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The surrogate-based recurrence framework (SBRF) approach to reduced-order nonlin-
ear unsteady aerodynamic modeling associated with pitching/plunging airfoils subject to
fixed or time-varying freestream Mach numbers is described. Using full-order solutions
generated by the OVERFLOW CFD code, the SBRF reduced-order modeling approach
is shown to effectively mimic full-order solutions of unsteady lift, moment, and drag un-
der dynamic stall conditions, but at a fraction of the computational cost. In addition to
accounting for realistic helicopter rotor blade dynamics, it is shown that the SBRF can
model advancing rotor blade stall due to shock induced separation, as well as retreating
blade stall associated with excessive angles of attack. Therefore, the SBRF reduced-order
modeling approach is ideally suited for a variety of aeroelasticity and active/passive de-
sign optimization studies that require high fidelity aerodynamic response solutions with
minimal computational expense.

Nomenclature

a Speed of sound
b Airfoil semi-chord
C

l
, C

m
, C

d
Airfoil lift, moment, and drag coefficients

E(j) Error for the jth test case
fx Vector of basis functions associated with assumed polynomials in kriging
F Matrix of basis functions associated with assumed polynomials in kriging
Gq, Gy State transition function and state-to-output mapping function respectively
h Airfoil plunge degree of freedom
h̄ Oscillatory plunge amplitude
k

1
Reduced frequency corresponding to 1/rev

k
θ

Reduced pitch frequency
k

h
Reduced plunge frequency

L Likelihood function used in kriging interpolation
m, n Number of previous time steps required to account for time history effects (see Eq. 4)
M Freestream Mach number
M̄ Time-varying Mach number amplitude
M0 Mean value of time-varying Mach number
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Nsp Number of sample points
N

T
Number of training cases

Nt Total number of time steps for a test case
Nx Number of input variables
Nbasis Number of basis functions associated with assumed polynomials in kriging
pk Fitting parameters in kriging
q Dynamical system state vector
r Non-dimensional rotor blade radial location
rkrg(x) Spatial correlation vector in kriging
R Rotor radius
Rkrg Spatial correlation matrix used in kriging
Rkrg(·) Spatial correlation function in kriging
t0, tf Initial and final time associated with CFD training cases
u Vector of external inputs
V0 Mean value of freestream velocity
y Output of interest
ŷ Surrogate approximation of output of interest
y(j)

max
, y(j)

min
Maximum and minimum values of the exact response for the jth test case

Z(x) Stochastic process in kriging
αeff Effective angle of attack (see Eq. (38))
Φ Nonlinear mapping function
Φ̂ Surrogate mapping function
Φ̂qs Quasi-steady mapping function used for SBRF initialization
λ Ratio between M0 and M̄
µ Advance ratio
ω

1
Oscillatory frequency corresponding to 1/rev

ω
θ

Higher harmonic pitch frequency
ω

h
Oscillatory plunge frequency

Ω Rotational speed of the rotor
θ Airfoil pitch angle
θG Geometric pitch angle
θ1 Pitch amplitude corresponding to 1/rev harmonic
θ̄ Higher harmonic pitch amplitude

I. Introduction

Dynamic stall is a strongly nonlinear unsteady aerodynamic phenomenon characterized by time-dependant
separation and reattachment of the flow.1,2 The effects of this flow nonlinearity are critical in rotary-wing
aeroelasticity applications in which dynamic stall can induce stall flutter3 and excessive vibratory loads that
limit a helicopter’s top speed and payload capacity.4 Currently, helicopter operational and performance
boundaries must be constrained in order to avoid such adverse phenomena. Overcoming these limitations
in the next generation of helicopter rotor designs will require active flow control and design optimization
approaches that alleviate stall effects. Therefore, development of accurate dynamic stall models that are
sufficiently efficient so as to be useful for computational aeroelasticity and active/passive design studies are
required.

Typically, semi-empirical dynamic stall models are used in comprehensive rotor blade analysis codes due
to their computational efficiency. The capabilities and limitations of several semi-empirical models employed
in rotor blade analyses are described in Ref. 2. The most popular dynamic stall models are the 2-D ONERA
model5,6 and the 2-D Leishman-Beddoes model.2,7 As with all semi-empirical approaches, these models
exhibit substantial deficiencies when analyzing different airfoils and/or arbitrary flow conditions for which
experimental data is not available. The inability to accurately model 3-D effects such as swept flow is
another important limitation associated with 2-D semi-empirical models.6 Furthermore, the ONERA and
Leishman-Beddoes models are based on somewhat ad-hoc separation and reattachment criteria, and minor
changes in these criteria can produce significant differences in aeroelastic response calculations.

Due to the limited applicability of semi-empirical approaches for modeling new rotor designs under
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arbitrary flow conditions, several ongoing research efforts are currently directed toward development of
Computational Fluid Dynamics (CFD) methods for improved dynamic stall modeling.8 Although further
development of CFD based dynamic stall models is required,9 CFD has been shown to result in significant
improvements compared to semi-empirical models.8,10 A significant advantage facilitated by CFD methods
is the ability to incorporate 3-D effects. Furthermore, CFD holds the potential for modeling active stall
control methodologies – such as variable-droop leading edge airfoils,11,12 trailing edge flaps,13 and synthetic
jets14 – for which insufficient experimental data is available for empirical model development.

In order to fully assess the potential of active flow control and new rotor designs for alleviating dynamic
stall effects, the improved fidelity afforded by CFD methods must be incorporated into comprehensive rotor
blade analysis codes that are coupled with closed-loop control and design optimization frameworks. Al-
though CFD based approaches have emerged as the most promising means of high-fidelity dynamic stall
modeling, the excessive computational expense of such methods prevents their use in a variety of compu-
tational aeroelasticity and design optimization studies. Therefore, reduced-order models that retain the
fidelity associated with CFD while exhibiting the computational efficiency of semi-empirical models must be
developed. Reduced-order aerodynamic modeling refers to computationally efficient approximations of CFD
results generated by extracting information from a limited number of full-order (CFD) solutions. Examples of
such approaches include proper orthogonal decomposition (POD),15,16 Volterra series,15,17,18 and surrogate
based approaches.19–23 A major advantage of reduced-order modeling compared to empirical approaches is
that the reduced-order models can be easily upgraded as the CFD solvers from which they are generated
continue to improve.

Until recently, a nonlinear reduced-order modeling approach with the capabilities required for rotary-wing
aeroelasticity computations had not been developed. In Ref. 24, the Surrogate Based Recurrence Framework
(SBRF) approach to reduced-order aerodynamic modeling was introduced. It was shown in Ref. 24 that
the SBRF method results in a time domain, fully unsteady model that accounts for flow nonlinearities,
simultaneous pitch/plunge airfoil motions, and time-varying freestream Mach numbers. Furthermore, the
SBRF approach resulted in an accurate reduced-order model when constructed with less than half of the
CFD solutions utilized by a POD based model described in the literature.25 Therefore, the SBRF approach
is suitable for rotor blade analysis and has been shown to compare favorably with existing reduced-order
modeling methods. However, the study described in Ref. 24 was limited to transonic flow nonlinearities and
simplified airfoil motions that are not representative of realistic helicopter rotor blade kinematics. Therefore,
the objective of this study is to demonstrate the effectiveness of the SBRF approach for reduced-order
dynamic stall modeling associated with airfoil motions representative of helicopter rotor blade dynamics. It is
important to note that while the complex rotary-wing aerodynamic environment motivated the development
of the model described in this paper, the approach is general and can be used in a variety of engineering
applications involving nonlinear unsteady aerodynamics.

II. Surrogate Based Reduced-Order Model

Surrogates refer to computationally efficient approximations of expensive functions that are constructed
by interpolating fitting data in the form of input/output combinations generated from a limited number of
full-order computations.26–28 Once constructed, a surrogate is used in place of the expensive full-order anal-
ysis in order to predict at inputs that were not included in the initial set of fitting points. Typical surrogate
prediction times are on the order of a fraction of a second, and therefore surrogates are ideal for reduced-
order modeling. Although generating the fitting data may require significant computational resources, this
initial cost is generally much less than computing repeated solutions from the expensive full-order analy-
sis. Therefore, surrogate based approaches are appropriate for applications that entail numerous full-order
analysis evaluations which would otherwise be unaffordable. A variety of computational aeroelasticity and
design optimization applications involving CFD fall under this category.

In this study, CFD solutions for unsteady lift, moment, and drag due to an arbitrary airfoil motion
represent the full-order analysis which is to be replaced by surrogates. The methodology for generating and
utilizing the surrogates for time domain predictions are described next.
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Figure 1. Airfoil pitch and plunge degrees of freedom with time-varying freestream Mach number

II.A. Dynamical System Representation of the Input/Output Relationship

The input/output relationship that is to be approximated by a surrogate model can be identified by formu-
lating unsteady aerodynamic responses as dynamical systems; i.e. systems in which the output at any time
t is not only a function of the instantaneous input at t, but is also a function of the input time history. A
general representation of a nonlinear time-invariant discrete time dynamical system is given by29–32

q(t) = Gq (q(t − ∆t),u(t − ∆t)),

y(t) = Gy (q(t)) (1)

in which q is a vector containing the system states, u is the vector of external inputs to the system, Gq is
the one-step-ahead state transition function, y(t) is the output of interest at some instant in time t, and Gy

is a function that maps the system states to the output.
In the context of unsteady aerodynamic modeling, the nonlinear system of equations described by Eq. (1)

represents the discretized Navier-Stokes equations associated with CFD solvers. The state vector q consists
of the flow states associated with the Navier-Stokes equations (i.e. density, velocity components, and energy)
at each grid point in the spatially discretized computational domain. Therefore, the size of the state vector
is proportional to the number of grid points and represents the order of the full-order model. Furthermore,

y(t) ≡ C
l
(t), C

m
(t), or C

d
(t) (2)

where C
l
(t), C

m
(t), and C

d
(t) are the unsteady airfoil lift, moment, and drag coefficients respectively. The

relevant external inputs are

u(t) ≡
[

θ(t) θ̇(t) θ̈(t) ḣ(t) ḧ(t) M(t) Ṁ(t)
]

. (3)

As shown in Fig. 1, θ(t), h(t), and M(t) are the instantaneous pitch angle, plunge displacement, and

freestream Mach number respectively. Time derivatives are denoted by (̇) ≡ ∂()
∂t

and (̈) ≡ ∂2()
∂t2

. The inputs
in Eq. (3) were selected because it is known from linear aerodynamic theories that unsteady lift and moment
are functions of these quantities,33 including Ṁ when modeling time-varying Mach numbers34 (which is a
requirement for rotary-wing applications).

Equation (1)represents the computationally expensive full-order system which we seek to replace with a
surrogate based reduced-order model. In order to generate a computationally efficient approximation of y(t)
using surrogate modeling, the dynamical system of interest must be replaced by an equivalent input/output
functional relationship such that y(t) corresponding to any input time history can be obtained without
solving the nonlinear system of equations described by Eq. (1). It has been shown in Refs. 29–31 that when
q is comprised of a finite number of states, the input/output relationship given by Eq. (4) is equivalent to
the nonlinear system described by Eq. (1).

y(t) = Φ (u(t),u(t − ∆t), . . . ,u(t − m∆t), y(t − ∆t), . . . , y(t − n∆t)) (4)
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In Eq. (4), Φ is a function – possibly nonlinear – that maps the inputs to the output, and m and n are
integers representing the number of previous external inputs and outputs required to account for time history
effects. Selection of m and n is discussed in Section IV. Equation (4) is commonly referred to as a NARMAX
(Nonlinear Auto Regressive Moving Average with eXogeneous inputs) model.29,31,32,35,36

It is important to note that the derivations described in Refs. 29 and 30 guarantee the validity of Eq. (4)
only in the vicinity of an equilibrium state. An equilibrium state q0 is a state in which the system is at
rest for an input sequence that has a constant value u0; i.e. y(t) is constant for all t when q = q0 and
u(t) = u0. Therefore, according to Refs. 29 and 30, Eq. (4) is only guaranteed to be valid in the vicinity of
u0. However, it was shown in Ref. 31 that Eq. (4) can also be used to describe a globally valid input/output
relationship, and thus Eq. (4) is not restricted to modeling systems for u(t) close to u0. The globally valid
model described in Ref. 31 is characterized by increased values of m and n required to capture time history
effects compared to the locally valid model described in Refs. 29 and 30.

II.B. Approximation of the Nonlinear Mapping Function

Although Eq. (4) provides a qualitative representation of the input/output relationship associated with a
nonlinear dynamical system, it is of little practical use for modeling unsteady aerodynamic responses because
a closed-form expression for Φ is not available. However, Φ can be numerically evaluated, or sampled, by
employing CFD as a black-box function that calculates lift, moment, and drag for a given airfoil motion
time history. A surrogate mapping function Φ̂ can then be constructed by interpolating the sample data.
Once constructed, the computationally efficient surrogate can be used to replace the full-order function Φ.
When modeling dynamical systems, the process of approximating the unknown function Φ is also referred to
as system identification.32 The steps for generating the surrogate mapping function are summarized below,
and additional details for each step are provided in the following subsections.

1. Use design of experiment (DOE) methods27,37 to select a limited number of training cases at which to
conduct CFD simulations. Each training case consists of an airfoil undergoing simultaneous pitch/plunge
oscillations, with either a fixed freestream Mach number, or time-varying Mach numbers if the surrogate
is to be used for rotary-wing applications.

2. Generate aerodynamic response data for each training case using CFD, and then extract time domain
sample data of the form dictated by Eq. (4) from the results. Each training case can be computed
simultaneously using multiple processors. Therefore the time required to generate the initial fitting
data can be decreased significantly through the use of parallel computation.

3. Construct a surrogate mapping function Φ̂ from the sampled data by employing kriging interpola-
tion,38,39 which is a method well suited for approximating nonlinear functions.

II.B.1. Selection of the Training Cases (DOE)

In order to generate the input/output combinations required for interpolation, the unsteady aerodynamic
responses corresponding to a limited number of training cases are obtained from CFD simulations. The
training cases should be representative of the application for which the surrogate will be used. For instance,
the training motions considered in this study correspond to simultaneous pitch/plunge oscillations with
time-varying freestream Mach numbers since these cases are representative of those encountered in rotary-
wing aeroelasticity. The airfoil oscillations and time-varying Mach numbers used for training are defined by
Eqs. (5) – (7).

θ(t) = θG − θ1 sin (ω
1
t) + θ̄ sin (ω

θ
t) (5)

h(t) = h̄ cos (ω
h
t) (6)

M(t) = M0 + M̄ sin (ω
1
t) (7)

In Eq. (5), θG is the geometric pitch angle consisting of collective pitch and built-in twist components.
The cyclic pitch inputs required for trim are represented by the oscillatory amplitude θ1 and the oscillatory
frequency ω

1
which corresponds to one period per revolution of the blade (i.e. 1/rev). Note that including

a 1/rev cosine component representative of cyclic pitch4 is not expected to be important for the purposes of

5 of 24

American Institute of Aeronautics and Astronautics



R

rR

Ω

Figure 2. Typical rotor blade configuration.

constructing a surrogate. This is because the sum of a cosine and sine term of the same frequency can be
written as an equivalent sine term, i.e:

A cos (ωt) + B sin (ωt) =
√

(A2 + B2) sin (ωt + φ) , tanφ = A/B . (8)

The amplitude θ1 in Eq. (5) accounts for the resultant amplitude
√

(A2 + B2), and as shown in Ref. 24, a
surrogate trained on harmonic airfoil motions with φ = 0 can generate accurate predictions for harmonic
external inputs with arbitrary values of φ. This is because a sufficiently space-filling set of θ, θ̇, and θ̈ can
be generated with φ = 0 such that the resulting surrogate can accurately predict at arbitrary pitch inputs
corresponding to any φ.24 Therefore, including a 1/rev cosine term, or φ, in Eq. (5) is not expected to
significantly contribute to the reduced-order model’s accuracy. The final term in Eq. (5) accounts for higher
harmonic pitch oscillations (i.e. ω

θ
> 1/rev) representative of elastic twist deformation.

Equation (7) is representative of the time-varying freestream Mach numbers associated with a helicopter
rotor blade during forward flight.2 For a typical rotor blade depicted in Fig. 2, with rotational velocity Ω
and radius R, the Mach number at the blade tip in hover (i.e. zero forward flight velocity) is given by

MΩR =
ΩR

a
. (9)

The mean value and oscillatory amplitude in Eq. (7) are

M0 = rMΩR, (10)

and
M̄ = µMΩR, (11)

where µ is referred to as the advance ratio and is defined as the component of the forward flight velocity
parallel to the hub plane of the rotor normalized by ΩR.

The oscillatory frequencies in Eqs. (5) – (7) are given by

ω
θ

=
k

θ
V0

b
, ω

h
=

k
h
V0

b
, ω

1
=

k
1
V0

b
(12)

where
V0 = aM0, (13)

Furthermore,
ω

1
= Ω, (14)

which gives

k
1

=
Ωb

aM0
=

Ωb

a rMΩR

=
b

Rr
. (15)

Note that the unsteady aerodynamic loading is typically only modeled for r > 0.15 in helicopter applications
since the loads near the hub are relatively insignificant and their effects on the aeroelastic response of the
blade can be neglected. Therefore, for given values of the non-dimensional airfoil semi-chord b/R and MΩR,

6 of 24

American Institute of Aeronautics and Astronautics



Figure 3. Conventional LH vs. optimal LH in 2-dimensional parameter space

a single training case given by Eqs. (5) – (7) is defined by 8 independent parameters: (θG, θ1, θ̄, kθ
, h̄, k

h
, r, µ).

Design of experiment (DOE) methods26,27 are used to select N
T

initial training cases at which to conduct
CFD simulations. Each training case in the DOE consists of different combinations of the 8 independent
parameters. When the initial data set is produced by a deterministic computer code, as opposed to a
physical experiment or stochastic analysis, a given input will always yield the same output because there
is no measurement error or other random sources of noise. Under these conditions, the DOE need only be
space-filling37,40 so that all regions of the input parameter space are sampled.

A commonly used space-filling design is Latin hypercube sampling (LHS).41 In LHS, each input parameter
is partitioned into N

T
equally spaced sections. Each input parameter is sampled once in each section,

resulting in a column vector containing N
T

different values of the input parameter. The column vectors for
each input parameter are arranged side by side into a matrix and the components of the vectors are then
randomly reordered. The resulting matrix is known as a Latin hypercube. Since there are 8 independent
parameters in this study, each hypercube is a N

T
× 8 matrix, in which each row corresponds to a different

training case defined by the 8 input parameters. A major disadvantage of LHS is that training cases can
cluster together due to the random combination of input parameters associated with each row of the Latin
hypercube. To prevent this, optimal Latin hypercube (OLH) sampling is used in this study to ensure a more
uniform (or space-filling) design of experiment. Optimal Latin hypercube sampling creates a more uniform
design than conventional LHS by maximizing a spreading criteria, rather than randomly combining input
parameters. Figure 3 illustrates the difference between a conventional Latin hypercube and an optimal Latin
hypercube for a 2-dimensional parameter space. In this study, the OLH algorithm from the iSIGHT software
package was used.42,43

II.B.2. Extract Time Domain Sample Data

For each training case, CFD is used to obtain time domain aerodynamic response data from t0 to tf , in
increments of ∆t. The sampled outputs and the corresponding inputs required to construct the surrogate
mapping function Φ̂ are obtained from the CFD results. In this study, sample data from each training case
is obtained for one rotor blade revolution, i.e.

tf − t0 =
2π

ω
1

(16)

From Eq. (4), the vector of inputs corresponding to a sampled output y(t) is given by

x(t) = [uj(t) uj(t − ∆t) . . . uj(t − m∆t) yj(t − ∆t) . . . yj(t − n∆t] for j = 1, 2, . . . , NT (17)

where yj and uj correspond to the jth training case and are given by Eqs. (2) and (3), and x is a vector of
size Nx = 7(m+1)+n, where the factor of 7 is due to the size of the external input vector given by Eq. (3).

For every training case in the OLH, fitting data of the form (x, y) is available at discrete time instants t,
for (t0 +max [m, n] ∆t) ≤ t ≤ tf . At time t of the jth test case, uj(t), uj(t−∆t), . . . , uj(t−m∆t) are known
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from the prescribed motions defined by Eqs 5 – 7, and the responses yj(t), yj(t − ∆t), . . . , yj(t − n∆t) are
obtained from the CFD results. The sample data obtained from each of the N

T
training cases are combined

into a single data set consisting of Nsp total sample points, i.e. (x(i), y(i)) for i = 1, 2, . . . , Nsp. Note that
generating the sample data can be expedited by using parallel computation since multiple training cases in
the OLH can be simulated simultaneously.

II.B.3. Construct Surrogate Mapping Function (Kriging Interpolation)

The next step in constructing the reduced-order aerodynamic model is to approximate the nonlinear mapping
function by interpolating the sampled data. The resulting surrogate mapping function, Φ̂, is used in place of
the exact function in order to approximate full-order unsteady airload predictions corresponding to arbitrary
inputs. In order to be useful for modeling nonlinear flow effects, the interpolation method must be well
suited to approximating nonlinear functions and should not require a priori assumptions on the form of the
function that is to be approximated. Kriging interpolation38,39 satisfies these conditions and is therefore
used to generate the surrogate mapping functions in this study.

In kriging, the unknown function of interest, Φ(x), is assumed to be a random variable of the form

Φ(x) = f(x) + Z(x) (18)

where f(x) is an assumed function (usually a low-order polynomial) and Z(x) is a stochastic (random)
process which is assumed to be Gaussian with zero mean and variance σ2

var. The regression model f(x)
can be thought of as a globally valid trend function, while Z(x) accounts for local deviations from f(x)
which ensure that the kriging model interpolates the sample points exactly. The local deviations dictated
by the sample points enable the kriging predictor to approximate nonlinear behavior regardless of the exact
function’s form. Note that although Φ(x) is deterministic, rather than the stochastic process assumed in
Eq. (18), kriging interpolation is still applicable. The assumption that Φ(x) is a random process is made
because the deviation from the regression model can resemble a realization of a stochastic process.38

The covariance matrix of Z(x), which is a measure of how strongly correlated two points are, is given by

Cov[Z(x(i)), Z(x(j))] = σ2
varRkrg (19)

where each element of the Nsp × Nsp correlation matrix Rkrg is given by

(Rkrg)ij = Rkrg(x
(i),x(j)) (20)

and Rkrg is a user defined spatial correlation function (SCF). In this study,

Rkrg(x
(i),x(j)) =

Nx
∏

k=1

max
[

0, 1 − pk|x
(i)
k − x

(j)
k |

]

, (21)

where x
(i)
k is the kth component of the ith sample input given by Eq. (17). This SCF was selected because the

resulting correlation matrices were not ill-conditioned, which is an issue that may arise with kriging.39 As

two points move closer to each other, |x
(i)
k −x

(j)
k | → 0, and Eq. (21) approaches unity which is the maximum

value of the SCF. Therefore, the SCF recovers the intuitive property that the closer two points are to each
other, the greater the correlation between the points.

The fitting parameters pk are unknown correlation parameters which need to be determined. In order to
determine these parameters, the form of f(x) needs to be chosen. In this study, f(x) is assumed to be a 2nd

order polynomial given by
f(x) = fT

x βββ (22)

where fT
x is a 1 × Nbasis vector, Nbasis is the number of basis functions associated with the 2nd order

polynomial, and β is a Nbasis × 1 vector of coefficients. Similarly, F(x) can be defined as an Nsp × Nbasis

matrix where the ith row corresponds to the evaluation of the Nbasis functions at the ith sample point.
In order to find pk, the generalized least square estimates of βββ and σ2

var, denoted by β̂ββ and σ̂2
var respec-

tively, are employed:38,39

β̂ββ = (FT(Rkrg)
−1F)−1FT(Rkrg)

−1y (23)
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and

σ̂2
var =

(y − Fβ̂ββ)T(Rkrg)
−1(y − Fβ̂ββ)

Nsp

(24)

where y is a Nsp × 1 vector of observed function outputs at the sampled inputs

With σ̂2
var and β̂ββ known, pk are found such that a likelihood function is maximized.39,44 The likelihood

function, given in Eq. 25, represents the probability that the stochastic process Φ(x) produced the sampled
data points in y. Since the stochastic process associated with kriging has been assumed to be Gaussian, one
seeks the set pk that maximizes the probability that the sample points have been drawn from a Gaussian
process.

L(y, pk) = −
Nsp ln(σ̂2

var) + ln |Rkrg|

2
(25)

The maximum likelihood estimates (MLE’s) of pk represent the fitting parameters that are most consistent
with the sampled data. Any values of pk would result in a surrogate which interpolates the sample points
exactly, but the “best” kriging surrogate is found by maximizing the likelihood function.

With all parameters known, the kriging approximation of a function Φ(x) is given by38

Φ̂(x) = fT
x β̂ββ + rT

krg(x)(Rkrg)
−1(y − Fβ̂ββ) (26)

where

rkrg(x) =
[

Rkrg(x,x(1)), Rkrg(x,x(2)), . . . , Rkrg(x,x(Nsp))
]T

. (27)

The column vector rkrg(x) of length Nsp is the correlation vector between an arbitrary prediction point x
and the sampled inputs, x(1), ... , x(Nsp). The kriging predictor given by Eq. (26) represents the optimal
predictor in the sense that, among all admissible predictors, Eq. (26) results in the minimum mean square
error with respect to the assumed stochastic process Φ(x).38 Note that although the kriging predictor is
derived as an approximation to a stochastic process, Eq. (26) is a deterministic function. Therefore, kriging
has been used extensively in approximating deterministic computer models.39 The kriging surrogates were
created with a freely available MATLAB toolbox,45 and the DIRECT optimization algorithm46,47 was used
to conduct a global search for the maximum likelihood parameter estimates.

II.C. Time Domain Predictions Using a Surrogate Based Recurrence Framework

The surrogate mapping function can be used for discrete time domain predictions when provided with
arbitrary instances of the input vector x(t) given by Eq. (17). However, n components of x correspond to
previous values of the unsteady aerodynamic response, which will not be known for arbitrary inputs. Only
the surrogate’s approximation of the previous responses will be available. Therefore, an approximate input
vector, x̂, consisting of the surrogate’s predictions of the previous responses must be used in order to obtain
predictions at an arbitrary input. The approximate input vector is

x̂(t) = [u(t) u(t − ∆t) . . . u(t − m∆t) ŷ(t − ∆t) . . . ŷ(t − n∆t)] , (28)

where the approximate previous responses ŷ are obtained from the surrogate’s predictions at previous time
steps. The development of the reduced-order aerodynamic model is completed by utilizing the surrogate
mapping function within the recurrence framework depicted in Fig. 4. The term “recurrence” refers to the
property that the approximate solutions, ŷ, are fed back and used as inputs to Φ̂ for the prediction at
the current time. Therefore, the approximate aerodynamic responses obtained from the surrogate based
recurrence framework (SBRF) can be written as

ŷ(t) = Φ̂(x̂(t)). (29)

The process depicted in Fig. 4 is marched forward in increments of ∆t until the approximate solution at
some final time is obtained. Note that guesses for the n previous responses are needed to initialize the SBRF.
However, as shown in Ref. 24, the accuracy of the initial guesses is not critical since the initial transients
in the SBRF’s predictions die out as time is marched forward. In summary, the SBRF accounts for time
history effects associated with unsteady flows by employing a recurrence solution methodology, while flow
nonlinearities are modeled by utilizing a kriging approximation of the full-order mapping function.
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Figure 4. Surrogate based recurrence framework (SBRF).

III. CFD Solvers

In this study, the full-order aerodynamic solutions were generated by the compressible Navier-Stokes CFD
code OVERFLOW version 2.0y, as modified during the DARPA Helicopter Quieting Program.48 Additional
CFD results based on the commercially available code CFD++49,50 developed by METACOMP Technologies
were used to validate the implementation of OVERFLOW for the required combined airfoil and freestream
Mach number oscillations. Brief descriptions of the two CFD solvers are provided next.

III.A. OVERFLOW

The OVERFLOW code, originally developed by NASA, uses overset structured grids and has been validated
for a wide variety of problems by academia, government, and industry for studies in dynamic stall,11 fixed
wing,51 rotary wing,52 and spacecraft applications.53 The Spalart-Allmaras and Kinetic Eddy Simulation
(KES)54 turbulence models were used with 4th order central differencing in this study. The near body grid
was created using Chimera Grid Tools.55 The grid is of dimensions 295 × 41 in the chordwise and normal
direction as illustrated in Fig. 5(a). The normal direction has initial spacing of y+ less than one for the
maximum Reynolds number considered, and a total normal spacing of half a chord. The complex airfoil
motion is created using the XML interface.56 The freestream velocity was set to correspond to the mean
Mach number from rotor rotation (M0). The azimuthal variation in velocity (M̄) was modeled by translating
the airfoil in a sinusoidal fashion. For each main cycle of motion, 17500 time steps were used with 8 Newton
sub-iterations to achieve 2nd order accuracy in time. The location of the level one off body grid was adapted
every 250 time steps to the airfoil motion. The total number of grid points varied during the airfoil motion
computations, with a mean value of the variation corresponding to approximately 150000 points.

III.B. CFD++

The CFD++ code is capable of solving the compressible unsteady Reynolds-Averaged Navier-Stokes equa-
tions. It uses a unified grid methodology that can handle a variety of structured, unstructured, multi-block
meshes and cell types, including patched and overset grid features. Spatial discretization of the Navier-Stokes
equations is based on a second order multi-dimensional Total Variation Diminishing (TVD) scheme.57 For
temporal discretization an implicit algorithm with dual time-stepping and multigrid acceleration is used.
Dual time-stepping schemes are constructed by appending a pseudo time derivative term and using subit-
erations for improved accuracy. Multigrid acceleration employs a hierarchy of coarsening grids to speed the
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(a) OVERFLOW Grid (b) CFD++ Grid.

Figure 5. Computational grids used for OVERFLOW and CFD++ calculations.

convergence. Several turbulence models are available in CFD++, ranging from 1-equation to 3-equation
transport models.

All CFD++ computations are carried out by solving RANS equations and assuming fully turbulent flow.
The computational domain is a C-grid, as shown in Fig. 5(b), with the far field boundary extending to 50
chord lengths in all directions. A distance of 30 – 50 chord lengths is typically used in order to minimize
the effects of numerical reflection from the far field boundary. The grids are clustered at the airfoil wall
boundaries such that the dimensionless distance y+ of the first grid point off the wall is less than 1 and
the equations are directly solved to the walls without assuming any wall functions. The Spalart-Allmaras
turbulence model is used in all CFD++ computations.

IV. Results

The effectiveness of the SBRF approach is demonstrated by comparing against full-order CFD predictions
for unsteady lift, moment, and drag coefficients associated with oscillating airfoils subject to fixed and time-
varying freestream Mach numbers. In this study, m = 0 and n = 2 were used for all results since these
values resulted in accurate approximations of time history effects in Ref. 24. In order to initialize the SBRF,
responses corresponding to n = 2 previous time-steps are required as inputs to the surrogate mapping
function. These initial responses were obtained from 2nd order polynomial response surfaces27 that were
only a function of the external inputs (i.e. no previous response inputs). Therefore, the predictions of the
previous response quantities required to initialize the SBRF are given by

ŷ(t − i∆t) = Φ̂qs(u(t − i∆t)) for i = 1, . . . , n (30)

where Φ̂qs denotes that these response surfaces can be thought of as quasi-steady approximations since they
are only functions of the instantaneous external inputs, and therefore have no mechanism to account for time
history effects. After the initial n time steps, the previous responses required as inputs are obtained from the
SBRF feedback mechanism depicted in Fig. 4. As shown in Ref. 24, the accuracy of the initialization values
is not critical since the resulting transients die out as time is marched forward and the SBRF predictions
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Table 1. Pitching Amplitudes and Reduced Frequencies for Training and Testing the SBRF (M = 0.3)

Cases θG (degrees) θ̄ (degrees) k
θ

# of cases

Training 15, 10, 5, 0, -6 10, 5, 2.5 0.1, 0.03 30

Test 15, 10, 5, 0, -6 10, 5, 2.5 0.05 15

Table 2. SBRF errors for 15 test cases corresponding to simplified pitch oscillations and M = 0.3

Error in C
l

C
l

C
l

Error in C
m

C
mC
m

Error in C
d

C
d

C
d

0.6 – 3.3% (avg. = 2.2%) 1.4 – 3.8% (avg. = 2.6%) 0.9 – 3.1% (avg. = 2.1%)

quickly reach a periodic solution.
The following error metric was used to quantify the accuracy of the SBRF approach relative to CFD:

E(j) = 100 ×

1

Nt

Nt
∑

i=1

|ŷ(ti) − y(ti)|

y(j)
max

− y(j)
min

(31)

In Eq. (31), E(j) is a relative error measure corresponding to the jth test case, the numerator corresponds
to the average error over the total number of time steps, and the denominator represents the range of the
exact response. Thus, Eq. (31) represents the average error in the SBRF relative to the peak-to-peak value
of the exact response.

IV.A. Simplified Pitch Oscillations Subjected to a Fixed Freestream Mach Number

The effectiveness of the SBRF approach for modeling dynamic stall effects caused by excessive angles of
attack is illustrated in this section by considering an SC-1095 airfoil oscillating in pitch at Mach 0.3. The
simplified pitching motions are given by θ(t) = θG + θ̄ sin (ω

θ
t). The full-order solutions were obtained from

OVERFLOW with the KES turbulence model. The SBRF was trained on CFD data corresponding to 30
pitching motions, and the reduced-order predictions were tested by comparing with CFD predictions for
15 airfoil motions that were not included in the set of training motions. Note that the full-order training
cases correspond to existing results from a previous study, and were not generated using space-filling DOE
methods. The pitching amplitudes and reduced frequencies for the training and test cases are provided in
Table 1.

The errors for the 15 test cases are provided in Table 2. The maximum error for all cases was 3.8%,
which indicates that the SBRF accurately approximated the full-order aerodynamic responses for all test
cases. Comparisons between the SBRF predictions and the OVERFLOW solutions for 4 of the 15 test cases
are shown in Figs. 6 – 8. In Figs. 6 – 8, the arrows indicate if the angle of attack is increasing or decreasing.
In all 4 cases depicted in Fig. 7, the OVERFLOW predictions exhibit large drops in moment coefficient for
certain portions of the airfoil motion associated with increasing angles of attack. This behavior is indicative
of the strongly nonlinear behavior associated with dynamic stall. Overall, there is excellent agreement – no
more than 3% error – between the SBRF and OVERFLOW predictions of the nonlinear phenomena depicted
in Figs. 6 – 8. These results demonstrate that the SBRF can accurately approximate CFD predictions of
the highly nonlinear, hysteretic behavior corresponding to unsteady sectional lift, moment, and drag under
dynamic stall conditions. Note that the SBRF required a fraction of a second to generate the predictions
for the test airfoil motions, while the CFD solutions required several hours of simulation time. The level of
agreement between the SBRF and CFD for the 11 test cases that are not shown was similar to the results
shown in Figs. 6 – 8.
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Figure 6. Unsteady lift coefficients under dynamic stall conditions for a pitching airfoil M = 0.3, k
θ

= 0.05.

IV.B. Combined Pitch/Plunge Oscillations Subjected to Time-Varying Mach Numbers

In order to be effective for rotary-wing aeroelasticity applications, the SBRF approach must accurately
approximate dynamic stall effects corresponding to combined pitch/plunge oscillations and time-varying
freestream Mach numbers. Furthermore, while the results in Section IV.A illustrate the effectiveness of the
SBRF for modeling flow separation due to excessive angles of attack – as in retreating blade stall cases –
dynamic stall on a helicopter rotor can also be caused by shock induced separation on the advancing side of
the rotor.2 Therefore, cases corresponding to realistic airfoil motions as well as advancing and retreating side
stall are considered in order to fully asses the applicability of the SBRF approach for helicopter rotor blade
analysis. Validation results for the OVERFLOW implementation of combined pitch/plunge airfoil motion
subject to time-varying Mach numbers, followed by reduced-order dynamic stall results are provided next.

All time-varying Mach number cases in this study correspond to a NACA 0012 airfoil with the following
rotor parameters: b/R = 0.0275, MΩR = 0.64, and r = 0.75. These parameters are consistent with a model
representative of the 75% spanwise station of an MBB BO-105 helicopter rotor. The 75% spanwise station
was considered in this study since it is sufficiently outboard such that the advancing side Mach numbers are
high enough for shock induced separation to occur. From Eqs. (10) and (15), M0 = 0.48 and k

1
= 0.037

for all cases. The Spalart-Allmaras turbulence model was used in all OVERFLOW computations associated
with combined pitch/plunge airfoil motion under time-varying Mach number conditions.
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Figure 7. Unsteady moment coefficients under dynamic stall conditions for a pitching airfoil M = 0.3, k
θ

= 0.05.

IV.B.1. Validation of the OVERFLOW Implementation

The implementation of OVERFLOW for computations associated with oscillating airfoils subject to time-
varying Mach numbers was validated by comparing with CFD++, which was utilized in Ref. 24 for similar
cases. The CFD++ implementation of time-varying freestreams was verified by considering unsteady aero-
dynamic loads for a statically pitched airfoil subject to sinusoidal Mach number variations for incompressible
flow, as in Ref. 58. In Ref. 58, theoretical results based on Isaacs’ theory and indicial function Arbitrary
Motion Theory (AMT) were compared to CFD simulations obtained with an Euler code. This comparison
is shown in Fig. 9. The magnitude of freestream oscillation is characterized by λ, which represents the ratio
between the amplitudes of time varying freestream velocity to the constant freestream velocity. The CFD++
Navier-Stokes solutions based on the Spalart-Allmaras turbulence model and a fully turbulent flow assump-
tion are superimposed onto Fig. 9. Clearly, the implementation of time-varying Mach number calculations
in CFD++ results in excellent agreement with the models considered in Ref. 58 for two cases of freestream
oscillation amplitude, λ = 0.4 and λ = 0.8.

Since the CFD++ solutions agree with the models described in Ref. 58, the implementation of OVER-
FLOW for the required airfoil and freestream oscillations was verified by comparing OVERFLOW and
CFD++ for several cases consisting of various combinations of simultaneous pitch/plunge oscillations and
time-varying Mach numbers. The comparisons for the unsteady lift, moment, and drag coefficients are
shown in Fig. 10 for two cases. For both cases, θG = 7.4◦, θ1 = 2.3◦, k

1
= 0.037, θ̄ = 7.4◦, k

θ
= 0.20,
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Figure 8. Unsteady drag coefficients under dynamic stall conditions for a pitching airfoil M = 0.3, k
θ

= 0.05.

h̄/b = 2%, k
h

= 0.088, and M0 = 0.48. Figure 10(a),(c),and (e) correspond to M̄ = 0.1, while (b), (d), and
(f) correspond to M̄ = 0.22. The level of agreement evident in Fig. 10 indicates that the implementation in
OVERFLOW for combined airfoil oscillations under time-varying Mach number conditions is correct.

IV.B.2. Dynamic Stall due to Realistic Airfoil Motion

The results in this section demonstrate the effectiveness of the SBRF approach for modeling dynamic stall
effects corresponding to airfoil motions representative of helicopter rotor blade dynamics. The accuracy of
the SBRF predictions was quantified by comparing with OVERFLOW results for a set of test cases that
were not included in the OLH used to train the surrogate mapping function. The full-order CFD data was
generated for 2 rotor blade revolutions – i.e. 2 periods corresponding to ω

1
– so that initial transients in

the solutions were eliminated. The data from the final period was used for training and testing the SBRF.
In order to reduce computer memory requirements for constructing the surrogates, the number of sample
points was reduced by setting ∆t = 8∆t

CFD
, where ∆t

CFD
is the time-step associated with the CFD solutions.

This sampling rate resulted in a discretization of 88 time-steps per rotor revolution, which was found to be
sufficient for capturing high frequency content in the aerodynamic responses. Note that the reduced-order
SBRF predictions based on ∆t = 8∆t

CFD
are validated against the unfiltered full-order signals corresponding

to ∆t
CFD

in this study.
Since the spanwise blade station is fixed at r = 0.75 for all cases considered in this study, 7 variables are
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CFD++ N-S

Figure 9. Comparison of unsteady lift predictions by CFD++ with results presented in Ref. 58 for time-varying Mach
numbers (λ = 0.4, 0.8)

required to define a training case: (θG, θ1, θ̄, kθ
, h̄, k

h
, µ). Two OLH’s were considered for training purposes;

the first is valid for 12◦ ≤ θG ≤ 16◦ and the second corresponds to 8◦ ≤ θG < 12◦. Therefore, one surrogate
was used for predictions corresponding to 12◦ ≤ θG ≤ 16◦, while the other was used for 8◦ ≤ θG < 12◦. Each
OLH consisted of 125 cases, resulting in 250 total training cases. The bounds on the other OLH parameters
were:

2◦ ≤ θ1 ≤ 15◦ (32)

0◦ ≤ θ̄ ≤ 4.5◦ (33)

0 ≤ k
θ
≤ 0.3 (8.2/rev) (34)

0% ≤ h̄/b ≤ 65% (35)

0 ≤ k
h
≤ 0.15 (4.1/rev) (36)

0.3 ≤ µ ≤ 0.4 (37)

The upper bound for θ̄ was selected according to the 1st torsional mode shape of an MBB B0-105 blade
calculated with the geometrically nonlinear beam model described in Ref. 59. A maximum torsional deflection
of 5◦ at the blade tip corresponds to approximately 4.5◦ at the 75% spanwise station according to the 1st
torsional mode shape. Typical rotor blades are not likely to exceed such values for elastic deformation since
larger deflections would correspond to high blade stresses. The upper bounds for k

θ
and k

h
were chosen to

represent the first two torsional and bending modal frequencies of a hingeless blade. The upper bound for h̄
corresponds to a maximum effective angle of attack αeff = 12◦, where αeff is given by Eq. (38). The bounds
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Figure 10. Comparison between OVERFLOW and CFD++ for combined motion cases.
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Table 3. SBRF errors for 9 test cases corresponding to pitch/plunge oscillations and time-varying freestream Mach
numbers

Error in C
l

C
l

C
l

Error in C
m

C
mC
m

Error in C
d

C
d

C
d

1.5 – 3.7% (avg. = 2.5%) 1.7 – 9.7% (avg. = 4.6%) 1.7 – 6.6% (avg. = 3.6%)

on the advance ratio µ represent high speed forward flight conditions for which dynamic stall may occur.

αeff(t) = θ(t) +
ḣ(t)

V (t)
, V (t) = aM(t). (38)

The SBRF prediction errors (Eq. (31)) corresponding to 9 test cases that were not inlcuded in the training
data set are provided in Table 3. The average errors over all 9 test cases were 2.5%, 4.6%, and 3.9% for lift,
moment, and drag respectively. These results demonstrate that overall, the SBRF prediction errors are very
low relative to the peak-to-peak values of the responses.

Representative hysteresis loops for 6 of the 9 test cases are provided in Figs. 11 – 13. As with the
simplified motion cases considered in Section IV.A, the SBRF accurately models the nonlinear hystertic
behavior associated with the combined oscillations. In addition, the test cases include both advancing(e.g.
Fig. 12(b)) and retreating (e.g. Fig. 12(f)) side moment stall. Therefore, the cases considered in this study
provided an excellent test of the SBRF approach since both mechanisms of helicopter rotor blade stall were
captured. It should be noted that the SBRF approach required a fraction of a second on a single computer
processor to generate reduced-order predictions, while the full-order OVERFLOW solutions required 7 – 12
hours on 3 processors. Therefore, the SBRF exhibits the computational efficiency required for a variety of
aeroelasticity and design studies.

It is clear from Table 3 and Figs. 11 – 13 that the SBRF reduced-order modeling approach is capable
of accurately approximating full-order dynamic stall solutions. In order to provide context regarding the
maximum SBRF errors, i.e. the worst case scenarios, the SBRF, OVERFLOW, and CFD++ predictions
are compared in Fig. 14 for the 2 test cases corresponding to the highest errors in the SBRF moment
coefficient predictions. The unsteady aerodynamic responses are plotted versus the azimuth angle, ω

1
t. The

case depicted in Fig. 14(a) – (c) corresponds to the one shown in Fig 12(a), in which a noticeable SBRF
overprediction of the moment stall was observed. The second case corresponds to the maximum error in the
moment coefficient (9.7% in Table 3) and is shown in Fig. 14(d) – (f). From a visual inspection of Fig. 14,
it is clear that the SBRF predictions are much closer to the OVERFLOW solutions than the CFD++
predictions. Therefore, the worst case SBRF predictions are as accurate as those from another CFD solver.
Such a comparison could be used to guide the decision process regarding whether the SBRF is sufficiently
accurate or whether additional training cases should be generated. For example, it could be concluded that
the SBRF based on 250 training cases considered in this study is sufficiently accurate since the maximum
error cases fall within the bounds of uncertainty associated with different CFD codes.

V. Conclusions

The surrogate based recurrence framework (SBRF) approach to reduced-order nonlinear unsteady aero-
dynamic modeling was shown to effectively mimic full-order flow solutions under dynamic stall conditions.
Results pertaining to combined pitch/plunge airfoil oscillations under time-varying Mach number conditions
demonstrate that the SBRF approach can accurately model unsteady airloads associated with realistic heli-
copter rotor blade dynamics. Once constructed from a limited number of full-order CFD analyses, the SBRF
predictions require a fraction of a second to compute, while maintaining a level of fidelity corresponding to
CFD results that would require several hours to obtain. Since the SBRF retains the fidelity associated
with CFD solutions of dynamic stall effects, while exhibiting the computational efficiency of semi-empirical
models, it is ideally suited for a variety of rotary-wing aeroelasticity and active/passive design optimization
studies. The principal results of this study are:

1. The effectiveness of the SBRF approach for modeling the nonlinear hysteretic behavior associated
with dynamic stall was demonstrated by considering airfoils simultaneously oscillating in pitch and
plunge, while subjected to time-varying freestream Mach numbers representative of a helicopter rotor
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Figure 11. Unsteady lift coefficients under dynamic stall conditions.
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Figure 12. Unsteady moment coefficients under dynamic stall conditions.
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Figure 13. Unsteady drag coefficients under dynamic stall conditions.
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Figure 14. Comparison of SBRF, OVERFLOW, and CFD++.

in forward flight.

2. In addition to accounting for realistic blade dynamics, the SBRF approach accurately modeled full-
order solutions corresponding to shock induced separation and excessive angles of attack; thus the
SBRF approach can effectively model advancing and retreating blade stall associated with helicopter
rotors.

3. Even in the maximum error cases, the SBRF predictions were sufficiently accurate so as to fall well
within the uncertainty bounds associated with different CFD solvers.
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