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ABSTRACT Video monitoring is an important means to ensure production safety in coal mine. However, 
the currently intelligent video surveillance is difficult to respond in real-time due to the latency of cloud 
computing. In this paper, a cloud-edge cooperation framework is proposed, which integrates cloud 
computing and edge computing in a coordinated manner. The cloud computing is used to process non-real-
time and global tasks, while the edge computing is responsible for handling local monitoring video in real-
time. In order to realize cloud-edge data interaction and online optimization for edge models, the 
heterogeneous converged network is built. In addition, an object detection model FL-YOLO composed of 
depthwise separable convolution and down-sampling inverted residual block is proposed, which realizes 
real-time video analysis at the edge. Finally, this paper discusses the complexity of FL-YOLO by its 
computational cost and model size. The experiment results show that the model size of FL-YOLO is 
16.1MB, which is very light, and it achieves 36.7 FPS on NVIDIA Jetson TX1 and an AP of 76.7% on 
Multi-scene pedestrian dataset. Comparing with mainstream object detection models, FL-YOLO completes 
faster detection speed and higher accuracy, and it has lower calculation complexity and smaller model scale. 
Furthermore, the AP on Single-scene pedestrian dataset of FL-YOLO is improved to 80.7% by cloud-edge 
cooperation. K-Fold method is also used to further compared the performance of FL-YOLO and other 
models. Moreover, system test is implemented on coal mine, which validates the actual engineering effect 
of the proposed cloud-edge cooperation framework. 

INDEX TERMS Edge computing, YOLO, cloud-edge cooperation, real-time analysis.

I. INTRODUCTION 
Coal mine video surveillance plays an important role in 
ensuring coal mine production safety and the life of workers, 
but many coal mining manufacturer still use manpower to 
process surveillance videos. However, manpower handling 
inevitably produces a series of problems such as inefficient, 
untimely response, and human physiological fatigue [1]. In 
recent years, with the development of AI technology, 
intelligent video surveillance in coal mine is undoubtedly a 
major trend in the future. Compared with manual video 
surveillance, intelligent video surveillance can not only 
process faster and better, but also greatly reduce the costs of 
coal mine companies. However, intelligent video 
surveillance requires a large amount of storage and 
computing resources. As a result, AI models for video 
processing are usually deployed on cloud servers with rich 

computing and storage resources. Unfortunately, cloud 
computing will produce various problems, such as high 
latency, network congestion, etc. These problems seriously 
affect the safety of coal mine production. To solve the above 
problems, traditional intelligent video surveillance 
framework and AI algorithm must be improved. 

Recently, Object detection algorithm based on 
Convolutional Neural Networks (CNNs) is used in various 
video surveillance fields [2][3][4]. CNN is used to extract the 
features of the input image and eventually detect the objects 
in the image. Its performance has reached or even beyond the 
human level. However, traditional CNN-based object 
detection algorithms require large scale of parameters and 
computations, and it can only be deployed on cloud servers. 
Therefore, Cloud-based intelligent video surveillance in coal 
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mine will be limited in many aspects. In terms of network, 
firstly, the coverage of Industrial Ethernet is limited. 
Secondly, wireless signal is restricted by the narrow tunnels 
and the interference from high-current equipment. Thirdly, 
video transmission requires a large amount of network 
bandwidth, and the process also generates serious latency. 
Hence, the application scenario of Cloud-based intelligent 
video surveillance is constrained by network conditions of 
coal mine. In terms of video processing, the large amount of 
monitoring video will put tremendous computing pressure on 
the cloud servers, it will cause computing latency. To sum up 
the above, traditional CNN-based object detection algorithms 
deployed on cloud servers have serious latency, and the 
latency will extremely reduce the performance of cloud-
based intelligent video surveillance. 

Edge computing is proposed to solve the problems of high 
latency and network congestion in cloud computing [5]. As 
the data centrally processed on cloud servers is dispersed to 
the edge, computing and network pressure on cloud servers 
are greatly reduced. Meanwhile, Edge computing also 
improves the real-time performance of whole system. 
Currently, with the continuous development of electronic 
technology, the computing and storage capabilities of 
embedded devices are constantly improving. At the same 
time, due to the research and development of lightweight 
neural networks, embedded devices obtain the ability of 
intelligent computing. However, the real-time and accuracy 
performances of AI models are limited by the computing and 
storage resources of embedded platform. Furthermore, coal 
mine has numerous monitoring scenarios, and the lightweight 
model with poor generalization ability cannot adapt to 
multiple scenarios. Hence, the accuracy of the lightweight 
models deployed on the edge nodes cannot meet the actual 
needs of coal mine. 

To overcome the abovementioned problems, we proposed 
an Edge-Cloud cooperation framework and FL-YOLO (Fast 
and Lightweight YOLO). In this framework, cloud 
computing is used to train and optimize edge models, and it 
also provide other services of video surveillance system. 
Edge computing is used to analyze surveillance video in real-
time with FL-YOLO algorithm. Eventually, the system is 
able to detect objects with high speed and accuracy, so that 
coal mine equipment and warning can quickly respond 
according to the intelligent analysis results. It avoids workers 
hurt by equipment or other issues, and enhance the safety of 
coal mine production. The main contributions of this paper 
are as follows. 

1) The framework of Edge-Cloud cooperation is proposed 
to realize real-time intelligent video surveillance in coal mine. 
The latency of this framework is much less than that of 
traditional methods, and it expands the coverage of video 
surveillance in coal mine. 

2) Based on the depthwise separable convolution, a 
lightweight object detection model FL-YOLO is proposed to 
implement on embedded platform. The size of the model is 
only 16.1MB, and it has a great performance of speed and 
accuracy. 

The remainder of this paper is organized as follows. 
Related work about object detection, Edge computing and 
Edge-Cloud cooperation framework are introduced in 
Section II. In Section III, a cloud-edge cooperation 
framework of coal mine is proposed including edge-cloud 
service and heterogeneous converged network. In Section IV, 
a CNN-based object detection model FL-YOLO is proposed. 
Meanwhile, the complexity of FL-YOLO is discussed. In 
Section V, experimental results and discussions are given, 
where the accuracy and speed of FL-YOLO are compared 
with other models. The performance of Edge-Cloud 
cooperation framework and traditional framework are also 
compared in this section. Finally, the conclusion is drawn in 
Section VI. 
II.  RELATED WORK 

A.  OBJECT DETECTION ALGORITHMS 
CNN-based object detection algorithms have been receiving 
a lot of attention from researchers due to the superior 
performance. The "one-stage" object detection method, as 
represented by the YOLO series, is widely used in real-time 
target detection. YOLO [6] was first proposed by Redmon J, 
Divvala S, Girshick R and Farhadi A. YOLO treats object 
detection as a regression problem, which is faster but less 
accurate than "two-stage" methods such as Faster-RCNN. 
Two years later, the authors of YOLO improved YOLOv1 
and proposed YOLOv2 [7], which replaces the fully 
connected layer of YOLOv1 with a fully convolutional layer, 
so that it has the ability to handle images of different sizes. 
YOLOv2 also improved object positioning accuracy though 
introduces anchor boxes, and improved the capable of small 
objects detection by multi-scale detection. Redmon J and 
Farhadi A improved YOLOv2 in 2018, they proposed 
Darknet53 framework, which is able to extract deeper 
features compared to Darknet19. Finally, the detection 
accuracy of YOLOv3 has been greatly improved compared 
with YOLOv2, while maintaining the detection speed. 
YOLOv3 framework is widely used in object detection 
because of its excellent performance [8]. Xie L, Ahmad T, 
Jin L, Liu Y [9] proposed MD-YOLO that is able to predict 
the tilt angle of license plates by improving the output 
dimension of YOLO. VL-YOLO [10] was proposed by 
improving the framework of YOLOv3, it is more suitable for 
the detection of small-sized object compared to YOLOv3. 
IN-YOLO [11] is used to monitor surface condition of 
outdoor high voltage insulation. The advanced architecture of 
YOLO is evidenced by wide range of applications [12]-[14], 
while the excellent real-time performance and low number of 
network parameters allow YOLO to be applied to edge 
environments. Meanwhile, except deep learning methods, 
other methods such as brain programing [15] are also 
possessing high performance on the field of object detection. 
However, those methods are difficult to be applied in coal 
mine environment. 

B.  EDGE COMPUTING
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Edge computing is a method to fill the shortcomings of cloud 
computing. The papers of [5][16][17] explore the concept of 
edge computing and its future development. Those authors of 
above paper believe that the massive amounts of data 
generated by IOT and cloud computing will put a huge strain 
on cloud servers. They think that due to the dramatic increase 
in the number of terminal devices in the future, cloud 
computing will unable to meet the requirements of network 
and computational cost in the future. Fortunately, the 
development of embedded devices has enhanced the ability 
of edge computing, which assist cloud computing in data 
processing. Edge computing provides the advantages of low 
latency, low bandwidth requirements, and low cost. Ren J, 
Guo Y, Zhang D, Liu Q [18] provide real-time object 
detection services at edge based on edge computing. These 
papers [19] [20] studied the computing and storage 
capabilities of edge devices and explored the applications of 
edge computing. Edge computing makes computing closer to 
data source, which reduces the latency, power consumption, 
and cost. Thereby, Edge computing broadens the application 
fields and practical effects of AI. 

Running AI algorithms at edge not only needs to improve 
the computing and storage capacities of edge devices, but 
also optimize the traditional neural networks [21] [22]. 
Lightweight AI models can be obtained by lightweight neural 
networks or model compression. For designing lightweight 
neural network models, M. Sandler, A. Howard, M. Zhu, A. 
Zhmoginov and L. Chen proposed depthwise separable 
convolution [23] which greatly reduces the number of 
parameters and calculations of ANN model compared to the 
standard convolution. Li G, Yang Y and Qu X [24] combined 
depthwise separable convolution with YOLO to monitor 
pedestrians in foggy. Liu J, Wang X [25] used mobilenet to 
improve the model, and identify tomato leaf diseases on 
mobile devices. Lightweight neural networks such as 
mobilenet enable edge devices to gain intelligent computing 
capability.  

For the method of compressing neural network, Song Han, 
Huizi Mao, Wallian J. Dally [26] used model pruning, 
weights quantization and Huffman coding to compress the 
model, reducing the model size by 35x to 49x and speedup 
the process of inference while maintaining the accuracy. Y. 
He, X. Dong, G. Kang, Y. Fu, C. Yan and Y. Yang [27] 
prune the convolutional filter of the model by the ASFP 
method, to solve the information loss caused by typical 
pruning algorithms. Li, Hao & Kadav, Asim & Durdanovic, 
Igor & Samet, Hanan & Graf [28] proposed a compression 
method for CNN to reduce the cost of computation. Jian-Hao 
Luo1, Jianxin Wu1, and Weiyao Lin [29] proposed Thinet 
framework to realize compress and speedup of CNN models. 
This framework decrease FLOPs by 3.31 times on VGG16, 
and decrease the size of the model by 16.63 times. Z. Wang, 
J. Zhang, Z. Zhao and F. Su [30] proposed the Efficient-
YOLO based on YOLOv3, they compress the model size by 
layer-level and channel-wise pruning. As a result, the 
Efficient YOLO could deployed on embedded platform of 
NVIDIA Jetson TX2 with excellent accuracy and speed. Shi, 

Rui, Tianxing Li, and Yasushi Yamaguchi [31] prune the 
convolution kernels in channel-dimension to reduce the 
model size of YOLOv3-tiny to 5.3MB, and the pruning 
method decrease the computational cost of the model to 2.6 
GFLOPs. So that the pruned YOLOv3-tiny model could 
deployed on ARM Cortex-A8 platform with accuracy of 
94.4%. The above method is used to compress and speedup 
neural network models, but those methods need specialized 
computing strategy. 

C.  CLOUD-EDGE COOPERATION 
Convergence of Cloud computing and Edge computing, edge 
computing provides users with low-latency, low-power 
services, while cloud computing is used to optimize the 
inference capability of edge computing. The cloud-edge 
cooperation method has already been applied in various field. 
Wang X, Yang L T, Xie X, Jin J and Deen M J [32] proposed 
a cloud-edge computing framework named CPSS (Cyber-
Physical-Social Services). In the paper, cloud computing is 
used to process large-scale, long-term and global data, while 
edge computing is used to process small-scale, short-term 
and locality data. CPSS enables users to receive a higher 
quality and real-time service. Wang Y, Hong K, Zou J, Peng 
T and Yang H [33] proposed a cloud-edge computing 
environment to provide real-time picking services for 
factory-produced parts. Wang Y, Liu M, Zheng P, Yang H 
and Zou J [34] deployed R-CNN on edge devices and 
incorporate cloud computing for real-time monitoring of part 
surface defects. Ye L [35] used embedded devices to 
preliminary process the collected data, and then further 
analyzes the data through cloud computing to monitor the 
health of city pipes. Chien-Chun Hung, Ganesh 
Ananthanarayanan, Peter Bodik [36] proposed VideoEdge 
architecture, it identify the best tradeoff between resources 
and accuracy on cloud-edge collaboration framework for 
processing video stream. Meanwhile, they narrow the search 
space by identifying a "Pareto band" of promising 
configurations. Compared with the method of fair allocation 
of resources, this method improves accuracy by 25.4 × . 

However, this method is difficult to apply to some areas of 
coal mines where the network environment is poor or even 
unable to connect network. 

 The above literature effectively resolved practical issues 
of industrial production and urban safety through cloud and 
edge computing. However, In the harsh coal mine 
environment, current object detection models and cloud-edge 
cooperation framework are difficult to perform effectively. 
To this end, the edge-cloud cooperation framework proposed 
in this paper is used to achieve real-time intelligent video 
surveillance, and it guarantee production safety in coal mine.  

A summary of typical object detection methods is 
presented in TABLE I. Cloud computing or Edge-cloud are 
used in those methods of TABLE I. However, those methods 
in TABLE I are required smoothly and stable network 
environment. Meanwhile, the edge models in the proposed 
methods of TABLE I are also required high performance 
edge platform, it increases the cost of whole system.
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TABLE I 
 A SUMMARY OF TYPICAL HIGH SPEED OBJECT DETECTION METHODS 

papers Method Implementation FPS mAP 
8 YOLOv3 Titan X 35 55.3 
8 YOLOv3-Tiny Titan X 220 33.1 
9 MD-YOLO K40 200 79.5 
11 IN-YOLO  25 88 
24 MNPrioriBoxes-Yolo GTX1080 151.9 86.6 
25 MobileNetv2-TOLOv3 GTX1080TI 246 91.3 

27 
Faster-RCNN/ 
Cloud-Edge cooperation 

i7-4790 0.67 100 

28 
Faster-RCNN/ 
Cloud-Edge cooperation 

Titan X/ 
Xuelang Cloud/ 
Raspberry pi 

17/ 
8.5/ 
1.1 

68 

III.  CLOUD-EDGE COMPUTING COOPERATION 
FRAMEWORK OF COAL MINE 

A.  REAL-TIME EDGE SERVICE 
Edge computing provides real-time intelligent processing 
services for coal mine video surveillance [37]. Edge services 
are composed of hardware layer, data interaction layer and 
service layer. It is show in Fig. 1. 

Hardware layer is the basis of edge devices. It is composed 
of communication interface, control interface and image 
sensor. The data interaction layer communicates with cloud 
server through communication interface, which completes 
cloud-edge data transmission, control parameters 
transmission and model updating. Service layer is based on 
hardware layer, which acquires real-time images of the 
monitoring area, and processes them through MCU. The 
service layer controls coal mine equipment in real-time 
through the control interface according to the intelligent 
analysis results.  

MCU
Image 
sensor

Communication 
interface

Equipment 
control

Real-time video 
surveillance

Model 
update

Control 
parameters

Data 
transmission

Service 
layer

Hardware 
layer

Data intera-
ction layer

Control 
interface

 
FIGURE 1. The Architecture of edge service. MCU control the edge 

service and process monitoring video in real-time. 
Real-time edge service is the basis of entire edge-cloud 

cooperation system. It is used to process coal mine 
surveillance video in real-time, control coal mine equipment, 
and provide data for cloud servers. 

B.  NON-REAL-TIME CLOUD SERVICE 
Cloud servers have strong computing and storage capabilities, 
but severe latency will occur during data transmission and 
process. Hence, cloud computing is not suitable for the tasks 
that require high real-time performance. Fig. 2. illustrates the 

work process of cloud-edge cooperation. In the cloud-edge 
cooperation system, cloud computing is primarily responsible 
for the following tasks: 

(1) Integrating data from edge devices. The edge devices 
send data to cloud server through heterogeneous converged 
communication network. Then, cloud server classifies and 
stores those data to prepare for the optimization of edge 
models. 

(2) Optimizing edge models. Cloud server has powerful 
computing capability, it continuously trains and optimize 
the edge models by the data transmitted from edge devices. 
Then, cloud server transmits the optimized models to the 
edge devices through heterogeneous converged 
communication network. It enables edge models to evolve 
constantly. 

(3) Edge devices management. Edge devices are located in 
various scenarios. The efficiency of edge devices can 
promoted by centralized management through cloud servers. 

ANN model

Edge

Video 
capture

Cloud

Local video 
storage

Output 
processing

Data 
labelling

Train 
algorithm

New model

Control 
Command

Industrial 
Ethernet

Heterogeneous 
integrated network

Data Upload

Model Upgrade

 
FIGURE 2. Process of cloud-edge cooperation framework. Cloud server 
receive the data transmitted by Edge, and use the data to train or 
improve model. Finally, the trained or improved models are transmitted 
to Edge devices by Heterogeneous integrated network. 

In summary, cloud computing acts as a global orchestrator 
in cloud-edge cooperation system. Cloud server obtain data 
from edge devices and return the optimized models. Cloud 
computing enables cloud-edge cooperation system to form a 
virtuous cycle of data-model, which is an important 
guarantee for improving the quality of intelligent video 
monitoring systems. 

C.  THE HETEROGENEOUS CONVERGED 
NETWORK OF CLOUD-EDGE COOPERATION 

Cloud-edge cooperation system provides real-time intelligent 
video surveillance at the edge. However, the process of data 
transmission and model training can be considered as non-
real-time tasks. Depending on the coal mine network 
environment, edge nodes managed by cloud servers can be 
divided into two types. The first type of edge computing 
nodes are located in unblocked network environment. Those 
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nodes are able to provide real-time intelligent video 
surveillance and transmit the monitoring images to cloud 
server immediately. The second type of edge nodes are 
located in blocked network environment, so that it cannot 
transmit monitoring images immediately. But, those nodes 
also provide real-time intelligent video surveillance and 
equipment controlling at edge to ensure the safety of workers. 

We proposed a heterogeneous converged network for the 
two types of edge computing nodes in coal mine. For the first 
type of edge nodes, the existing coal mine network is used to 
interact with cloud servers. However, the coverage of 
existing coal mine network is limited, which cannot support 
the second type of edge nodes communicating with cloud 
server directly. To this end, we merge various existing wired 
network and wireless network, and to build mobile 
opportunity networks based on mobile workers and vehicles 
[38]. Ultimately, a heterogeneous converged network is 
composed of wired network + wireless network, fixed 
communication nodes + mobile communication nodes, 
traditional network and opportunity network [39]. The 
heterogeneous converged network provides a channel for 
edge nodes to interact with cloud server. The heterogeneous 
converged network is shown in Fig. 3. 

Industrial 
Ethenet

Fixed 
node

Wireless 
network

Mobile opportunity network
Edge node
 of class 1
Edge node 
of class 2

Fixed 
node

Mobile 
nodes

Wired 
network

 
FIGURE 3. Heterogeneous converged network. Workers and vehicles 
compose the mobile opportunity network. Edge node of class2 transmit 
data through mobile opportunity network and Industrial Ethenet. 

IV.  THE PROPOSED METHOD FOR REAL-TIME 
INTELLIGENT VIDEO SURVEILLANCE 

A.  ANALYSIS OF THE OBJECT DETECTION 
MODEL OF Tiny-YOLOv3 

Tiny-YOLOv3 is a lite version of YOLOv3. Compared 
with YOLOv3, Tiny-YOLOv3 is smaller and faster, with 
fewer parameters and calculations. Therefore, Tiny-
YOLOv3 is easy to deploy on embedded platforms, and it 
has high real-time performance due to its low 
computational complexity. 

Tiny-YOLOv3 divides the input image into S S grids. 
Each grid contains 3 Bounding boxes, and each Bounding 
box contains 6 predicting parameters, which is 
( , , , , , )objectx y w h I class . As shown in Fig. 4, among those 

parameters, ( , )x y  is the distance of grid's border to the 

center of Bounding box. ( , )w h  is the ratio of the width and 

height of the Bounding box to the width and height of entire 

image. objectI  is the confidence score of Bonding box. 

class  is the category of object. ( , )X Y  is the distance of 

grid's border that contains Bounding box to the border of 
image. 

x
y

w

hX

Y

 FIGURE 4. Predicting bounding box of Tiny-YOLOv3. Tiny-YOLOv3 
predicting size and location of object in surveillance image. 

 

In the Bounding box of Tiny-YOLOv3, the content of 

class  is shown in (1). 

1 2[ , ... ]jclass p p p  (1) 

where, jp is the confidence of the prediction for jth 

category. 

B.  ANALYSIS OF DEPTHWISE SEPARABLE 
CONVOLUTION 

Depthwise separable convolution greatly reduces the number 
of model parameters and calculations with only a small loss 
of accuracy [23]. Therefore, a model consisting of depthwise 
separable convolution is well suited for intelligent computing 
at the edge. 

Depthwise separable convolution consists of depthwise 
convolutions and pointwise convolutions. It is computed 
using depthwise convolution filters for each channel of the 
input image, and followed by pointwise convolution, while 
standard convolution is done in one step. The calculation 
process of the depth separable convolution is shown in Fig. 5. 

1

1

1

1

1
1

1
1

1
1

1
1

Depthwise convolution filters

Pointwise convolution filters

KD

KD

KD

KD

KD

KD

KD

KD

FD

M

FD

N

M

M

M

M

N

FD

FD

M

 FIGURE 5. Calculation process of the depth separable convolution
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Depth separable convolution decompose convolutional operation into 
Depthwise convolutional and Pointwise convolutional. 

Where, FD  is the height and width of the input image. M 

is the number of the image channels. KD  is the size of the 

filters of the depthwise convolution. N is the number of 
pointwise convolution and output channels. 

For an input image of size F FD D M  , the ratio of 

computational cost between depthwise separable convolution 
and standard convolution [23] is shown in (2): 

sec

2

Cos

Cos

1 1

nn

stcnn

F F K K F F

F F K K

K

t

t

D D M D D D D M N

D D M N D D

N D

       


    

 

 

(2) 

  Where, Cos stcnnt  is the computational cost of standard 

convolution; secCos nnt  is the computational cost of depthwise 

separable convolution. 
The ratio of the parameters number is shown in eq. 3: 

sec

2

1 1

nn

stcnn

K K

K K

K

Pnum

Pnum

D D M N M

D D N M

N D

   


  

 

 

(3) 

Where, sec nnPnum  is the parameters number of depthwise 

convolution filters and pointwise convolution filters; 

s ct nnPnum  is the parameters number of standard convolution 

filters. 
The formula (2) and (3) show that, with the increase of N  

and KD , the computational cost and parameters of 

depthwise separable convolution is decrease respect to 
standard convolution. 

C.  DOWN-SAMPLING INVERTED RESIDUAL 
BLOCK 

The backbone of Tiny-YOLOv3 is used to extracts features 
from image, and those features down-sampled by standard 
convolution or max-pooling. However, Tiny-YOLOv3 is 
unable to extract the deeper features of the image due to the 
limited number of convolutional layers. In addition, max-
pooling will cause information lost. In this paper, we down-
sampled the input image by depthwise separable convolution. 
Compared with max-pooling, depthwise separable 
convolution can hold more information. Moreover, 
depthwise separable convolution is able to increase the depth 
of CNN model while maintain the size and computational 
cost. Hence, for the same size of two CNN-based models,  
depthwise separable convolution can improve the feature 
extraction ability of the model. However, with the increases 
of model depth, the model is prone to gradient disappearance 

and overfitting. Fortunately, residual structure can effectively 
solve those problems [40][41]. 

Dwise Separable 
conv 3×3,  

Relu6,Strides=1

Conv 1×1, 
Relu6

Add()

Conv 1×1, Linear

Dwise Separable 
conv3×3,  Relu6,

Strides=(2,2)

Input

Output

1C

2C

2C

1C

1C

 

FIGURE 6. Down-sampling inverted residual block. Firstly, the Dwise 
Separable convolution down-sample and extract features of input data. 
Secondly, the residual block is used to extract deeper features. 

Inspired by MobilenetV2 [23], we proposed down-
sampling inverted residual block based on depthwise 
separable convolution. The structure is shown in Fig. 6. 
Firstly, the block uses depthwise separable convolution to 
down-sample the input image. Secondly, the number of 
channels of the input feature is expanded from 1C to 2C 
through 1 1  convolution. Thirdly, depthwise separable 
convolution is used to extract the features. Finally, the 
number of channels is restored to 1C through 1 1  
convolution, and the features are accumulated with the output 
features of the secondly step. In order to reduce the loss of 
accuracy caused by float16 inference on embedded platforms, 
RELU6 is used as the activation function of the first three 
convolutional layers [42]. At the same time, the linear 
activation function is used as the output of the last layer. The 
linear activation function can avoid information destruction 
caused by the nonlinearity of RELU. 

D.  FAST-LIGHTWEIGHT YOLO 
The safety of workers is an important factor of production 
safety in coal mine. Pedestrian detection gives timely alarm 
or shut down the equipment in operation based on the 
location of the pedestrian, which can effectively prevent 
workers from being injured. 

We proposed a novel object detection model to detect coal 
mine workers in real-time at edge. The model is named FL-
YOLO (Fast-Lightweight YOLO). The backbone of FL-
YOLO is composed of down-sampling inverted residual 
blocks. The framework of FL-YOLO is shown in Fig. 7. 
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FIGURE 7. Framework of FL-YOLO. Down-sampling and Inverted residuals blocks compose the backbone of FL-YOLO, and multi-scale detection 
enables the model to detect objects of different sizes.

Where, Ci ( i 1 2,3, 4,5 ， ) denotes ith convolution layer. 

DWCj ( j 1,2,3 ) denotes jth depthwise separable 

convolution layer. DIn ( n 1,2,3,4,5 ) denotes nth down-
sampling and inverted residual block. 

FL-YOLO is a multi-scale object detection method. It 
has excellent detection results for object of different sizes. 
Considering the versatility of the model, FL-YOLO uses a 
fully convolutional layer as the output layer, which allows 
FL-YOLO has the ability of process the input image with 
different size. 

For an image with an input size 416 416 3  , firstly, FL-
YOLO extracts the feature map1 with size 26 26  by 
Backbone. Secondly, after down-sampling and convolution 
operations, a feature map2 of size 13 13  is extracted. 
Thirdly, FL-YOLO up-samples feature map2 and fuses it 
with feature map1 to form a new feature map of size 26 26 . 
Finally, FL-YOLO outputs 3 13 13   bounding boxes y1, 
and 3 26 26   bounding boxes y2. 

Compared to Tiny-YOLOv3, the depth of FL-YOLO is 
greatly improved due to down-sampling inverted residual 
block and depthwise separable convolution, which improves 
the feature extraction capability of FL-YOLO. And The size 
of FL-YOLO is only 16.1MB, which is much smaller than 
Tiny-YOLO's 34MB and YOLOv3's 237MB. The details of 
the FL-YOLO model are shown in TABLEII. 

TABLE II 
 DETAILS OF THE FL-YOLO 

Layer Filter size channels Feature size 
C1 3×3 16 416×416 
DI1 / 32 416×416 
DI2 / 64 208×208 
DI3 / 128 104×104 
DI4 / 256 52×52 
DI5 / 512 26×26 
DWC1 3×3 1024 13×13 
C2 1×1 256 13×13 
DWC2 3×3 512 13×13 
C3 1×1 18 13×13 
C4 1×1 128 13×13 
DWC3 3×3 256 26×26 
C5 1×1 18 26×26 

E. COMPLEXITY ANALYSIS OF FL-YOLO 

Inference speed is largely influenced by model complexity. 
Model complexity includes computational complexity and 
spatial complexity. Because the model size of FL-YOLO is 
only 16.1MB, the spatial complexity of FL-YOLO is less 
than YOLOv3 and Tiny-YOLOv3. The computational 
complexity is determined by floating point operations 
(FLOPs). We analyze the computational complexity of FL-
YOLO by calculating FLOPs during inference.  

The backbone of FL-YOLO is composed of down-
sampling inverted residual block. The FLOPs of the block 
is shown in (4): 

1 1 2

2                     

DIRB DS COV DS

COV ADD

FLOPs FLOPs FLOPs FLOPs

FLOPs FLOPs

   


 

(4) 

  Where, DIRBFLOPs is the FLOPs of down-sampling 

inverted residual block; 1DSFLOPs  is the FLOPs of first 

depthwise separable convolution operation in the block; 

1COVFLOPs is the FLOPs of first convolution operation in 

the block; 2DSFLOPs  is the FLOPs of second depthwise 

separable convolution operation in the block; 2COVFLOPs  

is the FLOPs of second convolution operation in the block; 

ADDFLOPs  is the addition operation in the block. 

For an input image with size of F FD D M  , by Eq. (2),  

the FLOPs of first depthwise separable convolution is 
shown in (9): 

2 2 2
1 4.5 0.5DS F FFLOPS D M D M   (5) 

    As Fig .6 shows that the first convolution changes the 

feature depth from 1M to 2M. By Eq. (3), 1COVFLOPs can 

be calculated as: 
2 2

1 0.5COV FFLOPS D M  (6) 

The FLOPs of second depthwise separable convolution 
operation is shown in (7): 

2 2 2
2 4.5DS F FFLOPS D M D M   (7) 

2COVFLOPs and ADDFLOPs  can be calculated as follows: 
2 2

2 0.5COV FFLOPS D M  (8) 

2
ADD FFLOPS D M  (9) 

From (5) to (9), the FLOPs of down-sampling inverted 
residual block is: 
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2 2 210 2.5DIRB F FFLOPS D M D M   (10) 

By (10), the FLOPs of an inference process is 0.92Bn for 
an image of size 416 416 3  . The FLOPs of FL-YOLO is 
much less than that of GradAM (2.6GFLOPs)[31], 
YOLOv3 (65.86Bn FLOPs) and Tiny-YOLOv3 (5.56Bn 
FLOPs)[8]. Therefore, FL-YOLO is more suitable for 
embedded platforms than YOLOv3 and Tiny-YOLOv3. 

The size and computational cost of FL-YOLO is less 
than other object detection models such as YOLOv3 and 
Faster-RCNN. Furthermore, the lightweight characteristics 
of FL-YOLO allows it to be deployed on resource-
constrained platform, even embedded systems. Therefore, 
FL-YOLO can be used in real-time control systems at edge 
or other scenario. To sum up the above, FL-YOLO has 
excellent scalability. 

F.  ALGORITHM OF FL-YOLO 
FL-YOLO outputs a number of bounding boxes that contain 
objects information. However, the information in bounding 
boxes does not directly represent the position and the type of 
the objects in the image. The output bounding boxes of FL-
YOLO need to be decoded. 

The output bounding boxes of FL-YOLO: 

( , , , , , )k k k k k k k
objectBox x y w h I class  (11) 

Where, k denotes the number of bounding boxes, 

[0, 2535)k  . 

The object's position in bounding boxes is decoded as 
follows: 

( ) k k k
xb x X  (12) 

( ) k k k
yb y Y  (13) 


kk w

w wb p e  (14) 


kk h

h hb p e  (15) 

Where,   denotes the function of sigmoid; kX ， kY  are 

the distance of grid's border that contains Bounding box to 

the border of entire image; wp ， hp  are the width and height 

of anchor boxes respectively [8][43], k
xb ，

k
yb ，

k
wb ，

k
hb  

are the center point position and size of the bounding boxes. 
Define the confidence that the predicted bounding box 

contains object as: 
k k k

objectscore I p   (16) 

Where, kscore  is the confidence for detecting the object 

in the Kth bounding box. 
Split the information in the bounding box output by FL-

YOLO, let: 

( , , , )b x y w h  (17) 

So, 

( , )k k kBox b score  (18) 

For the large number of Bounding Boxes output by FL-
YOLO, it is necessary to select the prediction box for each 
target. In this paper, we use the NMS (Non-Maximum 
Suppression) algorithm to eliminate repetitive and low-

confidence prediction bounding boxes. The NMS algorithm 
pseudocode is shown in Algorithm 1. 
Algorithm 1:NMS 

1. Input: 1 2{ , ... }kB b b b ; 1 2={score ,score ,...,score }kSC ;NMS 

threshold tN ; 

2. Output: Bounding boxes D, score SC, Index indexes 

3. define function ( , , )tNMS B SC N  

// indexes is the number of output Bounding Boxes. 

4. {}D  , {1, 2, , }indexes k   

5.   while B empty  do 

// Find the number of maximum score and assigned to m. 

6.     arg max( )m SC  

//M denotes the Bounding Box with maximum score. 

7.     mM b  

//D is the candidate output of FL-YOLO. 
8.     D D M   

//Delete M( mb ) from B. 

9.     B B M   
// Delete the Bounding boxes whose iou value with M are  

//larger than the threshold tN . 

10.      for ib  in B  do 

11.         if ( , )i
tiou M b N  then 

//Delete the Bounding box from B. 

12.           iB B b   

//Delete the score from SC. 

13.           iSC SC score   

//Delete the number from indexes. 

14.           indexes indexes i   

15.        end if 
16.      end for 

//Until B empty ,ending the loop 

17.   end while 
18.   return D, SC, indexes 

The FL-YOLO object detection algorithm pseudocode is 
shown in Algorithm 2. 
Algorithm 2: The object detection algorithm of FL-YOLO 
1. Input: image I 
2. Output: boxes D, score SC, classes 
3. Use FL-YOLO to predict: 

 1 2 , , , , ,ij ij ij ij ij ijy y x y w h c p   , 2[0,3), [0,5 )i j S   

4.  Reshape: 

1 2y y  to _ { , }k kbox xy x y , 

_ { , }k kbox wh w h , { }kconfidence c , _ { }kclass prob p ,

2[0,15 )k S  

// Calculate the position and size of the object in the input image. 

5.
( )

_
( )

k

k

k k x

k k y

x x g
box xy

y y g





 
 

 
, _

k

k

k

k

w
k w

w
k w

w p e
box wh

h p e

 
 


 

6. Concatenate box_xy, box_wh to boxes 

7. { }k kscore c p   

//NMS algorithm is used to select Bounding Boxes. 

8. Obtaining D, SC and indexes by ( , , )tNMS boxes score N  

//Obtain the object category. 
9.  for j in indexes do 

10.   argmax( )jclasses p  

11. end for 
12. Return D, SC, classes 
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F.  LOSS FUNCTION 
The loss function plays an important role in training process. 
FL-YOLO predicts the position, size, and type of objects, 
and its loss function should contain these items. 

(1) Position loss function 
2

2

2 2
1

0 0

2 2

0 0

ˆ ˆ[( ) ( ) ]

ˆˆ             (2 )[( ) ( ) ]





 

 

    

    





s B
obj

coord ij i i i i
i j

s B
obj

coord ij i i i i i i
i j

Loss I x x y y

I w h w w h h

 (19) 

Where, 2s is the number of grids in the image; B is the 

number of bounding boxes predicted for each grid; When the 
IOU between the j-th prediction box of the i-th grid and the 

ground truth box is the largest, 1obj
ijI , otherwise 

0obj
ijI ; ix ， iy ， iw ， ih  are the predicted center point 

position and length and width of the object; îx ， îy ， ˆ
iw ，

ˆ
ih  are the ground truth center position and length and width 

of the object; We set 5 coord  to balance the object position 

loss function. 
(2) Object confidence loss function 

2

2

2
0 0

0 0

ˆ ˆ[ log( ) (1 ) log(1 )]

ˆ ˆ             [ log( ) (1 ) log(1 )]

 

 

     

  





s B
obj
ij i i i i

i j

s B
obj

noobj ij i i i i
i j

Loss I C C C C

I C C C C

 (20) 

Where, iC  denotes the predicted confidence; ˆ
iC  

represents the truth confidence; We set 0.5 noobj  to 

balance the loss function of the area without objects in the 
image. 

2

3
0

ˆ[ ( ) log( ( ))

ˆ(1 ( )) log(1 ( ))]

j js B
i iobj

ij j j
i c classes i i

p c p c
Loss I

p c p c 


 

 
   (21) 

Where, classes indicates the number of categories; j
ip  

denotes the probability of the prediction category; ˆ j
ip  

represents the classification probability of ground truth boxes. 
The loss function of FL-YOLO is obtained by overlaying 

(16)-(18): 

1 2 3  Loss Loss Loss Loss  (22) 

G.  MODEL OPTIMIZED FOR SCENE 
In the cloud-edge cooperation system, FL-YOLO needs to be 
deployed on edge to ensure real-time performance. However, 
due to the limitation of computing capacity and storage 
resources of edge, lightweight model has poor data 
generalization capabilities and low object detection accuracy. 
Considering the characteristics of coal mine video 
surveillance, the monitoring area of each monitoring device 
remains unchanged for a long time. Therefore, an object 
detection model deployed on edge device only needs to 
exhibit excellent performance in corresponding monitoring 
scenarios. In this paper, we classify the FL-YOLO model 
into generic model and dedicated model. The generic model 

uses refers to a model trained with pictures of various scene 
in coal mine. So that the generic model can be monitored in 
any area. Based on the transfer learning [44] [45], the 
dedicated model is optimized for the dataset with single 
scene. The single scene denotes the area which monitored by 
an edge device with general model. The parameters of 
dedicated model are adjusted to make the edge model more 
suitable for the monitored scene. Therefore, the accuracy of 
the model is improved by optimization. 

After the generic model is deployed to the surveillance 
scene, the edge device continuously transmit the images of 
monitored area to cloud server. These images are used to 
further train the edge model which deployed in the scene. 
Finally, these optimize models are transmitted to the edge. 
The process is shown in Fig. 8. 
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 FIGURE 8. Process of edge model optimized. Different scenario 
transmit different data to cloud server, and the cloud server optimizes 
the model based on those data for different scenario. 

V.  EXPERIMENTAL RESULTS 

A.  COAL MINE PEDESTRIAN DATASET 
(1) Multi-scene pedestrian dataset 

In order to train FL-YOLO and verify the optimization 
effect of cloud-edge cooperation framework, we collected 
6,000 coal mine surveillance pictures. After sorting, it 
includes 2,598 pictures of pedestrians and 3,402 pictures of 
nobody. Four augmentation skills are used to process those 
pictures, including src, processed by CLAHE, crop and flip. 
Fig. 9 shows the examples of augmented images. Moreover, 
we randomly added Gaussian noise and Gaussian blur on 
images. Finally, the multi-scene pedestrian dataset has 24000 
pictures, it contains 10392 pictures with pedestrian and 
13608 pictures with nobody. 

 
 
 
 
 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

 

10 VOLUME XX, 2017 

 

    
(a)                                      (b) 

    
                         (c)                                       (d) 

FIGURE 9. Examples of augmented images. (a) Source (b) Processed by 
CLAHE (c) Crop (d) flip  

(2) Single-scene pedestrian dataset. 
To verify the impact of further training, we collected 501 

images of a particular situation in coal mine. Those images 
include 500 images of pedestrians, and one image of no 
pedestrian. We processed the above 501 images with same 
way as A, forming a Single-scene pedestrian dataset of 2000 
pedestrian images and 4 images without pedestrians. Then, 
random noise is superimposed on the non-pedestrians images, 
to expand it to the same number of pedestrians images. As a 
result, the Single-scene dataset contains 4,000 images. Fig. 
10 shows the examples of Single-scene dataset. 

  
                    (a)                                               (b) 

FIGURE 10. Examples of Single-scene pedestrian dataset. (a) Including 
pedestrians (b) Non-pedestrian 

We process those images and train models on Intel-i7 
9700K (4.9 Ghz) with NVIDIA GTX 1080Ti. After training, 
we deployed the model on NVIDIA GTX 1080Ti and 
NVIDIA Jetson TX1 to test the performance of the model. 

B.  GENERIC MODEL PERFORMANCE 
VALIDATION 
In order to verify the performance of FL-YOLO, we analyze 
the training process of FL-YOLO and other object detection 
models. Furthermore, the detection speed and accuracy of 
FL-YOLO is also compared with other models. 

Training process reflects the performance of the model to 
some extent. The faster the loss function converges and the 
lower of the loss value is, the higher the accuracy of the 
model is. To train the FL-YOLO model, we randomly divide 
the dataset into training set and test set, where the test set 
accounts for 20 percent of the multi-scene pedestrian dataset. 
Fig. 11 shows the Loss-Epochs curves of FL-YOLO, 
YOLOv3 and Tiny-YOLOv3. From the training process, it 
can be seen that the loss function of Tiny-YOLOv3 decreases 
unsteadily, converges slowly. The final loss value of Tiny-
YOLOv3 is higher than that of TOLOv3 and FL-YOLO. The 
size of YOLOv3 is the largest among the three models, with 
better feature extraction capabilities, and the convergence 
process is faster and more stable than Tiny-YOLOv3. For 
FL-YOLO, the feature extraction capability is enhanced by 
depthwise separable convolution. However, the size of FL-
YOLO is lighter, and the residual structure allows FL-YOLO 
has better data generalization capability. Thereby, the 
training process of FL-YOLO performs better than Tiny-
YOLOv3 in terms of stability and speed, and the final loss 
value of the former is also smaller than that of the latter. 

 
          (a) 

 
          (b) 

FIGURE 11. (a) is the Loss-Epochs curves of FL-YOLO, YOLOv3 and 
Tiny-YOLOv3. In order to make the curve more intuitive, (b) is the curve 
fitting in (a) to make it more smooth and reflect the trend of training.
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AP and mAP are important metric to reflect detection 
accuracy of object detection models. The higher value of AP 
or mAP is, the higher accuracy of the model will make. In 
this paper, we only detect coal mine underground pedestrians. 
Therefore, AP and mAP are equal in this case. FPS (Frame 
Per Second) reflects the detection speed of models, and the 
real-time performance is positively correlated with FPS. FL-
YOLO and other models are deployed on GTX 1080ti GPU 
and NVIDIA Jetson TX1 respectively, to measure the value 
of AP and FPS. 

TABLE III shows the results of various object detection 
models on Multi-scene pedestrian dataset. A higher AP value 
indicates a higher accuracy of the model, and the value of 
FPS indicates the real-time performance of the model. Fig. 
12 shows the PR curves of these models. Experiment results 
show, YOLOv3 has the best performance for AP, P, and R 
values, and it also runs faster than SSD and Faster R-CNN. 
Then, mobilenetV2 is used to construct the YOLOv3-
mobilenetv2. YOLOv3-mobilenetv2 has better real-time 
performance than YOLOv3, but it is still unable to be applied 
on NVIDIA Jetson TX1. Tiny-YOLOv3 is a lite version of 
YOLOv3 with considerably reduced computational cost and 
model size. It runs more than five times faster than YOLOv3 
and nearly three times faster than YOLOv3-mobilenetv2. 
However, the accuracy of Tiny-YOLOv3 is the worst of 
these models, so that it is difficult to applied. The AP value 
of FL-YOLO is behind only YOLOv3 and Faster R-CNN, 
but the speed of FL-YOLO is the fastest among all these 
models including the Efficient YOLO(401.21 ms/frame on 
NVIDIA Jetson TX2)[30]. The excellent accuracy and real-
time performance of FL-YOLO make it suitable for real-time 
pedestrian detection in coal mine. 

TABLE III 
RESULTS OF SEVERAL OBJECT DETECTION MODEL 

Model AP P R FPS-
1080Ti 

FPS-
TX1 

Faster R-CNN 79.3 83.4 81.7 9.4 1.6 
SSD 72.9 77.9 73.6 15.3 3.4 
SSD-mobilenetV2 59.3 68.3 63.9 32.6 6.9 
YOLOv3 82.4 88.6 84.5 35.5 6.2 
YOLOv3-mobilenetV2 70.3 75.1 71.8 76.1 9.8 
Tiny-YOLOv3 52.8 55.3 61.7 197 27.3 
FL-YOLO 76.7 79.2 81.3 217.7 36.7 

 
 
 
 
 
 
 
 
 
 
 

 

      (a) 

 

      (b) 

 

      (c) 

 

      (d) 

 

     (e) 

 

     (f) 

 

   (g) 
FIGURE 12. PR curves of the examined methods on Multi-scene 
pedestrian dataset. (a) Faster R-CNN (b) SSD (c) SSD-mobilenetV2 (d) 
YOLOv3 (e) YOLOv3-mobilenetV2 (f) Tiny-YOLOv3 (g) FL-YOLO 

In order to verify the performance of FL-YOLO more 
comprehensively, we randomly divided Multi-scene 
pedestrian dataset into 5 groups of 4800 images each. Then, 
we apply the method of k-fold [15], with k=5, and train the 
FL-YOLO, YOLOv3, Tiny-YOLOv3 until convergence at 
each fold. At the same time, we test the AP values of each 
fold. The results of k-fold cross validation are show in 
TABLE IV. 

TABLE IV 
RESULTS OF K-FOLD CROSS VALIDATION 

The times of 
Fold 

AP of FL-
YOLO(%) 

AP of Tiny-
YOLOv3(%) 

AP of 
YOLOv3(%) 

1-fold 79.3 48.4 80.3 
2-fold 76.7 56.7 86.6 
3-fold 75.4 57.9 85.3 
4-fold 82.0 58.1 78.9 
5-fold 74.6 49.3 80.1 
Mean 77.6 53.8 82.2 
  3.04 4.34 3.46 
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TABLE III and TABLE IV  show that the AP value of 
YOLOv3 are higher than that of FL-YOLO and Tiny-
YOLOv3. However, the AP value of FL-YOLO is close to 
YOLOv3 and much higher than Tiny-YOLOv3. Moreover, 
the real-time performance of FL-YOLO is superior to that of 
YOLOv3 and Tiny-YOLOv3.  

The above results show that FL-YOLO has excellent 
performance, and it can ensure the accuracy of detecting 
pedestrians in coal mine. The reasons for the outstanding 
performance of FL-YOLO can be summarized as follows: 

(1) Depthwise separable convolution reduces the number 
of parameters and computing cost, and increases the speed of 
FL-YOLO. 

(2) The down-sampling inverted residual block greatly 
improves the capability of feature extraction and data 
generalization. 

(3) Multi-scale detection allows FL-YOLO to detect 
objects with different sizes effectively. 

C.  SCENE OPTIMIZATION MODEL 
PERFORMANCE VALIDATION 
There is a large demand for intelligent video surveillance in 
coal mine, and the surveillance scenes are different. 
Therefore, the generic model is not able to achieve the ideal 
accuracy, because the lightweight model is lack of data 
generalization ability. Considering that FL-YOLO is 
deployed in different regions, the model parameters can be 
adjusted according to the environment to suit different 
monitoring area. For a given surveillance scene, the 
viewpoint tends not to change in the short term, so the 
background of the surveillance scene can be considered as 
fixed. However, the recognition mistake of background may 
occur when using a generic model for intelligent surveillance. 

According to the transfer learning, FL-YOLO takes a 
Multi-scene pedestrian dataset as the source domain of the 
model, while single-scene pedestrian dataset can be 
considered as the target domain. Therefore, we optimized the 
model's parameters by instance-based transfer learning. On 
the basis of the generic model, we further train it using the 
single-scene pedestrian dataset. Consider that only the Tiny-
YOLO and FL-YOLO have the speed to meet the practical 
application on embedded platforms. Hence, we just analyze 
the further training process of Tiny-YOLOv3 and FL-YOLO.  

To optimize the FL-YOLO, we divide the single-scene 
pedestrian dataset into a training set and a test set, where the 
test set takes up 20 percent of the single-scene pedestrian 
dataset. As shown in Fig. 13, the loss functions of FL-YOLO 
and Tiny-YOLO are further reduced. 

 
 
 
 

 
        (a) 

 
        (b) 

FIGURE 13. (a) is the Further training Loss-Epochs curves of FL-YOLO 
and Tiny_YOLOv3. In order to make the curve more intuitive, (b) is the 
curve fitting in (a) to make it more smooth and reflect the trend of 
training. 

The P-R curve of optimized FL-YOLO and Tiny-
YOLOv3 is shown in Fig. 14. Fig. 13 and Fig. 14 show that 
the FL-YOLO and Tiny-YOLOv3 models become more 
adaptable to the scene, and the performance is improved in 
this scenario.  

 

 

(a) 

 

(b) 
FIGURE 14. P-R curves optimized FL-YOLO and Tiny-YOLOv3 (a) FL-
YOLO (b) Tiny-YOLOv3 

We also use the method of k-fold (k=5) to further validate 
the effect of scene optimization. First, we randomly divided 
the single-scene pedestrian dataset into 5 groups of 800 
images each. Then, we optimize FL-YOLO and Tiny-
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YOLOv3 until convergence at each fold. Finally, we test the 
AP values of FL-YOLO and Tiny-YOLOv3 at each fold. The 
results of optimization k-fold cross validation are show in 
TABLE V. 

TABLE V 
RESULTS OF K-FOLD CROSS VALIDATION 

The times of 
Fold 

AP of FL-
YOLO(%) 

AP of Tiny-
YOLOv3(%) 

1-fold 80.3 67.5 
2-fold 82.9 66.9 
3-fold 81.2 60.8 
4-fold 80.1 59.8 
5-fold 83.7 61.4 
Mean 81.6 63.3 
  1.60 3.63 

TABLE V shows that the average values of AP for FL-
YOLO and Tiny-YOLOv3 were significantly improved. 
Meanwhile, the Standard Deviation of FL-YOLO and Tiny-
YOLOv3 is also decreased. The above results show that the 
optimization leads to improve accuracy and generalization of 
models in a single scenario. 

As the Fig. 15 shows, YOLO incorrectly identifies objects 
in the background as pedestrians before optimized, but this 
mistake does not happen after optimization. 

 

(a) 

 

(b) 
FIGURE 15. Example of optimization effect. (a) Before optimization, FL-
YOLO misidentify a machine as person. (b) After optimization, FL-YOLO 
solve the misidentification problem and increases the confidence level 
of correct identification. 

Through the cooperation of edge computing and cloud 
computing, the edge is used to complete real-time intelligent 
video monitoring, while the cloud computing is responsible 
for model optimization. Experimental results show that FL-
YOLO has excellent performance. After optimization, the 
real-time performance and accuracy of FL-YOLO are all 
superior to those of other mainstream object detection 
models. Meanwhile, the Robustness of FL-YOLO is also 
improved, and the influence of the noise and adversarial 
attacks acting on edge model is reduced by further train of 
edge-cloud framework. 

D.  SYSTEM TEST AND COMPARISON 
(1) System implementation: A Surveillance Video Real-time 
Analysis System was implemented on coal mine. We use the 
NVIDIA Jetson TX1 as edge node, and a computer with Intel 
i7-9700k @4.9Ghz CPU, NVIDIA GTX1080Ti GPU was 
used as a cloud server. The deployment locations of the edge 
nodes include Rock roadway, machine lane, Transfer Point 
of Outer Lane, Ground entry channel and haulage tunnel. The 
surveillance screens are show in Fig. 16. 

In the above five scenarios, Ground Entry Channel and 
Haulage Tunnel have access to Industrial Ethenet. They have 
a low-latency and stable network. The edge nodes 
implemented at Ground Entry Channel and Haulage Tunnel 
can be seen as the edge node of class 1. 

However, the Industrial Ethenet does not cover the 
Machine Lane and Transfer Point of Outer Lane. Hence, 
wireless communication is used to access network. Therefore, 
the edge nodes deployed on the Machine Lane and Transfer 
Point of Outer Lane can be considered the edge node of class 
1. 

The edge node deployed on Rock Roadway can been seen 
as a temporary node added during construction. Therefore, 
those edge nodes cannot be connected to Industrial Ethnet 
and wireless network. So, the edge node implemented at 
Rock Roadway can be seen as the edge node of class 2. 
However, there is frequent movement of workers and 
vehicles in Rock Roadway. Hence, we use the mobility of 
workers and vehicles to build heterogeneous converged 
networks to complete the transmission tasks of key videos, 
images and models. The information transmission method of 
the edge node implemented as Rock Roadway is shown in 
Fig.17. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 
FIGURE 16. The surveillance screens (a) Rock Roadway (b) Machine 
Lane (c) Transfer Point of Outer Lane (d) Ground Entry Channel (e) 
Haulage Tunne
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FIGURE 17. Information transmission method of Rock Roadway. Edge 
nodes deployed on the Rock Roadway transmit the information of the 
nodes by mobbing vehicles or workers. 

As the Fig.17 shows, we install mobile information 
transmission nodes on workers and vehicles. Then, the 
information of the edge node is carried by mobile nodes, and  
those information will be forwarded to the fixed nodes 
through the movement of workers and vehicles. Finally, the 
fixed nodes send information to cloud server or monitoring 
center through Industrial Ethenet. 
(2) Comparison of Edge-cloud cooperation and cloud 
computing 

We deploy edge nodes at the above five sites. On the one 
hand, Surveillance video is processed at edge in the edge-
cloud cooperation system. On the other hand, surveillance 
video is sent to cloud, and the cloud server is used to process 
the surveillance video. The latency of cloud computing and 
edge-cloud cooperation to process surveillance video is 
shown in TABLE VI. 

TABLE VI 
LATENCY OF PROCESS SURVEILLANCE VIDEO 

Position Cloud 
computing 

Edge-Cloud 
Cooperation 

Rock Roadway  28.73ms 
Machine Lane 5964.79ms 28.62ms 
Transfer Point of Outer Lane 11471.94ms 28.79ms 
Ground Entry Channel 60.13ms 28.65ms 
Haulage Tunnel 69.31ms 28.81ms 

The latency times shown in TABLE VI are the average 
times used by the two systems for intelligent processing of 
5000 images respectively. As shown in TABLE VI, the 
latency of Edge-cloud cooperation is lower than that of 
Cloud computing. Moreover, the latency of Cloud computing 
is different due to the network conditions in different regions.  

In the Edge-cloud cooperation environment, the latency of 
video upload is still affected by network conditions. However, 
the video has been processed by edge nodes, it is able to 
respond to the video events in real time at the surveillance 
sites. In addition, with the growth of system deployment time, 
the edge model is continuously optimized. Hence, the edge-
cloud cooperation surveillance analysis system has an 

excellent performance of real-time and accuracy, it ensures 
the production safety of coal mine to a great extent. 

VI.  CONCLUSION 

In this paper, we have introduced a cloud-edge cooperation 
framework for real-time intelligent video surveillance in 
underground coal mine environment. The main work of this 
paper are as follows: 

(1) A new cloud-edge cooperation framework is proposed. 
In the real-time intelligent video surveillance, this framework 
realize model optimization. For the scenarios with poor 
network environments, this framework still enables data 
interaction between edge and cloud. 

(2) On the basis of YOLO, FL-YOLO real-time object 
detection model is proposed. 

(3) Pedestrian dataset is built to train FL-YOLO, and 
validated the performance of FL-YOLO. 

Compared with the traditional video surveillance method, 
cloud-edge computing framework has excellent performance 
of real-time and accuracy. 

In the future, the main work is further optimization the 
cloud-edge cooperation framework by two steps. Firstly, we 
will further optimize the object detection model with the 
goals of lightweight, high accuracy, and high speed. 
Secondly, we will optimize the data transmission method 
between edge and cloud, to improve the coverage of real-
time intelligent video surveillance and the speed of data 
transmission. 
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