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Abstract Optimization procedure is one of the key tech-
niques to address the computational and organizational com-
plexities of multidisciplinary design optimization (MDO).
Motivated by the idea of synthetically exploiting the advan-
tage of multiple existing optimization procedures and mean-
while complying with the general process of satellite sys-
tem design optimization in conceptual design phase, a
multistage-multilevel MDO procedure is proposed in this
paper by integrating multiple-discipline-feasible (MDF) and
concurrent subspace optimization (CSSO), termed as MDF-
CSSO. In the first stage, the approximation surrogates of
high-fidelity disciplinary models are built by disciplinary
specialists independently, based on which the single level
optimization procedure MDF is used to quickly identify
the promising region and roughly locate the optimum of
the MDO problem. In the second stage, the disciplinary
specialists are employed to further investigate and improve
the baseline design obtained in the first stage with high-
fidelity disciplinary models. CSSO is used to organize the
concurrent disciplinary optimization and system coordina-
tion so as to allow disciplinary autonomy. To enhance the
reliability and robustness of the design under uncertainties,
the probabilistic version of MDF-CSSO (PMDF-CSSO) is
developed to solve uncertainty-based optimization prob-
lems. The effectiveness of the proposed methods is verified
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with one MDO benchmark test and one practical satel-
lite conceptual design optimization problem, followed by
conclusion remarks and future research prospects.
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1 Introduction

To address the optimization problems of complex systems
involving multiple close coupled disciplines, the methodol-
ogy multidisciplinary design optimization (MDO) is widely
studied and applied in both academia and industry. MDO
can enhance system design by exploiting synergies among
different disciplines. However, there are two major chal-
lenges in applying MDO, namely computational and orga-
nizational complexities. To address these two challenges,
one of the research focuses in MDO has been on opti-
mization procedure (Sobieszczanski-Sobieski and Haftka
1997). Optimization procedure organizes MDO elements,
e.g. sensitivity analysis, design space search, system or
disciplinary analysis, etc., into executable sequences. Gen-
erally optimization procedures can be categorized into
two types: single-level and multi-level approaches. Single-
level approaches employ a system optimizer for the whole
problem, which is straightforward to understand and easy
to implement. Typical single-level approaches include
multiple-discipline-feasible (MDF), individual-discipline-
feasible (IDF), all-at-once (AAO), and simultaneous anal-
ysis and design (SAND). Multi-level approaches utilize
decomposition strategies to allow disciplinary autonomy
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in design and optimization, meanwhile manage inter-
disciplinary consistence by system coordination. Typical
multi-level approaches include concurrent subspace opti-
mization (CSSO), collaborative optimization (CO), bi-level
integrated system synthesis (BLISS), and analytical target
cascading (ATC). These procedures are investigated and
compared with benchmark tests (Balling and Sobieszcznski-
Sobieski 1996; Balling and Wilkinson 1997; Alexandrov
and Kodiyalam 1998; Chen et al. 2002; Yi et al. 2008;
2010), and the results show that none of them is universally
good. Generally single-level approaches are more robust in
terms of convergence and computational efficiency, whereas
multi-level approaches are greatly influenced by the char-
acteristics of the specific problems under study (e.g. the
degree of interdisciplinary interaction) and the implementa-
tion details to realize decomposition and coordination, e.g.
approximation techniques, system sensitivity analysis, etc.
For example, CO may encounter convergence problem if
the formulation is degenerate (DeMiguel and Murray 2006),
and BLISS may entail lots of iterative cycles to converge if
approximation models are inaccurate or initial bounds on
design variables are not properly defined (Zhao and Cui
2011). The standard CSSO is also shown to be computa-
tionally inefficient as too many function calls are needed
to converge (Yi et al. 2008), but the use of approximation
surrogates can bring a 1–2 order of magnitude reduction in
the number of system analyses compared to AAO (Sellar
and Batill 1996; Sellar et al. 1996b; Simpson et al. 2004).
Thus the performances of MDO procedures are problem and
implementation dependent, and the selection of a proper
optimization procedure for a specific problem is more or
less in an ad hoc manner.

Since each optimization procedure has pros and cons,
there is possibility to synthetically utilize different opti-
mization procedures to solve MDO problems, so as to
enhance effectiveness and efficiency by exploiting advan-
tages and circumventing drawbacks of different approaches.
This idea is similar to the multi-method collaborative opti-
mization (MCO) approach which combines different search
algorithms to enhance global optimization capability (Luo
2003). Zhao and Cui developed a bi-Level integrated system
collaborative optimization (BLISCO) procedure by integrat-
ing the collaborative thought of CO and the main charac-
teristic of BLISS-2000, which proved to be more reliable
than CO in terms of convergence and more efficient than
BLISS with less iterative cycles to converge (Zhao and Cui
2011). Inspired by this thought, a MDO procedure is pro-
posed by combining MDF and CSSO in this paper. The
motivation for this combination is to comply with the realis-
tic satellite design and optimization process, which includes
the following two points.

First, in conceptual design phase, after the objectives and
constraints of satellite system design are defined, candidate

schemes can be generated and evaluated. As no a priori
knowledge is available about the potentially good solution,
a large set of candidates should be investigated, which can
be realized by optimization to identify the optimal solution.
In this stage, mainly the system level specialists are involved
for decision making, and low-fidelity models are usually
used to accelerate the process to obtain a feasible and prefer-
able design as the baseline for further investigation. This
fast system level optimization can be realized by surro-
gate based MDF. The reason for selection of MDF among
other procedures is that MDF directly solve the original
optimization problem without mathematical reformulation,
which is easy to implement and stable in convergence and
optimization effectiveness. Besides, the major obstacle of
MDF is the prohibitive computation caused by multidisci-
plinary analysis (MDA) which is repeatedly called during
optimization, as MDA of coupled disciplines entails itera-
tions of disciplinary analyses to reach a consistent result for
a design. This obstacle can be eliminated as surrogates are
used. Hence surrogate based MDF is viable for the system
level optimization to quickly obtain the preferable baseline.

Second, based on the baseline, disciplinary specialists are
employed to study and improve the design with high-fidelity
tools under system level management. The disciplinary spe-
cialists with their own analysis tools are usually geograph-
ically dispersed and operate with relative independence.
Thus autonomy for disciplinary optimization is desired. In
this stage, decomposition based procedures are needed to
allow disciplinary autonomy, and CSSO is preferred due to
its resemblance to the real-world disciplinary organization
without significant changes in the objective and constraint
formulations.

As MDF and CSSO are combined to solve the aforemen-
tioned two stage design optimization problem involving the
system and disciplinary levels, this MDF-CSSO procedure
is a multistage-multilevel MDO procedure.

In realistic engineering, there exist uncertainties which
should be considered to address issues of reliability and
robustness. Uncertainties can be categorized into two types:
aleatory and epistemic. Aleatory uncertainty describes the
inherent variation of the physical system or environment
under study. Epistemic uncertainty is a potential inaccuracy
that is due to a lack of knowledge (Hoffman and Ham-
monds 1994; Helton and Burmaster 1996). The aleatory
uncertainties are generally modeled as random variables
with probability theory, while the epistemic ones are treated
with non-probabilistic approaches, e.g. evidence theory
and possibility theory. In this paper, we only focus on
aleatory (random) uncertainties and employ probability the-
ory to deal with them. Therefore, based on the deterministic
MDF-CSSO, the probabilistic version is also developed.

The rest of this paper is structured as follows. First, the
deterministic MDF-CSSO procedure is developed, followed
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by the description of the probabilistic MDF-CSSO to real-
ize uncertainty-based multidisciplinary design optimization.
Second, one MDO benchmark test problem and one prac-
tical satellite conceptual design optimization problem are used
to test the proposed methods and demonstrate the effec-
tiveness. Finally, some conclusions are given, and future
research is discussed.

2 The MDF-CSSO procedure

Consider a MDO problem with ND coupled disciplines as

find X

min f

s.t. g ≤ 0

Yi = CAi (Xi , Y·i ) i = 1, . . . ND

X = ∪
i=1,...ND

Xi , Y = ∪
i=1,...ND

Yi ,

Y·i ⊆
(

∪
j=1,...ND, j �=i

Y j

)

X ∈ �, f ∈ Y, g ⊆ Y (1)

where X is the design variable vector with design space �,
Y is the state variable vector, Xi is the local design variable
vector of discipline i which is a sub-vector of X, Yi is the
local output vector which is a sub-vector of Y, and Y·i is the
coupled state variable vector output from other disciplines
and input into discipline i . There can be sharing of design
variables between different disciplines, but Yi are disjoint.
The objective f and the constraint vector g are sub-vectors
of Y. CAi is the contributing analysis (CA) of discipline
i , which represents an analysis module contributing to the
entire system analysis. A CA may be associated with a par-
ticular aspect of the system behavior or may represent a
physical subsystem (Sobieszcznski-Sobieski 1988).

To solve (1), the proposed MDF-CSSO is sketched in
Fig. 1. In the first stage, the disciplinary specialists are only
responsible for building disciplinary surrogates, based on
which system-level MDF is carried out to identify the opti-
mum. For discipline i , the outputs are functions of the local
design variables and the coupling input state variables from
other disciplines, which are stated as Yi = CAi (Xi , Y·i ).
Accordingly, the surrogates are built as

Ỹi = Ỹi (Xi , Y·i ) = Ỹi (Qi ) (2)

where Qi = [Xi , Y·i ] is the local input variable vector of
discipline i . It is worth noting that the surrogates (2) are
different from the widely used surrogates Ỹi (X) which are
formulated as functions of the design variables X. The selec-
tion of the surrogate formulation is based on the consid-
eration for computational efficiency. Assume NT samples

Fig. 1 Flowchart of MDF-CSSO

are needed to build Ỹi (X). MDA is executed at each sam-
ple to obtain the corresponding output. Assume averagely
NC iterations of disciplinary analyses are needed to reach
a consistent result for each MDA. Then the total computa-
tional complexity to build all the disciplinary surrogates can
be estimated as

O

(
NC · NT ·

ND∑
i=1

O(C Ai )

)
(3)

where O(CAi ) is the computational complexity of CAi .
Also assume NT samples are needed to build Ỹi (Xi , Y·i ).
The total computational complexity is

O

(
NT ·

ND∑
i=1

O(C Ai )

)
(4)
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It is obvious that building Ỹi (Xi , Y·i ) is much cheaper.
Moreover, the formulation Ỹi (Xi , Y·i ) allows the disci-
plinary specialists to build the surrogates only with their
own analysis tools and avoid coupling with other disci-
plinary analyses. Thus independent and concurrent opera-
tions can be realized to further improve efficiency. As the
intermediate coupling variables Y·i are directly used as the
independent input in the surrogates, Ỹi (Xi , Y·i ) are termed
as intermediate surrogates in contrast to Ỹi (X) which are
only related to design variables.

As shown in the research of surrogate based optimiza-
tion (Forrester and Keane 2009), it is desirable to accurately
model the promising regions around the potential optimums,
and it would be wasteful to obtain good accuracy all over the
design space, especially for complex systems. An effective
approach to address this issue is to run the surrogate based
MDF sequentially, so that the surrogates can be initially
built to be less accurate with less training cost and purpose-
fully refined gradually with more information about promis-
ing regions obtained through optimization. The surrogate
updating and MDF optimization are iteratively conducted
until the convergence to the global optimum is attained. In
this stage, the optimization formulation is the same as that
of the original optimization problem, except that the high-
fidelity models are replaced with low-fidelity surrogates.
Thus the global optimum of surrogate based MDF is equiv-
alent to that of the original problem as long as the surrogates
satisfy accuracy requirement in the promising region. Based
on the optimum achieved in the first stage as baseline,
the procedure proceeds to the second stage organized by
CSSO. In this stage, the disciplinary specialists participate
to investigate and improve the design through optimization
with their high-fidelity analysis tools. To realize decompo-
sition of the coupled disciplines so as to allow disciplinary
autonomy, surrogates are used in each discipline to estimate
non-local state variables. The system coordination is real-
ized by system level optimization, wherein surrogates are
also used to mitigate computational burden. This is essen-
tially the same as the procedure of response surface based
CSSO (CSSO-RS) (Sellar et al. 1996a). The algorithms of
the two stages include the following steps.

Stage 1: Surrogate based MDF.
Stage 1.0: Initialization. Denote the cycle number r = 0.
Stage 1.1: Disciplinary surrogate modeling. Denote the

cycle number r = r + 1.

Build surrogates Ỹ
(r)

i (Xi , Y·i ) for each discipline. Train-
ing samples can be obtained with design of experiment
(DOE) techniques. In this paper, the optimal Latin hyper-
cube design (LHD) with maximin criterion is used to obtain
uniformly scattered samples in the design space (Johnson
et al. 1990). The domain of local design variables Xi can

be directly defined by the design space specified in (1).
The domain of coupling state variables can be firstly esti-
mated roughly with larger ranges and refined with more
information gained in later cycles. The optimums obtained
in the previous cycles are also added into the training set
to enhance the approximation accuracy in the potentially
promising regions.

Stage 1.2: Surrogate based system optimization.

System optimization is carried out based on Ỹ
(r)

i (Xi , Y·i ),
which is formulated as

find X(r)

min f̃

s.t. g̃ ≤ 0

Ỹi = Ỹ
(r)

i (X(r)
i , Ỹ·i ) i = 1, . . . ND;

Ỹ·i ⊆
(

∪
j=1,...ND, j �=i

Ỹ j

)

X(r) ∈ �, f̃ ∈ Ỹ, g̃ ⊆ Ỹ (5)

It can be noticed that the state variable surrogates are
coupled in (5), which needs iterations to obtain a consis-
tent output given a set of design variables. However, the
cheap calculation cost of the surrogates makes it affordable.
Denote the optimum obtained in previous cycles as x∗, and
use it as the baseline to solve (5) of current cycle. If r = 1,
the baseline is given arbitrarily.

Stage 1.3: System analysis.

The optimum x(r)∗ of (5) in the r th cycle is evaluated with
accurate MDA, which is also called system analysis (SA).
If x(r)∗ is feasible (satisfying all the constraints) and better
than the previous optimum, denote the optimum x∗ = x(r)∗.

Stage 1.4: Check convergence.

The convergent criterion is that the average difference
between the optimal solutions of three consecutive cycles
should be smaller than a threshold εO as

(∥∥∥ f (r)∗ − f (r−1)∗
∥∥∥ +

∥∥∥ f (r−1)∗ − f (r−2)∗
∥∥∥) /2 ≤ εO (6)

If the convergent criterion is not satisfied, go back to step
1.1; otherwise, enter stage 2.

Stage 2: Surrogate based CSSO.
Stage 2.1: Denote the cycle number r = r + 1. Define

the optimum (x∗, y∗) as the baseline (x̄(r), ȳ(r)).
Based on the existing samples and optimums
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obtained in previous cycles, build the surrogates

Ỹ
(r)

i (X) and Ỹ
(r)

i (Xi , Y·i ).
Stage 2.2: Concurrent subspace optimization (SSO). SSOi

is formulated as

find X(r)
i

min

{
f, f ∈ Yi

f̃ , f /∈ Yi

s.t. gi ≤ 0 gi ⊆ Yi

Yi = C Ai

(
X

(r)

i , Y·i
)

∀Ỹ j ⊆ Ỹ·i , Ỹ j = Ỹ
(r)

j

(
X(r)

)

∀X(r)
j ⊆ X(r)( j �= i), X(r)

j = x̄(r)
j

X(r)
i ∈ �i (7)

where x̄(r)
j is the sub-vector of the baseline x̄(r) for the

non-local design variables which are kept as constants in
the i th SSO. It is worth noting that herein the non-local
state variables are calculated with Ỹ j (X) so as to avoid
iteration with CAi to reach consistent analysis result for
each design. The optimum of SSOi is denoted as x(r)∗

i_all =
x(r)∗

i ∪ x̄(r)
j=1...ND, j �=i . All the SSOs can be executed con-

currently. During SSOs, the feasible design points visited
during optimization are recorded and added into the training

set to update Ỹ
(r)

i (Xi , Y·i ).

Step 2.3: System analysis.

The optimums obtained in SSOs are evaluated with accurate
MDA. Denote the best feasible one as optimum x∗.

Step 2.4: Surrogate based system optimization.
Step 2.5: System analysis.
Step 2.6: Check convergence.

The steps 2.4 to 2.6 are the same as the steps 1.2–1.4. When
the convergent criterion is reached, end the whole MDF-
CSSO procedure.

3 The probabilistic MDF-CSSO procedure

To account for uncertainties inevitably existing in
engineering, MDF-CSSO is extended to solve uncertainty-
based multidisciplinary design optimization (UMDO) prob-
lems, and the probabilistic version of MDF-CSSO (PMDF-
CSSO), is developed in this section.

The uncertainties considered in this paper include input
uncertainties and model uncertainties. The input uncer-
tainties are those associated with design variables. The
model uncertainties include model structure uncertainties
and model parameter uncertainties. Model structure uncer-
tainties are mainly due to assumptions underlying the model
which may not capture the physics correctly. They are prob-
lem dependent and not considered in this paper. Model
parameter uncertainties are mainly due to limited infor-
mation in estimating model parameters for a fixed model
form (Batill et al. 2000; Du and Chen 2000a; de Weck
et al. 2007), which can be universally dealt with by sim-
ply treating the system constants as uncertain ones. Both the
uncertain design variables and the uncertain system parame-
ters are assumed to be random and probability theory is used
for uncertainty modeling and propagation.

Consider a UMDO problem with ND coupled disci-
plines as

find μX

min F(μ f , σ f )

s.t. Pr{g ≤ 0} ≥ R

Yi = CAi (Xi , Y·i , P) i = 1, . . . ND

X = ∪
i=1,...ND

Xi , Y = ∪
i=1,...ND

Yi ,

Y·i ⊆
(

∪
j=1,...ND, j �=i

Y j

)

μX ∈ �, f ∈ Y, g ⊆ Y (8)

where the design variable vector X and system parameter
vector P are random, μx is the mean value of X to be opti-
mized, μ f and σ f are the mean and standard deviation of
the objective f , Pr{·} is the probability of the constraint
within the braces to be satisfied, R is the reliability require-
ments for the constraints. Without loss of generality, the
objective is formulated as the function of the mean and
standard deviation of the original objective to incorporate
robustness requirement for the objective. The robustness
requirement for other state variables can also be considered
as shown in Test 2.

3.1 PMDF-CSSO framework

To solve (8), the proposed PMDF-CSSO framework is
developed as follows.

Stage 1: Surrogate based MDF.

The algorithm of this stage is the same as that in MDF-
CSSO, except that the disciplinary surrogates are modeled
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as Ỹi = Ỹi (Xi , Y·i , Pi ) where Pi is the local uncertain
parameter vector, and the system level optimization problem
under uncertainties in the r th cycle is formulated as

find μ(r)
x

min F(μ f̃ , σ f̃ )

s.t. Pr{g̃ ≤ 0} ≥ R

Ỹi = Ỹ
(r)

i (X(r)
i , Ỹ·i , P), i = 1, . . . ND;

Ỹ·i ⊆
(

∪
j=1,...ND, j �=i

Ỹ j

)

μ(r)
x ∈ �, f̃ ∈ Ỹ, g̃ ⊆ Ỹ (9)

Stage 2: Surrogate based CSSO.

The algorithm of this stage is the same as that in MDF-
CSSO, except that the surrogate models of non-local state
variables in SSO is formulated as Ỹi (X, P), and SSOi under
uncertainties is

find μ
(r)
Xi

min

{
F

(
μ f , σ f

)
, f ∈ Yi

F
(
μ f̃ , σ f̃

)
, f /∈ Yi

s.t. Pr {gi ≤ 0} ≥ Ri

Yi = C Ai

(
X

(r)

i , Ỹ·i , Pi

)

∀Ỹ j ⊆ Ỹ·i , Ỹ j = Ỹ
(r)

j

(
X(r)

)

∀μ
(r)
X j ⊆ μ

(r)
X ( j �= i) , μ

(r)
X j = μ

(r)

X̄ j
, μ

(r)
Xi ∈ �i (10)

To solve the uncertainty-based optimization problems (9)
and (10), the key is to characterize the uncertain features
of system outputs resulting from the effects of input and
model uncertainties by means of uncertainty analysis (Yao
et al. 2010), which will be discussed in detail in next
section.

3.2 Uncertainty analysis

Uncertainty analysis used to solve (9) and (10) includes
two parts: estimation of the mean and standard deviation of
the state variables to calculate the objective, and reliability
analysis of the constraints. The moment estimation of state
variables is solved by Taylor series approximation method
in this paper for simplicity (Yao et al. 2011).

In (10), the non-local state variables are estimated by
Ỹi (X, P), the mean and standard deviation of the vector
element Ỹ j

i can be estimated as

μ
Ỹ j

i
= E

(
Ỹ j

i

)
≈ Ỹ j

i (μX, μP) (11)

σ 2
Ỹ j

i

=
nX∑

k=1

(
∂Ỹ j

i

∂ Xk

)2

σ 2
Xk +

n P∑
k=1

(
∂Ỹ j

i

∂ Pk

)2

σ 2
Pk (12)

where nx and n p are the numbers of design variables and
model parameters, μx and μP are the mean values of X and
P, and σXk and σPk are the standard deviations of Xk and
Pk respectively.

The local state variables are calculated with local accu-
rate analysis models CAi . The mean and standard deviation
of the vector element Ỹ j

i is estimated as

μ
Y j

i
= E

(
Y j

i

)
≈ C A j

i

(
μXi , μỸ·i , μPi

)
(13)

σ 2
Y j

i

=
nXi∑
k=1

(
∂Y j

i

∂ Xk
i

)2

σ 2
Xk

i
+

nY·i∑
k=1

(
∂Y j

i

∂Ỹ k
·i

)2

σ 2
Ỹ k·i

+
n Pi∑
k=1

(
∂Y j

i

∂ Pk
i

)2

σ 2
Pk

i
(14)

Where nXi , nY·i , and n Pi are the numbers of local design
variables, coupled input state variables, and local model
parameters of discipline i respectively, and σ 2

Ỹ k·i
are obtained

from (12).
In (9), the state variables are estimated by intermedi-

ate surrogates which are coupled with each other. Hence
the cross propagation of uncertainties should be considered.
The mean and standard deviation are estimated as

μ
Ỹ j

i
= E

(
Ỹ j

i

)
≈ Ỹ j

i

(
μXi , μỸ·i , μPi

)
(15)

σ 2
Ỹ j

i

=
nXi∑
k=1

(
∂Ỹ j

i

∂ Xk
i

)2

σ 2
Xk

i
+

∑
l=1...ND,l �=i

⎡
⎣ nYl∑

k=1

(
∂Ỹ j

i

∂Ỹ k
l

)2

σ 2
Ỹ k

l

⎤
⎦

+
n Pi∑
k=1

(
∂Ỹ j

i

∂ Pk
i

)2

σ 2
Pk

i
(16)

Denote σ 2
Ỹi

=
[
σ 2

Ỹ 1
i
, . . . σ 2

Ỹ
NY i

i

]T

, σ 2
Xi

=
[
σ 2

X1
i
, . . . σ 2

X
NXi
i

]T

,

σ 2
Pi

=
[
σ 2

P1
i
, . . . σ 2

P
NPi

i

]T

, then

σ 2
Ỹi

= Ai · σ 2
Xi

+
∑

j=1...ND, j �=i

Bi j · σ 2
Ỹ j

+ Ci · σ 2
Pi

(17)
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where

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
∂Ỹ 1

i

∂ X1
i

)2 (
∂Ỹ 1

i

∂ X2
i

)2

· · ·
(

∂Ỹ 1
i

∂ XnXi
i

)2

(
∂Ỹ 2

i

∂ X1
i

)2
. . .

... .(
∂Ỹ nY i

i

∂ X1
i

)2

. · · ·
(

∂Ỹ nY i
i

∂ XnXi
i

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

Bi j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
∂Ỹ 1

i

∂Ỹ 1
j

)2 (
∂Ỹ 1

i

∂Ỹ 2
j

)2

· · ·
(

∂Ỹ 1
i

∂Ỹ
nY j
j

)2

(
∂Ỹ 2

i

∂Ỹ 1
j

)2
. . .

... .(
∂Ỹ nY i

i

∂Ỹ 1
j

)2

. · · ·
(

∂Ỹ nY i
i

∂Ỹ
nY j
j

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

Ci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
∂Ỹ 1

i

∂ P1
i

)2 (
∂Ỹ 1

i

∂ P2
i

)2

· · ·
(

∂Ỹ 1
i

∂ Pn Pi
i

)2

(
∂Ỹ 2

i

∂ P1
i

)2
. . .

... .(
∂Ỹ nY i

i

∂ P1
i

)2

. · · ·
(

∂Ỹ nY i
i

∂ Pn Pi
i

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

For all the SSOs, the equation system of (17) can be solved
together as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

·
·

σ 2
Ỹi·

σ 2
Ỹi·

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I ·
. . .

I · −Bi j

· · · · ·
· −Bi j · I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

·
·

Di

·
D j

·

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(21)

Di = Ai · σ 2
Xi

+ Ci · σ 2
Pi

(22)

The preceding formulation of standard deviation estimation
is essentially the same as that derived in (Du and Chen
2000b). Hence uncertainty analysis of the state variables can
be realized analytically.

Compared to the moment estimation, reliability analysis
is more complex especially for those with high reliability
requirements, as small failure probability entails intensive

computation to calculate. Since reliability of constraints
should be quantified at every search point during opti-
mization, the design space search process is nested with
reliability analysis which is so called double-loop optimiza-
tion. Thus it is computationally prohibitive, especially in
subspace optimization of stage 2 wherein accurate disci-
plinary models are used. There are several approaches in
the literature to address the coupled reliability-based opti-
mization problems, e.g. single level approaches (SLA)
that either merge the inner reliability analysis loop and
outer optimization loop into one single level problem (Chen
et al. 1997; Agarwal et al. 2004; Liang and Mourelatos
2008) or decouple the double loop into sequential cycles
of reliability analysis and deterministic MDO (Royset et al.
2001; Wu et al. 2001; Du and Chen 2002), which are sur-
veyed in (Valdebenito and Schuëller 2010). Herein the SLA
method proposed in (Chen et al. 1997) is used for simplic-
ity. In optimization, the reliability constraint Pr{g(Q) ≤ 0}
≥ Rg is reformulated as

G
(
z(k)

) ≤ 0

z(k) = μ
(k)
z + βα∗(k−1)

μ
(k)
z = Q/σQ; α∗(k−1) = ∇zG

(
z(k−1)

)
/
∥∥∇zG

(
z(k−1)

)∥∥
(23)

where the limit state function G is the counterpart of con-
straint g in the uncorrelated normalized space, z(k) is the
approximate MPP (Most Probable Point) of input Q in the
kth iteration of optimization, α∗(k−1) is the vector of direc-
tion cosine of the constraint at the MPP z(k−1) of previous
iteration, β is the reliability index corresponding to the reli-
ability requirement Rg . The main idea of this formulation
is to check whether the reliability constraint is satisfied
by comparing the percentile value with required reliabil-
ity against the limit state value, which can save a lot of
computation as accurate reliability does not need to be cal-
culated. The problem is the percentile value is calculated at
the approximate MPP which is estimated based on the direc-
tion cosine at the MPP of the previous iteration which may
be inaccurate. However, after several iterations, z can con-
verge to the accurate MPP and the optimal reliable design
can be obtained.

As (23) dose not calculate the real constraint reliabil-
ity, an additional reliability analysis, e.g. MCS, First Order
Reliability Method (FORM) or Second Order Reliability
Method (SORM), etc., is needed after optimization to calcu-
late the real reliability. This can be carried out in the step of
system analysis, where the optimums obtained in the sys-
tem or subspace optimization are analyzed with accurate
MDA. In this paper, MCS is used for its accuracy and ease of
implementation. Besides, the rich samples generated during
MCS can be reused to update surrogate models.
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4 Tests

4.1 Test 1

The MDF-CSSO procedure is firstly testified with the speed
reducer optimization problem, which is one of the bench-
mark problems for MDO test (Padula et al. 1996). The
problem is stated as

find : X = [x1 x2 x3 x4 x5 x6 x7]T

min : f (X) = 0.7854x1x2
2

×
(

3.3333x2
3 + 14.9334x3 − 43.0934

)

− 1.5079x1

(
x2

6 + x2
7

)
+ 7.477

(
x3

6 + x3
7

)

+ 0.7854
(

x4x2
6 + x5x2

7

)

s.t. g1 : 27.0/
(

x1x2
2 x3

)
− 1 ≤ 0,

g2 : 397.5/
(

x1x2
2 x2

3

)
− 1 ≤ 0

g3 : 1.93x3
4/

(
x2x3x4

6

)
− 1 ≤ 0,

g4 : 1.93x3
5/

(
x2x3x4

7

)
− 1 ≤ 0

g5 : A1/B1 − 1100 ≤ 0,

g6 : A2/B2 − 850 ≤ 0

g7 : x2x3 − 40.0 ≤ 0,

g8 : 5.0 ≤ x1/x2

g9 : x1/x2 ≤ 12.0,

g10 : (1.5x6 + 1.9)/x4 − 1 ≤ 0

g11 : (1.1x7 + 1.9)/x5 − 1 ≤ 0

A1 =
[(

745.0x4

x2x3

)2

+ 16.9 × 106

]0.5

, B1 = 0.1x3
6

A2 =
[(

745.0x5

x2x3

)2

+ 157.5 × 106

]0.5

, B2 = 0.1x3
7

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,

7.3 ≤ x4 ≤ 8.3

7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5 (24)

With reference to (Tosserams et al. 2007), the problem is
decomposed into three disciplines (subsystems). Discipline
1 is concerned with gear design, while disciplines 2 and 3
are responsible for the design of two shafts. The disciplinary
settings are defined as follows.

Discipline 1 : X1 = [x1 x2 x3]T ,

Y1 = [
g1 g2 g7 g8 g9 f y1

]T
,

Y·1 = [
y2 y3

]T

Discipline 2 : X2 = [x1 x4 x6]T , Y2 = [
g3 g5 g10 y2

]T
,

Y·2 = [
y1

]T

Discipline 3 : X3 = [x1 x5 x7]T , Y3 = [
g4 g6 g11 y3

]T
,

Y·3 = [
y1

]T

where

f = 0.7854x1x2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)

+ y2 + y3

y1 = x2 · x3

y2 = −1.5079x1x2
6 + 7.477x3

6 + 0.7854x4x2
6

y3 = −1.5079x1x2
7 + 7.477x3

7 + 0.7854x5x2
7 (25)

The optimization problem is solved with MDF-CSSO. In
stage one, the surrogates of the eleven constraints g1 to g11,
the three coupling state variables y1 to y3, and the objective
f , are modeled. For example, the surrogate of the objective
is modeled as f̃ = f̃ (x1, x2, x3, y2, y3), and the constraint
g3 in disciplinary 2 is modeled as g̃3 = g̃3(x4, x6, y1).
In surrogate modeling of each discipline, 60 samples uni-
formly distributed in the domain of local input are used
to train the surrogates. The domain of design variables are
directly defined in (24). The domain of coupling state vari-
ables are defined by solving (25). Based on the preceding
surrogates, MDF is implemented by formulating the opti-
mization problem in the form of (5). Sequential quadratic
programming (SQP) is employed as optimization solver.
Each time the optimum is obtained, it is added into the
training data to rebuild the surrogates, so that the accuracy
of the surrogates in the promising region can be gradu-
ally improved. With the updated surrogates, optimization
(5) is resolved to identify new optimum. After iterations of
preceding two steps, the convergence to the optimum can
be achieved with surrogates satisfying predefined accuracy
requirements in the promising region.
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Fig. 2 Convergence history of objective in Test 1

Fig. 3 a The surrogate and b the accurate models of the objective and
the active constraints with respect to x5 and x7 at the optimum where
x1 = 3.5, x2 = 0.7, x3 = 17, x4 = 7.3, and x6 = 3.3502

Fig. 4 Design structure matrix of satellite system design in Test 2

Taking the optimum achieved in the first stage as base-
line, CSSO is further implemented to refine the optimal
design with concurrent subspace optimizations. Firstly, the

Table 1 Nomenclature in Test 2

Symbol Description

h Orbit altitude

ke Eclipse factor

b Body width

DR Data rate of payload

Fstr Structure safety index

Meps Peps Mass and power of power subsystem

Mpl Ppl Mass and power of payload

Madc Padc Mass and power of ADC

Mttc Pttc Mass and power of TTC

fc Focal length

�V Delta V budget

l Body height

Mstr Mass of structure

Vsat Satellite volume

Asp Area of solar panels

Mdh Pdh Mass and power of OBDH

Mp Mass of propulsion

Mtm Ptm Mass and power of thermal subsystem

R Resolution

SW Coverage swath

t Side wall thickness

Ix , Iy Iz Moments of inertia

Msat Satellite mass

Msp Mass of solar panels

A f Area of front face

M f uel Mass of fuel
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Table 2 Uncertain design variables in Test 2

Discipline Variables Distribution Distribution

type parameters

Structure Width /mm Normal std 0.5

Height /mm Normal std 0.5

Thickness /mm Normal std 0.01

Orbit Altitude /km Normal std 0.5

Payload Focal length /mm Normal std 0.1

surrogates of state variables with respect to design variables
are modeled based on the samples obtained in the first stage.
For example, the surrogate of the objective is modeled as
f̃ = f̃ (x1, x2, x3, x4, x5, x6, x7). The SSO is formulated
in the form of (4), and SQP is also used as solver. In each
SSO, the local state variables are directly calculated with the
accurate models, e.g. the constraints g1 and g2 in discipline
1 are directly calculated with the equations stated in (24).
If non-local state variables are needed as input for the local
accurate models, the surrogates of these non-local state vari-
ables are used for estimation. When all the SSOs are solved,
the optimums are evaluated with system analysis and the
best one is chosen as the baseline for system optimization
which is formulated in the form of (5). Herein the surro-
gates used in (5) are enhanced with data points obtained
during SSOs which have been analyzed with local high-
fidelity models. Then the optimum of (5) is passed down
to all the SSOs for further optimization. After several itera-
tions of subspace optimization and system optimization, the
convergence to the final optimum can be achieved.

In this test, as no noise is involved, all the surro-
gates are built with interpolation RBF neural network
(RBFNN) models for its advantage in approximating highly

nonlinear functions (Park and Sandberg 1991; Jin et al.
2000).

All the optimizations from four different initial points
stated in (Zhao and Cui 2011) stably converge to the opti-
mum [3.5. 0.7, 17, 7.3, 7.7153, 3.3502, 5.2867] with the
objective f = 2994.355. One of the convergence histories
of the objective is depicted in Fig. 2. In stage 1, it only
takes five iterative cycles to quickly converge to the solution
which is close to the real optimum. Based on this base-
line, six more iterative cycles in stage 2 are taken to further
refine the design, which converge to the real optimum by
employing concurrent SSOs with accurate disciplinary anal-
ysis tools. Due to the efficiency of MDF which can provide
a good baseline for CSSO, the drawback of CSSO as too
many iterative cycles are needed to converge can be circum-
vented. The contour plots of the objective with respect to
x5 and x7 at the optimum are illustrated in Fig. 3. It shows
that the surrogates of the objective and the active constraints
agree well with the accurate models in the region around the
optimum, which is the premise of surrogate based optimiza-
tion to converge to the global optimum of the original MDO
problem.

4.2 Test 2

The efficacy of the proposed PMDF-CSSO procedure is
demonstrated with a hypothetical earth observatory small
satellite design problem (Yao et al. 2010).

• Satellite Design Modeling

The mission is to observe a specific area with minimum res-
olution of 30 m and minimum coverage swath of 50 km. The
objective is to minimize the satellite mass. The disciplines
involved in the design include orbit, payload, structure,

Table 3 Uncertain model
parameters in Test 2 Discipline Parameters Distribution type Distribution parameters

Structure Launch vehicle axial natural frequency /Hz Normal Mean 30.0 std 0.3

Launch vehicle lateral natural frequency /Hz Normal Mean 15.0 std 0.15

Axial overload coefficient Normal Mean 6.0 std 0.06

Lateral overload coefficient Normal Mean 3.0 std 0.03

Axial ultimate tensile strength / N/m2 Log normal Mean 4.2e8 std 4.2e5

Axial stretch yield stress / N/m2 Log normal Mean 3.2e8 std 3.2e5

Young’s modulus / N/m2 Normal Mean 7.1e10 std 7.1e7

Thermal Power estimation scaling factor Normal Mean 0.04 std 0.0004

Mass estimation scaling factor Interval [0.045, 0.055]

TTC Power estimation scaling factor Normal Mean 0.045 std 0.00045

Mass estimation scaling factor Interval [0.045, 0.055]

OBDH Power estimation scaling factor Normal Mean 0.05 std 0.0005

Mass estimation scaling factor Interval [0.04, 0.05]
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and other subsystems, e.g. onboard data handling (OBDH),
power, attitude determination and control (ADC), propul-
sion, thermal, and telemetry, tracking and command (TTC).
The orbit is a sun synchronous circular orbit. Eccentricity
is zero and inclination is fixed with given orbit altitude.
The values of true anomaly, argument of perigee, and right
ascension of ascending node are only related to ground track
and irrelevant to the satellite mass and observing resolution
estimation. Therefore, these parameters are not considered
in optimization and only orbit altitude h is taken as a design
variable. The payload is a CCD camera with working spec-
trum from 0.4 to 0.9 μm. The design variable is focal length
fc, based on which the payload mass and power are pre-
dicted with empirical scaling equations (Yao 2007). The
satellite configuration is simplified as a cube, and the cross
section perpendicular to the flying direction is assumed to
be square. Thus the design variables only include width b,
height l, and side wall thickness t . The structure strength,
stiffness and stability safeties under launch conditions are
checked with empirical equations, and the parameter set-
tings are taken from the Chinese launch vehicle CZ4B.
According to the design of orbit, payload, and structure, the
sizing of other subsystems can be estimated with empiri-
cal relationships for conceptual design (Wertz and Larson
1999).

The coupling relationships of the disciplines are des-
cribed with a design structure matrix shown in Fig. 4. The
symbols in the diagram are explained in Table 1. The under-
lined symbols represent aforementioned design variables.

Fig. 5 The coupling relationship between the three decomposed sub-
spaces of the satellite UMDO in Test 2

Given a set of design variable values, the satellite sizing can
be estimated.

• Uncertainty modeling

The five design variables are assumed to be uncertain with
normal distribution. The uncertainties with structure sizes
and the optical lens are primarily induced by manufacturing
tolerance. The orbit altitude uncertainty mainly results from
orbit perturbation. The mean values are to be optimized,
and the standard deviations are fixed and listed in Table 2.
The uncertain model parameters include the structure mate-
rial uncertainties (e.g. Young’s modulus, material density,
etc.), the launch vehicle uncertainties (e.g. the launch vehi-

Table 4 Optimization results of MDF, PMDF, MDF-CSSO, and PMDF-CSSO in Test2

Variables Baseline MDF PMDF MDF-CSSO PMDF-CSSO

Design variables h/km 650 597.15 596.55 607.46 607.23

fc/mm 250 278.67 281.36 285.48 286.48

b/mm 750 851.45 852.95 851.85 852.14

l/mm 750 706.18 706.58 708.00 708.25

t /mm 7.5 5.00 5.00 5.00 5.00

Active constraints R/m 30.00 Pr = 0.52 29.68 Pr = 1 29.93 Pr = 0.69 29.67 Pr = 1

Vsat /m3 0.50 Pr = 0.48 0.502 Pr = 1 0.501 Pr = 0.81 0.502 Pr = 1

Objectives μMsat /kg 180.69 181.39 181.42 181.71

σMsat /kg 1.78 1.65 1.80 1.69

σ R /m 0.056 0.055 0.061 0.059

f 1.488 1.457 1.510 1.479

Other characteristics Cycle numbera 53 12 32 9

Total MDA calls 319 12,073 32 9,009

Total CA calls 5,231 197,974 4,250 166,450

Computational time /s 3,828 144,876 3,110 121,807

aFor MDF and PMDF, the cycle number is the number of design space search steps. For MDF-CSSO and PMDF-CSSO, the cycle number is the
number of iterative cycles which cover a complete loop of surrogate-based MDF or CSSO from surrogate modeling to optimization
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Fig. 6 Convergence history of a MDF-CSSO and b PMDF-CSSO in
Test 2

cle axial natural frequency, axial overload coefficient, etc.),
and the uncertainties associated with the simplified empiri-
cal equations in satellite sizing (e.g. the scaling parameters
of the mass estimation models). As it would be computa-
tionally prohibitive to take all the uncertainties into account,
sensitivity analysis is used to find out the factors with sig-
nificant influences. The analysis shows thirteen uncertain
system parameters should be considered, which are listed in
Table 3.

• UMDO problem formulation

There are three optimization objectives. One is to mini-
mize the mean value of satellite mass

(
μMsat

)
, which is

directly related to cost. The second is to minimize the stan-
dard deviation of satellite mass

(
σMsat

)
, which is related to

cost risk. The third is to minimize the standard deviation of

resolution (σR), so as to maintain robustness of observation
performance under uncertain effects. Therefore, the opti-
mization is a multi-objective problem. In this paper, these
three objectives are linearly summed into a single-objective
for simplification.

Five constraints are set to embody design requirements.
The satellite volume Vsat should be no less than 0.5 m3 to
accommodate instrument installation. The structure safety
index (the ratio between the design thickness and the criti-
cal thickness of failure) Fstr should be no less than 1. The
observation resolution R should be no larger than 30 m. The
coverage swath Sw should be no less than 50 km. The orbit
eclipse factor ke should be no larger than 0.35 for charg-
ing requirement (Yao 2007). All the constraints are required
to be satisfied under uncertainties with probability being no
less than 0.9999.

Fig. 7 Contour plots of the objective and active constraints at the opti-
mum of the first cycle of MDF-CSSO in Test 2. a The surrogate and
b the accurate models of the objective and the active constraints with
respect to h and fc, where b = 913.34, l = 744.06, and t = 5
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To sum up, the UMDO problem is formulated as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find μX = [
μh μ fc μb μl μt

]

min f (X, P) = k1

w1
μMsat + k2

w2
σMsat + k3

w3
σR

st g1 : Pr{R ≤ 30 m} ≥ 0.9999

g2 : Pr{Sw ≥ 50 km} ≥ 0.9999

g3 : Pr{ke ≤ 0.35} ≥ 0.9999

g4 : Pr{Vsat ≥ 0.5 m3} ≥ 0.9999

g5 : Pr{Fstr > 1} ≥ 0.9999

500 km ≤ μh ≤ 800 km,

200 mm ≤ μ fc ≤ 300 mm

500 mm ≤ μb ≤ 1000 mm,

500 mm ≤ μl ≤ 1000 mm,

5 mm ≤ μt ≤ 10 mm

(26)

where wi are scalar factors to adjust the three objectives to
be of the same order, and ki are weight coefficients to adjust
preference, which are set as k1 = 0.5, k2 = k3 = 0.25, w1 =
100, w2 = 1, and w3 = 0.1.

According to the coupling degree between disciplines
and distribution of design variables, the UMDO problem is
decomposed into three subspace problems. One is the inte-
gration of orbit and payload which are closely coupled to
define the observation capability. The second is structure.
The third is the combination of all the other subsystems
of satellite bus which have no design variables. The cou-
pling relationship is described in Fig. 5, and the disciplinary
settings are as follows.

Subspace 1 : X1 = [h fc]T ,

Y1 = [
ke �V DR Mpl Ppl R Sw

]T

Y·1 = [Msat A f ]T , G1 = [g1 g2 g3]T

Subspace 2 : X2 = [b l t]T ,

Y2 = [
Mstr Ix Iy Iz Fstr Vsat

]T

Y·2 = [Msat Msp Asp]T , G2 = [g4 g5]T

Subspace 3 : X3 = [ ], Y3 = [
Msat Asp Msp A f

]T

Y·3 = [h ke �V DR Mpl b Mstr Ix Iy Iz]T,

G3 = [ ]

• Results and discussion

This UMDO problem is firstly solved with MDF-CSSO
to identify the deterministic optimum, based on which

PMDF-CSSO is implemented to satisfy the robustness and
reliability requirements under uncertainties. The interpola-
tion RBFNN models are used to build the surrogates, and
the sample sizes to train the RBFNN of discipline 1, 2, and 3
are 80, 120, and 200, respectively. The optimization solvers
of SSO and system optimization are SQP. This UMDO
problem is also solved with the benchmark method MDF
based on accurate models for comparison. To accommodate
uncertainties, the same uncertainty analysis method stated
in PMDF-CSSO is integrated in MDF, termed as PMDF.
MDF is firstly conducted to identify deterministic optimum,
based on which PMDF is further executed to locate the
optimum under uncertainties. The baselines of MDF-CSSO
and MDF are both the median point of the design space.
In the system analysis of PMDF and PMDF-CSSO, MCS

Fig. 8 Contour plots of the objective with active constraints at the opti-
mum of the last cycle of MDF-CSSO in Test 2. a The surrogate and b
the accurate models of the objective and the active constraints with
respect to h and fc, where b = 851.85, l = 708.00, and t = 5
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with sample size of 1,000 is used to calculate the accurate
constraint reliability.

The optimization results are listed in Table 4. It shows
that the optimums of the proposed methods are very close
to those obtained by MDF and PMDF, and the relative
difference is less than 0.5%. Besides, MDF-CSSO and
PMDF-CSSO cost much less CA calls and computing time
than MDF and PMDF by 15.5% and 15.9% respectively,
which greatly enhance the optimization efficiency. The opti-
mums of MDF and MDF-CSSO are located on the active
constraints g1 and g4, hence the failure probabilities of
these two constraints are much higher than the desired level.
Based on the deterministic optimums, both PMDF and
PMDF-CSSO entail no more than 20 cycles to locate the

optimum under uncertainties. The reliability requirements
of the active constraints are satisfied and the robustness of
resolution is improved. It can be noticed that the computa-
tion of PMDF and PMDF-CSSO is dramatically higher than
that of deterministic MDF and MDF-CSSO, which demon-
strates the computational complexity of UMDO. However,
it is worthwhile as the reliability and robustness can be
enhanced.

The convergence history of MDF-CSSO and PMDF-
CSSO are depicted in Fig. 6, and the contour plots of the
objective at the optimums of the first and last cycle of MDF-
CSSO are portrayed in Figs. 7 and 8, respectively. It can
be observed that the surrogates in the first cycle are very
inaccurate, but after several cycles the accuracy is greatly

Fig. 9 MCS scatter plots at the optimums of MDF-CSSO and PMDF-
CSSO with accurate models in Test 2. a The objective and the active
constraints with respect to h and fc at the optimum of MDF-CSSO,
where b = 851.85, l = 708.00, and t = 5. b The objective and the
active constraints with respect to b and l at the optimum of MDF-
CSSO, where h = 607.46, fc = 285.48, and t = 5. c The objective

and the active constraints with respect to h and fc at the optimum of
PMDF-CSSO, where b = 852.14, l = 708.25, and t = 5. d The objec-
tive and the active constraints with respect to b and l at the optimum of
PMDF-CSSO, where h = 607.23, fc = 286.48, and t = 5
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improved in the promising region. In Fig. 9, the MCS scat-
ter plots at the optimums of MDF-CSSO and PMDF-CSSO
are presented respectively. It clearly shows how the slight
shift from the optimum of MDF-CSSO to the optimum of
PMDF-CSSO enhances the reliability under uncertainty.

5 Conclusions

In this paper, a multistage-multilevel MDO procedure is
proposed by integrating MDF and CSSO. The main idea
is to organize MDO elements by complying with the real-
istic procedure of satellite system design and optimization
in conceptual design phase. In the first stage, the system
level specialists are involved to generate and assess alter-
native designs, and quickly identify promising solutions
with low-fidelity models. To mimic this process, MDF is
used to quickly locate the optimum of the MDO prob-
lem based on the approximation surrogates of disciplinary
models which are built by disciplinary specialists indepen-
dently. In the second stage, the disciplinary specialists are
employed to investigate and improve the baseline obtained
in the first stage with high-fidelity disciplinary models. To
allow autonomy of disciplinary design and optimization,
decomposition based procedure CSSO is used to organize
concurrent disciplinary optimization and system coordi-
nation. Surrogates are used in subspace optimization to
estimate non-local state variables so as to enable decompo-
sition. This MDF-CSSO procedure can not only provide a
framework to organize MDO following the realistic engi-
neering conventions, but also improve the efficiency by
exploiting merits and circumventing drawbacks of each sin-
gle optimization procedure. To sum up, MDF-CSSO has
the following advantages. First, the stability and efficiency
of MDF can guarantee the convergence to the promising
region. As surrogates are used, the computational cost
of MDF becomes affordable. Second, the difficulty of
surrogate-based MDF, that lengthy process is needed to
adjust the surrogates accurately and converge to the real
optimum, can be solved as CSSO is used to investigate
the promising region by means of concurrent disciplinary
optimization with high-fidelity disciplinary models. Third,
based on the optimum of MDF as the baseline, the conver-
gent difficulty of CSSO can be alleviated. Further consid-
ering that there exist uncertainties in practical engineering,
the probabilistic MDF-CSSO (PMDF-CSSO) is also devel-
oped to solve uncertainty-based multidisciplinary design
optimization problems. The effectiveness of the proposed
methods is testified with one MDO benchmark test and
one practical satellite conceptual design optimization prob-
lem. The results show that MDF-CSSO and PMDF-CSSO
can quickly converge to the designs close to the real opti-
mums of the original optimization problems with much less

computational cost compared to MDF with accurate mod-
els, which demonstrate the effectiveness and efficiency of
the proposed methods.

The major challenge of the proposed methods lies in
the surrogate modeling. The optimization efficiency is sig-
nificantly influenced by the surrogate accuracy. If the initial
surrogates are too rough, it may fail to characterize the land-
scape of the underlying model, and the optimization could
be trapped in the fake local optimum of the surrogates. How-
ever, it would be too expensive to build surrogates which are
accurate all over the design space, as modeling the promis-
ing regions accurately is enough. Hence, the strategy of
surrogate modeling and surrogate based optimization needs
further investigation in the future research.
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