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A surrogate-based simulation–optimization approach

for coastal aquifer management

Zheng Han, Wenxi Lu, Yue Fan, Jin Lin and Qian Yuan
ABSTRACT
This study proposed a pumping-injection (P-I) groundwater management strategy based on a

simulation–optimization (S-O) framework to mitigate seawater intrusion (SI). The methodology was

applied to a real case in Longkou, China. A three-dimensional variable-density groundwater

simulation model was established to simulate and predict the SI process. In the S-O framework, while

solving the optimization model, it is required to call the simulation model thousands of times, which

leads to enormous computational load. In this case, the Kriging and support vector regression (SVR)

surrogate models were established for the simulation model respectively. Furthermore, the

ensemble surrogate modeling technique was applied to construct the Kriging-SVR ensemble

surrogate model. The most accurate surrogate model was selected as the substitute for the

simulation model, saving considerable computing costs. The results show that the ensemble

surrogate model performs better than the stand-alone surrogate models in accuracy, indicating that

combining stand-alone surrogate models is a potential modeling method for the surrogate model of

the variable-density groundwater simulation model. By solving the optimization model, the optimal

pumping and injection schemes under different scenarios were obtained. The optimization results

demonstrate that the proposed methodology is effective and stable in coastal groundwater

management.

Key words | ensemble surrogate model, groundwater resources management, Kriging, seawater

intrusion, simulation-optimization, SVR
HIGHLIGHTS

• The P-I strategy based on S-O is efficient in mitigating seawater intrusion.

• An ensemble surrogate model is established for variable-density groundwater simulation model.

• The ensemble surrogate model outperforms stand-alone surrogate models in accuracy.

• The surrogate model can save computational costs during the optimization process.
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INTRODUCTION
Seawater intrusion (SI) refers to the phenomenon of

saltwater directly invading aquifers due to factors such

as sea level rise (SLR) and the decline of freshwater level

in coastal aquifers. SI can occur as a result of long-term

interaction of various factors of nature and human society.

One of the most important reasons is the unreasonable

exploitation of groundwater in coastal areas. The
occurrence and development of SI can cause a series of

environmental geological problems, such as groundwater

quality deterioration, soil salinization, etc., which will

seriously affect the daily life of local residents and restrict

local economic development. SI has occurred in more

than 50 countries and regions around the world, and

poses grave threats to the ecological environment and
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economic development of these areas. Therefore, it is of

great significance to perform control measures for SI.

Currently, many measures have been put forward and

implemented to prevent and control SI. Among them, form-

ing underground freshwater barriers by artificial recharge is

very effective and common (Armanuos et al. ). The

underground freshwater level is raised due to artificial

recharge, so that the underground freshwater head is

higher than the adjacent saltwater head and the positive

hydraulic gradient from the land to the ocean is rebuilt,

creating a hydraulic barrier to prevent SI. However, this

measure requires a large amount of freshwater supply. In

the past, many researchers believed that coastal injection

is inefficient because it loses water to the sea. In a study

of corrective measures for SI, Abarca et al. () proved

the efficiency of the hydraulic barrier, overturning a

widely held belief. They argued that the net gain obtained

from protection of inland pumping more than compensates

for the loss. While it is true, sufficient water supply for the

injection is still needed. Surface freshwater, like lakes and

reservoirs, is usually used as the freshwater source in the tra-

ditional injection method. For areas lacking sufficient

surface freshwater, it is difficult to implement the mitigation

measure of artificial recharge. In this case, the present study

proposed a pumping-injection (P-I) groundwater manage-

ment method to solve this problem. In the P-I method, the

groundwater extracted from inland aquifers was utilized as

the freshwater source for artificial recharge. The exploita-

tion of groundwater has a significant impact on SI.

Improper water allocation of pumping and injection may

cause low project returns, or even make SI more serious.

Thus, the simulation–optimization (S-O) method was

applied in this study to make the P-I measure become safe

and profitable.

The S-O approach is widely used for groundwater

resources management in coastal aquifers (Yang et al.

). During the optimization process, it is required

to invoke the simulation model repeatedly, causing a

huge computational load. Surrogate models, which can

be considered as the computationally efficient emulators

designed to mimic key characteristics of a simulation

model, have great potential to overcome the computational

limitations (Asher et al. ; Song et al. ). Based on

radial basis functions, as surrogate models for the
://iwaponline.com/ws/article-pdf/20/8/3404/813285/ws020083404.pdf
computationally expensive variable-density flow and salt

transport numerical simulations, Christelis & Mantoglou

() compared the performance of two adaptive meta-

modeling frameworks (the adaptive–recursive approach

and the metamodel–embedded evolution strategy) in

terms of computational times and optimal solutions of

pumping rates. Huang & Chiu () presented an S-O

model that aimed to minimize the total injection rate

based on the pre-determined locations of injection barriers

while solving the SI problem along the coastal aquifers in

Pingtung Plain. The SEAWAT code was used to simulate

the process of SI and the surrogate model of artificial

neural networks was used to approximate the SI numerical

model to improve the computational efficiency. Most of the

surrogate models built in previous studies were based on

only one method. Yet, different stand-alone surrogate

models have their own limitations. Thus, constructing an

ensemble surrogate model by combining multiple stand-

alone surrogate models is a promising surrogate modeling

technique. Ouyang et al. () applied a new method

referred to as the optimal weighted surrogate (OWS), pro-

posed by Viana et al. (), to construct ensemble

surrogate models for the process simulations of surface-

enhanced aquifer remediation, and they proved the favor-

able performance of this method. For the variable-density

groundwater simulation model with strong nonlinear

characteristics, however, the performance of the ensemble

surrogate model has not been investigated. Therefore, the

present work introduced the OWS method to construct

the ensemble surrogate model of the SI model for the

first time, and explored the performance of the ensemble

surrogate model in coastal aquifer management.

In this study, a three-dimensional variable-density

groundwater numerical simulation model was established

for the prediction of SI in Longkou, China. After the cali-

bration and verification of the simulation model, the

Kriging surrogate model, support vector regression (SVR)

surrogate model, and Kriging-SVR ensemble surrogate

model were developed for the SI model respectively. To

obtain the optimal P-I groundwater management scheme,

the most accurate one of the three surrogate models was

selected to couple with the optimization model, in which

the objective was to minimize the extent of SI, for calcu-

lation. The proposed methodology proves to be a robust
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tool for decision-making with respect to coastal ground-

water management and the control of SI.
METHODOLOGY

Numerical simulation model for SI

When the mixing zone (transition between freshwater and

saltwater zones) is taken into consideration, the problem of

SI needs to be described by two equations. One is the

equation of groundwater flow that reflects the change of sol-

ution density and viscosity (Bear ). The other is the

equation of water quality that reflects salt transport in

groundwater. Because the concentration term is incorporated

into the groundwater flow equation and the actual flow vel-

ocity in the groundwater solute transport equation needs to

be calculated by water head, the above two equations need

to be solved by the motion equation. The general mathemat-

ical formulation describing variable-density groundwater

flow and transport process can be expressed with the follow-

ing two equations (Miao et al. ):
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where Kxx, Kyy, Kzz are the hydraulic conductivity tensors of

the aquifer [LT�1]; c denotes the solution concentration

[ML�3]; n is effective porosity; ρ0 is the density of freshwater

[ML�3]; η ¼ ε

cs
is the density coupling coefficient [M�1 L3],

ε ¼ ρs � ρ0
ρ0

is the density difference, ρs is the maximum den-

sity [ML�3], cs is the liquid concentration corresponding to ρs
[ML�3]; μs is equivalent freshwater specific storage [L�1]; q is

the volumetric flow rate of sources and sinks per unit volume

of the aquifer [T�1]; Dxx, Dyy, Dzz are the hydrodynamic dis-

persion tensors [L2T�1]; ux, uy, uz are the seepage velocities
om http://iwaponline.com/ws/article-pdf/20/8/3404/813285/ws020083404.pdf
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in the respective x, y and z directions [LT�1]; c� denotes the

concentration of salt in the liquid for extraction or injection

[ML�3].

The equation of motion for solving the coupling prob-

lems is:
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n
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where K0 is the hydraulic conductivity under the freshwater

condition [LT�1]. Equations (1)–(3), together with the initial

and boundary conditions, constitute a complete mathemat-

ical model of SI. Hydraulic conductivity, specific storage,

porosity, and dispersivity are treated as unknown par-

ameters to be determined by inverse modeling in this study.

Surrogate models

The surrogate model has the advantages of a small amount

of calculation and fast calculation speed. It functionally

approximates the input–output relationship of the simu-

lation model and is often used to replace the simulation

model for optimization calculation. Its mathematical

essence is using approximation technology to fit or interp-

olate the information of known sampling points to form a

simple mathematical model and thereby realizing the pre-

diction of the response output value of unknown points

(Viana et al. ). The sampling method and the specific

modeling method determine the accuracy of the surrogate

model. In this study, SVR and Kriging surrogate models

were established respectively for the SI model. Based on

the two stand-alone surrogate models, an ensemble surro-

gate model was constructed by giving the corresponding

weights of different stand-alone surrogate models.

Kriging surrogate model

The Kriging method is an optimized interpolation approach

that was proposed by the French geographer and mathema-

tician Matheron and the South African mining engineer,

Krige. According to the information contained in the

sample points and the spatial characteristics of variables,

the Kriging method can predict the information of the

unknown points by establishing approximate functions.
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The basic form of the Kriging surrogate model is:

ŷ(x) ¼ f(x)Tβ þ z(x) (4)

where y(x) is the actual value; ŷ(x), calculated by the surro-

gate model, is the predicted value of y(x) and can be

divided into two parts: f(x)Tβ is the linear regression part

and z(x) is the local deviation from the regression model;

f(x) ¼ [ f1(x), f2(x), � � � , fk(x)]T is the base function of the

known regression model and the quadratic function-type

base function is selected in this paper; the undetermined par-

ameter β ¼ [β1, β2, � � � , βk]T is the coefficient corresponding

to the base function, which can be obtained by using the pre-

pared training data. A detailed theory of the Kriging method

has been given in the previous work of Guo et al. ().

SVR surrogate model

SVR was specifically designed to deal with nonlinear

regression fitting. It is an extension of support vector

machine theory (Vapnik ). The key theory of SVR is to

project a training sample into a high-dimensional feature

space using a non-linear mapping function, and find a

linear regression hyperplane in this space to fit the input–

output relationship of the training sample. In this way, the

input–output relationship of the training samples will

change from a complex non-linear relationship in a low-

dimensional space to a simple linear relationship in a

high-dimensional space (Lahiri & Ghanta ).

Fora given set of input samplepointsX ¼ [x1, x2, � � � , xm]T
and its corresponding output value Y ¼ [y1, y2, � � � , ym]T,
the predicted output value of SVR at the test point xp is as

follows:

f(xp) ¼ w � φ(xp)þ b (5)

where φ(xp) is the nonlinear mapping function, through which

the training samples canbemapped to high-dimensional space;

w is the weight vector; b is the bias term. A detailed introduc-

tion to the SVR surrogate modeling technique can be found

in Hou & Lu ().

Ensemble surrogate model

By allocating the corresponding weight coefficients of differ-

ent stand-alone surrogate models and combining them
://iwaponline.com/ws/article-pdf/20/8/3404/813285/ws020083404.pdf
linearly, an ensemble surrogate model is set up. With the

advantages of different stand-alone surrogate models, the

prediction error can be reduced. Its expression is as follows:

ŷEN(x) ¼
Xn
i¼1

ωiŷi(x) (6)

where n is the number of stand-alone surrogate models;

ŷEN(x) is the predicted value of the ensemble surrogate

model; ωi is the weight of the ith surrogate model; ŷi(x) is

the predicted value of the ith surrogate model;
Pn
i¼1

ωi ¼ 1.

The key to constructing an ensemble surrogate model is

in determining the weight. In this paper, the method of mini-

mizing the mean square error (MSE) was adopted to

calculate weights. The MSE expression of the ensemble sur-

rogate model is as follows:

MSEEN ¼ 1
V

ð
V

e2EN(x)dx ¼ wTCw (7)

where V is the variance of the predicted value of the ensem-

ble surrogate model; w is the weight matrix; MSEEN is the

MSE of the ensemble surrogate model; C is the covariance

matrix; eEN is the prediction error of the ensemble surrogate

model, eEN ¼ y(x)� ŷEN(x), y(x) is the actual value. The

elements of C can be calculated by the following formula:

cij ¼ 1
p
eeTi eej (8)

where p is the number of training samples; i and j represent

different stand-alone surrogate models respectively; ~e is the

cross-validation error of the surrogate model. In this paper,

the leave-one-out cross-validationmethod is utilized to calcu-

late the cross-validation error, that is, one sample is removed

from the training samples in turn, and the remaining samples

are used to build the surrogate model and predict the

removed sample point. The difference between the actual

value and the predicted value of the removed sample point

is the cross-validation error of this point.

Based on the calculated covariance matrix, the weights

can be obtained by minimizing the MSE of the ensemble

surrogate model:

min
w

MSEEN ¼ wTCw

s:t: 1Tw ¼ 1
(9)
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The above formula can be solved with the Lagrange

multiplier (Viana et al. ):

w ¼ C�11

1TC�11
(10)

In order to avoid the calculated weights being negative

and greater than 1, only the diagonal elements in the covari-

ance matrix C are used for calculation, so the above formula

becomes:

w ¼ C�1
diag1

1TC�1
diag1

(11)
The optimization model

Establishing a mathematical optimization model is required

in the coastal groundwater management approach of P-I.

Generally, the optimization model consists of three basic

elements: decision variables, objective functions and con-

straints (Kourakos & Mantoglou ). The objective of

this study is to minimize the extent of SI expressed by the

percentage of mass increase in the aquifer at the end of

the management horizon. Decision variables are the pump-

ing rate of each pumping well and the injection rate of each

recharge well. Constraints mainly include that total capacity

of the selected pumping wells must meet the demands of

local water use and injection. By solving the optimization

model, the optimal groundwater exploitation and injection

scheme can be obtained. The mathematical expression of

this optimization management model is written as:

min f ¼ [(massend �massini)=massini] × 100% (12)

Subject to:

Xm
i¼1

Qex
i ¼ Q0 þ

Xn
j¼1

Qin
j (13)

Xn
j¼1

Qin
j � Qmax (14)

Qin
min � Qin

j � Qin
max (15)

Qex
min � Qex

i � Qex
max (16)

massend ¼ g(Q, p) (17)
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where f is the objective function;massini andmassend are the

total solute mass in the coastal aquifer at the beginning and

end of the management horizon [M], respectively; Qin
j is the

water injection rate of the jth injection well [L3T�1]; Qex
i is

the pumping rate of the ith pumping well [L3T�1]; Q0 is

the local water demand for selected pumping wells

[L3T�1]; Qmax is the limit of the total injection rate according

to the local financial condition [L3T�1];Qin
min,Q

in
max,Q

ex
min and

Qex
max are the minimum allowable water injection rate, the

maximum allowable water injection rate, the minimum

allowable pumping rate and the maximum allowable pump-

ing rate respectively [L3T�1], and their values may vary

according to the different condition of each well; g rep-

resents the total solute mass in the coastal aquifer at the

end of the management horizon calculated by the simu-

lation model [M]; p is the parameter value vector of the

simulation model. In the present study, the simulation

model was replaced by the most precise one of the above

three surrogate models, in order to reduce the compu-

tational burden brought by operating the simulation model.
CASE STUDY

Study area

The study area, the coastal part of Longkou City, is located

in Shandong Province, the northwest of Jiaodong Peninsula

in China, between 120�13014″∼ 120�44046″ east longitude

and 37�27030″∼ 37�47024″ north latitude (Figure 1). The

total area is about 245 km2. The south is low hills and the

north is the coastal plain. The annual average precipitation

in Longkou City is 656.6 mm. The annual precipitation

varies greatly, and the regional distribution of precipitation

is uneven. The precipitation in the southern mountainous

areas is larger than that in the northern plain areas. The

average annual evaporation is 1,150–1,250 mm. In this

study site, rivers rise in the southern mountains and flow

to the northwest. Yongwen River, Balisha River and Beima

River are the main rivers.

In Longkou, the thickness of aquifers is small and the

shortage of freshwater resources is severe. The long-term

overexploitation of groundwater causes the groundwater

level to drop sharply, which destroys the original hydraulic



Figure 1 | Location of the study area.

3409 Z. Han et al. | A surrogate-based S-O approach for coastal aquifer management Water Supply | 20.8 | 2020

Downloaded from http
by guest
on 20 August 2022
balance between the salty water body and the fresh water

body. At the same time, the marine sediments near the coast-

line of the Longkou area are fine sand, coarse sand and fine

gravel with good water permeability, and there is a good

hydraulic connection between the seawater and the coastal

aquifer. Therefore, the extent of SI in the Longkou area has

been serious for a long time and an efficient groundwater

management strategy needs to be proposed urgently. The

hydrogeological background of the study area has been

described in more detail in the previous work of Miao

et al. ().

The locations of boundaries in this simulation area are

shown in Figure 2. Boundary 1 was a sea boundary and

could be defined as a known head and constant salt concen-

tration boundary. Boundary 3, the south piedmont boundary

of the area, was generalized as a constant flow boundary.

Boundary 2 and Boundary 4 represented the watershed

and were treated as zero-flux boundaries. The lower bound-

ary, which was the water-proof bedrock, was defined as a

zero-flux boundaries. The upper boundary was the ground-

water surface, where water exchange between the aquifer

and atmosphere took place. The aquifer in this study area

can be divided into three layers (Figure 3). The first layer

is a phreatic aquifer with sand. This layer is the target unit
://iwaponline.com/ws/article-pdf/20/8/3404/813285/ws020083404.pdf
for optimization management, and thus the following SI

states are all directed at the first layer. Based on the per-

meability, it was divided into eight zones, as shown in

Figure 2. The second layer (C2) is silt or clay with poor per-

meability, and it gradually thins from west to east. The third

layer (C3) is sandstone with very low hydraulic conductivity.

Therefore, the aquifer is a heterogeneous anisotropic aqui-

fer, and the flow is generalized as a three-dimensional

unsteady flow considering variable density.

SI model

In this study, the SI model was established based on the

SEAWAT code. The source code of SEAWAT was devel-

oped by combining MODFLOW (Langevin et al. )

and MT3DMS (Zheng & Wang ) into a single program,

which can solve the coupled equations of groundwater flow

and solute transport.

When the water quality of subsurface aquifers is dete-

riorating due to SI, the most obvious change is the

increase of chloride ion concentration in the water. There-

fore, the chloride ion is usually used as an indicator to

determine whether SI occurs and the extent of intrusion.

In this study, the chloride concentration of the seawater



Figure 2 | Boundaries and parameter partitions of the simulation area.

Figure 3 | Schematic diagram of A–B stratigraphic section.
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boundary was 19,000 mg/l. According to local requirements

of water quality, groundwater chlorine concentration

exceeding 250 mg/l was designed as the sign of SI.

The SI model was calibrated and verified based on the

groundwater elevation and chloride ion concentration data

of the observation wells in the study area over past years.

The groundwater elevation and chloride concentration data

for the years 2015–2016 were used as the measured data for

calibration. For groundwater elevation calibration, the mean

relative error (MRE) reached 18.00% (Figure 4(a)). For water

quality calibration, the MRE reached 7.20% (Figure 4(b)).

The results indicate good agreement between the measured

and calculated values in the calibration procedure. Following

calibration, the SI model was verified using the observation

data of the following years, 2016–2017. Figure 4(c) shows
om http://iwaponline.com/ws/article-pdf/20/8/3404/813285/ws020083404.pdf
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the measured and the verified groundwater elevations, while

Figure 4(d) shows the verification performance of the water

quality model. Overall, the MREs between the simulated

values and the measured values of the groundwater elevation

and chloride concentration were all less than 20%, demon-

strating that the SI model can be used to predict the future

salinity concentration. The hydrogeological parameters of

the calibrated model are shown in Table 1.

Taking June 1, 2017, as the initial time, the above SI

model was used to predict the extent of SI in the next 50

years. In the process of prediction, the effect of climate

change was taken into account. SLR and precipitation vari-

ation caused by climate change are two of the important

factors that exert influences on SI (Ketabchi et al. ).

According to the China Sea Level Bulletin 2018, the average



Figure 4 | Results of model calibration and verification.

Table 1 | The calibrated parameters of the simulation model

Parameter

Parameter partition

I II III IV V VI VII VIII C2 C3

Hydraulic conductivity (m/d) 15.5 18 22 20.5 38.5 20 28 28.5 0.25 8.6 × 10�4

Specific storage (m�1) 0.00015 0.00014 0.00018 0.0002 0.00006 0.00013 0.00005 0.00005 0.01 3.3 × 10�6

Porosity 0.25 0.27 0.25 0.3 0.35 0.3 0.3 0.3 0.4 0.09

Longitudinal dispersivity (m) 54.5 56 58.6 62.6 68 62.6 60 61 60 60

Ratio of horizontal transverse to
longitudinal dispersivity

0.1

Ratio of vertical transverse to
longitudinal dispersivity

0.01

3411 Z. Han et al. | A surrogate-based S-O approach for coastal aquifer management Water Supply | 20.8 | 2020

Downloaded from http
by guest
on 20 August 2022
SLR rate in Bohai was predicted to be 3.8 mm/a. For the

precipitation variation, a statistical downscaling model

(SDSM) was built to simulate and forecast the local

response of precipitation in Longkou to global climate

change under the RCP4.5 emission scenario. SDSM is a
://iwaponline.com/ws/article-pdf/20/8/3404/813285/ws020083404.pdf
statistical downscaling method coupled with multiple

regression and a weather generator (Huang et al. ), and

has been extensively utilized in regional climate change pre-

diction. Due to the wide application of SDSM, this paper

will not elaborate this method in detail. The remaining
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boundary conditions, groundwater pumping rates, and

hydrogeological parameters remain unchanged. Inputting

the above data into the SI model, the result of SI in Longkou

after 50 years was obtained, as shown in Figure 5(a) (com-

pared with SI on June 1, 2017).
Groundwater resources management

According to Figure 5(a), the extent of SI will significantly

deteriorate in the western area of Longkou after 50 years.
Figure 5 | (a) States of SI in 2017 and 2066, (b) location of the pumping and injection

wells.

om http://iwaponline.com/ws/article-pdf/20/8/3404/813285/ws020083404.pdf
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This is because the water consumption is huge in the

western area where the city center is located. In this

case, the P-I groundwater management approach was pre-

sented in this study. The management objective is to

control and mitigate the extent of SI. The key area to be

protected should be the western region, because it is not

only the area with the most serious SI, but also with the

largest population density. As shown in Figure 5(b), five

injection wells were designed to protect the aquifer in

the western region from SI and six pumping wells were

selected to supply water resources for the injection

wells. The sites of the injection wells are in the

transition zone of the initial SI state. The water quantity

of the six pumping wells can be allocated and the water

quality is good. When the water injection wells work, a

hydraulic barrier will be formed in the aquifer to

isolate the saltwater and the usable groundwater, so that

the saltwater cannot further invade the aquifer, and

the goal of mitigating the degree of SI is achieved. The

total demand of water for the six pumping wells is

5,000 m3/d in order to satisfy local development. The

lower pumping rate bound of pumping well 1 (PW1) is

set as 500 m3/d considering the need of reducing the

pumping rate encouraged by local government, and

those of the other five pumping wells are assigned to

900 m3/d. Each of the pumping and injection wells

has a maximum pumping or injection capacity of

3,000 m3/d. At this point, the optimization model has

been preliminarily established. After solving the optimiz-

ation model, the optimal groundwater management

scheme can be obtained to minimize the extent of SI.
RESULTS AND DISCUSSION

The establishment and evaluation of surrogate models

The input variables are the pumping or injection rates of the

eleven wells, and the percentage of chloride mass increase

from 2017 to 2066 is taken as the target for the training

and verification of the surrogate models. The Latin hyper-

cube sampling (LHS) method (McKay et al. ) was

applied to collect the input data. The established SI simu-

lation model was run to acquire the corresponding output
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data. In this way, the input–output data set was obtained to

build surrogate models. One hundred sets of input–output

data were selected via this approach to train the surrogate

models. An additional 20 sets of input–output data were

generated by the same approach to verify and evaluate the

approximation capability of the established surrogate

models to the simulation model.

The principle of LHS is to divide the entire design space

equally into non-overlapping sub-intervals with equal prob-

ability. In each sub-interval, only one sample point of each

variable is selected to ensure that the sampling points

cover the entire design space. This method solves the prob-

lem of the accumulation of sampling points generated by the

simple random sampling method, making the distribution of

sampling points in the design space more uniform. The sur-

rogate model established on this basis can more accurately

reflect the information of the simulation model (Davey

). In the present study, there is an equivalent relation-

ship between the pumped water quantity and the injected

water quantity. In this case, the LHS method was used to

sample the pumping rates of each pumping well first. Then

the sampling data of different pumping wells were combined

randomly to form multiple sets of water pumping schemes.

Finally, the total quantity of injected water under each set

of pumping schemes was calculated and the simple

random sampling method was used to sequentially sample

the water injection rate of each injection well. For example,

one set of the pumping rates sampled by the LHS method

was 2,386, 2,354, 1,596, 2,883, 1,567, and 1,004 m3/d.

According to Equation (13), the total quantity of injected

water was 6,790 m3/d. Then the value of 1,093 was sampled

from the interval [0, 6,790] for the injection rate of IW1 by

the simple random sampling method. Thus, the remaining

total quantity of injected water was 5,697 m3/d. Again, the

value of 2,619 was sampled from the interval [0, 5,697] for

the injection rate of IW2 by the simple random sampling

method. The injection rates of IW3–4 were also obtained

based on this rule, and the last total injected water quantity

was assigned to IW5. In this way, 120 sets of input–output

data were generated and used for the training and verifica-

tion of the surrogate models, which is summarized in

Table 2.

After obtaining the input–output data set, the Kriging

and SVR surrogate models were developed and the
://iwaponline.com/ws/article-pdf/20/8/3404/813285/ws020083404.pdf



Figure 6 | Comparison between simulation model and surrogate models.

Table 4 | Precision comparison between surrogate models

Index R2 RMSE

Kriging surrogate model 0.983175 0.003685

SVR surrogate model 0.962183 0.007067

Ensemble surrogate model 0.995397 0.001806
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ensemble model was constructed based on the theory of

each method through the MATLAB platform. The par-

ameters of the three surrogate models are summarized in

Table 3. The results of verifying the surrogate models are

shown in Figure 6, demonstrating the discrepancy between

the predicted values of mass increase ratio and the calcu-

lated values from the SEAWAT simulation model. The

prediction accuracy of the surrogate models was evaluated

by root mean square error (RMSE) and determination

coefficient (R2). Their expressions are given by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

(yi � ŷi)
2

vuut (18)

R2 ¼ 1�

Pn
i¼1

(yi � ŷi)
2

Pn
i¼1

(yi � �y)2
(19)

where ŷi is the predicted value of the surrogate model for the

ith sample; yi is the exact value of the SI simulation model

for the ith sample; �y is the mean value of exact values; n is

the number of the sample. Based on the verification results,

the RMSE and R2 of the three established surrogate models

are shown in Table 4. As can be seen from the table, in the

two stand-alone surrogate models, the accuracy of the

Kriging surrogate model is higher, with a smaller RMSE

value and a larger R2 value, indicating that the Kriging

method has a stronger advantage in establishing a surrogate

model on this issue. Comparing the Kriging-SVR ensemble
Table 3 | The parameters of the three surrogate models

Kriging surrogate model

parameter value parameter value

θ1 4.87 θ7 10.00

θ2 5.00 θ8 10.00

θ3 3.63 θ9 10.00

θ4 3.49 θ10 10.00

θ5 2.93 θ11 10.00

θ6 2.89 σ2 0.00003

ωK: weight coefficient of Kriging surrogate model; ωS: weight coefficient of SVR surrogate mode

om http://iwaponline.com/ws/article-pdf/20/8/3404/813285/ws020083404.pdf
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surrogate model with the stand-alone surrogate models, it

can be found that the forecast precision of the ensemble

surrogate model is better. This demonstrates that the ensem-

ble surrogate model has advantages over the stand-alone

surrogate models because it can offset some errors of the

stand-alone surrogate models. As a result, the Kriging-SVR

ensemble surrogate model was selected in this study for

calculations instead of the simulation model during the

optimization process.
SVR surrogate model Ensemble surrogate model

parameter value parameter value

C 67.907 ωK 0.6737

γ 0.075

ωS 0.3263

ε 0.01

l.
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Optimal management schemes

Three management scenarios with upper limits of the total

injection rate of respectively 10,000 m3/d, 8,000 m3/d and

6,000 m3/d were designed so as to provide more choices

for decision-makers. In this way, based on the built ensem-

ble surrogate model, an optimization model with the

objective of minimizing the extent of SI was constructed.

The genetic algorithm (GA) was utilized to solve this optim-

ization model, and the optimal solution results of the three

management scenarios are given in Table 5. The SI states

of the three management scenarios under the optimal sol-

ution condition are shown in Figure 7. It can be seen that

as PW1 is closest to the SI area, its pumping rate is obviously

the smallest of the six pumping wells. More water used for

injection comes from the other five pumping wells, whose

water extraction rates have less impact on SI. Among the

injection wells, IW5 requires the smallest quantity of

water, because the SI rate is relatively slow at the position

of IW5 according to Figure 5(a). It is noteworthy that

although a larger total injection rate can lead to better SI

mitigation, the project cost will also rise due to the increase

in the amount of pumping, transporting and injecting of

water. Decision-makers can choose the most appropriate

management plan according to local conditions.

At the initial stage, the chloride mass in the aquifer of the

whole study area is 3:19 × 1012 kg. If without themeasure of

P-I groundwater management, the percentage of chloride

mass increase in the aquifer at the end of the management

horizon is 90.75%, much larger than the optimal solution

results of the three scenarios, which proves the effectiveness

of the P-I management strategy. It not merely protects the

groundwater quality of important areas, but also controls

the degree of SI in the whole study area. Furthermore,

taking the total water injection rate as 10,000 m3/d, another

water allocation scheme, in which pumping wells share the

required water quantity equally and the injection rate of

each water injection well is the same, was designed for com-

parison. The chloride mass of this scheme at the end of the

management horizon was calculated by the SI simulation

model. The calculation result shows that the percentage of

chloride mass increase is 76.61%, almost equivalent to the

percentage of Scenario 2 (8,000 m3/d total water injection

rate) under the optimal solution condition, indicating that
://iwaponline.com/ws/article-pdf/20/8/3404/813285/ws020083404.pdf



Figure 7 | The SI results of three scenarios under the optimal solution condition.
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the government can pay less to achieve the same effect of SI

alleviation. It can be seen that the groundwater management

strategy of P-I based on the S-O approach can minimize the

extent of SI under the constraints of existing conditions by

maximizing the positive impact of water injection and mini-

mizing the negative impact of pumping. For the coastal
om http://iwaponline.com/ws/article-pdf/20/8/3404/813285/ws020083404.pdf
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areas lacking surface freshwater resources, this strategy is

very efficient and should be considered in the prevention

and control of SI in the future.

Comparison of optimization results from Kriging-SVR

and SEAWAT

As mentioned previously, the selected Kriging-SVR ensem-

ble surrogate model was coupled with GA to solve the

optimization model. In order to investigate the quality

of surrogate-based solutions, a comparison of solutions

obtained from the ensemble surrogate model and the simu-

lation model was carried out. For the sake of clarity, GA

was combined with the surrogate model and simulation

model SEAWAT as GA-KS and GA-SEAWAT, respectively.

The optimization results obtained from GA-KS and GA-

SEAWAT based on three management scenarios are

shown in Figure 8. It can be seen that the solutions of

GA-KS, including water allocation of pumping and injection

wells and ratio of mass increase, are very close to those of

GA-SEAWAT in all three scenarios. The detailed relative

errors between the optimization results from GA-KS and

GA-SEAWAT are summarized in Table 6.

Operating the SI simulation model each time took 150 s.

Therefore, during the process of solving the optimization

model, if the simulation model is called directly, the time

required for 3,000 iterations of the optimization algorithm

is 125 h, while the ensemble surrogate model just requires

about 0.5 h. Notably, although a large amount of time has

been spent on training, developing and validating the ensem-

ble surrogate model, it is still far less than the time required

to repeatedly call the simulation model. The comparison

results show that the performance of the Kriging-SVR

ensemble surrogate model is almost the same as the original

simulation model in coupling with GA to solve the optimiz-

ation model, while using the Kriging-SVR ensemble

surrogate model can reduce the huge computational burden.
CONCLUSIONS

Using the S-O method, this study presented an application of

the P-I groundwater management pattern for SI mitigation

in Longkou City, China. A three-dimensional variable



Figure 8 | The optimal solutions based on GA-KS and GA-SEAWAT.

Table 6 | The comparison of solutions from GA-KS and GA-SEAWAT

Scenario 1 Scenario 2

RE (%) RE (%) RE (%)

PW1 11.16 IW1 6.39 PW1 6.05

PW2 11.14 IW2 1.35 PW2 3.51

PW3 5.17 IW3 1.71 PW3 1.13

PW4 2.94 IW4 0.33 PW4 2.92

PW5 2.44 IW5 3.99 PW5 0.03

PW6 2.18 Mr 0.90 PW6 0.01

RE: relative error; Mr: ratio of mass increase.
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density groundwater mathematical model was built for SI

prediction of the Longkou area, considering the effects of

SLR and precipitation variation in response to climate

change on SI. The Kriging surrogate model, the SVR surro-

gate model and the Kriging-SVR ensemble surrogate model

were established for the SI simulation model. Based on the

appropriate indexes, the most accurate surrogate model was

selected to couple the optimization management model. The

GA was utilized to solve the optimization model, thereby

obtaining the optimal pumping and water injection

scheme. Two conclusions can be drawn from this research.

First, compared with stand-alone surrogate models, the

Kriging-SVR ensemble surrogate model has a higher accu-

racy. This indicates that combining stand-alone surrogate

models is a potential surrogate modeling method for the

variable-density groundwater simulation model. Future

studies can consider this technology when stand-alone sur-

rogate models show a poor accuracy. Besides, calling the

surrogate model instead of the simulation model for calcu-

lation during the process of solving the optimization

model can tremendously save computing costs while ensur-

ing accuracy.

Second, the P-I management strategy based on the S-O

method can effectively control the extent of SI by properly

managing groundwater resources. This strategy is especially

efficient for regions that lack adequate surface freshwater

resources to implement artificial recharge measures. The

design of multiple scenarios for the upper limit of total

water injection can provide decision-makers with multiple

decision-making schemes. That is, decision-makers can

make a balance between financial expenditure and the

degree of SI mitigation.
Scenario 3

RE (%) RE (%) RE (%)

IW1 14.38 PW1 14.69 IW1 4.29

IW2 4.51 PW2 5.02 IW2 2.95

IW3 6.27 PW3 5.03 IW3 6.20

IW4 1.51 PW4 5.19 IW4 2.24

IW5 2.81 PW5 6.18 IW5 7.07

Mr 0.57 PW6 0.47 Mr 0.58
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