authors/gregory-j-wagner-4181t074xz
https://typeset.io/institutions/vanderbilt-university-wtum4bdm
https://typeset.io/institutions/sandia-national-laboratories-bfxh1enh
https://typeset.io/journals/international-journal-for-numerical-methods-in-engineering-1b3l0k2d
https://typeset.io/topics/surface-energy-3750v7po
https://typeset.io/topics/surface-stress-2xv6pokw
https://typeset.io/topics/surface-area-to-volume-ratio-37eez62q
https://typeset.io/topics/interatomic-potential-374lh4u6
https://typeset.io/topics/length-scale-3b5r94b5
https://typeset.io/papers/a-continuum-theory-of-elastic-material-surfaces-200snnc6a8
https://typeset.io/papers/surface-cauchy-born-analysis-of-surface-stress-effects-on-nisjylrw27
https://typeset.io/papers/size-dependent-elastic-properties-of-nanosized-structural-5ra9g55fj1
https://typeset.io/papers/quasicontinuum-analysis-of-defects-in-solids-327c4o5e50
https://typeset.io/papers/atomistic-calculations-of-elastic-properties-of-metallic-fcc-28doo87k1h
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-surface-cauchy-born-model-for-nanoscale-materials-1vpu2twseb
https://twitter.com/intent/tweet?text=A%20surface%20Cauchy-Born%20model%20for%20nanoscale%20materials&url=https://typeset.io/papers/a-surface-cauchy-born-model-for-nanoscale-materials-1vpu2twseb
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-surface-cauchy-born-model-for-nanoscale-materials-1vpu2twseb
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-surface-cauchy-born-model-for-nanoscale-materials-1vpu2twseb
https://typeset.io/papers/a-surface-cauchy-born-model-for-nanoscale-materials-1vpu2twseb


INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2006; 68:1072–1095

Published online 9 May 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.1754

A surface Cauchy–Born model for nanoscale materials

Harold S. Park1,∗,†, Patrick A. Klein2,‡ and Gregory J. Wagner2,§

1Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, U.S.A.
2Sandia National Laboratories, Livermore, CA 94551, U.S.A.

SUMMARY

We present an energy-based continuum model for the analysis of nanoscale materials where surface
effects are expected to contribute significantly to the mechanical response. The approach adopts
principles utilized in Cauchy–Born constitutive modelling in that the strain energy density of the
continuum is derived from an underlying crystal structure and interatomic potential. The key to the
success of the proposed method lies in decomposing the potential energy of the material into bulk
(volumetric) and surface area components. In doing so, the method naturally satisfies a variational
formulation in which the bulk volume and surface area contribute independently to the overall system
energy. Because the surface area to volume ratio increases as the length scale of a body decreases, the
variational form naturally allows the surface energy to become important at small length scales; this
feature allows the accurate representation of size and surface effects on the mechanical response. Finite
element simulations utilizing the proposed approach are compared against fully atomistic simulations
for verification and validation. Copyright � 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As nanotechnology has progressed in recent years, the study and creation of nanoscale me-

chanical structures has become of increasing interest. Many different nanoscale structural

elements have been studied and synthesized; examples of these include carbon nanotubes [1],
nanowires [2–4], nanoparticles [5, 6] and quantum dots [7]. The key manner in which these

nanoscale structures are different from those in the bulk (i.e. having a length scale of microns
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or larger) is that the ratio of surface area to volume is dramatically larger for the former case

than the latter one.

The unique behaviour of surface-dominated mechanical structures can be seen in many appli-

cations. For example, gold nanowires have been seen in molecular dynamics (MD) simulations

to undergo phase transformations from an initially face-centred cubic (FCC) 〈1 0 0〉 orientation

to body-centred tetragonal (BCT) that are entirely surface stress driven [8, 9] once the cross

sectional length decreases below about 2 nm. In addition, shape memory [10, 11] and pseudo-

elastic [10, 12, 13] behaviour has also been recently shown in MD simulations of FCC metal

nanowires. Furthermore, the tensile stresses that nanowires can sustain before yielding typically

can reach 5–10 GPa [14, 15], which are about one order of magnitude larger than bulk materi-

als. Surface effects have also been noticed in quantum dots as errors in the hydrostatic strain

calculations of a buried spherical quantum dot can exceed ten percent [16] for dots with sizes

around 2 nm. Nanoplates, nanobeams and nanotubes have become structures of interest again

due to their dramatic strength increases with decreasing characteristic size; this was illustrated

in the seminal experiments of Wong et al. [17].
The difficulty in modelling nanoscale structures is that continuum models, which accurately

represent bulk material behaviour, cannot account for the effect of surface stresses without

further modification due to the fact that the mechanical behaviour is length scale-independent.

Therefore, any attempt at modelling the mechanical behaviour of these nanoscale structures

must explicitly incorporate in some manner effects from surface stresses into the mechanical

response of the body.

These and other facts motivated previous approaches to modelling surface-dependent elas-

ticity, including those of Gurtin and Murdoch [18], Cammarata et al. [19, 20], Miller and

Shenoy [21], Shenoy [22], He et al. [23], Sharma et al. [24], Sun and Zhang [25] and Dingre-

ville et al. [26]. Other works are based upon utilization of small atomistic simulations [22, 25]
to calculate surface stresses on the material. A common thread that connects some of the above

works [21, 23, 24] is that they are based on modifications to the surface elasticity formulation

of Gurtin and Murdoch [18], in which a surface stress tensor is introduced to augment the bulk

stress tensor typically utilized in continuum mechanics. A complicating factor in this formula-

tion is due to the presence of the surface stress, which creates a coupled system of equations

with non-standard boundary conditions. The solution of the coupled field equations combined

with the non-classical boundary conditions makes the application of this theory to generalized

boundary value problems a challenging task. Furthermore, additional atomistic simulations are

generally necessary to produce the elastic constants required for these surface elasticity models.

Similarly, multiple scale modelling of nanoscale materials has had varying degrees of success

within the past decade. Methods for both quasistatic [27–29] and dynamic coupling of atomistics

and continua [30–40] have been proposed. A crucial issue with these methods is that the

continuum region generally surrounds the atomistic region, thereby eliminating the possibility

of simulating the effects of surface stresses on the atomistic behaviour. We note that other,

strain gradient-type continuum theories exist (see for example References [41–43]) that build

a material length scale into the constitutive response. However, those theories aim at capturing

size-dependent deformation at the scale of microns due to bulk dislocation motion; the focus

of the work here is in capturing size-dependent elasticity at the scale of nanometers where

surface stresses act as an effective length scale in controlling the mechanical response.

In this work, we decompose the potential energy of the system into bulk and surface

components; while this decomposition has been considered before [18, 19, 26], those works
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require either higher order terms in the surface energy or empirical fits to constants for the

surface stress which require additional atomistic simulations. The uniqueness of the present

approach is that the surface energies are obtained directly from an underlying crystal structure

and interatomic potential; this approach is adopted since a direct link to the underlying atomic

structure is desired for the constitutive response. Therefore, the approach taken in this work

uses much of the machinery typically used in Cauchy–Born constitutive modelling [27, 44, 45]
with care taken to treat surface unit cells correctly. This modification to treat the surface

unit cells differently is the key to utilizing the Cauchy–Born rule to model surface effects in

nanostructures as the Cauchy–Born model is based upon a bulk atomic unit cell that observes

no free surface effects.

By decomposing the potential energy into bulk and surface components, a variational for-

mulation that is composed of surface and volumetric contributions to the potential energy is

obtained. Thus, as the structural length scale decreases and the ratio of surface area to volume

increases, the correct surface energy contribution to the overall system energy is naturally ob-

tained. Because the method is based on an energetic approach, the solution of the variational

equation can be readily obtained using standard non-linear finite element techniques; as the

finite element stresses are simply derivatives of the strain energy, the effects of the surface

energies are transferred naturally to the numerical model. This fact constitutes a distinct advan-

tage for the proposed approach as it can therefore be utilized to solve boundary value problems

for the deformation of nanoscale materials with arbitrary geometries, surface orientations and

external loading. Numerical examples are illustrated in which the proposed continuum model

in this work is compared to fully atomistic simulations for verification and validation.

2. METHODOLOGY

2.1. Continuum mechanics preliminaries

In this section, we briefly review some elements of non-linear continuum mechanics which are

central to the Cauchy–Born formulation. The position of a material point X in the reference

configuration can be mapped to the current configuration x via

x = X + u(X) (1)

where u(X) is the displacement. The transformation of an infinitesimal line segment from the

reference to the current configuration is described by the deformation gradient F, which is

defined as

F =
�x

�X
= I +

�u

�X
(2)

where I is the identity tensor. In Green elastic theory, stress is derived by differentiating the

material strain energy density function. In order to satisfy material frame indifference, the strain

energy density must be expressed as a function of the right stretch tensor C

W(F) = �(C) (3)

where

C = F
T

F (4)

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 68:1072–1095
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From the strain energy density, one can obtain the first (P) and second (S) Piola–Kirchoff

stresses as

P =
�W(F)

�F
and S = 2

��(C)

�C
(5)

where the Piola–Kirchoff stresses are related by

P = SF
T (6)

For crystalline materials, we can construct a strain energy density function by considering the

bonds in a representative volume of the crystal. For the case of a centrosymmetric crystal

modelled using only pair interactions, the strain energy density is defined in terms of the

interatomic potential U as [44]

�(C) =
1

2

1

�
a
0

nb
∑

i=1

U(r(i)(C)) (7)

In (7), nb is the total number of bonds to a representative bulk atom, �
a
0 is the representative

atomic volume in the undeformed configuration, r(i) is the deformed bond length which follows

the relationship

r(i) =
√

R
(i)
0 · CR

(i)
0 (8)

where R0 is the undeformed bond vector, and the factor of 1/2 in (7) comes from splitting the

energy of each bond. More discussion on this factor of 1/2 will be made in the next section.

The strain energy density (7) is exact in describing the change in energy per volume of a bulk

atom in a corresponding defect-free atomistic system subject to homogeneous deformation. The

approach can also be applied to more complicated interatomic interactions such as embedded

atom (EAM) potentials [46], silicon [47], or carbon nanotubes [45, 48]. From (5) and (7), the

second Piola–Kirchoff stress is given by

S(C) =
1

�
a
0

nb
∑

i=1

(

U ′(r(i))
�r(i)

�C

)

(9)

These assumptions constitute the Cauchy–Born hypothesis.

As mentioned above, all points at which the Cauchy–Born hypothesis is applied are assumed

to lie in the bulk because �(C) does not account for surface effects. Therefore, the issue at

hand is to develop an expression for the energy density along the surfaces of a body. If the

effects of surfaces are not considered, a standard bulk Cauchy–Born relationship can be utilized

to derive the stress [27] as described above in (9). Once the surface and bulk energy densities

are determined, the stresses arising from bulk and surface energetics can be defined using the

relationships (5) and (9) defined in this section.

2.2. Surface and bulk energy densities

In this section, we discuss the methodology by which the total atomistic potential energy of

a body is represented by continuum energy densities with appropriate representations for bulk

and surface energy densities. The relationship between the continuum strain energy and the

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 68:1072–1095



1076 H. S. PARK, P. A. KLEIN AND G. J. WAGNER

Figure 1. Illustration of bulk and surface atoms for a 1D atomic chain
with second nearest neighbour interactions.

total potential energy of the corresponding, defect-free atomistic system can be approximated

as

natoms
∑

�=1

U�(r) ≈
∫

�
bulk
0

�(C) d� +
∫

�0

�(C) d� (10)

where U� is the potential energy of atom �, r is the interatomic distance, �(C) is the bulk

strain energy density introduced in Section 2.1, �
bulk
0 represents the volume of the body in

which all atoms are fully co-ordinated, �(C) is the surface energy density, �0 represents the

surface area of the body in which the atoms are underco-ordinated and natoms is the total

number of atoms in the system.

Analogous to the bulk energy density, we will derive this surface energy density �(C) to

describe the energy per representative undeformed area of atoms at or near the surface of a

homogeneously deforming crystal. Figure 1 illustrates the decomposition given by (10). The bulk

strain energy density function �(C) is integrated only over the part of the domain composed of

fully co-ordinated atoms, or atoms � = 3 → n−2 in Figure 1. The potential energy of the atoms

at or near the surface (atoms � = 1, 2, n−1, n in Figure 1) which do not possess a bulk bonding

configuration is represented by the surface energy density �(C). In order to derive the surface

energy density �(C) with a Cauchy–Born approach, we need to identify the surface unit cell,

or the cluster of atoms that reproduce the structure of the surface layers when repeated in the

plane of the surface. The surface unit cell possesses translational symmetry only in the plane of

the surface, unlike the bulk unit cell which possesses translational symmetry in all directions.

As illustrated in the Figure 1, each layer of atoms near the surface has a different bonding

configuration. With these considerations, we express the surface energy density generally as

�(C) =
1

2

1

�
a
0

nsl
∑

i=1

nbi
∑

j=1

U(r(j)(C)) (11)

where nsl is the number of surface layers, nbi
is the number of bonds for atoms in surface

layer i, �
a
0 is the representative area of the entire surface layer cluster and the factor of 1/2

again comes due to splitting the energy of each bond. In Sections 2.3 and 2.4, we will convert

the discrete summation in (11) into a continuum approximation of surface energy density while

explicitly decomposing the energy density into an appropriate expression for different surface

layers.

The surface energy density as written in (11) is valid for FCC lattices, or lattices which

have one atom per surface unit cell. For alloyed systems or lattices such as graphene which

will require more than one atom per surface unit cell, additional kinematic, or internal degrees

of freedom must be introduced. These modifications have been made in previous Cauchy–Born

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 68:1072–1095
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extensions [47, 48], and can be similarly incorporated into the present work. However, we will

concentrate here on those lattices which contain one atom per surface unit cell.

We note that in Equations (7) and (11), which describe the energies for bulk and surface

configurations, respectively, we have split all the interaction energies by a factor of 1/2. The

reason this is done is such that the energies can be treated as in a fully atomistic calculation,

i.e. atoms which lie on or near the surface will interact with all their neighbours, including

atoms in the bulk and other surface atoms, and vice versa; no special rules for interactions

need be introduced for either the bulk or surface energy densities. By doing this, the issue of

double counting bond energies will naturally be avoided just as it would be in an atomistic

simulation.

We can immediately define the surface stress resulting from the surface energy in (11) as

S̃(C) = 2
��(C)

�C
=

1

�
a
0

nsl
∑

i=1

nbi
∑

j=1

(

U ′(r(j))
�r(j)

�C

)

(12)

We call this stress S̃(C) a surface stress because it is not a stress in the traditional sense as

the normalization factor is an area, instead of a volume. In addition, S̃(C) is a 3 × 3 tensor

with normal components, which differs from the 2 × 2 surface stress tensor with tangential

components traditionally used in surface elasticity [22, 24]; the normal component of S̃(C)

arises naturally due to underco-ordinated atoms lying at a material surface, and causes surface

relaxation as occurs in nanoscale materials. While the significance of the surface stress will be

discussed in detail later, the key idea is that because it is derived directly from the surface

energy, as the surface energy portion of the total energy increases, as occurs in nanoscale

systems, the surface stress will also become significantly relative to the bulk stress.

Analogous to the Cauchy–Born approach applied to the bulk, we assume the configuration

of the deformed surface cluster can be determined by mapping the cluster to the deformed

configuration with the deformation gradient F. Unlike the bulk case, the lack of translational

symmetry in the direction normal to the surface implies the layers will deform non-uniformly

in this direction for a given homogeneous deformation in the plane of the surface. This non-

uniform relaxation could be represented in �(C) by introducing internal degrees of freedom,

analogous to how internal degrees of freedom have been used when applying the Cauchy–Born

approach to silicon [47] or carbon nanotubes [48]. However, the focus of this study is to

validate the basic approach of applying the Cauchy–Born hypothesis to surface layers. The

introduction of internal degrees of freedom to improve the accuracy of the surface energy

density function will therefore be the subject of future study. We also note that the surface

clusters only apply away from edges, or lines where surfaces intersect. One could also identify

vertex atoms lying where edges intersect. The representative cluster approach taken for surfaces

could be extended to edges and vertices as well, though these are not explored here.

In the next two sections, we illustrate how to calculate the surface energy density �(C) in

both one- and three-dimensions, beginning with the one-dimensional case for clarity.

2.3. 1D formulation

In this section, we illustrate the approach in 1D for simplicity and clarity. First define a 1D

chain of atoms going from � = 1 → n with n being the total number of atoms in the 1D

chain as in Figure 1. We assume that the atoms interact with their nearest and second nearest

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 68:1072–1095



1078 H. S. PARK, P. A. KLEIN AND G. J. WAGNER

neighbours. Because of the second nearest interactions, we can decompose the total energy

density of this 1D nanostructure as a sum of bulk and surface components following (10) as

∫

�
bulk
0

�(C) d� =
n−2
∑

�=3

��(C) (13)

∫

�0

�(C) d� =
∫

�
1
0

�
�

1
0
(C) d� +

∫

�
2
0

�
�

2
0
(C) d� (14)

The surface energy densities �
�

1
0
(C) and �

�
2
0
(C) contain contributions from all atoms that are

not in a fully-co-ordinated bulk configuration. Because the energies for the atoms lying on the

material surface will differ from those atoms lying one lattice parameter into the bulk, we can

explicitly write the surface energy densities as

�
�

1
0
(C) = �1(C) + �n(C) (15)

�
�

2
0
(C) = �2(C) + �n−1(C) (16)

where

�1(C) = �n(C) =
1

2

1

�
a1

0

2
∑

i=1

U(r(i)(C)) (17)

�2(C) = �n−1(C) =
1

2

1

�
a2

0

3
∑

i=1

U(r(i)(C)) (18)

��(C) =
1

2

1

�
a
0

4
∑

i=1

U(r(i)(C)) (19)

and the factor of 1/2 comes from splitting the energy of each bond; (17) and (18) demonstrate

that the surface energy densities may vary depending on the number of neighbours and the

reference area occupied ((�a1

0 ) and (�a2

0 )) for each surface unit cell where in 1D, the reference

areas �
a1

0 and �
a2

0 are unity. Note that bulk atoms have four neighbours, while atoms on the

surface have two and atoms one lattice parameter into the bulk have three for second nearest

neighbour interactions.

Having defined the energy densities for bulk and surface components, we can integrate the

energy densities in (17)–(19) to modify (10) and obtain the Cauchy–Born energy equivalence

including surface effects

natoms
∑

�=1

U�(r) =
∫

�
bulk
0

�(C) d� +
∫

�
1
0

�
�

1
0
(C) d� +

∫

�
2
0

�
�

2
0
(C) d� (20)

In (20), it is understood that �
bulk
0 represents the volume occupied by atoms � = 3 → n−2, while

the area integrals �
1
0 and �

2
0 represent the area occupied by atoms � = 1, n and � = 2, n − 1,

respectively. Note that the discrete representation of the surface energy in (11) has been modified

into two continuous terms in (20) to account for the fact that atoms in surface layers �
1
0 and

�
2
0 will require different expressions for the surface energy density.

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 68:1072–1095
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Figure 2. Illustration of bulk and non-bulk layers of atoms in a 3D FCC
crystal with fourth shell interactions.

By considering external work on the system, the total potential energy �(u) of the system

is written as

�(u) =
∫

�
bulk
0

�(C) d� +
∫

�
1
0

�
�

1
0
(C) d� +

∫

�
2
0

�
�

2
0
(C) d� −

∫

�0

T u d� (21)

where T is the external traction acting on the traction boundary �0. A critical point to note

is that while the total potential energy of the system as written in (21) contains two surface

integrals, the energies of those surface layers include all interactions with neighbouring bulk

and surface atoms as can be seen in (17) and (18). In three dimensions, the surface layer

energies also account for out of plane interactions as would occur for a fully atomistic system,

and are discussed next.

2.4. 3D formulation

In 3D, we assume that the atomistic interactions extend out to fourth shell interactions; the

radius of the nth shell can be written as dn = a0

√
n/2 where a0 is the lattice parameter. The

first shell contains 12 atoms, the second shell contains 6 atoms, the third shell contains 24

atoms and the fourth shell contains 12 atoms. The energetic decomposition is illustrated in

Figure 2 for a cross section of a 〈1 0 0〉 oriented FCC crystal showing a {1 0 0} face. Because

of the fourth shell interactions, the atoms in layers �
1
0 and �

2
0 are not fully co-ordinated, i.e.

do not have the same number of atomic neighbours as those lying in the bulk. Atoms lying

in the third layer and greater (within �
bulk
0 in Figure 2) are at a bulk bonding configuration

as they feel a full complement of atomic neighbours.

The idea then is that an equivalent continuum representation of the energy can be constructed

from three distinct entities. The first corresponds to the representation of the bulk atoms within

�
bulk
0 in Figure 2; because all the atoms in the bulk have the same energy in the undeformed

configuration, the bulk energy density can be calculated by summing over all neighbouring

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 68:1072–1095
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atoms and normalizing by the initial volume �
a
0 of a reference unit cell

�(C) =
1

2

1

�
a
0

nbulk
∑

i=1

U(r(i)(C)) (22)

where �(C) represents the bulk energy density and nbulk is the number of neighbours for an

atom lying in the bulk; nbulk = 54 for fourth shell interactions within an FCC crystal.

The second and third distinct entities are the atoms in layers �
1
0 and �

2
0 that do not have a

full complement of atomic neighbours. Because of this, care must be taken to modify the sum

over neighbours to reflect the non-bulk configuration. In addition, we normalize the energies

for these surface atoms not by the reference volume, but instead by a reference area. This area

normalization is key to this approach; by allowing the surface energies to depend on the area,

we will be able to capture length scale dependent surface effects as the surface energies will

contribute significantly to the total energy as the size of structures approaches the nanoscale.

The surface energy densities for layers �
1
0 and �

2
0 can thus be written as

∫

�0

�(C) d� =
∫

�
1
0

�
�

1
0
(C) d� +

∫

�
2
0

�
�

2
0
(C) d� (23)

where

�
�

1
0
(C) =

1

2

1

�
a1

0

n
�

1
0

∑

i=1

U
�

1
0
(r(i)(C)) (24)

�
�

2
0
(C) =

1

2

1

�
a2

0

n
�

2
0

∑

i=1

U
�

2
0
(r(i)(C)) (25)

Like the one-dimensional case, the surface energy densities vary depending on the number of

neighbours, where n
�

1
0
= 33 and n

�
2
0
= 45 for fourth shell interactions within a 〈1 0 0〉 oriented

FCC crystal with {1 0 0} side surfaces, and also the reference areas �
a1

0 and �
a2

0 occupied by

each surface unit cell. We note again that while the surface energy densities (24) and (25) are

normalized by area, the energies contain contributions from all neighbouring atoms, including

out of plane contributions from other surface and bulk unit cells as would be standard for a

fully atomistic system.

We note that the expressions (24) and (25) for the surface energy densities are completely

general for lattices that contain only one atom per surface unit cell, and do not impose any

restriction on the surface orientations that can be modelled for those lattices. In particular, for

side surfaces with different orientations, the surface unit cell simply needs to be adjusted to

match the crystal structure for the given surface orientation. Specifically, in (24) and (25), the

energy function U will remain the same, while the summations over the number of neighbours

n
�

1
0

and n
�

2
0

may vary depending on the surface orientation. This point is critical, and implies

that the proposed method can be utilized to study the effects of different surface orientations

and crystal structures on the mechanical strength and properties of nanostructured materials;

this will be investigated in future publications.
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Having defined the energy densities for the bulk and surface components, we can further

integrate the energy densities in (22), (24) and (25) to modify (10) and obtain the Cauchy–Born

energy equivalence including surface effects

natoms
∑

�=1

U�(r) =
∫

�
bulk
0

�(C) d� +
∫

�
1
0

�
�

1
0
(C) d� +

∫

�
2
0

�
�

2
0
(C) d� (26)

We now consider the effects of external work on the system in order to write the complete

potential energy �(u) of the system

�(u) =
∫

�
bulk
0

�(C) d� +
∫

�
1
0

�
�

1
0
(C) d� +

∫

�
2
0

�
�

2
0
(C) d� −

∫

�0

(T · u) d� (27)

where T is the external traction acting upon the traction boundary �0.

3. FINITE ELEMENT FORMULATION AND IMPLEMENTATION

3.1. Variational formulation

In this section, we derive the variational formulation from which the finite element (FE)

equilibrium equations can be obtained. We begin with the total potential energy of the system

as written in (27)

�(u) =
∫

�
bulk
0

�(C) d� +
∫

�
1
0

�
�

1
0
(C) d� +

∫

�
2
0

�
�

2
0
(C) d� −

∫

�0

(T · u) d� (28)

In order to obtain a form suitable for FE calculations, we introduce the standard discretization

of the displacement field u(X) using FE shape functions as

u(X) =
nn
∑

I=1

NI (X)uI (29)

where NI are the shape or interpolation functions, nn are the total number of nodes in the

discretized continuum, and uI are the displacements of node I [49, 50]. Substituting (4) and

(29) into (28) and differentiating gives the minimizer of the potential energy and also the FE

nodal force balance [49]

��

�uI

=
∫

�
bulk
0

B
T

SF
T d� +

∫

�
1
0

B
T

S̃
(1)

F
T d� +

∫

�
2
0

B
T

S̃
(2)

F
T d� −

∫

�0

NI T d� (30)

where S is the second Piola–Kirchoff stress due to the bulk strain energy, B
T = (�NI/�X)T

and S̃
(i) are surface stresses, similar to (12) and of the form

S̃
(i)(C) =

1

�
ai

0

nbi
∑

j=1

(

U ′(r(j))
�r(j)

�C

)

(31)

In (31), �
ai

0 represents the normalizing area for atomic layer i, and nbi
represents the number

of bonds for an atom lying within atomic layer i, which may differ depending on whether the
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atom lies on the first or second layer of surface atoms as discussed in Section 2.4. We call

these stresses surface stresses because they are not stresses in the traditional sense, i.e. the

normalization factor is an area, instead of a volume. In addition, the surface stresses S̃
(i)(C) are

3 × 3 tensors with normal components which allow surface relaxation due to underco-ordinated

atoms lying at material surfaces. The normal components arise because the atoms that constitute

the surface unit cells lack proper atomic co-ordination in the direction normal to the surface;

therefore, the atomistic forces U ′(r(j)) that are normalized to stresses in (31) are also out of

balance in the normal direction. Thus, surface relaxation is necessary in the normal direction

to regain an equilibrated state.

In contrast, traditional surface elastic approaches [22, 24] utilize a 2 × 2 stress tensor which

depends only on the tangential components of the deformation, and thus cannot explain surface

relaxation effects. Solving (30) requires an iterative process to solve the non-linear system

of equations. The purpose of the iterative procedure is to determine the unknown FE nodal

displacements uI that minimize the energy functional �(u).

What has been accomplished in (30) is a systematic manner of obtaining continuum stress

measures by calculating the system potential energy as a function of bulk and surface compo-

nents. By correctly calculating the system energy, standard continuum mechanics relationships

can be utilized to derive stress measures for usage in FE computations. The salient feature of

Equation (30) is that as the surface area to volume ratio becomes larger, the surface area terms

will dominate the energetic expression. Because the stresses required for the FE internal forces

are calculated by differentiating the strain energy density, correctly accounting for the surface

energy will naturally lead to the correct forces on surface nodes.

This situation is exactly that which occurs in nanoscale materials such as nanowires, quantum

dots, nanoparticles and nanobeams; for these small scale structures, the finite surface energies

will create surface stresses that can cause both surface relaxation into the bulk, as well as unique

mechanical properties caused by the need to overcome the intrinsic surface stresses [14, 51, 52].
In contrast, if the volume of the material is significantly larger than the surface area, then

the potential energy from the surface terms will be insignificant compared to the volumetric

potential energy, and the material will feel no effect from the surface stresses. Thus, this model

degenerates to a bulk Cauchy–Born model as the length scale of the material increases.

3.2. Implementation in 1D

In this section, we briefly illustrate the finite element implementation within a simple, one-

dimensional framework assuming second nearest neighbour atomic interactions. In particular,

we detail the construction of the surface clusters and describe the energy and stress calculations.

Implementing the bulk portion of the Cauchy–Born model into an FE program is done

exactly as has been done previously [27, 44]. At each FE integration point XG as in Figure 3,

a small atomic cluster surrounding the integration point is created. In particular, because an

atom in a 1D atomic chain has four neighbours if interacting with its second nearest neighbours,

each integration point XG in Figure 3 is constructed with four atomic neighbours located at

positions X�i , i = 1 → 4. The initial atomic spacing R0 is that which minimizes the energy of

the atomic chain. The bond length between the integration point XG and each cluster atom

located at X�i is first deformed using the stretch tensor C, such that the strain energy at the

integration point can be found. The derivatives of the energy density are then taken as in (30)

to calculate the integration point stress.
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Figure 3. Initial positions of atomic neighbours X� for finite element integration point XG.

The only departure from standard FE techniques arises from the summation of the atom-

istic energies in (13), where it is noted that the summation over the bulk atoms goes from

� = 3 → n−2. In constructing the equivalent integral form to evaluate the energy, care must be

taken to only integrate over the part of the domain which corresponds to the bulk. Thus, for

elements which have at least one face that lies on a free surface, the volume integral term in

(30) over �
bulk
0 is not integrated over the entire element. Instead, it is integrated only over that

portion of the element in which atomic behaviour is considered to be bulk. The remainder of

the energy is accounted for by the area integrals in (30) over �0, which are integrated over

the non-bulk layers of atoms lying near the free surfaces.

Implementation of the surface clusters is done in a similar manner. In 1D, evaluating the

surface integrals in (30) is done pointwise, akin to enforcing an essential boundary condition.

This is done by setting up surface clusters at two discrete points in the boundary finite elements.

By utilizing surface clusters that accurately represent the degree of co-ordination of atoms at

or near a surface, non-bulk effects are captured and directly integrated into the numerical

calculation. The surface clusters represent the non-bulk energy terms in (17) and (18); the

energies calculated from these clusters are used to evaluate the surface area integrals in (21)

leading to the surface stresses in (31).

The first cluster is positioned at the boundary node itself, or directly on the surface of the

body with location denoted by XS in Figure 4; because an atom lying on the surface of a 1D

atomic chain would only have two neighbours if interacting with second nearest neighbours,

the surface cluster point XS is also constructed with two neighbours. The spacing between

cluster atoms is set up as in the bulk, with an atomic spacing of R0. This cluster is illustrated

in Figure 4, and is utilized to calculate the terms �1(C) or equivalently �n(C) in (17).

The second cluster is set up one atomic position R0 inside the boundary node with location

XS as illustrated in Figure 5. An atom one layer into the bulk in a 1D atomic chain interacting

with second nearest neighbours would have three neighbours; therefore, this second cluster

point is constructed with three neighbours, as illustrated in Figure 5. The spacing between

cluster atoms is again R0, and the cluster is utilized to calculate the terms �2(C) or equivalently

�n−1(C) in (18). In 1D, the stress for these clusters is equivalent to the force as the normalizing

areas in (17) and (18) becomes unity. For both clusters, the procedure for evaluating the nodal
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Figure 4. Initial positions of atomic neighbours X� for surface cluster
point XS that lies exactly on the free surface.

Figure 5. Initial positions of atomic neighbours X� for surface cluster
point XS that lies one atomic layer into the bulk.

forces on the boundary finite elements due to the surface clusters can be summarized as:

• Deform the initial bond lengths R0 for each cluster point XS using the stretch tensor C

by following equation (8), i.e. r = C1/2R0.

• Evaluate the surface stress S̃(C) at cluster point XS according to (31)

S̃(XS) = 2
d��0

(C)

dC
=

1

�
a
0

nsb
∑

i=1

(

U ′(r(i))
dr(i)

dC

)

(32)

where nsb = 2 or 3 depending on whether the cluster is at the surface or one lattice

parameter into the bulk and �
a
0 is unity in 1D.

• Interpolate S̃(XS) to the finite element boundary nodes as

(

fI

fJ

)

=
∫

�
A
0

dN

dX
S̃F T d� =

⎛

⎜

⎜

⎝

dNI (XG)

dXI

dNJ (XG)

dXJ

⎞

⎟

⎟

⎠

S̃(XS)F T (33)

Just as in an actual atomistic calculation, the forces on each of the surface cluster points XS

in Figures 4 and 5 are found by evaluating the gradient of the interatomic potential where the

initial bond lengths R0 are deformed according to the stretch tensor C. The resulting force

is normalized to a stress value by dividing by the appropriate initial unit cell area. In higher
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dimensions, the area normalization creates a stress-like quantity which is then plugged directly

into the variational Equation (30).

4. 1D NUMERICAL EXAMPLE—SURFACE RELAXATION OF 1D BAR

In the following 1D numerical example, 31 atoms interacting via a Lennard–Jones (LJ) 6–12

potential were modelled with second nearest neighbour interactions, with potential parameters

� = � = 1. The atoms were placed initially with interatomic distances R0 = (4097/2080)1/6�;

this spacing was chosen as it represents the minimum energy configuration for a 1D lattice

with periodic boundary conditions such that surface effects do not apply. In the general case

in which atoms near the surfaces are not fully co-ordinated, this configuration leads to zero

forces on every atom in the chain except for the second atom in from each boundary; this

non-zero force then causes surface relaxation. An equivalent continuum FE model using the

surface Cauchy–Born method developed earlier in this paper was used with a nodal spacing

to interatomic distance ratio of h/R0 = 6.

We verify the method in 1D by fixing the left end of the atomic chain, then allowing the

remainder of the atoms in the lattice to relax to energy minimizing positions in a molecular

statics (MS) calculation. Both the MS and FEM simulations were solved using a conjugate

gradient method to minimize the energy. For this configuration, the right end of the atomic

lattice expands by a normalized value of 0.0025; this value is exactly captured by the FE

simulation.
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Figure 6. Load versus displacement for full molecular statics and surface Cauchy–Born
model for compression of 1D atomic chain after initial relaxation.
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After relaxing the chain, the chain was loaded in compression by compressing the right end

of the chain by a normalized value of 0.18, equilibrating the chain, and repeating for successive

load steps. The load versus displacement curve for the full MS and the FEM solution is shown

in Figure 6, where the displacement has been normalized by the initial interatomic distance R0,

and the force has been normalized by the peak force of a nearest neighbour LJ potential. As

can be seen, the surface Cauchy–Born solution accurately captures the non-linear force versus

displacement curve.

While the 1D numerical example shown is overly simplistic as it does not account for

surface energy interplay in multiple dimensions, it demonstrates that the method can exactly

capture surface effects in an atomic chain by correctly calculating the underlying energetics.

In particular, because there is no tangential deformation in 1D, this example illustrates the

ability of the proposed approach to capture the normal surface stresses that are required to

drive surface stress-driven relaxation. We will proceed on in the next section to more complex

and revealing 3D examples.

5. 3D NUMERICAL EXAMPLE—SURFACE RELAXATION OF 3D CUBE

5.1. Linear hexahedral elements

We consider next the free surface relaxation of an FCC crystal that was modelled using

both the proposed surface Cauchy–Born method and a fully atomistic MS calculation. The

fully atomistic system had a cubic geometry with 21 × 21 × 21 unit cells in the x, y and

z-directions, respectively, corresponding to 34 461 atoms. The crystallographic orientation was

〈1 0 0〉 with {1 0 0} side surfaces. The same system was discretized with a regular mesh of

1728 8-node hexahedral elements with 2197 nodes, corresponding to a finite element mesh

spacing to atomic spacing ratio of h/R0 = 2.36. The atomic interactions were modelled using

a LJ 6–12 potential with potential parameters � = � = 1 with atomic interactions truncated

after the third shell of nearest neighbours. The volume integral in (30) was integrated using

2 × 2 × 2 Gaussian quadrature, while the surface integrals were evaluated using 2 × 2 Gaussian

quadrature.

Denoting the length of the cube as L with 0 being the midpoint, the atom at (−L/2,

−L/2, −L/2) was fixed in all directions, the atom at (L/2, −L/2, −L/2) was fixed in the

y and z-directions, and the atom at (−L/2, L/2, −L/2) was fixed in the z-direction. These

six essential boundary conditions ensure the removal of rigid body modes when relaxing the

system. All other atoms and surfaces were without constraint. The FEM nodes corresponding

to those atomic positions were fixed in the same manner. The MS energy was minimized again

using a preconditioned conjugate gradient solver, while the FEM solution was obtained using

a non-linear Newton solver.

A comparison of the MS displacement solution and the surface Cauchy–Born solution is

shown in Figures 7 and 8. The figures illustrate that the proposed surface Cauchy–Born method

qualitatively captures the correct displacement tendencies exhibited by the actual MS simulation.

For example, the −x face of the cube is found to expand in Figure 7 while the +x face of

the cube is also found to expand as seen in Figure 8 by the MS calculation. In both cases,

the surface Cauchy–Born method captures the correct expansion tendencies. In addition, the

surface Cauchy–Born correctly captures the gradients of the displacements near the corners of
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Figure 7. x-displacements as calculated by (left) surface Cauchy–Born method with linear
elements and (right) molecular statics simulation.

Figure 8. x-displacements as calculated by (left) surface Cauchy–Born method with linear
elements and (right) molecular statics simulation.

the cube, where the atoms tend to contract inwards instead of expanding outwards as at the −x

and +x free surfaces.

A comparison between the surface Cauchy–Born stresses and MS stresses as calculated on

an atom-by-atom basis using the virial theorem is shown in Figure 9. Ignoring the kinetic

portion of the virial as we are considering only quasistatic solutions, the virial theorem can be
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Figure 9. �xx as calculated by (left) surface Cauchy–Born method with linear elements
and (right) molecular statics simulation using the virial stress approximation.

written as [53]

�
�
ij =

1

�
�
0

⎛

⎝

1

2

N
∑

�=1

N
∑

� �=�

U ′(r��)
�x

��
i �x

��
j

r��

⎞

⎠ (34)

where �
�
0 is the reference volume for each atom �, N is the total number of atoms, r�� is the

distance between two atoms � and �, �x
��
j = x�

j − x
�
j , U is the potential energy function and

r�� = ‖�x
��
j ‖.

As can be seen, the surface Cauchy–Born model using linear hexahedral elements is not

able to capture the stress gradients near the free surface. While the stresses in the atomistic

simulation show a checkerboarding pattern where the stress on the surface atom is positive

followed by a negative stress on the next layer of atoms, the surface Cauchy–Born model

interprets this stress in an average sense. Due to known inaccuracies with the virial stress at

free surfaces [53], we are more interested in a qualitative comparison of stresses at the free

surfaces, and the ability of the surface Cauchy–Born method to capture gradients of stress and

energy at or near the free surfaces. This issue will be discussed further in the next section

with regards to comparing surface Cauchy–Born and MS values of hydrostatic pressure.

A direct comparison of surface Cauchy–Born values of normal displacements and stresses

at the centre of all free surfaces and the MS values are shown in Table I. As is expected, the

surface Cauchy–Born qualitatively captures all the displacements and stresses as compared to

the MS calculation; an exact matching of values is not expected due to the reduction in the

number of degrees of freedom in the finite element model as compared to the fully atomistic

representation.
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Table I. Comparison of stresses and displacements between surface Cauchy–Born method and
molecular statics calculation. Displacements and stressed normalized by molecular statics values.

Method ux(−x) ux(+x) uy(−y) uy(+y) uz(−z) uz(+z) �11(+x)

Atomistics −1.0 1.0 −1.0 1.0 −1.0 1.0 1.0
Linear hex −0.60 6.47 −0.60 6.47 −0.60 6.47 0.62
Quad hex −0.76 0.53 −0.76 0.53 −0.76 0.53 1.26

Figure 10. x-displacements as calculated by (left) surface Cauchy–Born method with
quadratic elements and (right) molecular statics simulation.

5.2. Quadratic hexahedral elements

To examine the ability of the method to capture the high gradients of energy occurring near the

free surfaces, quadratic 20-node hexahedral elements were employed to determine the utility of

higher order elements in resolving the gradients. For the quadratic elements, the volume integral

in (30) was integrated using 3 × 3 × 3 Gaussian quadrature, while the surface integrals were

evaluated using 3 × 3 Gaussian quadrature. Figures 10–12 show x-displacements and �xx for

a regular mesh of 20-node quadratic hexahedral elements corresponding to 1728 elements and

8281 nodes, leading to a finite element mesh spacing to atomic spacing ratio of h/R0 = 2.36. As

can be seen, the displacements and displacement gradients are captured much more accurately

using the 20-node hexahedral elements. Moreover, as shown in Table I, the values for the

x-displacements on the +x and −x faces are also more accurate than for the equivalent mesh

of linear elements.

We compare the hydrostatic pressure along a line in the centre of the cube between the −x

and +x faces for MS and both linear and quadratic elements. As can be seen in Figure 13, the

proposed surface model correctly captures the bulk pressure away from the surface for both

linear and quadratic elements, matching the molecular statics calculations. More importantly,

the stress state in the interior of the cube is seen to be compressive, which is in agreement with

recent atomistic simulations [54] showing that equilibration after surface-stress-driven relaxation

occurs when the tensile surface stresses are balanced by a compressive stress state in the interior
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Figure 11. x-displacements as calculated by (left) surface Cauchy–Born method with
quadratic elements and (right) molecular statics simulation.

Figure 12. �xx as calculated by (left) surface Cauchy–Born method with quadratic elements
and (right) molecular statics simulation using the virial stress approximation.

of the material. However, with the FE discretization discussed above, the surface model using

linear elements is unable to capture the high gradient in pressure at the surface; note that the

physical space in Figure 13 between x = − 14.13 and −9.34 is modelled using two elements,

which explains the linear fit to the pressure between those two points.

In analysing the pressure as captured using the quadratic elements in Figure 13, it is evident

that the high gradients near the free surfaces can be captured using higher order elements. The

kinking of the pressure for the quadratic elements near the free surfaces can be attributed to

the inability of the projection scheme utilized in the post-processing to capture the gradients

in the pressure near the surface. The comparison to the MS pressure is not exact, but follows
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Figure 13. Hydrostatic pressure through the centre of the cube between the −x and
+x faces for both proposed surface Cauchy–Born method with linear and quadratic

elements and full molecular statics calculation.

the same qualitative behaviour. Due to known issues with the virial stress at free surfaces [53],
what is important to note here is that quadratic elements can capture high gradients, both in

pressure and in energy, near atomistic free surfaces, leading to the improved results seen in

this section. On the other hand, the fact that the surface model compares well with the virial

stresses in the bulk is also important, as the virial stress is known to give accurate results in

bulk, non-defective lattices.

A final point to conclude the discussion on numerical results concerns the comparison of the

proposed surface Cauchy–Born method to the standard Cauchy–Born approach. The standard

Cauchy–Born approach, because of its treatment of all points as bulk, would predict zero

surface relaxation for any problem and geometry. However, as we have shown and is well-

known, free surface effects clearly cause varying degrees of surface relaxation, which then

impact the mechanical properties of nanoscale materials. Unlike the bulk model, the proposed

surface Cauchy–Born method is able to capture these effects as predicted by molecular statics

calculations.

6. CONCLUSIONS

We have developed a surface Cauchy–Born model to study the mechanics of nanoscale materials

in which surface effects play a critical role in defining the mechanical properties. The approach

is based upon decomposing the atomistic potential energy into bulk and surface components;

by taking this direction, a simple variational equation is derived in which bulk and surface
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stresses constitute distinct terms in the variational equation. Furthermore, this decomposition

lends itself to a physically intuitive idea of the approach; as the size of a continuum body

increases, the volumetric portion of the energy will dominate the overall energetics of the

system, and the surface effects will become negligible. On the other hand, when the length

scale of the system approaches the nanometer scale, the surface energy terms will become

crucial, and will contribute heavily to the total system energy.

While many elegant mathematical theories and representations of surface stresses on contin-

uum bodies have been derived [18–26], the fact that the variational equation derived in this

work can be discretized and solved using standard non-linear finite element techniques gives

this approach the important advantage of being applicable to generalized boundary value prob-

lems involving nanomaterials of arbitrary geometry. Furthermore, the effects of surface stresses

are captured in the constitutive response without recourse to additional atomistic simulations

to fit elastic constants. In addition, by utilizing surface clusters to capture the fact that forces

and thus stresses normal to a free surface are not in equilibrium, the proposed approach can

represent the normal stresses that are necessary to capture surface stress driven relaxation. The

fact that different surface orientations can be easily modelled by modifying the surface unit

cells is critical, as it has been recently shown that side surface orientation can directly impact

the deformation mode and mechanical properties of nanoscale materials [55].
Numerical examples in one- and three-dimensions were presented to verify and validate the

proposed method. It was shown that the method performed nearly exactly in one-dimension,

including surface relaxation and load–displacement behaviour in compression. For a three-

dimensional FCC cube, the proposed surface Cauchy–Born method qualitatively captured the

mechanical response using a free surface relaxation example. In particular, the correct faces

of the cube were observed to expand or contract as compared to a benchmark molecular

statics simulation. Surface stresses and pressure were also found to compare qualitatively as

well. Marked improvement in the numerical results was obtained by using quadratic elements,

indicating that the energy variations near the surface can be captured effectively using higher

order finite elements. In all cases, the surface Cauchy–Born method proposed here offers

superior results than the standard Cauchy–Born formulation, which produces no surface

relaxation.

The approach as currently formulated in this paper is certainly not applicable to all situations.

For example, due to the homogeneous deformation assumption of the Cauchy–Born method,

the method cannot capture surface reconstructions, defects emitted from the free surfaces, or

surface stress driven phase transformations or reorientations. However, the method is still fully

valid for non-linear elastic deformations, as is typical of crystal elastic formulations based on

the Cauchy–Born rule.

In the future, we will pursue three research paths. First, we are formulating this method

to utilize embedded atom (EAM) [46] potentials such that realistic metallic systems can be

studied. This work would serve as a better indication of the method to model physically realistic

systems, as it is well-known that anomalous surface relaxation and behaviour such as softening

of the elastic constants [56] can occur using pair potentials. A second, and related task involves

the application of this method to situations in which multiple unique surface facets (i.e. {1 0 0},
{1 1 0} and {1 1 1}) are present at the same time. This situation is often seen in the analysis of

nanoclusters [5, 6], and will present an interesting test of the present approach. Finally, we will

examine methods of improving the method itself by investigating internal degrees of freedom

for the surface Cauchy–Born clusters [47, 48].
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