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A SURPRISING HIGHER INTEGRABILITY PROPERTY 
OF MAPPINGS WITH POSITIVE DETERMINANT 

STEFAN MULLER 

Introduction. Let Q be a bounded, open set in R", n > 2, and as
sume that u: Q -+ Rn belongs to the Sobolev space Wl*n(Çl\Rn), i.e. 
IMIî*a« = fçi\u\n + \Du\n dx < oo, where Du denotes the distributional 
derivative. Then det Du is, of course, integrable. The aim of this note 
is to show that under the additional assumption that detDw > 0 (almost 
everywhere) in fact detZ>wln(2 + det Du) is integrable (on compact sub
sets K of fi). When applied to a sequence of mappings uJf : Q —• R" with 
det Du > 0, llw^H î,/! < C, this higher integrability result implies that the 
sequence detDu^ is weakly relatively compact in Ll(K). This allows us 
to improve known results on weak continuity of determinants [R, B] and 
existence of minimizers in nonlinear elasticity [BM]. In the terminology of 
Lions [L1,L2] and DiPerna and Majda [DM], the constraint det Du^ > 0 
prevents the development of 'concentrations' in the sequence det Du^j\ 

One might ask whether analogous results hold for orientation preserving 
mappings between oriented compact Riemannian manifolds. In short, 
the function det Du ln(2 + det Du) is still integrable, but not necessarily 
uniformly so along a sequence which is bounded inWl>n. 'Concentrations' 
may occur, but only in a particular fashion (see [M]). 

THEOREM 1. Let Q c Rn be bounded and open and let u: Q,^Rn be in 
Wl>n(Çl\Rn), n>2. Assume that det Du > 0 a.e. Then, for every compact 
set K c Q, detZ)wln(2 + det Du) e Ll(K) and 

(1) ||detZ)wln(2 + det/)w)||LiTO < C(K, \\u\\m,n{a)). 

The result is optimal in the following sense. The assumption det Du > 0 
cannot be dropped nor can K be replaced by Q (see Ball-Murat [BM, 
Counterexample 7.3]). Moreover detZ)wln(2-hdetDw) cannot be replaced 
by y(detDu) with y(z)/(z ln(2 + z)) -+ +oo for z -+ +oo (see [M]). 

Two key lemmas. The proof of Theorem 1 relies on a geometric esti
mate (a version of the isoperimetric inequality) and an analytic result on 
maximal functions by Stein [S2]. We begin with the former. For an n x n 
matrix F let adj F denote the transpose of the matrix of cofactors, so that 
F?id)F = detFld. 

LEMMA 2. Let Q c R" be bounded and open and let u G Wl>n(£l;Rn). 
For x e Q let Bd(x) be a ball of radius d around x such that Bd(x) c £1 
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Then, for a.e. r G (0, d), 

(2) 
{n-\)ln 

I detDudyl <c \ad]Du\dS, 
JBr(x) JdBr(x) 

where the constant c depends only on n. 

If u is a C^-diffeomorphism, (2) follows from the usual isoperimetric 
inequality as the left-hand side is {volu(Br)Y

n~l^n while the right-hand 
side is an upper bound for area u(dBr) times a constant. As stated, Lemma 
2 is an immediate consequence of the isoperimetric inequality for currents 
(see Fédérer [F, Theorem 4.5.9 (31)]); an elementary proof, based on ap
proximation by smooth functions and degree theory is also available. 

Recall that for ƒ G L^R") the maximal function Mf is defined by 

Mf{x) = sup J / \f{y)\dy. 
R>0 meas0R{x) JBK(X) 

LEMMA 3 (STEIN [S2]). Let f eLl(Rn) and assume that f is supported 
on a ball B and that M f e L\B). Then \f\ ln(2 + | / | ) € Ll(B) and 

(3) HI/| ln(2 + \f\)\\V(B) < C(B, \\Mf\\V{B)). 

Estimate (3) is implicit in [SI, p. 23,S2], though not explicitly stated. 
PROOF OF THEOREM 1. Fix K c Q, compact and let 

g = l#det Du, 

IK being the characteristic function of K. By Lemma 3 we only have to 
show that the maximal function M g satisfies 

(4) \\Mg\\LHB)<C(K9\\u\\wun{Q)), 

for some ball B D Q. Let d = dist (A', d£l). It suffices to estimate 

for x satisfying dist(x,<9Q) > d/2 and for R < d/4, as otherwise (5) is 
bounded by C(£/)||M||^I,II(Q). 

Using the fact that detDw > 0 and Lemma 2 we have, for a.e. r e 

I f \g(y)\dy) 
(/!-!)//! 

u. detDu dy \ <c \ adj Du\dS. 
(x) J JdBr(x) 

Here and in the following we denote by c any constant depending solely 
on «. Integrating the above inequality over r from R to 2R and dividing 
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by Rn we obtain 

where Mf is the maximal function of ƒ = 1Q| adj Du\. Thus 

Mg(x) < c{Mf(x)}nK»-» + C(d)\\u\\n
wun. 

Now ƒ € Ln^n'l\ and hence [SI, I, Theorem 1] 

ll-My]|L«/(«-i) < c||/||Ln/(«-D <C||M||^I,B(O), 

so that (4) follows. 

Applications. Theorem 1 allows to sharpen previous results by 
Reshetnyak [R] and Ball [B] on the weak continuity of determinants. 

COROLLARY 4. Let Q, c R" be open and bounded, and assume that the 
sequence of mappings u^\ Q —• Rn satisfies det Du^ > 0 and u^ -> u 
(weakly) in Wl>n{Sl\Rn). Then 

(6) detDuU) — detDw (weakly) in Ll(K), 

for all compact sets K c £1 

In [R, B] it is shown that det Du^ -^ det DM weak* in the sense of mea
sures. Since ||w(7)||^i)M < C, Theorem 1 in combination with the criterion 
on weak compactness in L1 (see [ET, VIII, Theorem 1.3]) implies that the 
sequence det Du^ is weakly relatively compact in Ll(K), and (6) follows. 
Corollary 4, but not Theorem 1, can also be deduced from a recent result 
by Zhang [Z]. In [M] Corollary 4 is used to improve a result of Ball and 
Murat [BM, Theorem 6.1] on the existence of minimizers in nonlinear 
elasticity. Both Theorem 1 and Corollary 4 should also have interesting 
applications in geometry. 

Acknowledgements. I wish to thank J. M. Ball, M. Esteban, F. Murat 
and K. W. Zhang for very fruitful discussions. 

NOTE ADDED IN PROOF. Since this paper was submitted, Theorem 1 
has let to several interesting developments. R. Coifman, Y. Meyer, P. L. 
Lions and S. Semmes found a new proof based on 'hard' harmonic analysis. 
Assuming only ue Wl>n they show first that det Du is in the Hardy space 
%fx (the predual of BMO). A standard result (similar to Lemma 3) then 
states that a positive function is in %?x if and only if ƒ ln(2+ƒ ) is integrable. 
Their proof uses directly the divergence structure of the determinant rather 
than geometric estimates such as the isoperimetric inequality and thus has 
potential applications to more general situations. 
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