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ARTICLE

A surface-stabilized ozonide triggers bromide
oxidation at the aqueous solution-vapour interface
Luca Artiglia1,2, Jacinta Edebeli1,3, Fabrizio Orlando1, Shuzhen Chen1,3, Ming-Tao Lee1,4, Pablo Corral Arroyo1,5,

Anina Gilgen1,3, Thorsten Bartels-Rausch1, Armin Kleibert 6, Mario Vazdar 7, Marcelo Andres Carignano8,

Joseph S. Francisco9, Paul B. Shepson10, Ivan Gladich 8 & Markus Ammann 1

Oxidation of bromide in aqueous environments initiates the formation of molecular halogen

compounds, which is important for the global tropospheric ozone budget. In the aqueous

bulk, oxidation of bromide by ozone involves a [Br•OOO−] complex as intermediate. Here we

report liquid jet X-ray photoelectron spectroscopy measurements that provide direct

experimental evidence for the ozonide and establish its propensity for the solution-vapour

interface. Theoretical calculations support these findings, showing that water stabilizes the

ozonide and lowers the energy of the transition state at neutral pH. Kinetic experiments

confirm the dominance of the heterogeneous oxidation route established by this precursor at

low, atmospherically relevant ozone concentrations. Taken together, our results provide a

strong case of different reaction kinetics and mechanisms of reactions occurring at the

aqueous phase-vapour interface compared with the bulk aqueous phase.
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I
n atmospheric chemistry, halogen atoms resulting from pho-
tolysis of both organic and inorganic halogen compounds1, 2

are important catalysts for ozone depletion both in the stra-
tosphere and the troposphere, with varying relative roles of
chlorine, bromine and iodine in these compartments3. Halogen
atoms are also oxidants themselves towards organic compounds
and are implicated in the deposition of mercury4, 5. Furthermore,
halogen atoms are intermediates in waste water treatment, where
halogenated organic secondary products are of concern6.

For tropospheric chemistry, the main inorganic route is initi-
ated by the oxidation of aqueous phase bromide to either bromine
atom or hypobromous acid (HOBr), which combine with other
halide ions to form molecular halogen compounds that are
released into the gas phase. Bromide is abundant and sometimes
enriched7 in sea water and thus at the ocean surface, in sea spray
particles, in brines associated with sea ice, frost flowers or snow,
in artificial or natural salt pans, and in volcanic emissions.

Many radical oxidants such as •OH or excited triplets of
organic chromophores require UV or at least near UV light to
drive bromide oxidation. Therefore, both in the (dark) polar
marine boundary layer and the upper troposphere, ozone (O3) is
one of the most important oxidants5, 8. The product HOBr (pKa

= 8.65) reacts further in an acid-catalyzed mechanism with
chloride, bromide or iodide to form bromine (Br2), BrCl or BrI.
The initial formation of HOBr limits the release of halogens to the
gas phase, while a complex suite of gas phase and multiphase pro-
cesses controls the halogen chemistry and the O3 budget later on.

The bulk aqueous phase, acid-catalyzed oxidation of bromide
by O3 to HOBr has been studied for a long time due to its
relevance in the debromination of waste water6, 9–14.

Br� þ O3 ! Br�OOO�½ � ð1Þ

Br�OOO�½ � þHþ ! HOBrþ O2 ð2Þ

Br�OOO�½ � þH2O ! HOBrþO2 þOH� ð3Þ

Net: Br� þ O3 þH2O ! HOBrþ O2 þ OH� ð4Þ

To explain discrepancies in the apparent kinetics among dif-
ferent experimental observations, Liu et al.12 proposed there must
be an ozone adduct (a steady-state intermediate formed in Eq. 1)
with the nucleophile, bromide, prior to oxygen atom transfer with
release of molecular oxygen Eqs. 2, 3. The structure of the
[Br•OOO−] adduct (which we refer to as an “ozonide”), involves
a weak bond between the bromide and the oxygen of ozone12.
The aqueous solvation sphere has a large effect on the stability
and reactivity of [Br•OOO−]. The kinetic data indicated forma-
tion of [Br•OOO−] as a steady-state intermediate with an acid-
assisted step to form HOBr and molecular oxygen12. Further
calculations, performed for the gas phase, confirmed the stability
of the [Br•OOO−] intermediate, showing intricate details of its
reactivity during the oxygen atom transfer process13.

So far, it is often assumed that [Br•OOO−] is stabilized by
solvation, and that the reaction occurs in the bulk. Furthermore,
the rate coefficient for the overall reaction12 and the low solubility
of ozone (0.025M atm−1 at 273 K)15 suggests that the formation
of HOBr through the bulk aqueous phase route is rather ineffi-
cient and would not seem important as a source of gas phase
bromine in the environment. In turn, heterogeneous oxidation
experiments have consistently shown that oxidation at the aqu-
eous solution-air interface may dominate in environments with
high aqueous surface to volume ratios1, 16–22. Oldridge and
Abbatt19 used the inverse ozone concentration dependence of the
uptake coefficient, γ, to suggest a Langmuir-Hinshelwood type

process occurring on the surface in parallel to the bulk aqueous
phase oxidation (see Supplementary Note 1 for a detailed
description of the concept of heterogeneous kinetics of this
system)19, where γ is the oxidation rate normalized by the gas
collision rate of ozone with the surface.

Linked to a single composition and single temperature, the
nature of the surface reaction, the identity of the potential pre-
cursor and its preference for the surface have never been tracked
down. Similar behaviour of other heterogeneous oxidation pro-
cesses suggest a general type of ozone intermediate formed on
electron rich surfaces of widely differing chemical composition
and phase23–26.

Finally, the idea of efficient surface oxidation of bromide had
originally been related to the preference of the larger, more
polarizable halide ions for the aqueous solution-vapour interface,
as observed in molecular dynamics (MD) simulations27, 28 and X-
ray photoelectron spectroscopy (XPS) experiments on static
deliquesced crystals29. Recent MD simulations predicting the
photoemission signal intensity by means of photoelectron scat-
tering calculations and previous liquid jet XPS data indicate a less
pronounced surface enhancement, which is in better agreement
with the overall positive surface tension change (and thus nega-
tive surface excess) of bromide solutions30, 31. Therefore, the
surface precursor limited bromide oxidation is likely unrelated to
the amount of bromide ions directly at the interface of a neat salt
solution.

In this work we use liquid jet XPS, a powerful tool to directly
assess the structure of the interfacial region with high chemical
selectivity and high selectivity for the interface due to the probe
(or information) depth of just a few nanometres32. The con-
tinuously renewed surface of the flowing liquid jet avoids radia-
tion damage effects but still allows probing a surface that is locally
in equilibrium with the first few tens of nanometres of bulk
aqueous phase33, 34 (as explained further in Supplementary
Note 4). We combine classical heterogeneous kinetics experi-
ments, which reconfirm the characteristics of the surface reaction,
with theoretical investigations (including both the ab initio elec-
tronic structure and MD method) and with liquid jet XPS. The
results provide strong evidence for the [Br•OOO−] intermediate,
its preference for the liquid-vapour interface, the effect of water
on its stabilization, and the reaction path to products.

Results
Kinetic results. Figure 1 shows the measured ozone uptake
coefficients (γobs) at 274 K and pH 1 as a function of the square
root of the bromide activity (plot a) and as a function of the
ozone concentration (plot b). This data set confirms that γ

decreases with increasing ozone concentration, which cannot be
explained by aqueous phase bulk kinetics (more data available in
Supplementary Fig. 1). Reactivity in the bulk depends on the
solubility of ozone, ionic strength of the solution, and diffusivity
of ozone (Supplementary Note 1). Figure 1 is in line with the
involvement of a precursor on the surface, whose surface coverage
saturates at higher ozone concentrations in the gas phase. These
data confirm the findings of Oldridge and Abbatt19. At high
ozone concentrations, the reactivity is dominated by the bulk
aqueous phase reaction, which scales with the square root of
bromide activity (Supplementary Note 1, Eq. 4). At lower gas
phase ozone concentrations, the surface component becomes
relatively higher. Figure 1 also contains fits to the measured
uptake coefficients that take into account both components (as
explained in Supplementary Note 1 and further below). Notably,
the data indicate that this surface component is relatively higher
also at lower bromide concentration, which will be discussed
further below.
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Ab initio calculations of [Br•OOO−] stability in water. Pre-
vious electronic structure calculations for the oxidation of bro-
mide by ozone in the gas phase showed that the reaction is
activated by the formation of a stable 1[Br•OOO−] pre-complex
likely followed by a spin crossing to the triplet potential energy
surface due to the different spin state of the products13. Herein,
additional electronic structure calculations were performed to
address the influence of water on the stability of the 1[Br•OOO−]
pre-complex. Water can profoundly affect the reaction rates and
the nature of different atmospheric (and non-) reactions by
coordinating (hydrogen) bonds to the reagents, products, and the
different reaction pre-complexes35. Reaction profiles in solvated
environment are often remarkably different from the ones
obtained in the gas phase36, 37. The water cluster approach has
been successfully used to model reactions in aqueous solutions
and at the surface of water, ice and aerosols36–42. If a sufficient
number of water molecules are included in the electronic struc-
ture calculations, the water cluster approach has been proven to
describe the solvation environment of different reaction systems
reasonably well43–45. In our case, Supplementary Fig. 5 shows
how the energy difference between reaction complexes converge
within the chemical accuracy of the method46 for a cluster of four
water molecules. The water cluster approach has the advantage of
keeping the system size small, allowing the use of high-level
theory electronic structure calculations. Figure 2 shows the
reaction profile with four water molecules, using the singlet

ground state of the reactants as an initial and reference level for
the energetics. Comparing this reaction profile with previous gas
phase results, we conclude that water further stabilizes the pre-
complex with respect to the reactants and the other reaction
complexes.

This stabilization effect is also visible in the optimized
geometries of 1[Br•OOO−] with water (Supplementary Note 3).
The larger the number of water molecules, the closer the distance
between bromine and the nearest oxygen atom. Moreover, the
energy differences between 1[Br•OOO−] and the transition states
on the singlet and triplet surfaces are remarkably high.
Conventional transition state theory provides a qualitative
estimation of the rate constant along the singlet surface of the
order of 10−28 s−1. In conclusion, water stabilizes the
1[Br•OOO−] pre-complex, while the heights of the transition
barriers and the spin-crossing nature of the reaction suggest a
slow kinetics, favouring a longer lifetime of the 1[Br•OOO−]
complex at the liquid water surface than in the gas phase. Next we
address the extent to which we can detect this species
experimentally.

Liquid jet XPS experiments. Figure 3 shows the photoemission
signal of the Br 3d core level region, a double-peak structure due
to the spin orbit splitting. After normalization to the maximum,
the spectra acquired before and during in-situ dosing of oxygen at
a pressure of 0.25 mbar are identical. The signal collected while
dosing a mixture of oxygen and ozone (~1.0 % ozone, same
pressure) displays clear changes both in the 3d5/2 and 3d3/2
region. This suggests the presence of a second doublet, which is
highlighted in purple in Fig. 3c, positively shifted by 0.7 eV
with respect to the main peaks assigned to bromide (72.10 and
73.15 eV).

To identify the new spectral feature, we acquired the Br 3d
spectra of two reference aqueous solutions of possible oxidation
products, i.e., 0.08M hypobromite and 0.125M bromate (Fig. 3d).
As expected, the higher the oxidation state of bromine, the larger
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the positive shift of the binding energy. A chemical shift of + 2.1
eV is observed for hypobromite, and of + 7.0 eV for bromate.
None of them corresponds to that of the new doublet. It is well
known that X-rays can induce the radiolysis of water47, leading to
the production of reactive hydroxyl radicals that may react with
bromide ions. All the Br 3d spectra were recorded under the same
experimental conditions (excitation energy, photon flux), and the
high speed of the liquid filament ensures that the concentration
of photo-generated hydroxyl radicals remains below 1.0 × 10−6

mol l−1. Therefore beam damage can be excluded. In parallel to
the XPS data, we calculated the core electron binding energy
(CEBE) at MP2/aug--cc---pvtz theory level of both the structure
obtained at MP2/6---311++(df,p) geometric optimization and
from first-principle MD (Table 1). It is important to highlight
that the CEBEs are calculated for the species solvated in small

water clusters. This reproduces quite well an interfacial environ-
ment but may not reproduce well species that are fully solvated in
the bulk. Compared with the CEBEs of gas phase species the Δ
between the bromide and the [Br•OOO−] decreases when water
is added, whereas that between the [Br•OOO−] and the
hypobromite increases. This suggests that the solvation sphere
has a fundamental role. At the same time, theoretical calculations
reproduce the same sequence of CEBE observed by XPS, i.e.,
CEBE (Br−)< CEBE([Br•OOO−])< CEBE(BrO−). In summary,
the combination of in situ XPS and theoretical calculations
provides strong indications for the formation of an ozonide
complex.

Surface propensity of the intermediate. First-principle MD
simulations, which are a particularly suitable tool to study the
dynamics and stability of non-standard compounds, were used to
address the bulk vs. surface propensity of the different reaction
intermediates48. Figure 4a shows a snapshot (corresponding to
8.5 ps) of the MD trajectory of the pre-complex on the surface of
a water slab at 300 K. The inset shows the distance between
bromine and each of the oxygen atoms of 1[Br•OOO−] along the
MD trajectory. This distance fluctuates around the average value
of 2.7 Å, which is consistent with that obtained for the optimized
geometries by electronic structure calculations (see ref. 9 and
Supplementary Note 3). This further supports the scenario of a
pre-complex stabilized on the surface of liquid water. Moreover,
Fig. 4b shows the density profile of the Br and OOO groups in the
1[Br•OOO−] intermediate position along the coordinate per-
pendicular to the water interface, confirming that 1[Br•OOO−]
remains at the interface during the whole trajectory, with the Br
group close to the OOO group.

In parallel to the MD simulations, we acquired the Br 3d
photoemission peak at increasing excitation energies, hence, at
increasing photoelectron kinetic energy or information depth, as
shown in Fig. 4c. A decrease of the relative intensity of the peaks
associated to the [Br•OOO−] complex is observed at the highest
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Table 1 Theoretical evaluation of the core electron binding

energies (CEBE) of the bromide ions, the [Br•OOO−]

complex, the hypobromite ion in the gas phase, and all ions

with three and five water molecules

CEBE(Br−3d), eV Δ(CEBE� CEBEBr� ), eV
1Br− 70.01(a) 0.00
1[Br•OOO−] 72.79(a) 2.78
1BrO− 73.10(a) 3.09
1Br− + 3 H2O 71.73(a) 0.00
1[Br•OOO−] + 3 H2O 74.33(a) 2.60
1BrO− + 3 H2O 75.33(a) 3.60
1Br− + 5 H2O

(b) 72.02(b) 0.00
1[Br•OOO−] + 5 H2O

(b) 73.83(b) 1.81
1BrO− + 5 H2O

(b) 74.69(b) 2.67

Δ(CEBE� CEBEBr� ) is the energy difference (in eV) between the species and the bromide,

taken as a reference. CEBE marked with (a) are calculated on the top of MP2 optimized

geometries. CEBE marked with (b) are averaged over the values obtained from five different

snapshots extracted from the first-principles MD trajectory
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excitation energy. We acquired the O 1s signal at the same
photoelectron kinetic energies (Supplementary Fig. 6a) and used
the area of the peak corresponding to the condensed phase to
normalize the area of the [Br•OOO−] doublet. Figure 4d shows
that this ratio, normalized to the cross sections of the elements,
decreases considerably at a kinetic energy of 576 eV, i.e., with
greater depth sampled. This indicates that the [Br•OOO−]
complex has a propensity for the surface, in good agreement
with the theoretical calculations discussed above. The photo-
emission intensity ratio between the complex and the bromide in
the bulk (IBrOOO−/IBr−) shows a similar behaviour as a function of
the photoelectron kinetic energy (Supplementary Fig. 7). An
estimate of the surface coverage of the [Br•OOO−] complex at the
ozone concentration used in this study (2.5×10−8mol l−1),
obtained employing different models, yields ~2.0×1012 complexes
per cm2 (Supplementary Note 4 and Supplementary Fig. 7 for
more details). In conclusion, both MD results and XPS data
confirm that [Br•OOO−] resides at the interface, where it is
stabilized by interfacial water molecules.

Discussion
As previously mentioned, the reaction of ozone with bromide in
the bulk aqueous phase is fairly slow, with a rate coefficient of
around 163M−1 s−1 at 293 K and neutral pH[11], and 38M−1 s−1

at 273 K and neutral pH[12]. Therefore, when ozone is dosed, we
would not expect the formation of HOBr or hypobromite within
the ~ 100 µs exposure between the gas dosing system and the
detection point of XPS. In turn, the actual collision rate of ozone
molecules with the surface at about 6.0 × 1017 molecules per cm2 s
−1 is sufficient to build up a high surface coverage of the complex
with bromide, if the association kinetics are fast

(Supplementary Note 4). This of course also requires that the
availability of bromide at the surface is sufficient. In the absence
of any pre-existing enhanced concentration on the surface, for-
mation of an even maximum conceivable complex surface cov-
erage of around 1012 molecules per cm2 (as estimated from the
XPS data) would deplete roughly the topmost few nanometres of
a 0.1 M solution. Replenishing this by diffusion from the deeper
bulk requires a few microseconds (Supplementary Note 4)21, 32,
fast enough to ensure equilibration between the surface and the
bulk under the present experimental conditions. Due to the
substantial transition state barrier towards products, the steady-
state surface coverage establishes quickly, and is determined by
the rapid association and dissociation of ozone and bromide.

Combining the theoretical and spectroscopic results, we have
extended the bulk phase kinetic mechanism by adding a simple
scheme for the surface reaction. The [Br•OOO−] replaces the
adsorbed precursor of the Langmuir-Hinshelwood mechanism
(Supplementary Note 1), which remains in equilibrium with the
gas phase. The temperature dependence of the equilibrium
constant is driven by the energy difference, as in Fig. 2.
Furthermore, we assumed that the energy difference to the
transition state on the triplet energy surface (and thus including
spin-crossing, which is more likely to occur with heavy elements
as bromine) would determine the decomposition kinetics on the
surface and the temperature dependence for the formation of
products.

As Fig. 1 and Supplementary Fig. 2 show, this parameterization
allows reconciling the data presented in this study and those of
Oldridge and Abbatt19 within less than a factor of two, both with
respect to the absolute value of the uptake coefficient and the
concentration range where the surface reaction dominates. The
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[Br•OOO−] complex is in fast equilibrium with gas phase ozone.
Its surface coverage is saturated above 1011 molecule per cm3,
thus both at the lowest ozone concentration of the present study
and at all atmospheric levels, and depends very weakly on the
temperature. As apparent from Fig. 1, the extent of the surface
reaction, manifesting itself in the positive deviation from the bulk
phase reactivity with decreasing gas phase concentration, gets
relatively larger at lower bromide concentration. This is nicely
reproduced by the surface reaction model constructed here. The
measured kinetic data do not allow constraining the magnitude of
the saturating surface coverage (to compare with that derived
from XPS), since no data are available at low enough ozone
concentrations to escape the saturating regime. For the present
data, the rate of the surface reaction is only constrained by the
product of the coverage and the surface reaction rate coefficient.
The first order rate coefficient for the decomposition of the
complex into hypobromite on the surface as derived from the
kinetic data is about 10−3 s−1.

Under atmospheric conditions, the relative importance of bulk
and surface reactivity needs a more careful analysis. In the
environment, salt brine may occur in various forms and spanning
a large size range in snow, on sea ice, on frost flowers, in salt pans,
or as sea spray aerosol particles. Figure 5 shows the bulk reactivity
(in absence of surface reaction) and the surface reactivity
according to the mechanism in this study, for a hypothetic
spherical sea salt brine droplet or aerosol particle as a function of
the diameter, for both a bromide concentration as in sea water
and a tenfold enhanced bromide concentration. Based on the data
in Fig. 1 and the surface coverage estimated from the XPS data, a
constant ozonide complex coverage on the surface of 1012 com-
plexes per cm2 is assumed, so that the surface reactivity is the
same for both scenarios. The size dependence of the bulk reac-
tivity comes from the fact that the oxidation rate scales with the
volume of the particle for smaller particles, whereas the uptake
coefficient is the oxidation rate normalized to the surface area
(Supplementary Note 1, Eq. 4a). Therefore, for environmental
conditions, the surface reactivity may largely dominate over the
bulk reactivity by two orders of magnitude, especially for brine

pockets of smaller dimensions or aerosol particles. Since the
global distribution of BrO responds notably to the oxidation of
bromide by ozone5, and since our results here provide a sig-
nificantly larger contribution by the surface reaction than the
previously recommended parameterization24, we expect notable
changes to the relative importance of this reaction among the
multiphase halogen chemical cycling reactions.

In summary, by combining kinetic studies with theoretical
calculations and spectroscopy, we have demonstrated that the
reactivity at the interface between bromide aqueous solutions and
ozone from the gas phase is higher than in the bulk. While the
kinetic experiments indirectly reconfirm and refine the picture of
a precursor mediated process at the surface of aqueous solutions,
the XPS results provide a clear spectroscopic evidence of this
intermediate, the [Br•OOO−] pre-complex. Furthermore, a rough
estimate of the surface coverage from the photoemission spectra
of the Br 3d at increasing information depths shows that the new
species has a preference for the interface, in good agreement with
first-principle MD simulations. This multi-method approach
investigates an elusive reaction intermediate that has been pre-
dicted from theory and interpretation of kinetic data but never
directly observed in experiments, to the best of our knowledge. In
addition, this work shows its preference for the liquid–gas
interface, and sheds light on mechanistic and structural aspects of
the reaction. The results provide evidence for a stronger con-
tribution of the surface oxidation of bromide than previously
thought, which will require re-assessment of the impacts on the
global ozone budget and mercury deposition5. In turn, the for-
mation of ozonides on surfaces may be a widespread phenom-
enon and a key step of important oxidation processes relevant not
only for atmospheric chemistry but also for the effects of atmo-
spheric particles on human health23, 25, 49.

Methods
Kinetic experiments. Kinetic experiments were conducted in a flow reactor setup
previously described by Lee et al.21. Briefly, the setup comprises of a temperature
regulated Teflon trough (surface area= 102 cm2) on which 10 ml–45 ml of the
reactive solution (NaBr (Sigma Aldrich) in deionized water) is loaded uniformly.
Ozone is generated by UV light at different intensities from a mixture of 400 ml
min−1 O2 and 600 ml min−1 N2. This gas flow is cooled and humidified to the water
vapour pressure in the trough at the set temperature before delivery to the trough.
Gas flow is alternated between a bypass to measure the maximum (initial) O3

concentration and the trough to measure the O3 left after reactive uptake by the
solution. O3 concentration was measured using a commercial ozone monitor
(Teledyne API model 400).

Theory. Geometric optimization of the reaction intermediates were performed at
MP2/6-311++g(df,p) level50 while, to improve the energetic, single point energy
calculations were employed at CCSD(T)/6-311++g(df,p) level51 on the top of the
optimized structures obtained with MP2. Electronic structure calculations were
performed using Gaussian0952.

First-Principle MD simulations were done as implemented in the CP2K code to
study the stability and dynamics of the 1[Br•OOO−] on the surface of liquid
water53. The optimized geometry for 1[Br•OOO−] obtained at MP2 level was
placed on the top of an equilibrated water slab of 216 water molecules. The
simulation was done under NVT conditions, at 300 K, using BLYP54, 55 and
Grimme dispersion correction56, Goedecker-Teter-Hutter pseudopotentials57 and
DZVP basis set was employed in combination with plane wave representation for
the valence electrons.

CEBE were calculated on top of MP2/6-311++g(df,p) geometries using
GAMESS suite of codes58. For the CEBE in 5 water molecules cluster (Table 1),
configurations were extracted from first-principle MD simulations. The core-hole
state geometries were assumed to be identical to the corresponding ground states.
The effect of relaxation was described by the ΔMP2 approach59, 60 with the
electron correlation described at MP2/aug-cc-pVTZ level of theory. The CEBE was
defined as the difference between the ground state energy and the cation core-hole
state formed by ejection of a 3d electron from the Br-. Freezing the molecular
orbitals during the SCF procedure prevented the collapse of the core-hole state to
the more stable energetic state.

Liquid jet XPS. In-situ XPS was acquired at the near-ambient pressure photo-
emission endstation (NAPP), equipped with the liquid microjet setup.
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Measurements were performed at the Surfaces/Interfaces: Microscopy (SIM)
beamline of the Swiss Light Source (SLS) at the Paul Scherrer Institute (PSI). The
electron analyzer uses a three-stage differentially pumped electrostatic lens system
and a hemispherical analyzer to collect photoelectrons from samples in chamber
pressures up to the mbar range61. For the present experiments, a quartz nozzle,
forming a liquid microjet with a diameter of 24 μm, was used to deliver a 0.125 M
aqueous solution of Br- into the chamber at a flow rate of 0.35 ml min−1. The liquid
was cooled to 277 K in a pre-cooling coil located immediately before entry into the
experimental chamber. Based on these parameters, and considering the working
distance of the quartz nozzle with respect to the detection point, a 100 μs time can
be estimated between the injection of the liquid and the detection point. Further
technical details about the procedures adopted during the experiments can be
found in the Supplementary Note 4.

During the experiment we made use of linearly polarized light at 0°, and set the
photon energy for the detection of Br 3d to 350, 450 and 650 eV, resulting in
photoelectron kinetic energies of 276, 376 and 576 eV, respectively. The binding
energy scale of the spectra was calibrated using the O 1s gas phase peak of water
(539.9 eV) as a reference32. The streaming potential of a 0.125 mol l−1 bromide
aqueous solution should be between 0.1 and 0.2 eV62. The binding energy of the O
1s peak corresponding to the condensed phase is in good agreement with the values
reported in literature32, 63 and did not change during the whole measurements.
Other technical details about the experimental setup and the processing of the
photoemission spectra can be found in the Supplementary Note 4.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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