A SURPRISING HIGHER INTEGRABILITY PROPERTY OF MAPPINGS WITH POSITIVE DETERMINANT

STEFAN MÜLLER

Introduction. Let Ω be a bounded, open set in \mathbb{R}^n , $n \geq 2$, and assume that $u: \Omega \to \mathbb{R}^n$ belongs to the Sobolev space $W^{1,n}(\Omega;\mathbb{R}^n)$, i.e. $\|u\|_{W^{1,n}}^n = \int_{\Omega} |u|^n + |Du|^n dx < \infty$, where Du denotes the distributional derivative. Then det Du is, of course, integrable. The aim of this note is to show that under the additional assumption that det $Du \geq 0$ (almost everywhere) in fact det $Du \ln(2 + \det Du)$ is integrable (on compact subsets K of Ω). When applied to a sequence of mappings $u^j: \Omega \to \mathbb{R}^n$ with det $Du \geq 0$, $\|u^{(j)}\|_{W^{1,n}} \leq C$, this higher integrability result implies that the sequence det $Du^{(j)}$ is weakly relatively compact in $L^1(K)$. This allows us to improve known results on weak continuity of determinants $[\mathbb{R}, \mathbb{B}]$ and existence of minimizers in nonlinear elasticity $[\mathbb{B}M]$. In the terminology of Lions [L1, L2] and DiPerna and Majda [DM], the constraint det $Du^{(j)} \geq 0$ prevents the development of 'concentrations' in the sequence det $Du^{(j)}$.

One might ask whether analogous results hold for orientation preserving mappings between oriented compact Riemannian manifolds. In short, the function det $Du \ln(2 + \det Du)$ is still integrable, but not necessarily uniformly so along a sequence which is bounded in $W^{1,n}$. 'Concentrations' may occur, but only in a particular fashion (see [M]).

THEOREM 1. Let $\Omega \subset \mathbb{R}^n$ be bounded and open and let $u: \Omega \to \mathbb{R}^n$ be in $W^{1,n}(\Omega; \mathbb{R}^n)$, $n \geq 2$. Assume that det $Du \geq 0$ a.e. Then, for every compact set $K \subset \Omega$, det $Du \ln(2 + \det Du) \in L^1(K)$ and

(1)
$$\|\det Du\ln(2 + \det Du)\|_{L^{1}(K)} \leq C(K, \|u\|_{W^{1,n}(\Omega)}).$$

The result is optimal in the following sense. The assumption det $Du \ge 0$ cannot be dropped nor can K be replaced by Ω (see Ball-Murat [BM, Counterexample 7.3]). Moreover det $Du \ln(2 + \det Du)$ cannot be replaced by $\gamma(\det Du)$ with $\gamma(z)/(z \ln(2+z)) \rightarrow +\infty$ for $z \rightarrow +\infty$ (see [M]).

Two key lemmas. The proof of Theorem 1 relies on a geometric estimate (a version of the isoperimetric inequality) and an analytic result on maximal functions by Stein [S2]. We begin with the former. For an $n \times n$ matrix F let adj F denote the transpose of the matrix of cofactors, so that F adj $F = \det F$ Id.

LEMMA 2. Let $\Omega \subset \mathbb{R}^n$ be bounded and open and let $u \in W^{1,n}(\Omega; \mathbb{R}^n)$. For $x \in \Omega$ let $B_d(x)$ be a ball of radius d around x such that $B_d(x) \subset \Omega$.

Received by the editors May 8, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 49A22, 58C25; Secondary 26B35, 73C50.

Then, for a.e. $r \in (0, d)$,

(2)
$$\left|\int_{B_r(x)} \det Du \, dy\right|^{(n-1)/n} \le c \int_{\partial B_r(x)} |\operatorname{adj} Du| dS,$$

where the constant c depends only on n.

If u is a C^1 -diffeomorphism, (2) follows from the usual isoperimetric inequality as the left-hand side is $\{vol u(B_r)\}^{(n-1)/n}$ while the right-hand side is an upper bound for area $u(\partial B_r)$ times a constant. As stated, Lemma 2 is an immediate consequence of the isoperimetric inequality for currents (see Federer [F, Theorem 4.5.9 (31)]); an elementary proof, based on approximation by smooth functions and degree theory is also available.

Recall that for $f \in L^1(\mathbb{R}^n)$ the maximal function Mf is defined by

$$Mf(x) = \sup_{R>0} \frac{1}{\operatorname{meas} B_R(x)} \int_{B_R(x)} |f(y)| dy.$$

LEMMA 3 (STEIN [S2]). Let $f \in L^1(\mathbb{R}^n)$ and assume that f is supported on a ball B and that $Mf \in L^1(B)$. Then $|f| \ln(2 + |f|) \in L^1(B)$ and

(3)
$$|||f|\ln(2+|f|)||_{L^1(B)} \le C(B, ||Mf||_{L^1(B)})$$

Estimate (3) is implicit in [S1, p. 23, S2], though not explicitly stated. PROOF OF THEOREM 1. Fix $K \subset \Omega$, compact and let

 $g = 1_K \det Du$,

 1_K being the characteristic function of K. By Lemma 3 we only have to show that the maximal function Mg satisfies

(4)
$$\|Mg\|_{L^{1}(B)} \leq C(K, \|u\|_{W^{1,n}(\Omega)}),$$

for some ball $B \supset \Omega$. Let $d = \operatorname{dist}(K, \partial \Omega)$. It suffices to estimate

(5)
$$\frac{1}{\operatorname{meas} B_R(x)} \int_{B_R(x)} |g(y)| dy$$

for x satisfying dist $(x, \partial \Omega) > d/2$ and for R < d/4, as otherwise (5) is bounded by $C(d) ||u||_{W^{1,n}(\Omega)}$.

Using the fact that det $Du \ge 0$ and Lemma 2 we have, for a.e. $r \in (R, 2R)$,

$$\begin{split} \left\{ \int_{B_R(x)} |g(y)| dy \right\}^{(n-1)/n} \\ &\leq \left\{ \int_{B_r(x)} \det Du \, dy \right\}^{(n-1)/n} \leq c \int_{\partial B_r(x)} |\operatorname{adj} Du| dS. \end{split}$$

Here and in the following we denote by c any constant depending solely on n. Integrating the above inequality over r from R to 2R and dividing by R^n we obtain

$$\left\{\frac{1}{\operatorname{meas} B_R(x)} \int_{B_R(x)} |g(y)| dy\right\}^{(n-1)/n} \leq \frac{c}{\operatorname{meas} B_{2R}(x)} \int_{R_{2R}(x)} |\operatorname{adj} Du| dy \leq cMf,$$

where Mf is the maximal function of $f = 1_{\Omega} |\operatorname{adj} Du|$. Thus

$$Mg(x) \le c \{Mf(x)\}^{n/(n-1)} + C(d) \|u\|_{W^{1,n}}^n.$$

Now $f \in L^{n/(n-1)}$, and hence [S1, I, Theorem 1]

 $\|Mf\|_{L^{n/(n-1)}} \leq c \|f\|_{L^{n/(n-1)}} \leq c \|u\|_{W^{1,n(\Omega)}},$

so that (4) follows.

Applications. Theorem 1 allows to sharpen previous results by Reshetnyak [**R**] and Ball [**B**] on the weak continuity of determinants.

COROLLARY 4. Let $\Omega \subset \mathbb{R}^n$ be open and bounded, and assume that the sequence of mappings $u^{(j)}: \Omega \to \mathbb{R}^n$ satisfies det $Du^{(j)} \ge 0$ and $u^{(j)} \to u$ (weakly) in $W^{1,n}(\Omega; \mathbb{R}^n)$. Then

(6) $\det Du^{(j)} \to \det Du \ (weakly) \ in \ L^1(K),$

for all compact sets $K \subset \Omega$.

In [**R**, **B**] it is shown that det $Du^{(j)} \rightarrow \det Du$ weak* in the sense of measures. Since $||u^{(j)}||_{W^{1,n}} \leq C$, Theorem 1 in combination with the criterion on weak compactness in L^1 (see [ET, VIII, Theorem 1.3]) implies that the sequence det $Du^{(j)}$ is weakly relatively compact in $L^1(K)$, and (6) follows. Corollary 4, but not Theorem 1, can also be deduced from a recent result by Zhang [**Z**]. In [**M**] Corollary 4 is used to improve a result of Ball and Murat [**BM**, Theorem 6.1] on the existence of minimizers in nonlinear elasticity. Both Theorem 1 and Corollary 4 should also have interesting applications in geometry.

Acknowledgements. I wish to thank J. M. Ball, M. Esteban, F. Murat and K. W. Zhang for very fruitful discussions.

NOTE ADDED IN PROOF. Since this paper was submitted, Theorem 1 has let to several interesting developments. R. Coifman, Y. Meyer, P. L. Lions and S. Semmes found a new proof based on 'hard' harmonic analysis. Assuming only $u \in W^{1,n}$ they show first that det Du is in the Hardy space \mathscr{H}^1 (the predual of BMO). A standard result (similar to Lemma 3) then states that a *positive* function is in \mathscr{H}^1 if and only if $f \ln(2+f)$ is integrable. Their proof uses directly the divergence structure of the determinant rather than geometric estimates such as the isoperimetric inequality and thus has potential applications to more general situations.

STEFAN MÜLLER

References

[B] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337–403.

[**BM**] J. M. Ball and F. Murat, $W^{1,p}$ -quasiconvexity and variational problems for multiple integrals, J. Funct. Anal. **58** (1984), 225–253.

[DM] R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys. 108 (1987), 667-689.

[ET] I. Ekeland and R. Teman, *Convex analysis and variational problems*, North-Holland, Amsterdam, 1976.

[F] H. Federer, *Geometric measure theory*, Springer-Verlag, Berlin, Heidelberg, New York, 1969.

[L1] P. L. Lions, *The concentration-compactness principle in the calculus of variations, the locally compact case*, parts I and II, Ann. Inst. H. Poincaré 1 (1984), 109–145; 223–283.

[L2] _____, The concentration compactness principle in the calculus of variations, the limit case, part I, Rev. Mat. Iberoamericana 1 (1984), 145–201; part II 2 (1985), 45–121.

[M] S. Müller, *Higher integrability of determinants and weak compactness in L*¹, preprint. [**R**] Y. G. Reshetnyak, *Stability theorems for mappings with bounded excursion*, Siberian Math. J. 9 (1968), 499–512.

[S1] E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970.

[S2] ____, Note on the class L log L, Studia Math. 32 (1969), 305-310.

[Z] K. W. Zhang, Biting theorems for jacobians and their applications, preprint.

DEPARTMENT OF MATHEMATICS, HERIOT-WATT UNIVERSITY, EDINBURGH EH14 4AS, SCOTLAND, UNITED KINGDOM