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Abstract

We propose a surrogate-assisted reference vector guided evolutionary algorithm for com-

putationally expensive optimization problems with more than three objectives. The proposed

algorithm is based on a recently developed evolutionary algorithm for many-objective optimiza-

tion that relies on a set of adaptive reference vectors for selection. The proposed surrogate-

assisted evolutionary algorithm uses Kriging to approximate each objective function to reduce

the computational cost. In managing the Kriging models, the algorithm focuses on the balance

of diversity and convergence by making use of the uncertainty information in the approximated

objective values given by the Kriging models, the distribution of the reference vectors as well as

the location of the individuals. In addition, we design a strategy for choosing data for training

the Kriging model to limit the computation time without impairing the approximation accuracy.

Empirical results on comparing the new algorithm with the state-of-the-art surrogate-assisted

evolutionary algorithms on a number of benchmark problems demonstrate the competitiveness

of the proposed algorithm.

Keywords: multiobjective optimization, reference vectors, surrogate-assisted evolutionary algorithms,
model management, Kriging, computational cost

1 Introduction

Many industrial optimization problems have multiple objectives to be optimized and these objectives
are typically conflicting in nature, i.e. improvement in one objective will lead to deterioration of at
least one of the other objectives. Such problems are known as multiobjective optimization problems
(MOPs). In this paper, we consider MOPs in the following form :

minimize {f1(x), . . . , fk(x)}

subject to x ∈ S
(1)

with k(≥ 2) objective functions fi(x): S→ ℜ. The vector of objective function values is denoted
by f(x) = (f1(x), . . . , fk(x))

T . The (nonempty) feasible space S is a subset of the decision space
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ℜn and consists of decision vectors x = (x1, . . . , xn)
T that satisfy all the constraints. The image

of the feasible region S in the objective space ℜk is called the feasible objective set denoted by Z.
The elements of Z are called feasible objective vectors denoted by f(x) or z = (z1, . . . , zk)

T , where
zi = fi(x), i = 1, . . . , k, are the objective function values. As the objectives are conflicting, there
typically does not exist a single optimal solution, but multiple so-called Pareto optimal solutions.
The set of all optimal solutions in the objective space is called the Pareto front and in the decision
space the Pareto set.

A large number of optimization methods have been reported in the literature. These methods
can be classified into two main different fields, namely, multiple criteria decision making (MCDM)
[33] and evolutionary multiobjective optimization (EMO) [10, 13]. Methods either find a represen-
tative set of Pareto optimal solutions or the most preferred solution for a decision maker and they
differ in the way the solutions are obtained. For instance, in the MCDM community, an MOP is
often scalarized into a single objective optimization problem. Moreover, a decision maker is usually
involved in the solution process to identify preferred solutions. On the other hand, EMO algorithms
work with a population of candidate solutions and often aim to find a set of solutions representing
the whole Pareto front. The decision maker is involved usually after a set of Pareto optimal solution
is found [42].

Evolutionary algorithms (EAs) have become popular in past decades due to several advantages.
For example, they have the ability to handle different kinds of decision variables e.g. binary, inte-
ger, real or mixed and they do not assume any convexity or differentiability of objective functions
and/or constraints involved. Despite of these advantages, EAs are often criticized because of slow
convergence and a large number of function evaluations needed before an acceptable solution can be
found. For instance, in aerodynamic optimization, one function evaluation involving computational
fluid dynamics simulations may take substantial amount of time and it will become computationally
prohibitive to use an EA to solve aerodynamic optimization problems.

One of the popular approaches to reduce computation time in evolutionary optimization is to
introduce approximations, especially function approximation. Computational models for functional
approximation are often known as surrogates and EAs using objective values estimated by surrogates
are often referred to as surrogate-assisted evolutionary algorithm (SAEAs). A surrogate is also known
as a metamodel in the literature, which can in part replace the computationally expensive objective
functions. For more details about SAEAs, see [9, 24, 43].

Although numerous algorithms have been proposed in using surrogates in an EA, many challenges
remain. One is the choice of the surrogate, as different types of surrogate techniques exist in the
literature, e.g. Kriging, neural networks, support vector regression and polynomial approximation.
Nevertheless, there is no simple rule for choosing the right type of surrogates for approximating
the given computationally expensive objective or constraint functions. A second challenge is how
to use a surrogate, i.e. what to approximate using the surrogate. The most conventional way is to
approximate the objective or constraint functions. In addition, a surrogate can be used to estimate
the rank of individuals [31], or some other quality measure, e.g. distance to the nondominated solu-
tions [38, 39, 40], or hypervolume [2]. The third challenge is the computational cost for constructing
the surrogate, which is often neglected in SAEAs. In practical, training a surrogate may take a
substantial amount of time, and the main aim of reducing computation time will be jeopardized.
The fourth challenge is how to update the surrogate i.e. how to choose individuals in the current
population to be re-evaluated using the original functions. Different ways exist in the literature for
selecting the individuals, e.g. selecting a set of best solutions [25] or nondominated solutions [17]
according to the surrogate and selecting a set of representative solutions [27]. If the Kriging model
is used, one can select solutions that maximize the expected improvement [47], the probability of
improvement [12] and hypervolume improvement [18]. Selection of individuals to be re-evaluated
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is also called updating criterion or infilling criterion. The fifth challenge is to determine when the
surrogate needs to be updated. For instance, it may be possible that a surrogate is accurate enough
and does not need to be updated even if new training samples are available.

In SAEAs, which individuals are to be re-evaluated using the original objective functions, how
to update the surrogate and when to update the surrogate are referred to as model management,
which is also known as evolution control [26]. In [26], two methods were mentioned for managing
the surrogate, i.e., fixed evolution control and adaptive evolution control. In fixed evolution con-
trol, updating the surrogate is based on a prefixed criterion, while in adaptive evolution control, a
surrogate is updated based on its performance.

As pointed out in [9], little work has been reported on using SAEAs for solving computationally
expensive problems having more than three objectives. During the years 2008-2015, only three al-
gorithms [6, 38, 41] have been tested on multi-objective benchmark problems with more than three
objectives. While many industrial problems, e.g., optimization of the controller of a hybrid car
[36], involve more than three computationally expensive objectives, surrogate-assisted evolutionary
optimization of many-objective problems has not attracted much attention in the evolutionary com-
putation community and SAEAs developed so far cannot be directly extended to many-objective
optimization. Therefore, our work is an effort to fill this gap.

Apart from the challenges resulting from the large number of objectives, it is notoriously difficult
to achieve high-quality surrogates for large scale optimization problems due to the curse of dimen-
sionality. For this reason, the number of decision variables SAEAs have handled is by far up to 50.
According to a recent survey [9], only seven SAEAs have been tested on optimization problems with
more than 20 decision variables and six of them were benchmarks. Note that SAEAs using neural
networks as the surrogate were tested on more than 20 variables, while SAEAs using Kriging models
as the surrogate have been used to solve problems with up to eight decision variables. This can be
attributed to the fact that the computational time for training the Kriging model will become too
long when the number of training samples increases [35].

This paper focuses on developing an efficient SAEA for solving computationally expensive many-
objective optimization problems. One of the major reasons limiting the applicability of existing
algorithms to many-objective optimization is the lack of an efficient surrogate management method
suited for the evolutionary algorithm used. In SAEAs when managing the surrogates, individuals
should be selected by taking into account of both convergence and diversity. To select such indi-
viduals, surrogates need to be seamlessly embedded into the evolutionary algorithm. Most existing
SAEAs are dominance based and thus are not well suited for handling many objectives. Therefore,
the major contribution of the paper is to propose an efficient algorithm to manage the surrogates for
handling a large number of objectives. To this end, we adopt the reference vector guided evolution-
ary algorithm (RVEA) [8] for many-objective optimization to be used as an evolutionary algorithm.
Two sets of reference vectors adaptive and fixed, together with uncertainty information from the
Kriging models as well as the location of the individuals are exploited for surrogate management. To
limit the computation time for training the Kriging models, a strategy for choosing training samples
is proposed so that the maximum number of training data is fixed.

The rest of the paper is organized as follows. In Section 2, we provide a relatively detailed
description of RVEA as well as Kriging models so that the paper is self-contained. The Kriging
assisted RVEA, called K-RVEA is introduced in Section 3. Section 4 presents the numerical results
of K-RVEA on benchmark problems and compared them with a few state-of-the-art SAEAs. Finally,
conclusions are drawn and future work briefly discussed in Section 5.
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2 Background

In this section, we first summarize main components of RVEA, which we use as the underlying
evolutionary algorithm. Next, we present a brief description of Kriging, including a discussion
about its advantages and disadvantages over other surrogate models.

2.1 Reference vector guided evolutionary algorithm

Two major difficulties in solving problems with high number of objectives are convergence to the
Pareto front and maintaining a good diversity between solutions. Several evolutionary algorithms
have been proposed for solving many-objective optimization problems, by, for instance, using a
revised dominance relationship, decomposing the multi-objective optimization into several single
objective optimization problems, an indicator-based objective function, or using reference points.
For more details about these algorithms and challenges in solving problems with more than three
objectives, see [23, 29, 45].

RVEA is an EMO algorithm most recently developed for many-objective optimization [8]. While
MOEA/D [50] and NSGA-III [14] use a set of weights and reference points, respectively, RVEA
adopts a set of reference vectors. The main difference between RVEA and the MOEA/D and NSGA-
III lies in its selection strategy. In RVEA, selection is based on a criterion known as angle penalized
distance (APD), which is used to manage both convergence and diversity. It has been shown [8] that
APD is better scalable to the increase in the number of objectives in maintaining a balance between
convergence and diversity. APD relies on a set of reference vectors, which partitions the objective
space into a number of subspaces, where selection of individuals is performed independently. The
main components of RVEA are presented in Algorithm 1.

Algorithm 1 RVEA

Input: tmax = maximum number of generations; N = number of reference vectors; V0 =
{v01, v02, . . . v0N} a set of unit reference vectors;
Output: nondominated solutions from population Ptmax

1: Create an initial population P0 of size N randomly and set generation counter t = 0
2: while t < tmax do

3: Generate offspring Qt

4: Combine parent and offspring populations, Lt = Pt ∪Qt

5: Select parents (Pt+1) for the next generation
6: Update reference vectors (Vt+1)
7: end while

RVEA uses elitism and offspring generation strategies similar to other state-of-the-art EMO
algorithms such as NSGA-II [15] and NSGA-III [14]. RVEA distinguishes itself with NSGA-III in
its selection strategy and the adaptation of reference vectors, which are Steps 5 and 6 in Algorithm
1. In the following, we present the four main components of RVEA, i.e., generation of reference
vectors, assignment of individuals to reference vectors, selection and adaptation of reference vectors.

2.1.1 Generation of reference vectors

RVEA uses a set of reference vectors in the objective space to guide the search process. To generate
a uniformly distributed set of reference vectors, first a set of uniformly distributed reference points
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Figure 1: An illustrative example of reference vectors for a biobjective optimization problem.

(p) is generated on a unit hyperplane using the canonical simplex-lattice design method [11, 7].

{

pi = (p1i , p
2
i , . . . , p

k
i ),

p
j
i =

{

0

H
, 1

H
, . . . H

H

}

,
∑k

j=1
p
j
i = 1

(2)

where i = 1, 2, . . . , N with N being the number of uniformly distributed points, k is the number of
objectives and H is a positive integer used in simplex-lattice design. An example is shown in Figure
1 for a biobjective optimization problem, where the dots represent the reference points generated on
a unit hyperplane. The corresponding reference vector is then obtained by projecting the reference
points from the hyperplane to a hypersphere

vi =
pi

||pi||
. (3)

where ||pi|| represents the L2-norm of pi. As a result, these reference vectors partition the objective
space into a number of subspaces. In the next subsection, we describe how the individuals in
a population are assigned to these reference vectors and how the population is partitioned into
different subpopulations.

2.1.2 Assignment of individuals to reference vectors

After the generation of the reference vectors, individuals are assigned to them as follows. First,

objective values of all individuals at the current generation are are translated, i.e.
¯
f
j
i = f

j
i −f

∗
i , where

f
j
i represents the objective value of fi for the jth individual and f∗i the minimum objective values
of fi at the current generation. We denote the translated objective vector by f̄ = (f̄1, f̄2, . . . , f̄k).
Translation of objective functions ensures that the initial point of reference vectors is always the
origin and all the translated objective values are inside the positive orthant. After the translation,
the acute angle is measured between an individual and all the reference vectors. For instance, let us
consider the situation shown in Figure 2, with two reference vectors vi and vi+1, and three individual
f̄1, f̄2 and f̄3. As the angle θ1i between the individual f̄1 and the reference vector vi is less than
the angle θ1i+1 between the individual and the other reference vector vi+1, this individual is assigned

to the first reference vector vi. Similarly, f̄2 and f̄3 will be assigned to reference vector vi and
vi+1, respectively. Therefore, an individual is assigned to a reference vectors if and only if the angle
between it and the reference vector is minimum among all reference vectors. In this way, assignment
of individuals to the reference vectors partitions the population into subpopulations. Other notations
in Figure 2 are used in the next subsection.
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Figure 2: An illustration for assignment of individuals to a reference vector assignment and calcu-
lation of the selection criteria.

2.1.3 Selection mechanism in each subpopulation

After the generation of reference vectors and the assignment of individuals them, one individual
is selected from each subpopulation (Step 5 in Algorithm 1). The selection criterion consists of
two subcriteria that are meant for managing convergence and diversity, respectively. Convergence
is taken care by the distance between the translated objective vector and the origin. As selection
is performed in each subpopulation independently, let us take the subpopulation corresponding to
reference vector vi. In the illustrative example shown in Figure 2, two individuals f̄1 and f̄2 are
assigned to the reference vector vi and the distance between them and the origin is denoted by ||f̄1||
and ||f̄2||, respectively. As the aim is to find solutions closer to the origin, individual f̄1 is preferred
over individual f̄2 and will therefore be selected for this subpopulation.

In RVEA, diversity is accounted by the angle between the translated objective vector and the
reference vector the individual is assigned to. The individual with the smallest angle is preferred
over other individuals. For instance, for reference vector vi in Figure 2, individual f̄1 with the angle
θ1i is preferred over individual f̄2 as θ1i < θ2i .

To combine the two subcriteria for convergence and diversity, the following angle penalized
distance (APD) is defined:

dj = (1 + P (θj)) · ||f̄ j ||, (4)

where ||f̄ j || is the distance from the translated objective vector corresponding to the jth individual
to the origin, and θj is the angle between the jth individual and the reference vector it is assigned
to. In APD, P (θj) is the penalty function defined as follows:

P (θi) = k · (
t

tmax

)α ·
θj

γv
, (5)

where γv is defined as the smallest angle between the reference vectors vi and its closest neighboring
reference vector vj i.e. γv = mini∈{1,...,N},i 6=j 〈vi, vj〉. The angle γv is used to normalize the angles
and is important when the distribution of the reference vectors is either too dense or too sparse. As
highly dense or sparse reference vectors may generate a very small or a very large angle between
the individual and the reference vector, normalization of the angle can be helpful to alleviate this
problem. Parameter α is used to change the rate of the penalty function P (θ). The rate of the

6



penalty function is used to emphasize convergence at the early stage and diversity at the later stage
of the evolutionary search process. For instance, at the early stage of solution process, convergence
is preferred to push the individuals closer to the Pareto front. Once individuals have converged
to the Pareto front, diversity is then preferred by distributing individuals along the Pareto front.
Therefore, the rate of the penalty function depends on the current generation number t, the maximum
number of generations tmax and parameter α used in (5). As careful empirical studies for setting
the parameter α have been performed in [8], we use the same parameter setting in this work. After
calculating APD for all individuals in each subpopulation, one individual with the minimum APD
value is selected from each subpopulation for the next generation.

2.1.4 Adaptation of reference vectors

In order to find a set of uniformly distributed nondominated individuals as close to the Pareto front
as possible. For some optimization problems, e.g. those in the WFG test suite [22] where objective
functions are scaled to different ranges, a uniformly distributed set of reference vectors is not best
suited for getting uniformly distributed individuals. To tackle this issue, one possible solution is to
adapt the reference vectors. In RVEA, reference vectors are adaptive. In other words, they change
their position according to the location of individuals in the objective space. The adaptation of
reference vectors for the next generation (vt+1) is applied in the following way:

vt+1,i =
v0,i ◦ (z

max
t − zmin

t )

||v0,i ◦ (zmax
t − zmin

t )||
, (6)

where ◦ represents the Hadamard product [1] that multiplies two matrices of the same size element-
wise, v0,i is the uniformly generated reference vector in the initialization phase in RVEA and zmax

t

and zmin
t are the maximum and minimum values of each objective function in the tth generation,

respectively. The adaptation of reference vectors ensures that a set of uniformly distributed non-
dominated individuals will be obtained even for optimization problems whose objective functions
have different ranges.

2.2 Kriging

We use Kriging, also known as Gaussian process to approximate each objective function. As per
the survey on computationally expensive multiobjective optimization problems [9], Kriging has been
frequently used for surrogate techniques, mainly because it is able to deliver uncertainty information
of the approximated values, which is very useful in managing surrogates [24]. In this work, we
use uncertainty information from Kriging models to update the surrogates, which will be further
discussed in the next section.

Kriging approximates the objective function value of an individual x as

y(x) = µ(x) + ǫ(x), (7)

where µ is the prediction of a regression model F (β, x) i.e. µ = Fβ and ǫ(x) is a Gaussian distribution
of zero mean and the standard deviation σ

ǫ(x) = N(0, σ2). (8)

The regression model F (β, x) = β1g1(x) + . . .+ βlgl(x) is a linear combination of l chosen functions
with coefficients β.
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To get an approximated value from (7) for any new input, Kriging model needs to be trained using

training samples, which are the pre-evaluated individuals in SAEAs. Let matrix X =
[

x1, . . . , xNI

]T

represent the training data in the decision space with their corresponding objective vector y =
[

y1, . . . , yNI

]T
, where i = 1, 2, . . . , NI represents the number of samples or the size of the training

data. One should note that the size of X is NI ×n, where n is the number of decision variables, i.e.,
xi = [x1, . . . , xn] for i = 1, . . . , NI .

For any two arbitrary inputs xi and xj , the covariance between two random processes ǫ(xi) and
ǫ(xj) is defined by

cov[ǫ(xi), ǫ(xj)] = σ2R([R(xi, xj)]), (9)

where R is the correlation matrix of size NI ×NI

R =







R(x1, x2) · · · R(x1, xNI )
...

. . .
...

R(xNI , x1) · · · R(xNI , xNI )






(10)

and R(xi, xj) is the correlation function between ǫ(xi) and ǫ(xj). The commonly used correlation
function is

R(xi, xj) = exp(−

n
∑

k=1

θk|x
i
k − x

j
k|

2), (11)

where θi, i = 1, . . . , NI denote the hyperparameters.
For a new input x̄, an approximated value from (7) can be written as

ȳ = β + rT (x̄)R−1(y − Fβ), (12)

where y contains the values of given NI individuals, r(x̄) is the correlation vector of size NI between
the new input x̄ and the training data

[

x1, . . . , xNI

]

i.e.

rT (x̄) =
[

R(x̄, x1), . . . , R(x̄, xNI )T
]

. (13)

To obtain a new approximated value ȳ, we need to specify coefficients β and hyperparameters θ.
Equation (12) has the generalized least square solution,

β = (FTR−1F )−1FTR−1y (14)

and the estimated variance σ2 is given by

σ2 =
1

NI

(y − Fβ)TR−1(y − Fβ). (15)

Values of θ are obtained by maximizing the likelihood function

ψ(θ) = −
1

2
(NI lnσ

2 + ln det(R)) (16)

where det(R) is the determinant of the correlation matrix R. After getting hyperparameters θ,
coefficients β and the variance σ2 are calculated from (14) and (15), respectively, which are further
used to approximate the objective function value from (12).

While Kriging is a very attractive surrogate model due to its ability to deliver uncertainty
information, it also suffers from potentially serious weaknesses resulting from the computational
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complexity for training surrogates. As indicated in [20], the computational complexity of training
Kriging is O(n3), where n is the number of training samples. The issue of high computational
complexity will become worse if the hyperparameters θ are determined by maximize the likelihood
function using an optimization algorithm, which has often been done in Kriging assisted SAEAs. For
instance, MOEA/D-EGO uses differential evolution [44] and SMS-EGO employs covariance matrix
adaptation (CMA-ES) [19] to optimize the hyperparameters, while in ParEGO, the Nelder and Mead
algorithm [37] is used.

In this work, we use a modification of Hookes and Jeeves algorithm [21], which is implemented in
DACE toolbox [30]. The main reason is that it is not practical to use population based techniques
to optimize the hyperparameters due to the prohibitively high computation time thus incurred,
since in SAEAs, Kriging models need to be frequently re-trained. We will provide a brief empirical
comparison in Section IV.

3 Surrogate-assisted reference vector guided evolutionary al-

gorithm

Model management is crucial to the success of surrogate-assisted evolutionary algorithms [24]. It
is mainly concerned with how to use and update surrogates, including choosing individuals to be
re-evaluated using the original objective functions. These re-evaluated individuals can then be used
as training data for updating (retraining) the surrogate. Both convergence and diversity have to
be taken into account in selecting individuals to be re-evaluated, which becomes more difficult for
problems with a large number of objectives. In this paper, we focus on selection of training data
in such a way that both convergence and diversity are managed given a large number of objectives,
which is one major contribution of this paper.

The computation time for training the surrogate depends on the size of the training data set
and the type of the surrogate used. The Kriging model is widely used due to its unique property of
being able to predict with an error bound. Unfortunately, the computation time for training Kriging
models will become prohibitive when the number of training data is large. Therefore, the second
contribution of this paper is the proposal of a strategy to choose training samples so that the size of
the training data can be kept sufficiently small. To this end, we use an archive to store the training
data for updating the Kriging model.

The proposed Kriging-assisted reference vector guided evolutionary algorithm, called K-RVEA,
is presented in Algorithm 2. This algorithm consists of three main phases, the initialization phase
followed by the phase where a surrogate is used and finally updated in the last phase. Algorithm 2 is
composed of two other algorithms, Algorithm 3 and Algorithm 4. Algorithm 3 selects the individuals
for re-evaluation, and therefore also for updating the surrogate, while Algorithm 4 manages the
training data in archive A1. In addition to the training archive A1, a second archive A2 is used to
store non-nondominated solutions as the final solution set.

3.1 Initialization

In the initialization phase, an initial population is generated e.g. using the Latin hypercube sampling
[32]. These individuals are evaluated with the original expensive functions and added to two archives
A1 and A2. Individuals stored in A1 are used to build a Kriging model for each objective function.
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Algorithm 2 K-RVEA

Input: FEmax, maximum number of expensive function evaluations; u = number of individuals
to be re-evaluated and to be used for updating Kriging models; wmax = prefixed number of
generations before updating Kriging models;
Output: nondominated solutions of all evaluated ones from A2

/*Initialization*/
1: Create an initial population of size NI using e.g. the Latin hypercube sampling, initialize the
number of function evaluations- FE = 0, the generation counter for using Kriging models w = 1
and a counter for the number of updates, tu = 0. Initialize two empty archives A1 and A2, i.e.
|A1| = |A2| = φ

2: Evaluate the initial population with the original functions and add them to A1 and A2, update
FE = FE+NI , update |A1| = |A1|+NI and |A2| = |A2|+NI

3: Train a Kriging model for each objective function by using individuals in A1

4: while FE ≤ FEmax

/*Using the surrogate*/
5: while w ≤ wmax

6: Run Steps 3-6 of Algorithm 1 with Kriging models instead of the original functions and
update w=w+1

7: end while

/*Updating the surrogate*/
8: Select u individuals using Algorithm 3 and re-evaluate them with the original functions and

update FE = FE + u

9: Add individuals from step 8 to A1 and A2 and update |A1| = |A1|+ u and |A2| = |A2|+ u

10: Remove |A1| −NI individuals from A1 using Algorithm 4, update w = 1 and tu = tu +1 and
go to step 3
end while

10



3.2 Using the surrogate

In the phase of using the surrogate, we use Kriging models instead of the original functions to
calculate objective function values. Kriging models are used for fitness evaluations for a prefixed
number of generations without updating them. Empirically, the prefixed number of generations
should be set in such a way that it allows the evolutionary algorithm to perform adequate search on
the fitness landscape defined by the surrogate, while the search should be terminated if no further
improvement in either convergence or diversity can be made. Ideally, the frequency of updating
the surrogates can be made adaptive based on their performance, e.g., as done in [26]. However,
a rigorous guideline for adapting the frequency still lacks. For simplicity, in this work we adopt
a prefixed frequency based on a sensitivity analysis of the performance on the prefixed number of
generations.

Once the function evaluations are done, simulated binary crossover and polynomial mutations
are applied to generate offspring, similar to [15]. The parent and offspring populations are combined
and then the selection criteria in RVEA detailed in Section 2 are used to select parents for the next
generation.

3.3 Updating the surrogate

After an evolutionary search using the Kriging models for a fixed number of generations, the Krig-
ing models will be updated. As previously mentioned, selection of individuals to be re-evaluated
using the original functions, which will also be used for updating the surrogates, is essential for
the performance of SAEAs. In this paper, we use information from the underlying evolutionary
algorithm, RVEA, and uncertainty information from the Kriging models for selecting individuals to
be re-evaluated and then for re-training the surrogate. As mentioned in Section 1, selection of un-
certain individuals not only helps in finding the unexplored regions but can also improve the quality
of the surrogate. Therefore, we select individuals with the maximum uncertainty whenever diversity
is needed. If a satisfactory degree of diversity is already achieved, we select individuals with the
minimum angle penalized distance, which is one of the selection criteria in RVEA that contributes
to convergence. Full details of the strategy for selecting individuals for re-evaluation is given in the
next subsection, also summarized in Algorithm 3. The selected individuals are then re-evaluated
with the original functions and these data samples are added to both archives A1 and A2. To keep
a fixed number of individuals in the archive A1, we will eliminate extra individuals from from A1

using a strategy to be introduced in the following.
A maximum number of function evaluations is used as the termination criterion of the evolu-

tionary optimization process. After the evolutionary search is complete, nondominated individuals
in A2 are taken as the final solutions.

3.3.1 Strategy for selecting individuals for re-evaluation

In RVEA, the reference vectors are adaptive. In this work, we introduce an additional set of fixed
reference vectors that are evenly distributed in the objective space. The number of fixed reference
vectors is the same as the number of adaptive vectors. For convenience, we denote the fixed reference
vectors by Vf and the adaptive ones by Va.

The fixed reference set is mainly for determining whether diversity or convergence should be
prioritized in selecting individuals for re-evaluation. This is done by comparing the number of empty
vectors in the fixed reference set during the previous surrogate update, denoted by |V ia

f |tu−1 and

that in the current update denoted by |V ia
f |tu . A vector is called empty or non-active if no individual

is assigned to this vector. In case |V ia
f |tu - |V ia

f |tu−1 > δ, where δ > 0 is a small integer, which
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Figure 3: Clustering of active adaptive reference vectors Va into a predefined number of clusters u.

means the increase in the number of empty fixed reference vectors has exceeded a given threshold,
diversity should be prioritized. In this case, individuals for re-evaluation should be selected based on
the uncertainty information offered by the Kriging models. By contrast, if |V ia

f |tu - |V ia
f |tu−1 < δ,

which means that the diversity of the population is not the major concern, priority will be given to
the convergence criterion. In other words, individuals should be selected using the APD according
to the adaptive reference vectors.

The next step is to determine which individuals should be selected according to either the amount
of uncertainty or the value of APD. To this end, we divide the active adaptive reference vectors into
a given number of clusters (Step 1 in Algorithm 3), from each of which one individual that has either
the maximum amount of uncertainty (in case diversity is prioritized) or the minimum APD (in case
convergence is to be taken care of) in the corresponding cluster. Thus, the number of clusters is
always equal to the number of individuals, denoted by u, to be selected for re-evaluation and for
updating the surrogate. The process for selecting solutions to be re-evaluation described above is
summarized in Algorithm 3.

To elaborate the above selection process, let us consider a few different situations shown in
Figure 4 for a biobjective optimization problem, where the fixed reference vectors as well as the
individuals (denoted by dots) associated to each vector are shown in updating Kriging models.
Figure 4(a) illustrate the fixed reference vectors and the individuals assigned to them during the
previous update, i.e., at the counter for updating the surrogate tu − 1. Two different cases at
the current update, i.e., at tu, are shown in Figure 4(b) and Figure 4(c), respectively. In the
situation shown in 4(b), the number of inactive fixed reference vectors, denoted by |V ia

f |tu , has
decreased, which indicates that diversity is not a concern and convergence should be emphasized.
By contrast, Figure 4(c) shows a situation in which the number of inactive fixed reference vectors
has increased, which indicates that diversity needs to be prioritized in updating the Kriging models.
In the former case shown in Figure 4(b), individuals for re-evaluation are selected based on APD
calculated using the reference vector set, while in the latter case, the amount o uncertainty, where
uncertainty is calculated using the average of the standard deviations obtained from Kriging models.
Selected individuals are re-evaluated with the original functions and the obtained data added to both
archives A1 and A2. Note that if the number of active adaptive reference vectors is smaller than u,
i.e., |V a

a | < u, we group them into |V a
a | clusters. In the first update of the Kriging models, APD is

12



Algorithm 3 Selection of individuals for updating the surrogate

Input: Sets of adaptive Va and fixed Vf reference vectors, I = individuals obtained from the latest
generation, |V ia

f |tu−1 = number of inactive fixed reference vectors from the previous update, δ =
parameter to decide whether to use APD or uncertainty from Kriging models for updating Kriging
models, u = number of individuals to update Kriging models
Output: u = Individuals for updating Kriging models

1: Cluster active adaptive reference vectors into min {u, |V a
a |} clusters

2: Identify individuals closest to active adaptive reference vectors within each cluster
3: Assign I to fixed reference vectors and identify the number of inactive fixed reference vectors, i.e.
|V ia

f |
4: Calculate the change in the number of inactive fixed reference vectors from the previous update
i.e. ∆Vf = |V ia

f |tu − |V ia
f |tu−1

5: If ∆Vf ≤ δ

6: Select one individual from each cluster with minimum APD
7: else

8: Select one individual from each cluster with maximum uncertainty
9: end if
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Figure 4: Different cases for fixed reference vectors while updating Kriging models. (a): An example
of the fixed reference vectors, (b): An example showing the fixed reference vectors at the current
update, where the number of inactive reference vectors has decreased compared to the previous
update in (a), (c): An example showing the fixed reference vectors at the current update, where the
number of inactive reference vectors has increased compared to the previous update in (a).
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always used for selecting individuals for re-evaluation.
In the following, we describe the strategy for managing the training data in A1, when the number

of available training data is large than the predefined maximum number defined by the size of A1.

3.3.2 Managing the training data

In order to limit the computation time for re-training the Kriging models, the number of training
data in archive A1 is fixed. To this end, some data need to be discarded if the number of available
training data is larger than the archive size. Which data samples should be kept in A1 becomes
critical for the quality of the Kriging model and thus the overall performance of K-RVEA. In this
work, the maximum size of the training data, i.e., the size of archive A1, is set to NI . The main
steps for managing training data archive A1 are presented in Algorithm 4.

Algorithm 4 Managing individuals in the archive

Input: Archive A1, adaptive reference vectors Va, u= individuals selected to update Kriging
models, NI=maximum number of individuals in the archive A1

Output: Updated individuals in A1

1: Remove duplicate individuals from the training archive A1 and update |A1|
2: If |A1| > NI

3: Assign u individuals to Va and identify inactive adaptive reference vectors, denote these reference
vectors by V ia

a

4: Assign A1 \ u individuals i.e. individuals other than recently evaluated ones in the archive to
V ia
a

5: Identify active reference vectors from inactive adaptive reference vectors V ia
a

6: Cluster active set of inactive adaptive reference vectors V ia
a into NI − u clusters

7: Select one individual from each cluster randomly and remove other individuals
11: end if

We first add recently evaluated individuals (u) obtained with Algorithm 3 to archive A1 and
remove duplicate data points from it (step 1 in Algorithm 4). If the number of training data is still
larger than the archive size, we eliminate some training samples other than the recently evaluated one
(step 2 in Algorithm 4). For this purpose, data points other than the recently evaluated individuals
are assigned to the adaptive reference vectors. For instance, consider the situation in Figure 5
for a biobjective optimization problem. In Figure 5(a), individuals (training data) obtained with
Algorithm 3 are assigned to the adaptive reference vectors Va and inactive reference vectors are
identified, denoted by V ia

a . Then, we assign A1 \ u data points to these vectors V ia
a and identify

active reference vectors from them, as shown in Figure 5(b) (steps 4 and 5 in Algorithms 4). The
active adaptive reference vectors are then grouped into NI − u clusters and data points assigned
to these reference vectors in each cluster are identified (step 6 Algorithm 4). We randomly select
one data point from each cluster and eliminate the rest of the data. In this way, a fixed number of
diverse set of training data is maintained in A1, thereby to improve the quality of Kriging as much
as possible while keeping computation time limited.

4 Numerical experiments

In this section, numerical experiments are conducted to examine the performance of K-RVEA on
the DTLZ benchmark problems [16] for 3, 4, 6, 8 and 10 objectives are presented. The number
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Figure 5: Managing training data in the archive A1, (a):Assignment of the recently evaluated
individuals u to the active adaptive reference vectors Va, (b):Assignment of A1 \ u individuals to
inactive adaptive reference vectors V ia

a .

of decision variables was set to 10. We also compared K-RVEA with representative Kriging based
SAEAs, e.g. MOEA/D-EGO [51], SMS-EGO [41, 46], ParEGO [28], and with the original RVEA
without using the surrogates. We also included RVEA for comparison to give the reader a sense of
how differently an algorithm with and without surrogates performs on computationally expensive
problems.

4.1 Parameter settings

1. Number of individuals to be evaluated using the original objective functions in the initialization
phase (from the literature [28, 51]) = maximum number of individuals in the training archive,
NI = 11n− 1

2. Number of independent runs = 10

3. Maximum number of function evaluations, FEmax = 300

4. Number of individuals to update Kriging models, |u| = 5

5. Number of reference vectors (N): number of reference vectors is determined by the design fac-
tors for simplex-lattice design [11] and the number of objectives and listed in the supplementary
material

6. Parameter while updating the Kriging models δ = 0.05N

7. Number of generations before updating the Kriging models wmax = 20.

For RVEA, a population size of 50 was used and for other algorithms, the same parameters were
used as recommended by the authors in the respective articles. Inverted generational distance (IGD)
[3] used as the performance measure to compare different algorithms. A Wilcoxon rank sum test was
used to compare the results obtained by K-RVEA and the other four algorithms at a significance level
of 0.05. Results are collected in Tables 1, 2 and 3, where symbol ↑ indicates that K-RVEA performed
statistically better than a compared algorithm, and ↓ means that other algorithms performed better
than K-RVEA, while ≈ means that there is no significant difference between the results obtained by
K-RVEA and the other algorithm. One should note that for a given number of decision variables,
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the landscape of the problems is getting easier as the number of objectives increases. This is due to
the fact that the number of decision variables for driving convergence decreases with the increase in
the number of objectives [22]. Therefore, we have added the WFG suite [22] in our experiments and
present the results in the supplementary material.

4.2 Performance on DTLZ problems

Table 1: Statistical results for IGD values obtained by K-RVEA, RVEA and ParEGO. The best
results are highlighted

Problem k K-RVEA RVEA ParEGO

min mean max min mean max min mean max

3 82.03 106.9 125.2 ≈ 42.65 82.87 115.1 ↓ 13.42 52.47 112.7
4 48.23 73.21 101.4 ≈ 39.65 59.18 97.71 ↓ 18.63 45.45 87.76

DTLZ1 6 8.031 28.83 35.22 ≈ 12.24 22.94 36.85 NA NA NA

8 0.699 6.991 13.29 ≈ 1.250 7.406 15.66 NA NA NA

10 0.198 0.347 0.655 ≈ 0.193 0.339 1.105 NA NA NA

3 0.092 0.155 0.262 ↑ 0.227 0.288 0.335 ↑ 0.151 0.191 0.243
4 0.191 0.276 0.376 ↑ 0.280 0.332 0.383 ↑ 0.289 0.337 0.408

DTLZ2 6 0.316 0.342 0.362 ↑ 0.375 0.404 0.440 NA NA NA

8 0.360 0.395 0.522 ↑ 0.466 0.541 0.704 NA NA NA

10 0.419 0.446 0.470 ↑ 0.539 0.608 0.733 NA NA NA

3 181.5 280.1 353.1 ≈ 133.7 256.1 347.9 ↓ 81.15 145.5 261.6
4 85.56 210.9 314.5 ≈ 89.95 198.6 306.3 ↓ 66.93 138.1 209.4

DTLZ3 6 61.61 105.0 156.4 ≈ 43.54 95.97 157.7 NA NA NA

8 12.36 26.49 43.51 ≈ 8.569 25.27 42.17 NA NA NA

10 0.781 1.299 2.303 ≈ 0.761 1.228 1.836 NA NA NA

3 0.190 0.448 0.737 ≈ 0.205 0.399 0.959 ↑ 0.387 0.646 0.947

4 0.268 0.458 0.648 ≈ 0.320 0.514 0.737 ↑ 0.505 0.725 0.960

DTLZ4 6 0.422 0.585 0.754 ≈ 0.503 0.615 0.800 NA NA NA

8 0.547 0.635 0.728 ≈ 0.554 0.628 0.731 NA NA NA

10 0.553 0.608 0.672 ↑ 0.599 0.667 0.761 NA NA NA

3 0.050 0.112 0.211 ↑ 0.201 0.247 0.316 ↓ 0.039 0.055 0.072
4 0.046 0.123 0.242 ↑ 0.149 0.294 0.393 ↑ 0.090 0.288 0.428

DTLZ5 6 0.032 0.102 0.153 ↑ 0.159 0.280 0.431 NA NA NA

8 0.023 0.048 0.107 ↑ 0.104 0.260 0.748 NA NA NA

10 0.009 0.017 0.022 ↑ 0.224 0.488 0.746 NA NA NA

3 2.121 2.727 3.343 ↑ 3.651 4.960 5.613 ↑ 5.030 6.378 6.867

4 1.306 2.446 3.060 ↑ 3.027 4.044 5.208 ↑ 5.652 5.916 6.034

DTLZ6 6 1.133 1.597 2.174 ↑ 1.025 2.524 3.600 NA NA NA

8 0.377 0.660 1.049 ↑ 0.247 1.004 1.870 NA NA NA

10 0.054 0.153 0.373 ↑ 0.140 0.297 0.751 NA NA NA

3 0.088 0.111 0.150 ↑ 0.400 0.515 0.637 ↑ 0.621 0.829 1.201

4 0.188 0.243 0.298 ↑ 0.532 0.691 0.926 ↑ 0.719 0.892 1.149

DTLZ7 6 0.391 0.500 0.627 ↑ 0.889 1.088 1.808 NA NA NA

8 0.745 0.886 1.030 ↑ 1.162 1.359 1.634 NA NA NA

10 0.917 1.030 1.134 ↑ 1.343 1.900 3.327 NA NA NA

The results obtained with the four compared algorithms over 25 independent runs are collected in
Table 1. No results are given for ParEGO for more than four objectives as the current implementation
given by the authors of ParEGO was limited to four objectives, which is denoted by ’NA’ in the
tables. The presented results include the minimum, mean and maximum values of IGD. The best
values are highlighted.

Before we discuss the results, we want to mention an important issue in measuring the per-
formance of many-objective evolutionary algorithms. IGD and hypervolume are two widely used
performance indicators. However, the evaluation result may heavily depends on their parameters,
particularly when the number of objectives is large. For instance, the IGD value is very sensitive
to the size of the reference set, which has not been explicitly discussed. In [4, 48], 100000 reference
points were used irrespective of the number of objectives, while in [52], only 500 reference points
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Figure 6: Nondominated solutions obtained with K-RVEA, RVEA and ParEGO of the run with the
best IGD value for three-objective DTLZ1, which are all very far away from the true Pareto front.

were used. In [5], different sizes for the reference set were used for different numbers of objectives.
Here, we also use different sizes of the reference set for different numbers of objectives, as we believe
more reference points are needed as the number of objectives increases, referring to the Supplemen-
tary material for details. Similarly, different criteria for setting the reference point in calculating
the hypervolume have been adopted in different papers. It has been found in [49] that choosing a
reference point slightly better than the nadir point is able to strike a balance between convergence
and diversity of the solution set. Therefore, in this work, we use the worst objective function val-
ues of the non-dominated solutions found by all compared algorithms plus a small threshold. The
detailed comparative results in terms of hypervolume are provided in the Supplementary material
due to the page limit. We must emphasize that how to fairly compare the performance of EAs
for many-objective optimization has received little attention in the literature and deserves more
research.

As can be seen in Table 1, overall, K-RVEA performed the best among all algorithms compared
in this study, except on DTLZ1 and DTLZ3. We surmise that DTLZ1 and DTLZ3 have many local
Pareto optimal solutions. Both RVEA and K-RVEA try to keep a well-distributed set of solutions
because of the distribution in the reference vectors and, therefore, the convergence rate is relatively
slow on these problems. Nondominated solutions of the run producing the best IGD values for
K-RVEA, RVEA and ParEGO for DTLZ1 are shown in Figure 6. As can be seen, solutions of
K-RVEA and RVEA are better distributed than those of ParEGO. However, the IGD values of all
three algorithms are high, in other words, the solutions obtained by these algorithms are all far
from the true Pareto front. These results indicate that solving such problems requires more function
evaluations to reach the Pareto front.

To compare the results with SMS-EGO, we selected a different stopping criterion. As SMS-EGO
tries to maximize the expected hypervolume improvement and was implemented in MATLAB, it
took about seven hours to complete one run on a computer with the i5 processor and 4GB RAM.
The needed large amount of computation time of SMS-EGO was also mentioned in [51], for which
reason the authors compared their algorithm with SMS-EGO only on two test problems. In this
paper, we allowed SMS-EGO to run for 24 hours with 10 parallel runs and stored all the solutions.
The number of function evaluations reached during this time was used as the stopping criterion
for comparison with the other algorithms. The results for three and four objectives are obtained
with 120 and 115 function evaluations, respectively, which are presented in Table 2. These results
obtained with a small number of function evaluations show that K-RVEA performed better than
the compared algorithms. We did not compare K-RVEA with SMS-EGO for problems within more
than four objectives, as SMS-EGO requires even more time for such problems.

The comparison of K-RVEA and MOEA/D-EGO for three objective functions after 300 original
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Table 2: Statistical results for IGD values obtained by K-RVEA, RVEA, ParEGO, SMS-EGO and
MOEA/D-EGO for three and four objectives with 120 and 115 function evaluations, respectively.
The best results are highlighted

Problemk K-RVEA RVEA ParEGO SMS-EGO MOEA/D-EGO

min mean max min mean max min mean max min mean max min mean max

DTLZ13 82.03 130.2 170.8 ≈ 66.19 129.6 171.4 ≈ 100.7 124.2 148.8 ↑ 85.47 114.2 148.8 ↑ 173.1 267.5 388.2

4 61.92 90.29 115.7 ≈ 81.52 102.2 133.3 ≈ 75.23 99.81 128.5 ↑ 93.33 130.2 173.7 NA NA NA

DTLZ23 0.305 0.360 0.408 ↑ 0.401 0.436 0.494 ≈ 0.271 0.356 0.396 ↑ 0.365 0.444 0.522 ↑ 0.325 0.384 0.456

4 0.376 0.427 0.464 ↑ 0.421 0.463 0.499 ≈ 0.384 0.422 0.474 ↑ 0.447 0.487 0.532 NA NA NA

DTLZ33 217.3 324.3 383.7 ≈ 236.3 366.6 495.6 ≈ 232.4 368.3 460.7 ≈ 220.8 325.3 459.2 ≈ 189.7 339.9 523.41

4 173.8 302.1 370.5 ≈ 177.6 283.1 359.1 ≈ 172.5 291.9 357.2 ≈ 209.1 314.1 403.8 NA NA NA

DTLZ43 0.452 0.711 0.979 ≈ 0.537 0.678 0.967 ≈ 0.586 0.769 0.911 ≈ 0.649 0.690 0.722 ↓ 0.393 0.434 0.479
4 0.587 0.750 0.914 ≈ 0.669 0.803 0.928 ≈ 0.716 0.819 0.993 ≈ 0.680 0.746 0.815 NA NA NA

DTLZ53 0.173 0.282 0.360 ≈ 0.272 0.326 0.397 ↑ 0.597 0.615 0.638 ↑ 0.447 0.498 0.546 ↓ 0.170 0.215 0.308
4 0.226 0.254 0.301 ↑ 0.248 0.283 0.316 ↑ 0.432 0.454 0.484 ↑ 0.360 0.413 0.465 NA NA NA

DTLZ63 3.104 3.974 4.629 ↑ 5.737 6.110 6.462 ↑ 6.504 6.707 6.825 ↓ 1.603 1.756 2.007 ↑ 4.072 5.078 6.624

4 2.962 3.910 4.585 ↑ 4.406 5.036 5.629 ↑ 5.720 5.868 6.024 ↑ 5.842 5.883 6.010 NA NA NA

DTLZ73 0.119 0.167 0.216 ↑ 0.632 0.760 1.264 ↑ 3.138 5.573 7.417 ↓ 0.241 0.260 0.277 ↑ 0.618 1.743 3.830

4 0.297 0.401 0.647 ↑ 0.778 1.018 1.219 ↑ 5.304 7.376 8.921 ↓ 0.578 0.644 0.706 ↑ NA NA NA

function evaluations is shown in Table 3. An implementation of MOEA/D-EGO from the authors
was available for only two and three objectives. As can be seen in Table 3, K-RVEA performed
either better or comparably to MOEA/D-EGO for all problems except on DTLZ5. As the Pareto
front of DTLZ5 is a curve that covers a small subspace in the objective space, most of the reference
vectors in K-RVEA and RVEA are empty, i.e., no solutions are assigned to them. We observed
that for both K-RVEA and RVEA, almost 70% of the reference vectors are empty, which makes
the solution process to converge slowly to the Pareto front. For such problems, a large number of
reference vectors could be helpful while using K-RVEA.

Table 3: Statistical results for IGD values obtained by K-RVEA and MOEA/D-EGO for three
objectives after 300 function evaluations. The best results are highlighted

Problem K-RVEA MOEA/D-EGO

min mean max min mean max

DTLZ1 82.03 106.9 125.2 ↑ 145.9 177.9 224.5

DTLZ2 0.092 0.155 0.262 ≈ 0.081 0.103 0.212
DTLZ3 181.5 280.1 353.1 ≈ 161.5 205.9 281.8
DTLZ4 0.190 0.448 0.737 ≈ 0.357 0.436 0.574

DTLZ5 0.050 0.112 0.211 ↓ 0.035 0.046 0.071
DTLZ6 2.121 2.727 3.343 ≈ 0.491 2.551 4.126

DTLZ7 0.088 0.111 0.150 ↑ 0.154 0.646 1.254

Nondominated solutions from the run with the best IGD values obtained by the compared al-
gorithms on the three-objective DTLZ7 are shown in Figure 7. As can be seen from the figure,
nondominated solutions obtained of K-RVEA and RVEA are much closer to the Pareto front than
those of ParEGO and MOEA/D-EGO. For DTLZ7 which has a disconnected Pareto front, RVEA
and K-RVEA have a good potential to get solutions close to the Pareto front because of the adap-
tation in the reference vectors. Remind that we did not run SMS-EGO for optimization problems
with more than four objectives as the runtime is prohibitive. In addition, a parallel coordinates plot
for DTLZ2 with 10 objectives is presented in Figure 8, which we can see that the ranges of solu-
tions obtained by K-RVEA are bigger than those obtained by RVEA. In other words, the solutions
obtained by K-RVEA have a better distribution. The reason for a lower density of the solutions
obtained by RVEA is due to the small population size. As the maximum number of function evalu-
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Figure 7: Nondominated solutions obtained by K-RVEA, RVEA, ParEGO and MOEA/D-EGO,
denoted by circles, in the run with the best IGD value for three-objective DTLZ7, where the dots
represent the Pareto front.
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Figure 8: Parallel coordinate plot of the nondominated solutions obtained by K-RVEA and RVEA
in the run with the best IGD value on the 10-objective DTLZ2.
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Figure 9: Training time over the number of function evaluations in K-RVEA, ParEGO, SMS-EGO
and MOEA/D-EGO on the 3-objective DTLZ2.

ations for termination is quite low and the performance of RVEA depends on the maximum number
of generations, we reduced the population of RVEA to 50. To more convincingly demonstrate the
performance of K-RVEA, we tested and compared the algorithm on the WFG problems [22]. Results
in terms of both IGD and hypervolume are provided in the Supplementary material, which show
that K-RVEA was able to perform better than the compared algorithms.

As mentioned in Section II.B, the computation time for training Kriging models varies a lot de-
pending on the specific implementation and the number of training, which may become prohibitive
large. One contribution of K-RVEA is the development of a strategy to select training samples
reference vectors, the number of samples for training Kriging models is kept constant, the compu-
tation time for training K-RVEA is remains constant as the number of expensive fitness evaluations
increases. To empirically verify this, the run time of the different implementations in the compared
SAEAs for training the Kriging model has been investigated. The results over the number of training
samples obtained on the 3-objective DTLZ2 are shown in Figure 9. We can observe that the training
time of K-RVEA remains constant, as the maximum number of training samples is kept constant,
the training time for ParEGO increases slightly. In contrast, the training time of MOEA/D-EGO
increases quickly over the number of training samples as a piecewise continues function. As already
mentioned, the computation time of SMS-EGO increases dramatically over the number of training
samples. Note however that SMS-EGO and K-RVEA are implemented in MATLAB, ParEGO is
implemented in C and MOEA/D in Java. Therefore, the absolute times used by the different algo-
rithms may not be directly comparable, although the different behaviours of the change in training
time over the number allowed true function evaluations are of more interest.

In what follows, we consider the effect of different parameters in K-RVEA. The parameter δ in
Algorithm 2 is used to select individuals for updating surrogates to balance between convergence
and diversity. We did a sensitivity analysis to see the effect of δ on the diversity and the performance
of the algorithm. As diversity in both RVEA and K-RVEA can easily be measured using reference
vectors, we studied the effect of δ by measuring the change in the number of empty reference vectors.
We also measured the hypervolume to see the effect on the performance of the algorithm and provide
the results in the supplementary material. As expected, increase in the value of δ deteriorates
the diversity and thus the hypervolume. This is due to fact that frequency of using uncertainty
information from Kriging models decreases with the increase in value of δ. In other words, if the
change in the number of the empty reference vectors is smaller than δ, individuals are selected based
on convergence, otherwise based on uncertainty of Kriging models. Increase in the value of δ will
force the algorithm to select the individuals based on convergence and thus deteriorates the diversity.
In this article we fixed the value of δ to be 0.05 × N, where N is the number of reference vectors
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used and adaptation of δ will be our future work.
Apart from δ, two other parameters can also influence the performance of K-RVEA, which are

the number of individuals to be selected to update the surrogates and the number of generations
(wmax) used before updating the surrogates. The first parameter depends on the characteristics
of the problem, e.g., multi-modality, and the evolutionary algorithm used. We study the effect of
the parameter in the Supplementary material. Our results show that the value of the parameter is
problem-specific and an adaptive way of using the parameter is needed. For the second parameter
i.e. the frequency of updating the surrogates or when to update the surrogate is very important in
surrogate management, although, unfortunately, there is no solid theory for guiding when to update
the surrogates. We have performed a sensitivity analysis on the performance of K-RVEA given
different prefixed numbers of generations before the Kriging models are re-trained. The results are
also included in the Supplementary material.

We also tested K-RVEA, RVEA, ParEGO and MOEA/D-EGO on a three objective real-world
polymerization problem [34]. Even though K-RVEA and RVEA have been proposed for more than
three objectives, they still performed better in solution quality and computation time than the
compared algorithms. Details and results for this problem are given in the supplementary material.

5 Conclusions and future research

In this paper, a Kriging-assisted reference vector guided evolutionary algorithm, called K-RVEA,
has been proposed for solving computationally expensive optimization problems with more than
three objectives, where a Kriging model is used to approximate each objective function. We take
care of both convergence and diversity in choosing individuals for re-evaluation with the original
expensive objective functions. For this purpose, we introduced a set of fixed, uniformly distributed
reference vectors in addition to the adaptive reference vectors in RVEA. In updating the Kriging
models, attention is paid to limiting the computation time for training the surrogate by means of
selecting training samples according to their relationships to the reference vectors, thereby limiting
the number of training data.

We have examined the performance of K-RVEA on benchmark problems with 3, 4, 6, 8 and 10
objectives. We also compared K-RVEA with three state-of-the art SAEAs. Empirical results show
that overall the K-RVEA obtained much better performance than the compared algorithms given
the same number of function evaluations using the original expensive objective function.

In this paper, the number of decision variables was set to 10, as done in other papers in the
literature that use Kriging as the surrogate model. This can be attributed to the factor that for
solving optimization problems with a higher number of decision variables, much more training data
will be needed, which will not only require more computational resource but also poses more serious
challenges to Kriging based surrogate techniques. Nevertheless, it is highly desired that SAEAs can
be applicable to optimization problems having a larger number of decision variables, which will be
our future work. Another topic for future study is to investigate the performance of the proposed
K-RVEA for constrained computationally expensive optimization problems. Finally, in the present
work, we fixed the number of generations for updating the surrogates. Although our empirical results
indicate that the performance of K-RVEA is relatively insensitive to the frequency of updating the
surrogates for the benchmark problems studied in this work, our previous work [26] indicated that
it is likely to adapt the frequency of updating the surrogates to further enhance the performance of
SAEAs. Consequently, developing an adaptive method for updating the surrogates will also be our
future research work.
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Supplementary material - A Surrogate-assisted

Reference Vector Guided Evolutionary Algorithm

for Computationally Expensive Many-objective

Optimization

In the supplementary material, we provide the parameter values for the number of reference
vectors, size of the reference set to calculate IGD, results on DTLZ problems using hypervolume
and on WFG problems with both IGD and hypervolume as quality metrics. In addition, results
of K-RVEA, RVEA, ParEGO and MOEA/D-EGO on a free radical polymerization system are also
presented. Moreover, a sensitivity analysis of three important parameters used in K-RVEA is also
provided.

1 Number of reference vectors

The number of reference vectors (N ) in K-RVEA is determined by the design factors (H1, H2) for
a simplex-lattice design [2] and the number of objectives (k). The parameter values used (from [1])
are listed in Table 1 for the different numbers of objectives.

Table 1: Numbers (N) of reference vectors

k (H1, H2) N

3 (13,0) 105
4 (7,0) 120
6 (4,1) 132
8 (3,2) 156
10 (3,2) 275

2 Size of reference set to calculate IGD

In this paper, we use a different size of a reference set for different numbers of objectives to cal-
culate IGD values and the sizes are presented in Table 2. Test problems DTLZ7 and WFG2 have
disconnected Pareto fronts and, therefore the size of the reference set is different from the other
problems. In addition, specific number like 10000 for four objectives cannot be generated with the
method used [4] for reference set generation and for this reason the number closest to 5000, 10000,
30000, 50000 and 90000 is used for different numbers of objectives.
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Table 2: Size of reference set to calculate IGD

k number of reference points
DTLZ7 WFG2 Other problems

3 6084 4101 5050
4 10648 10708 10660
6 59049 32191 33649
8 78125 66342 50388
10 262144 115610 92378

3 Performance on the DTLZ suite

Here, we summarize the performances of the different algorithms compared with hypervolume as a
performance metric. We used the worst objective function values from nondominated solutions of all
algorithms plus a small threshold as a reference point (f∗

i ). For less than eight objectives, a recently
proposed method from [7] was used to calculate the hypervolume. For eight and 10 objectives, the
Monte Carlo method with 1000000 sample points was used to approximate the hypervolume. The
hypervolume values obtained were normalized by dividing with

∏k

i=1
f∗
i and are shown in Table 3.

As can be seen, the performances of different algorithms when measured with the hypervolume
are very similar to those with IGD values and overall, K-RVEA performed better than the other
algorithms. Note that due to the degenerated Pareto front of DTLZ5, most of the reference vectors in
both RVEA and K-RVEA are empty and, therefore, the performance of K-RVEA is worse than that
of ParEGO. Results with K-RVEA and MOEA/D-EGO for problems with three objectives are given
in Table 4. As can be seen, K-RVEA performed either better or equivalently to MOEA/D-EGO
except on DTLZ5. Note that we did not test SMS-EGO here due to its computational overhead,
which is also mentioned in the main paper.

4 Performance on the WFG suite

To be able to show the potential of K-RVEA with different problems, we extended the test set
up by also considering the WFG test suite [3]. Besides as in, some of the DTLZ problems the
number of decision variables for driving the convergence decreases with the increase in the number
of objectives, it is important to test with other types of problems as well. Values of two different
types of parameters i.e. position (d) and distance (l) used in WFG problems with the number of
objectives are shown in Table 5.

Results with K-RVEA, RVEA and ParEGO using IGD and hypervolume are provided in Tables
6 and 7, respectively. We used the same settings for the size of the reference set to calculate IGD
and for the reference point to calculate hypervolume as mentioned in the previous sections. The
problem WFG2 has a disconnected Pareto front and it is interesting to note that K-RVEA handled
problems with disconnected Pareto front well and outperformed others with both hypervolume and
IGD performance metrics. However in WFG3, the degenerated Pareto front caused the most of
the reference vectors to be empty, thereby leading to a bad performance. Problems WFG4-WFG9
possess several challenges to the optimization algorithm in the decision space such as multimodality
for WFG4, landscape deception for WFG5 and non-separability for WFG6, WFG8 and WFG9 and
as can be seen from the results, K-RVEA performed better than the other algorithms. Results with
K-RVEA and MOEA/D-EGO for three objectives are provided in Tables 8 and 9, respectively. For
these problems as well, K-RVEA performed similarly or better than MOEA/D-EGO.
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Table 3: Statistical results for hypervolume on the DTLZ suite obtained by K-RVEA, RVEA and
ParEGO. The best results are highlighted

Problem k K-RVEA RVEA ParEGO

min mean max min mean max min mean max

3 0.319 0.539 0.719 ≈ 0.416 0.595 0.749 ↓ 0.490 0.805 0.941

4 0.588 0.795 0.911 ↑ 0.641 0.738 0.891 ≈ 0.595 0.797 0.934

DTLZ1 6 0.828 0.927 0.973 ≈ 0.845 0.930 0.964 NA NA NA

8 0.781 0.879 0.929 ≈ 0.642 0.870 0.929 NA NA NA

10 0.374 0.389 0.393 ≈ 0.366 0.389 0.393 NA NA NA

3 0.881 0.905 0.918 ↑ 0.782 0.824 0.858 ↑ 0.870 0.889 0.902

4 0.924 0.958 0.970 ↑ 0.894 0.920 0.939 ↑ 0.890 0.907 0.926

DTLZ2 6 0.327 0.328 0.328 ↑ 0.306 0.318 0.325 NA NA NA

8 0.225 0.225 0.226 ↑ 0.208 0.219 0.223 NA NA NA

10 0.134 0.134 0.134 ↑ 0.127 0.130 0.132 NA NA NA

3 0.200 0.443 0.695 ≈ 0.279 0.479 0.651 ↓ 0.561 0.804 0.935

4 0.810 0.883 0.964 ≈ 0.731 0.851 0.932 ↓ 0.883 0.947 0.981

DTLZ3 6 0.970 0.992 0.996 ↑ 0.958 0.983 0.991 NA NA NA

8 0.975 0.989 0.992 ≈ 0.972 0.988 0.992 NA NA NA

10 0.959 0.961 0.961 ≈ 0.959 0.960 0.961 NA NA NA

3 0.811 0.887 0.947 ≈ 0.620 0.889 0.938 ↑ 0.630 0.830 0.929

4 0.905 0.972 0.990 ↓ 0.948 0.982 0.990 ↑ 0.824 0.931 0.979

DTLZ4 6 0.356 0.361 0.364 ≈ 0.356 0.363 0.364 NA NA NA

8 0.245 0.245 0.246 ≈ 0.245 0.246 0.246 NA NA NA

10 0.134 0.134 0.134 ≈ 0.134 0.134 0.134 NA NA NA

3 0.728 0.752 0.769 ↑ 0.629 0.678 0.717 ↓ 0.749 0.801 0.829

4 0.795 0.819 0.829 ↑ 0.748 0.772 0.805 ↓ 0.807 0.924 0.974

DTLZ5 6 0.191 0.195 0.197 ↑ 0.172 0.185 0.193 NA NA NA

8 0.087 0.088 0.090 ↑ 0.072 0.084 0.087 NA NA NA

10 0.031 0.031 0.031 ↑ 0.025 0.027 0.030 NA NA NA

3 0.814 0.850 0.874 ↑ 0.477 0.549 0.660 ↑ 0.399 0.423 0.500

4 0.891 0.907 0.932 ↑ 0.668 0.733 0.779 ≈ 0.572 0.978 0.991

DTLZ6 6 0.534 0.550 0.564 ↑ 0.414 0.441 0.478 NA NA NA

8 0.252 0.272 0.288 ↑ 0.202 0.230 0.259 NA NA NA

10 0.069 0.077 0.079 ↑ 0.045 0.066 0.076 NA NA NA

3 0.455 0.467 0.476 ↑ 0.260 0.316 0.347 ↑ 0.186 0.218 0.244

4 0.455 0.483 0.508 ↑ 0.250 0.318 0.377 ↑ 0.109 0.162 0.228

DTLZ7 6 0.465 0.543 0.572 ↑ 0.148 0.294 0.410 NA NA NA

8 0.343 0.416 0.480 ↑ 0.085 0.198 0.344 NA NA NA

10 0.317 0.370 0.440 ↑ 0.036 0.085 0.151 NA NA NA

Table 4: Statistical results for hypervolume on the DTLZ suite obtained by K-RVEA and MOEA/D-
EGO for three objectives. The best results are highlighted

Problem K-RVEA MOEA/D-EGO

min mean max min mean max
DTLZ1 0.319 0.539 0.719 ↑ 0.034 0.151 0.330
DTLZ2 0.881 0.905 0.918 ≈ 0.887 0.905 0.916
DTLZ3 0.200 0.443 0.695 ↑ 0.056 0.117 0.234
DTLZ4 0.811 0.887 0.947 ≈ 0.807 0.872 0.905
DTLZ5 0.728 0.752 0.769 ↓ 0.752 0.766 0.774
DTLZ6 0.814 0.850 0.874 ≈ 0.579 0.737 0.932
DTLZ7 0.455 0.467 0.476 ↑ 0.152 0.280 0.473
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Table 5: Numbers of parameters in WFG problems

k d l

3 8 2
4 4 6
6 4 5
8 2 7
10 2 9

5 Performance on free-radical polymerization of Vinyl ac-

etate

In the free radical polymerization of Vinyl acetate, the main aim is to find the optimal process
conditions to obtain a polymer with specific properties. A high molecular weight is usually linked
with a high melt strength and a low melt flow index [6]. In addition, a homogeneous distribu-
tion of molecular mass polymer is required in short processing time. Polyvinyl acetate has a high
molecular weight and often known as wood glue and processed in a batch reactor. This problem is
computationally expensive and an average computation time for one function evaluation is around
45 minutes. The reason for the high computation time is the slow reaction rate after a certain point
of time which is termed as gelation. For more details about kinetics and a study of multiobjective
optimization for this polymerization, see [5]. In this study, we optimize:

1. maximize average molecular weight Mw,

2. minimize polydispersity index PDI and

3. minimize polymerization time tpoly.

Decision variables or the process conditions are monomer concentration, initiator concentration,
polymerization time and temperature. Bounds for these decision variables are given in Table 10.
We ran this process for 250 function evaluations with K-RVEA, RVEA, ParEGO and MOEA/D-
EGO.

Nondominated solutions from all four algorithms are shown in Figure 1. As can be seen, solutions
from K-RVEA are better distributed than those of RVEA and ParEGO. Solutions from MOEA/D-
EGO are also well distributed but some of them are dominated by those from K-RVEA. To compare
the results statistically, we combined nondominated solutions from all four algorithms and clustered
them into a prefixed number. One individual from each cluster closest to the centroid was selected
and all selected individuals were used as the reference set to calculate IGD values. The IGD values
thus obtained are given in Table 11. As can be seen, K-RVEA was able to obtain of a better quality
solutions than the other algorithms in the given number of function evaluations.

6 Sensitivity analysis of parameters in K-RVEA

We provide sensitivity analysis of three important parameters used in K-RVEA. The first analysis
is for parameter δ used to select individuals based on the needs of convergence and diversity. The
second is for the number of individuals (Nu) to be selected for updating the surrogates. The third
is for the number of generations (wmax) used before updating the surrogates.
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Table 6: Statistical results for IGD values on the WFG suite obtained by K-RVEA, RVEA and
ParEGO. The best results are highlighted

Problem k K-RVEA RVEA ParEGO

min mean max min mean max min mean max

3 1.543 1.842 2.012 ↑ 1.775 2.108 2.394 ≈ 1.697 1.798 2.318

4 0.940 2.113 2.504 ≈ 1.934 2.018 2.225 ≈ 1.982 2.137 2.517

WFG1 6 2.394 2.645 2.958 ↑ 2.683 2.822 3.298 NA NA NA

8 2.699 2.941 3.403 ↑ 2.896 3.074 3.755 NA NA NA

10 2.990 3.255 3.781 ↑ 3.275 3.529 4.162 NA NA NA

3 0.473 0.634 0.808 ↑ 0.595 0.771 0.903 ↑ 0.652 0.777 0.872

4 0.483 0.651 0.903 ↑ 0.601 0.831 1.031 ↑ 0.914 1.098 1.407

WFG2 6 0.497 0.667 1.501 ↑ 0.919 1.191 1.897 NA NA NA

8 0.658 0.947 1.798 ↑ 1.040 1.727 2.940 NA NA NA

10 1.178 1.616 2.133 ↑ 1.595 2.393 3.892 NA NA NA

3 0.442 0.497 0.560 ↑ 0.557 0.681 1.065 ≈ 0.426 0.477 0.568

4 0.226 0.509 0.757 ↑ 0.440 0.621 0.828 ↓ 0.368 0.447 0.512

WFG3 6 0.350 0.668 0.881 ↑ 1.094 1.486 2.572 NA NA NA

8 0.454 0.641 0.836 ↑ 1.218 1.793 2.793 NA NA NA

10 0.581 0.883 1.108 ↑ 1.665 3.465 6.425 NA NA NA

3 0.363 0.566 0.687 ≈ 0.533 0.582 0.657 ≈ 0.509 0.569 0.658

4 0.622 1.064 1.812 ↑ 1.066 1.243 1.527 ↑ 1.175 1.494 2.039

WFG4 6 1.527 1.632 1.852 ↑ 2.289 2.632 3.302 NA NA NA

8 2.749 3.080 3.861 ↑ 4.348 5.275 8.286 NA NA NA

10 4.257 6.790 9.212 ↑ 6.487 7.741 9.607 NA NA NA

3 0.349 0.514 0.630 ↑ 0.589 0.699 0.794 ↑ 0.586 0.684 0.729

4 0.729 0.973 1.180 ↑ 1.016 1.171 1.351 ↑ 1.120 1.301 1.493

WFG5 6 1.630 1.763 1.901 ↑ 2.211 2.357 2.655 NA NA NA

8 2.695 2.955 3.374 ↑ 4.145 4.496 5.106 NA NA NA

10 4.363 5.606 6.743 ↑ 5.895 6.459 7.401 NA NA NA

3 0.688 0.809 0.891 ≈ 0.758 0.841 0.892 ≈ 0.631 0.790 0.942

4 0.814 1.101 1.393 ↑ 1.110 1.253 1.410 ↑ 1.236 1.330 1.418

WFG6 6 1.740 1.921 2.141 ↑ 2.318 2.460 2.802 NA NA NA

8 3.005 3.327 3.693 ↑ 4.107 4.576 5.488 NA NA NA

10 4.953 5.535 6.381 ↑ 5.920 6.414 7.163 NA NA NA

3 0.624 0.669 0.740 ≈ 0.598 0.667 0.729 ≈ 0.563 0.645 0.716

4 0.846 1.291 1.814 ↑ 1.222 1.429 1.910 ↑ 1.377 1.558 1.792

WFG7 6 1.644 1.790 1.958 ↑ 2.381 2.644 3.432 NA NA NA

8 3.071 3.352 3.989 ↑ 4.519 5.045 5.916 NA NA NA

10 5.709 7.240 9.140 ≈ 6.649 7.433 9.046 NA NA NA

3 0.647 0.822 0.934 ↑ 0.802 0.893 0.991 ≈ 0.745 0.843 0.899

4 1.211 1.437 1.614 ↑ 1.561 1.684 1.876 ↑ 1.619 1.786 1.954

WFG8 6 2.073 2.156 2.274 ↑ 2.584 2.818 3.167 NA NA NA

8 3.275 3.491 3.672 ↑ 4.708 5.149 6.108 NA NA NA

10 5.315 5.912 6.525 ↑ 6.269 7.056 7.998 NA NA NA

3 0.453 0.651 0.885 ↑ 0.701 0.822 0.953 ≈ 0.490 0.640 0.869

4 0.693 1.086 1.434 ↑ 1.210 1.349 1.506 ↑ 0.985 1.232 1.448

WFG9 6 1.686 1.949 2.849 ↑ 2.321 2.568 3.352 NA NA NA

8 2.918 3.532 4.353 ↑ 4.259 4.853 5.672 NA NA NA

10 4.469 5.893 7.690 ↑ 6.164 7.209 9.154 NA NA NA
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Table 7: Statistical results for hypervolume on the WFG suite obtained by K-RVEA, RVEA and
ParEGO. The best results are highlighted

Problem k K-RVEA RVEA ParEGO

min mean max min mean max min mean max
3 0.366 0.429 0.478 ↑ 0.352 0.411 0.468 ↑ 0.346 0.393 0.415
4 0.390 0.437 0.469 ≈ 0.437 0.452 0.466 ↑ 0.260 0.321 0.377

WFG1 6 0.337 0.378 0.404 ↑ 0.293 0.345 0.375 NA NA NA
8 0.292 0.327 0.352 ≈ 0.257 0.307 0.438 NA NA NA
10 0.276 0.302 0.334 ↑ 0.219 0.261 0.293 NA NA NA
3 0.732 0.782 0.852 ↑ 0.648 0.694 0.762 ↑ 0.712 0.761 0.806
4 0.650 0.738 0.896 ↑ 0.553 0.673 0.806 ↑ 0.565 0.637 0.695

WFG2 6 0.683 0.845 0.913 ↑ 0.568 0.707 0.817 NA NA NA
8 0.765 0.900 0.941 ↑ 0.383 0.697 0.897 NA NA NA
10 0.661 0.835 0.920 ↑ 0.334 0.666 0.927 NA NA NA
3 0.524 0.564 0.608 ↑ 0.452 0.500 0.541 ≈ 0.568 0.577 0.587
4 0.527 0.569 0.635 ↑ 0.457 0.506 0.543 ≈ 0.539 0.561 0.573

WFG3 6 0.565 0.598 0.667 ↑ 0.448 0.495 0.565 NA NA NA
8 0.632 0.671 0.697 ↑ 0.449 0.528 0.586 NA NA NA
10 0.578 0.612 0.650 ↑ 0.259 0.406 0.481 NA NA NA
3 0.561 0.603 0.662 ↑ 0.527 0.558 0.607 ↑ 0.533 0.577 0.620
4 0.621 0.689 0.725 ↑ 0.432 0.500 0.564 ↑ 0.382 0.468 0.545

WFG4 6 0.660 0.757 0.832 ↑ 0.434 0.555 0.659 NA NA NA
8 0.657 0.767 0.857 ↑ 0.265 0.465 0.586 NA NA NA
10 0.546 0.699 0.815 ↑ 0.362 0.436 0.533 NA NA NA
3 0.530 0.604 0.656 ↑ 0.438 0.479 0.521 ↑ 0.465 0.488 0.538
4 0.560 0.621 0.685 ↑ 0.413 0.459 0.511 ↑ 0.407 0.448 0.522

WFG5 6 0.573 0.675 0.746 ↑ 0.413 0.485 0.552 NA NA NA
8 0.548 0.721 0.782 ↑ 0.317 0.431 0.520 NA NA NA
10 0.542 0.671 0.777 ↑ 0.281 0.402 0.498 NA NA NA
3 0.451 0.490 0.555 ↑ 0.403 0.436 0.478 ↓ 0.520 0.560 0.608
4 0.536 0.665 0.710 ↑ 0.390 0.440 0.509 ↑ 0.428 0.461 0.514

WFG6 6 0.543 0.676 0.774 ↑ 0.400 0.471 0.545 NA NA NA
8 0.647 0.793 0.837 ↑ 0.334 0.442 0.564 NA NA NA
10 0.667 0.749 0.836 ↑ 0.288 0.411 0.542 NA NA NA
3 0.500 0.535 0.582 ↑ 0.487 0.519 0.562 ↓ 0.540 0.578 0.646
4 0.436 0.559 0.661 ↑ 0.379 0.446 0.527 ↑ 0.400 0.434 0.480

WFG7 6 0.603 0.726 0.792 ↑ 0.392 0.484 0.573 NA NA NA
8 0.573 0.703 0.810 ↑ 0.378 0.455 0.564 NA NA NA
10 0.473 0.614 0.704 ↑ 0.318 0.430 0.511 NA NA NA
3 0.491 0.525 0.558 ↑ 0.379 0.426 0.471 ↑ 0.429 0.469 0.531
4 0.456 0.490 0.554 ↑ 0.332 0.371 0.404 ↑ 0.345 0.388 0.438

WFG8 6 0.501 0.540 0.606 ↑ 0.314 0.398 0.478 NA NA NA
8 0.488 0.591 0.684 ↑ 0.271 0.329 0.444 NA NA NA
10 0.444 0.561 0.665 ↑ 0.262 0.326 0.403 NA NA NA
3 0.423 0.523 0.634 ↑ 0.386 0.436 0.507 ↓ 0.463 0.553 0.617
4 0.437 0.512 0.664 ↑ 0.400 0.451 0.507 ≈ 0.420 0.486 0.569

WFG9 6 0.418 0.650 0.751 ↑ 0.394 0.501 0.638 NA NA NA
8 0.544 0.692 0.792 ↑ 0.299 0.456 0.531 NA NA NA
10 0.462 0.633 0.745 ↑ 0.336 0.416 0.534 NA NA NA6



Table 8: Statistical results for IGD values on the WFG suite obtained by K-RVEA and MOEA/D-
EGO for three objectives. The best results are highlighted

Problem K-RVEA MOEA/D-EGO

min mean max min mean max
WFG1 1.543 1.842 2.012 ≈ 1.572 1.975 2.237
WFG2 0.473 0.634 0.808 ≈ 0.504 0.705 0.837
WFG3 0.442 0.497 0.560 ↑ 0.518 0.589 0.659
WFG4 0.363 0.566 0.687 ↑ 0.512 0.555 0.643
WFG5 0.349 0.514 0.630 ↑ 0.607 0.646 0.686
WFG6 0.688 0.809 0.891 ↑ 0.794 0.832 0.872
WFG7 0.624 0.669 0.740 ≈ 0.617 0.653 0.715
WFG8 0.647 0.822 0.934 ≈ 0.787 0.844 0.868
WFG9 0.453 0.651 0.885 ↑ 0.698 0.796 0.851

Table 9: Statistical results for hypervolume on the WFG suite obtained by K-RVEA and MOEA/D-
EGO for three objectives. The best results are highlighted

Problem K-RVEA MOEA/D-EGO

min mean max min mean max
WFG1 0.366 0.429 0.478 ≈ 0.373 0.421 0.498
WFG2 0.732 0.782 0.852 ↑ 0.718 0.751 0.795
WFG3 0.524 0.564 0.608 ≈ 0.517 0.550 0.571
WFG4 0.561 0.603 0.662 ↑ 0.517 0.559 0.591
WFG5 0.530 0.604 0.656 ↑ 0.478 0.525 0.572
WFG6 0.451 0.490 0.555 ≈ 0.455 0.463 0.467
WFG7 0.500 0.535 0.582 ≈ 0.522 0.536 0.558
WFG8 0.491 0.525 0.558 ↑ 0.443 0.451 0.459
WFG9 0.423 0.523 0.634 ↑ 0.428 0.456 0.496

Table 10: Bounds for decision variables

Lower bound Upper bound

Monomer concentration (mole/lt) 10 14
Initiator concentration (mole/lt) 3.00e-05 1.50e-04
Polymerization time (sec) 10 10000
Temperature (C) 60 80
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Figure 1: Nondominated solutions from K-RVEA, RVEA, ParEGO and MOEA/D-EGO

Table 11: IGD values obtained with K-RVEA, RVEA and ParEGO

K-RVEA RVEA ParEGO MOEA/D-EGO
IGD 2.338e+04 3.395e+05 7.4873e+05 4.0836e+04

6.1 Effect of parameter δ

The parameter δ is effective whenever surrogates are updated. The main motivation for using δ is to
reduce the number of empty reference vectors by exploiting the uncertainty information from Kriging
models. In K-RVEA, when updating surrogates, the change in the number of empty reference vectors
is measured from the previous update and if this change is more than δ, uncertainty is used. In other
words, whenever surrogates are updated based on the uncertainty, the number of empty reference
vectors is reduced. An increase in the value of δ will decrease the frequency of using uncertainty or
decreasing the use of uncertainty from Kriging models will increase the number of empty reference
vectors. To elaborate, we used different values of δ i.e. (0.05, 0.3, 0.5, 0.7, 1) × N, where N is
the number of reference vectors used and measured the number of times uncertainty from Kriging
models was used. Results on WFG1 with different numbers of objectives are provided in the first
row of Figure 2, where NK denotes the frequency of using uncertainty. As can be seen, the increase
in the value of δ decreases the frequency of using uncertainty from the Kriging models.

To see the effect on the reference vectors, we measured the change in the number of empty
reference vectors (denoted by NR) whenever uncertainty was used. The Results are given in the
second row of Figure 2 which shows the average change in the number of empty reference vectors
(denoted by NR in the figure). For instance, if surrogates were updated with uncertainty five times
in the solution process and the change in the number of empty reference vectors was (5, 10, 3, 1, 1),
the average i.e. four is shown. Moreover, no change was observed at δ = 1 because surrogates were
never updated using uncertainty information. In addition, the change was always a positive integer
whenever uncertainty information was used, which indicates that the number of empty reference
vectors decreased.

To see the effect of δ on the performance of the algorithm, we also measured the hypervolume
for different numbers of objectives and present the results in Figure 3. As can be seen, hypervolume
decreases with the increase in the value of δ. This is due to the fact that the frequency of using
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Figure 2: Effect of parameter δ used in K-RVEA on the frequency of using uncertainty information
and changes in the number of empty reference vectors
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Figure 4: Performance of K-RVEA on WFG9 with the different numbers of individuals to be used
for updating the surrogates

uncertainty information from Kriging models decreases with the increase in the value of δ. We also
observed the similar behavior for other problems. In addition, the effect of the parameter δ depends
on the number of reference vectors and the problem solved. Using δ in an adaptive way is a future
research topic, however, in the current study, we kept it fixed as 0.05 ×N .

6.2 Effect of the number of individuals to be selected to update surrogates

In K-RVEA, surrogates need to be updated by selecting some individuals for re-evaluation using
the original functions. These individuals should be selected in such a way that both convergence
and diversity are taken into account. The number of individuals to be selected can be important
and mainly depends on the problem solved. We performed a sensitivity analysis with numbers 2, 5,
10, 20 and 30 on the problem WFG9 for different numbers of objectives and the results are given
in Figure 4. As can be seen, for up to eight objectives, an increase in the number of individuals
(denoted by Nu) decreased the performance of the algorithm. In contrast, with 10 objectives, the
performance was improved with an increase in the number.

As the total number of function evaluations is set as a constant, increasing the number of individ-
uals for updating the surrogate will decrease the frequency of updating the surrogates. For instance,
if the total number of function evaluations is 300 and the numbers of individuals for updating the
surrogates are 2 and 10, then surrogates are updated 150 and 30 times, respectively. In other words,
the number of times surrogates are used with an evolutionary algorithm is bigger in case of a low
number of individuals. Using a low number of individuals thus may be helpful to achieve a good
approximation of the Pareto front. On the other hand, a low number may not be enough and in-
dividuals selected do not necessarily contribute to the performance of the surrogates. In contrast,
using a high number will reduce the frequency of using surrogates with an evolutionary algorithm
and may be helpful to improve the performance of the surrogates. Therefore, this parameter depends
on the type of problem solved and should be adaptive. However, in this paper we kept it fixed as
five.

6.3 Effect of the number of generations before updating the surrogate

The frequency of updating the surrogate or when to update the surrogate is very important in
surrogate management, although, unfortunately, there is no solid theory for when to update the
surrogates. We, therefore, present here empirical studies on the performance of K-RVEA given
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Figure 5: Performance of K-RVEA on DTLZ4 with the prefixed number of generations taken before
updating the surrogate for different numbers of function evaluations.

different prefixed numbers of generations (wmax) before the Kriging models are re-trained. We set
wmax = {10, 20, . . . , 100}. The IGD values of the solution sets obtained by K-RVEA with these
different settings for solving DTLZ4 for 3, 4, 6, 8 and 10 objectives are shown in Figure 5. Note that
the maximum number of function evaluations is set to 300. However, we examine the performance
of K-RVEA for various numbers of function evaluations, which are chosen to be 150, 200, 250, and
300. As can be seen, the performance changes more dramatically with three or four objectives.
Nevertheless, there is no clear trend in the change of performance with the change of the number of
generations before updating the surrogate. However, consistently good performance is observed for
different numners of objectives when this number is set to 20. Although a better performance might
be obtained when the number of generations before updating the surrogate is adapted, we set it to
20 in this work.
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