
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

A Surveillance Video Real-time Analysis System
Based on Edge-cloud and FL-YOLO Cooperation in
Coal Mine

Zhi XU, Jingzhao LI，Mei ZHANG

College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, 232000 China

Corresponding author: Jingzhao LI (e-mail:ljzaust@outlook.com).

This work was supported by the National Natural Science Foundation of China (Grant No.51874010), the Key Technology Research & Innovation Team
Project (Grant No. 201950ZX003), the Natural Science Research Projects of Colleges and Universities in Anhui Province （KJ2020A0309）, and Huaibei

Mining Group National Technology Center Project: "Coal Mine Control System Based on Video Monitoring".

ABSTRACT Video monitoring is an important means to ensure production safety in coal mine. However,
the currently intelligent video surveillance is difficult to respond in real-time due to the latency of cloud
computing. In this paper, a cloud-edge cooperation framework is proposed, which integrates cloud
computing and edge computing in a coordinated manner. The cloud computing is used to process non-real-
time and global tasks, while the edge computing is responsible for handling local monitoring video in real-
time. In order to realize cloud-edge data interaction and online optimization for edge models, the
heterogeneous converged network is built. In addition, an object detection model FL-YOLO composed of
depthwise separable convolution and down-sampling inverted residual block is proposed, which realizes
real-time video analysis at the edge. Finally, this paper discusses the complexity of FL-YOLO by its
computational cost and model size. The experiment results show that the model size of FL-YOLO is
16.1MB, which is very light, and it achieves 36.7 FPS on NVIDIA Jetson TX1 and an AP of 76.7% on
Multi-scene pedestrian dataset. Comparing with mainstream object detection models, FL-YOLO completes
faster detection speed and higher accuracy, and it has lower calculation complexity and smaller model scale.
Furthermore, the AP on Single-scene pedestrian dataset of FL-YOLO is improved to 80.7% by cloud-edge
cooperation. K-Fold method is also used to further compared the performance of FL-YOLO and other
models. Moreover, system test is implemented on coal mine, which validates the actual engineering effect
of the proposed cloud-edge cooperation framework.

INDEX TERMS Edge computing, YOLO, cloud-edge cooperation, real-time analysis.

I. INTRODUCTION
Coal mine video surveillance plays an important role in
ensuring coal mine production safety and the life of workers,
but many coal mining manufacturer still use manpower to
process surveillance videos. However, manpower handling
inevitably produces a series of problems such as inefficient,
untimely response, and human physiological fatigue [1]. In
recent years, with the development of AI technology,
intelligent video surveillance in coal mine is undoubtedly a
major trend in the future. Compared with manual video
surveillance, intelligent video surveillance can not only
process faster and better, but also greatly reduce the costs of
coal mine companies. However, intelligent video
surveillance requires a large amount of storage and
computing resources. As a result, AI models for video
processing are usually deployed on cloud servers with rich

computing and storage resources. Unfortunately, cloud
computing will produce various problems, such as high
latency, network congestion, etc. These problems seriously
affect the safety of coal mine production. To solve the above
problems, traditional intelligent video surveillance
framework and AI algorithm must be improved.

Recently, Object detection algorithm based on
Convolutional Neural Networks (CNNs) is used in various
video surveillance fields [2][3][4]. CNN is used to extract the
features of the input image and eventually detect the objects
in the image. Its performance has reached or even beyond the
human level. However, traditional CNN-based object
detection algorithms require large scale of parameters and
computations, and it can only be deployed on cloud servers.
Therefore, Cloud-based intelligent video surveillance in coal

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

2 VOLUME XX, 2017

mine will be limited in many aspects. In terms of network,
firstly, the coverage of Industrial Ethernet is limited.
Secondly, wireless signal is restricted by the narrow tunnels
and the interference from high-current equipment. Thirdly,
video transmission requires a large amount of network
bandwidth, and the process also generates serious latency.
Hence, the application scenario of Cloud-based intelligent
video surveillance is constrained by network conditions of
coal mine. In terms of video processing, the large amount of
monitoring video will put tremendous computing pressure on
the cloud servers, it will cause computing latency. To sum up
the above, traditional CNN-based object detection algorithms
deployed on cloud servers have serious latency, and the
latency will extremely reduce the performance of cloud-
based intelligent video surveillance.

Edge computing is proposed to solve the problems of high
latency and network congestion in cloud computing [5]. As
the data centrally processed on cloud servers is dispersed to
the edge, computing and network pressure on cloud servers
are greatly reduced. Meanwhile, Edge computing also
improves the real-time performance of whole system.
Currently, with the continuous development of electronic
technology, the computing and storage capabilities of
embedded devices are constantly improving. At the same
time, due to the research and development of lightweight
neural networks, embedded devices obtain the ability of
intelligent computing. However, the real-time and accuracy
performances of AI models are limited by the computing and
storage resources of embedded platform. Furthermore, coal
mine has numerous monitoring scenarios, and the lightweight
model with poor generalization ability cannot adapt to
multiple scenarios. Hence, the accuracy of the lightweight
models deployed on the edge nodes cannot meet the actual
needs of coal mine.

To overcome the abovementioned problems, we proposed
an Edge-Cloud cooperation framework and FL-YOLO (Fast
and Lightweight YOLO). In this framework, cloud
computing is used to train and optimize edge models, and it
also provide other services of video surveillance system.
Edge computing is used to analyze surveillance video in real-
time with FL-YOLO algorithm. Eventually, the system is
able to detect objects with high speed and accuracy, so that
coal mine equipment and warning can quickly respond
according to the intelligent analysis results. It avoids workers
hurt by equipment or other issues, and enhance the safety of
coal mine production. The main contributions of this paper
are as follows.

1) The framework of Edge-Cloud cooperation is proposed
to realize real-time intelligent video surveillance in coal mine.
The latency of this framework is much less than that of
traditional methods, and it expands the coverage of video
surveillance in coal mine.

2) Based on the depthwise separable convolution, a
lightweight object detection model FL-YOLO is proposed to
implement on embedded platform. The size of the model is
only 16.1MB, and it has a great performance of speed and
accuracy.

The remainder of this paper is organized as follows.
Related work about object detection, Edge computing and
Edge-Cloud cooperation framework are introduced in
Section II. In Section III, a cloud-edge cooperation
framework of coal mine is proposed including edge-cloud
service and heterogeneous converged network. In Section IV,
a CNN-based object detection model FL-YOLO is proposed.
Meanwhile, the complexity of FL-YOLO is discussed. In
Section V, experimental results and discussions are given,
where the accuracy and speed of FL-YOLO are compared
with other models. The performance of Edge-Cloud
cooperation framework and traditional framework are also
compared in this section. Finally, the conclusion is drawn in
Section VI.
II. RELATED WORK

A. OBJECT DETECTION ALGORITHMS
CNN-based object detection algorithms have been receiving
a lot of attention from researchers due to the superior
performance. The "one-stage" object detection method, as
represented by the YOLO series, is widely used in real-time
target detection. YOLO [6] was first proposed by Redmon J,
Divvala S, Girshick R and Farhadi A. YOLO treats object
detection as a regression problem, which is faster but less
accurate than "two-stage" methods such as Faster-RCNN.
Two years later, the authors of YOLO improved YOLOv1
and proposed YOLOv2 [7], which replaces the fully
connected layer of YOLOv1 with a fully convolutional layer,
so that it has the ability to handle images of different sizes.
YOLOv2 also improved object positioning accuracy though
introduces anchor boxes, and improved the capable of small
objects detection by multi-scale detection. Redmon J and
Farhadi A improved YOLOv2 in 2018, they proposed
Darknet53 framework, which is able to extract deeper
features compared to Darknet19. Finally, the detection
accuracy of YOLOv3 has been greatly improved compared
with YOLOv2, while maintaining the detection speed.
YOLOv3 framework is widely used in object detection
because of its excellent performance [8]. Xie L, Ahmad T,
Jin L, Liu Y [9] proposed MD-YOLO that is able to predict
the tilt angle of license plates by improving the output
dimension of YOLO. VL-YOLO [10] was proposed by
improving the framework of YOLOv3, it is more suitable for
the detection of small-sized object compared to YOLOv3.
IN-YOLO [11] is used to monitor surface condition of
outdoor high voltage insulation. The advanced architecture of
YOLO is evidenced by wide range of applications [12]-[14],
while the excellent real-time performance and low number of
network parameters allow YOLO to be applied to edge
environments. Meanwhile, except deep learning methods,
other methods such as brain programing [15] are also
possessing high performance on the field of object detection.
However, those methods are difficult to be applied in coal
mine environment.

B. EDGE COMPUTING

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

VOLUME XX, 2017 3

Edge computing is a method to fill the shortcomings of cloud
computing. The papers of [5][16][17] explore the concept of
edge computing and its future development. Those authors of
above paper believe that the massive amounts of data
generated by IOT and cloud computing will put a huge strain
on cloud servers. They think that due to the dramatic increase
in the number of terminal devices in the future, cloud
computing will unable to meet the requirements of network
and computational cost in the future. Fortunately, the
development of embedded devices has enhanced the ability
of edge computing, which assist cloud computing in data
processing. Edge computing provides the advantages of low
latency, low bandwidth requirements, and low cost. Ren J,
Guo Y, Zhang D, Liu Q [18] provide real-time object
detection services at edge based on edge computing. These
papers [19] [20] studied the computing and storage
capabilities of edge devices and explored the applications of
edge computing. Edge computing makes computing closer to
data source, which reduces the latency, power consumption,
and cost. Thereby, Edge computing broadens the application
fields and practical effects of AI.

Running AI algorithms at edge not only needs to improve
the computing and storage capacities of edge devices, but
also optimize the traditional neural networks [21] [22].
Lightweight AI models can be obtained by lightweight neural
networks or model compression. For designing lightweight
neural network models, M. Sandler, A. Howard, M. Zhu, A.
Zhmoginov and L. Chen proposed depthwise separable
convolution [23] which greatly reduces the number of
parameters and calculations of ANN model compared to the
standard convolution. Li G, Yang Y and Qu X [24] combined
depthwise separable convolution with YOLO to monitor
pedestrians in foggy. Liu J, Wang X [25] used mobilenet to
improve the model, and identify tomato leaf diseases on
mobile devices. Lightweight neural networks such as
mobilenet enable edge devices to gain intelligent computing
capability.

For the method of compressing neural network, Song Han,
Huizi Mao, Wallian J. Dally [26] used model pruning,
weights quantization and Huffman coding to compress the
model, reducing the model size by 35x to 49x and speedup
the process of inference while maintaining the accuracy. Y.
He, X. Dong, G. Kang, Y. Fu, C. Yan and Y. Yang [27]
prune the convolutional filter of the model by the ASFP
method, to solve the information loss caused by typical
pruning algorithms. Li, Hao & Kadav, Asim & Durdanovic,
Igor & Samet, Hanan & Graf [28] proposed a compression
method for CNN to reduce the cost of computation. Jian-Hao
Luo1, Jianxin Wu1, and Weiyao Lin [29] proposed Thinet
framework to realize compress and speedup of CNN models.
This framework decrease FLOPs by 3.31 times on VGG16,
and decrease the size of the model by 16.63 times. Z. Wang,
J. Zhang, Z. Zhao and F. Su [30] proposed the Efficient-
YOLO based on YOLOv3, they compress the model size by
layer-level and channel-wise pruning. As a result, the
Efficient YOLO could deployed on embedded platform of
NVIDIA Jetson TX2 with excellent accuracy and speed. Shi,

Rui, Tianxing Li, and Yasushi Yamaguchi [31] prune the
convolution kernels in channel-dimension to reduce the
model size of YOLOv3-tiny to 5.3MB, and the pruning
method decrease the computational cost of the model to 2.6
GFLOPs. So that the pruned YOLOv3-tiny model could
deployed on ARM Cortex-A8 platform with accuracy of
94.4%. The above method is used to compress and speedup
neural network models, but those methods need specialized
computing strategy.

C. CLOUD-EDGE COOPERATION
Convergence of Cloud computing and Edge computing, edge
computing provides users with low-latency, low-power
services, while cloud computing is used to optimize the
inference capability of edge computing. The cloud-edge
cooperation method has already been applied in various field.
Wang X, Yang L T, Xie X, Jin J and Deen M J [32] proposed
a cloud-edge computing framework named CPSS (Cyber-
Physical-Social Services). In the paper, cloud computing is
used to process large-scale, long-term and global data, while
edge computing is used to process small-scale, short-term
and locality data. CPSS enables users to receive a higher
quality and real-time service. Wang Y, Hong K, Zou J, Peng
T and Yang H [33] proposed a cloud-edge computing
environment to provide real-time picking services for
factory-produced parts. Wang Y, Liu M, Zheng P, Yang H
and Zou J [34] deployed R-CNN on edge devices and
incorporate cloud computing for real-time monitoring of part
surface defects. Ye L [35] used embedded devices to
preliminary process the collected data, and then further
analyzes the data through cloud computing to monitor the
health of city pipes. Chien-Chun Hung, Ganesh
Ananthanarayanan, Peter Bodik [36] proposed VideoEdge
architecture, it identify the best tradeoff between resources
and accuracy on cloud-edge collaboration framework for
processing video stream. Meanwhile, they narrow the search
space by identifying a "Pareto band" of promising
configurations. Compared with the method of fair allocation
of resources, this method improves accuracy by 25.4 × .

However, this method is difficult to apply to some areas of
coal mines where the network environment is poor or even
unable to connect network.

 The above literature effectively resolved practical issues
of industrial production and urban safety through cloud and
edge computing. However, In the harsh coal mine
environment, current object detection models and cloud-edge
cooperation framework are difficult to perform effectively.
To this end, the edge-cloud cooperation framework proposed
in this paper is used to achieve real-time intelligent video
surveillance, and it guarantee production safety in coal mine.

A summary of typical object detection methods is
presented in TABLE I. Cloud computing or Edge-cloud are
used in those methods of TABLE I. However, those methods
in TABLE I are required smoothly and stable network
environment. Meanwhile, the edge models in the proposed
methods of TABLE I are also required high performance
edge platform, it increases the cost of whole system.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

4 VOLUME XX, 2017

TABLE I
 A SUMMARY OF TYPICAL HIGH SPEED OBJECT DETECTION METHODS

papers Method Implementation FPS mAP
8 YOLOv3 Titan X 35 55.3
8 YOLOv3-Tiny Titan X 220 33.1
9 MD-YOLO K40 200 79.5
11 IN-YOLO 25 88
24 MNPrioriBoxes-Yolo GTX1080 151.9 86.6
25 MobileNetv2-TOLOv3 GTX1080TI 246 91.3

27
Faster-RCNN/
Cloud-Edge cooperation

i7-4790 0.67 100

28
Faster-RCNN/
Cloud-Edge cooperation

Titan X/
Xuelang Cloud/
Raspberry pi

17/
8.5/
1.1

68

III. CLOUD-EDGE COMPUTING COOPERATION
FRAMEWORK OF COAL MINE

A. REAL-TIME EDGE SERVICE
Edge computing provides real-time intelligent processing
services for coal mine video surveillance [37]. Edge services
are composed of hardware layer, data interaction layer and
service layer. It is show in Fig. 1.

Hardware layer is the basis of edge devices. It is composed
of communication interface, control interface and image
sensor. The data interaction layer communicates with cloud
server through communication interface, which completes
cloud-edge data transmission, control parameters
transmission and model updating. Service layer is based on
hardware layer, which acquires real-time images of the
monitoring area, and processes them through MCU. The
service layer controls coal mine equipment in real-time
through the control interface according to the intelligent
analysis results.

MCU
Image
sensor

Communication
interface

Equipment
control

Real-time video
surveillance

Model
update

Control
parameters

Data
transmission

Service
layer

Hardware
layer

Data intera-
ction layer

Control
interface

FIGURE 1. The Architecture of edge service. MCU control the edge

service and process monitoring video in real-time.
Real-time edge service is the basis of entire edge-cloud

cooperation system. It is used to process coal mine
surveillance video in real-time, control coal mine equipment,
and provide data for cloud servers.

B. NON-REAL-TIME CLOUD SERVICE
Cloud servers have strong computing and storage capabilities,
but severe latency will occur during data transmission and
process. Hence, cloud computing is not suitable for the tasks
that require high real-time performance. Fig. 2. illustrates the

work process of cloud-edge cooperation. In the cloud-edge
cooperation system, cloud computing is primarily responsible
for the following tasks:

(1) Integrating data from edge devices. The edge devices
send data to cloud server through heterogeneous converged
communication network. Then, cloud server classifies and
stores those data to prepare for the optimization of edge
models.

(2) Optimizing edge models. Cloud server has powerful
computing capability, it continuously trains and optimize
the edge models by the data transmitted from edge devices.
Then, cloud server transmits the optimized models to the
edge devices through heterogeneous converged
communication network. It enables edge models to evolve
constantly.

(3) Edge devices management. Edge devices are located in
various scenarios. The efficiency of edge devices can
promoted by centralized management through cloud servers.

ANN model

Edge

Video
capture

Cloud

Local video
storage

Output
processing

Data
labelling

Train
algorithm

New model

Control
Command

Industrial
Ethernet

Heterogeneous
integrated network

Data Upload

Model Upgrade

FIGURE 2. Process of cloud-edge cooperation framework. Cloud server
receive the data transmitted by Edge, and use the data to train or
improve model. Finally, the trained or improved models are transmitted
to Edge devices by Heterogeneous integrated network.

In summary, cloud computing acts as a global orchestrator
in cloud-edge cooperation system. Cloud server obtain data
from edge devices and return the optimized models. Cloud
computing enables cloud-edge cooperation system to form a
virtuous cycle of data-model, which is an important
guarantee for improving the quality of intelligent video
monitoring systems.

C. THE HETEROGENEOUS CONVERGED
NETWORK OF CLOUD-EDGE COOPERATION

Cloud-edge cooperation system provides real-time intelligent
video surveillance at the edge. However, the process of data
transmission and model training can be considered as non-
real-time tasks. Depending on the coal mine network
environment, edge nodes managed by cloud servers can be
divided into two types. The first type of edge computing
nodes are located in unblocked network environment. Those

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

VOLUME XX, 2017 5

nodes are able to provide real-time intelligent video
surveillance and transmit the monitoring images to cloud
server immediately. The second type of edge nodes are
located in blocked network environment, so that it cannot
transmit monitoring images immediately. But, those nodes
also provide real-time intelligent video surveillance and
equipment controlling at edge to ensure the safety of workers.

We proposed a heterogeneous converged network for the
two types of edge computing nodes in coal mine. For the first
type of edge nodes, the existing coal mine network is used to
interact with cloud servers. However, the coverage of
existing coal mine network is limited, which cannot support
the second type of edge nodes communicating with cloud
server directly. To this end, we merge various existing wired
network and wireless network, and to build mobile
opportunity networks based on mobile workers and vehicles
[38]. Ultimately, a heterogeneous converged network is
composed of wired network + wireless network, fixed
communication nodes + mobile communication nodes,
traditional network and opportunity network [39]. The
heterogeneous converged network provides a channel for
edge nodes to interact with cloud server. The heterogeneous
converged network is shown in Fig. 3.

Industrial
Ethenet

Fixed
node

Wireless
network

Mobile opportunity network
Edge node
 of class 1
Edge node
of class 2

Fixed
node

Mobile
nodes

Wired
network

FIGURE 3. Heterogeneous converged network. Workers and vehicles
compose the mobile opportunity network. Edge node of class2 transmit
data through mobile opportunity network and Industrial Ethenet.

IV. THE PROPOSED METHOD FOR REAL-TIME
INTELLIGENT VIDEO SURVEILLANCE

A. ANALYSIS OF THE OBJECT DETECTION
MODEL OF Tiny-YOLOv3

Tiny-YOLOv3 is a lite version of YOLOv3. Compared
with YOLOv3, Tiny-YOLOv3 is smaller and faster, with
fewer parameters and calculations. Therefore, Tiny-
YOLOv3 is easy to deploy on embedded platforms, and it
has high real-time performance due to its low
computational complexity.

Tiny-YOLOv3 divides the input image into S S grids.
Each grid contains 3 Bounding boxes, and each Bounding
box contains 6 predicting parameters, which is
(, , , , ,)objectx y w h I class . As shown in Fig. 4, among those

parameters, (,)x y is the distance of grid's border to the

center of Bounding box. (,)w h is the ratio of the width and

height of the Bounding box to the width and height of entire

image. objectI is the confidence score of Bonding box.

class is the category of object. (,)X Y is the distance of

grid's border that contains Bounding box to the border of
image.

x
y

w

hX

Y

 FIGURE 4. Predicting bounding box of Tiny-YOLOv3. Tiny-YOLOv3
predicting size and location of object in surveillance image.

In the Bounding box of Tiny-YOLOv3, the content of

class is shown in (1).

1 2[, ...]jclass p p p (1)

where, jp is the confidence of the prediction for jth

category.

B. ANALYSIS OF DEPTHWISE SEPARABLE
CONVOLUTION

Depthwise separable convolution greatly reduces the number
of model parameters and calculations with only a small loss
of accuracy [23]. Therefore, a model consisting of depthwise
separable convolution is well suited for intelligent computing
at the edge.

Depthwise separable convolution consists of depthwise
convolutions and pointwise convolutions. It is computed
using depthwise convolution filters for each channel of the
input image, and followed by pointwise convolution, while
standard convolution is done in one step. The calculation
process of the depth separable convolution is shown in Fig. 5.

1

1

1

1

1
1

1
1

1
1

1
1

Depthwise convolution filters

Pointwise convolution filters

KD

KD

KD

KD

KD

KD

KD

KD

FD

M

FD

N

M

M

M

M

N

FD

FD

M

 FIGURE 5. Calculation process of the depth separable convolution

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

6 VOLUME XX, 2017

Depth separable convolution decompose convolutional operation into
Depthwise convolutional and Pointwise convolutional.

Where, FD is the height and width of the input image. M

is the number of the image channels. KD is the size of the

filters of the depthwise convolution. N is the number of
pointwise convolution and output channels.

For an input image of size F FD D M  , the ratio of

computational cost between depthwise separable convolution
and standard convolution [23] is shown in (2):

sec

2

Cos

Cos

1 1

nn

stcnn

F F K K F F

F F K K

K

t

t

D D M D D D D M N

D D M N D D

N D

       


    

 

(2)

 Where, Cos stcnnt is the computational cost of standard

convolution; secCos nnt is the computational cost of depthwise

separable convolution.
The ratio of the parameters number is shown in eq. 3:

sec

2

1 1

nn

stcnn

K K

K K

K

Pnum

Pnum

D D M N M

D D N M

N D

   


  

 

(3)

Where, sec nnPnum is the parameters number of depthwise

convolution filters and pointwise convolution filters;

s ct nnPnum is the parameters number of standard convolution

filters.
The formula (2) and (3) show that, with the increase of N

and KD , the computational cost and parameters of

depthwise separable convolution is decrease respect to
standard convolution.

C. DOWN-SAMPLING INVERTED RESIDUAL
BLOCK

The backbone of Tiny-YOLOv3 is used to extracts features
from image, and those features down-sampled by standard
convolution or max-pooling. However, Tiny-YOLOv3 is
unable to extract the deeper features of the image due to the
limited number of convolutional layers. In addition, max-
pooling will cause information lost. In this paper, we down-
sampled the input image by depthwise separable convolution.
Compared with max-pooling, depthwise separable
convolution can hold more information. Moreover,
depthwise separable convolution is able to increase the depth
of CNN model while maintain the size and computational
cost. Hence, for the same size of two CNN-based models,
depthwise separable convolution can improve the feature
extraction ability of the model. However, with the increases
of model depth, the model is prone to gradient disappearance

and overfitting. Fortunately, residual structure can effectively
solve those problems [40][41].

Dwise Separable
conv 3×3,

Relu6,Strides=1

Conv 1×1,
Relu6

Add()

Conv 1×1, Linear

Dwise Separable
conv3×3, Relu6,

Strides=(2,2)

Input

Output

1C

2C

2C

1C

1C

FIGURE 6. Down-sampling inverted residual block. Firstly, the Dwise
Separable convolution down-sample and extract features of input data.
Secondly, the residual block is used to extract deeper features.

Inspired by MobilenetV2 [23], we proposed down-
sampling inverted residual block based on depthwise
separable convolution. The structure is shown in Fig. 6.
Firstly, the block uses depthwise separable convolution to
down-sample the input image. Secondly, the number of
channels of the input feature is expanded from 1C to 2C
through 1 1 convolution. Thirdly, depthwise separable
convolution is used to extract the features. Finally, the
number of channels is restored to 1C through 1 1
convolution, and the features are accumulated with the output
features of the secondly step. In order to reduce the loss of
accuracy caused by float16 inference on embedded platforms,
RELU6 is used as the activation function of the first three
convolutional layers [42]. At the same time, the linear
activation function is used as the output of the last layer. The
linear activation function can avoid information destruction
caused by the nonlinearity of RELU.

D. FAST-LIGHTWEIGHT YOLO
The safety of workers is an important factor of production
safety in coal mine. Pedestrian detection gives timely alarm
or shut down the equipment in operation based on the
location of the pedestrian, which can effectively prevent
workers from being injured.

We proposed a novel object detection model to detect coal
mine workers in real-time at edge. The model is named FL-
YOLO (Fast-Lightweight YOLO). The backbone of FL-
YOLO is composed of down-sampling inverted residual
blocks. The framework of FL-YOLO is shown in Fig. 7.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

VOLUME XX, 2017 7

y1

y2

Input
Feature map1

Feature map2

Concatenate

Convoluton with kernel_size=(3,3)

Convoluton with kernel_size=(1,1)

Downsampling

Upsampling

Down-sampling
and Inverted

residuals block

Downsampling
and Inverted

residuals block

Backbone

Maxpooling SeparableConv2D

C1

DWC1C2DWC2

DWC3

C3

C4C5

DI5

DI1 DI2 DI3 DI4

Down-sampling
and Inverted

residuals block

Down-sampling
and Inverted

residuals block

Down-sampling
and Inverted

residuals block

FIGURE 7. Framework of FL-YOLO. Down-sampling and Inverted residuals blocks compose the backbone of FL-YOLO, and multi-scale detection
enables the model to detect objects of different sizes.

Where, Ci (i 1 2,3, 4,5 ，) denotes ith convolution layer.

DWCj (j 1,2,3) denotes jth depthwise separable

convolution layer. DIn (n 1,2,3,4,5) denotes nth down-
sampling and inverted residual block.

FL-YOLO is a multi-scale object detection method. It
has excellent detection results for object of different sizes.
Considering the versatility of the model, FL-YOLO uses a
fully convolutional layer as the output layer, which allows
FL-YOLO has the ability of process the input image with
different size.

For an image with an input size 416 416 3  , firstly, FL-
YOLO extracts the feature map1 with size 26 26 by
Backbone. Secondly, after down-sampling and convolution
operations, a feature map2 of size 13 13 is extracted.
Thirdly, FL-YOLO up-samples feature map2 and fuses it
with feature map1 to form a new feature map of size 26 26 .
Finally, FL-YOLO outputs 3 13 13  bounding boxes y1,
and 3 26 26  bounding boxes y2.

Compared to Tiny-YOLOv3, the depth of FL-YOLO is
greatly improved due to down-sampling inverted residual
block and depthwise separable convolution, which improves
the feature extraction capability of FL-YOLO. And The size
of FL-YOLO is only 16.1MB, which is much smaller than
Tiny-YOLO's 34MB and YOLOv3's 237MB. The details of
the FL-YOLO model are shown in TABLEII.

TABLE II
 DETAILS OF THE FL-YOLO

Layer Filter size channels Feature size
C1 3×3 16 416×416
DI1 / 32 416×416
DI2 / 64 208×208
DI3 / 128 104×104
DI4 / 256 52×52
DI5 / 512 26×26
DWC1 3×3 1024 13×13
C2 1×1 256 13×13
DWC2 3×3 512 13×13
C3 1×1 18 13×13
C4 1×1 128 13×13
DWC3 3×3 256 26×26
C5 1×1 18 26×26

E. COMPLEXITY ANALYSIS OF FL-YOLO

Inference speed is largely influenced by model complexity.
Model complexity includes computational complexity and
spatial complexity. Because the model size of FL-YOLO is
only 16.1MB, the spatial complexity of FL-YOLO is less
than YOLOv3 and Tiny-YOLOv3. The computational
complexity is determined by floating point operations
(FLOPs). We analyze the computational complexity of FL-
YOLO by calculating FLOPs during inference.

The backbone of FL-YOLO is composed of down-
sampling inverted residual block. The FLOPs of the block
is shown in (4):

1 1 2

2

DIRB DS COV DS

COV ADD

FLOPs FLOPs FLOPs FLOPs

FLOPs FLOPs

   



(4)

 Where, DIRBFLOPs is the FLOPs of down-sampling

inverted residual block; 1DSFLOPs is the FLOPs of first

depthwise separable convolution operation in the block;

1COVFLOPs is the FLOPs of first convolution operation in

the block; 2DSFLOPs is the FLOPs of second depthwise

separable convolution operation in the block; 2COVFLOPs

is the FLOPs of second convolution operation in the block;

ADDFLOPs is the addition operation in the block.

For an input image with size of F FD D M  , by Eq. (2),

the FLOPs of first depthwise separable convolution is
shown in (9):

2 2 2
1 4.5 0.5DS F FFLOPS D M D M  (5)

 As Fig .6 shows that the first convolution changes the

feature depth from 1M to 2M. By Eq. (3), 1COVFLOPs can

be calculated as:
2 2

1 0.5COV FFLOPS D M (6)

The FLOPs of second depthwise separable convolution
operation is shown in (7):

2 2 2
2 4.5DS F FFLOPS D M D M  (7)

2COVFLOPs and ADDFLOPs can be calculated as follows:
2 2

2 0.5COV FFLOPS D M (8)

2
ADD FFLOPS D M (9)

From (5) to (9), the FLOPs of down-sampling inverted
residual block is:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

8 VOLUME XX, 2017

2 2 210 2.5DIRB F FFLOPS D M D M  (10)

By (10), the FLOPs of an inference process is 0.92Bn for
an image of size 416 416 3  . The FLOPs of FL-YOLO is
much less than that of GradAM (2.6GFLOPs)[31],
YOLOv3 (65.86Bn FLOPs) and Tiny-YOLOv3 (5.56Bn
FLOPs)[8]. Therefore, FL-YOLO is more suitable for
embedded platforms than YOLOv3 and Tiny-YOLOv3.

The size and computational cost of FL-YOLO is less
than other object detection models such as YOLOv3 and
Faster-RCNN. Furthermore, the lightweight characteristics
of FL-YOLO allows it to be deployed on resource-
constrained platform, even embedded systems. Therefore,
FL-YOLO can be used in real-time control systems at edge
or other scenario. To sum up the above, FL-YOLO has
excellent scalability.

F. ALGORITHM OF FL-YOLO
FL-YOLO outputs a number of bounding boxes that contain
objects information. However, the information in bounding
boxes does not directly represent the position and the type of
the objects in the image. The output bounding boxes of FL-
YOLO need to be decoded.

The output bounding boxes of FL-YOLO:

(, , , , ,)k k k k k k k
objectBox x y w h I class (11)

Where, k denotes the number of bounding boxes,

[0, 2535)k  .

The object's position in bounding boxes is decoded as
follows:

() k k k
xb x X (12)

() k k k
yb y Y (13)


kk w

w wb p e (14)


kk h

h hb p e (15)

Where,  denotes the function of sigmoid; kX ， kY are

the distance of grid's border that contains Bounding box to

the border of entire image; wp ， hp are the width and height

of anchor boxes respectively [8][43], k
xb ，

k
yb ，

k
wb ，

k
hb

are the center point position and size of the bounding boxes.
Define the confidence that the predicted bounding box

contains object as:
k k k

objectscore I p  (16)

Where, kscore is the confidence for detecting the object

in the Kth bounding box.
Split the information in the bounding box output by FL-

YOLO, let:

(, , ,)b x y w h (17)

So,

(,)k k kBox b score (18)

For the large number of Bounding Boxes output by FL-
YOLO, it is necessary to select the prediction box for each
target. In this paper, we use the NMS (Non-Maximum
Suppression) algorithm to eliminate repetitive and low-

confidence prediction bounding boxes. The NMS algorithm
pseudocode is shown in Algorithm 1.
Algorithm 1:NMS

1. Input: 1 2{ , ... }kB b b b ; 1 2={score ,score ,...,score }kSC ;NMS

threshold tN ;

2. Output: Bounding boxes D, score SC, Index indexes

3. define function (, ,)tNMS B SC N

// indexes is the number of output Bounding Boxes.

4. {}D  , {1, 2, , }indexes k 

5. while B empty do

// Find the number of maximum score and assigned to m.

6. arg max()m SC

//M denotes the Bounding Box with maximum score.

7. mM b

//D is the candidate output of FL-YOLO.
8. D D M 

//Delete M(mb) from B.

9. B B M 
// Delete the Bounding boxes whose iou value with M are

//larger than the threshold tN .

10. for ib in B do

11. if (,)i
tiou M b N then

//Delete the Bounding box from B.

12. iB B b 

//Delete the score from SC.

13. iSC SC score 

//Delete the number from indexes.

14. indexes indexes i 

15. end if
16. end for

//Until B empty ,ending the loop

17. end while
18. return D, SC, indexes

The FL-YOLO object detection algorithm pseudocode is
shown in Algorithm 2.
Algorithm 2: The object detection algorithm of FL-YOLO
1. Input: image I
2. Output: boxes D, score SC, classes
3. Use FL-YOLO to predict:

 1 2 , , , , ,ij ij ij ij ij ijy y x y w h c p  , 2[0,3), [0,5)i j S 

4. Reshape:

1 2y y to _ { , }k kbox xy x y ,

_ { , }k kbox wh w h , { }kconfidence c , _ { }kclass prob p ,

2[0,15)k S

// Calculate the position and size of the object in the input image.

5.
()

_
()

k

k

k k x

k k y

x x g
box xy

y y g





 
 

 
, _

k

k

k

k

w
k w

w
k w

w p e
box wh

h p e

 
 



6. Concatenate box_xy, box_wh to boxes

7. { }k kscore c p 

//NMS algorithm is used to select Bounding Boxes.

8. Obtaining D, SC and indexes by (, ,)tNMS boxes score N

//Obtain the object category.
9. for j in indexes do

10. argmax()jclasses p

11. end for
12. Return D, SC, classes

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

VOLUME XX, 2017 9

F. LOSS FUNCTION
The loss function plays an important role in training process.
FL-YOLO predicts the position, size, and type of objects,
and its loss function should contain these items.

(1) Position loss function
2

2

2 2
1

0 0

2 2

0 0

ˆ ˆ[() ()]

ˆˆ (2)[() ()]





 

 

    

    





s B
obj

coord ij i i i i
i j

s B
obj

coord ij i i i i i i
i j

Loss I x x y y

I w h w w h h

 (19)

Where, 2s is the number of grids in the image; B is the

number of bounding boxes predicted for each grid; When the
IOU between the j-th prediction box of the i-th grid and the

ground truth box is the largest, 1obj
ijI , otherwise

0obj
ijI ; ix ， iy ， iw ， ih are the predicted center point

position and length and width of the object; îx ， îy ， ˆ
iw ，

ˆ
ih are the ground truth center position and length and width

of the object; We set 5 coord to balance the object position

loss function.
(2) Object confidence loss function

2

2

2
0 0

0 0

ˆ ˆ[log() (1) log(1)]

ˆ ˆ [log() (1) log(1)]

 

 

     

  





s B
obj
ij i i i i

i j

s B
obj

noobj ij i i i i
i j

Loss I C C C C

I C C C C

 (20)

Where, iC denotes the predicted confidence; ˆ
iC

represents the truth confidence; We set 0.5 noobj to

balance the loss function of the area without objects in the
image.

2

3
0

ˆ[() log(())

ˆ(1 ()) log(1 ())]

j js B
i iobj

ij j j
i c classes i i

p c p c
Loss I

p c p c 


 

 
  (21)

Where, classes indicates the number of categories; j
ip

denotes the probability of the prediction category; ˆ j
ip

represents the classification probability of ground truth boxes.
The loss function of FL-YOLO is obtained by overlaying

(16)-(18):

1 2 3  Loss Loss Loss Loss (22)

G. MODEL OPTIMIZED FOR SCENE
In the cloud-edge cooperation system, FL-YOLO needs to be
deployed on edge to ensure real-time performance. However,
due to the limitation of computing capacity and storage
resources of edge, lightweight model has poor data
generalization capabilities and low object detection accuracy.
Considering the characteristics of coal mine video
surveillance, the monitoring area of each monitoring device
remains unchanged for a long time. Therefore, an object
detection model deployed on edge device only needs to
exhibit excellent performance in corresponding monitoring
scenarios. In this paper, we classify the FL-YOLO model
into generic model and dedicated model. The generic model

uses refers to a model trained with pictures of various scene
in coal mine. So that the generic model can be monitored in
any area. Based on the transfer learning [44] [45], the
dedicated model is optimized for the dataset with single
scene. The single scene denotes the area which monitored by
an edge device with general model. The parameters of
dedicated model are adjusted to make the edge model more
suitable for the monitored scene. Therefore, the accuracy of
the model is improved by optimization.

After the generic model is deployed to the surveillance
scene, the edge device continuously transmit the images of
monitored area to cloud server. These images are used to
further train the edge model which deployed in the scene.
Finally, these optimize models are transmitted to the edge.
The process is shown in Fig. 8.

E
q
u
ip

m
en

t

Model
Training

Data
IntegrationService

Edge
node1

Scenario1

Edge
node2

E
q
u
ip

m
en

t

Scenario2

Edge
node3

E
q
u
ip

m
en

t

Scenario3

Cloud computing

New
Model1

Data of
Scenario1

New
Mode2

Data of
Scenario2

New
Model3

Data of
Scenario3

 FIGURE 8. Process of edge model optimized. Different scenario
transmit different data to cloud server, and the cloud server optimizes
the model based on those data for different scenario.

V. EXPERIMENTAL RESULTS

A. COAL MINE PEDESTRIAN DATASET
(1) Multi-scene pedestrian dataset

In order to train FL-YOLO and verify the optimization
effect of cloud-edge cooperation framework, we collected
6,000 coal mine surveillance pictures. After sorting, it
includes 2,598 pictures of pedestrians and 3,402 pictures of
nobody. Four augmentation skills are used to process those
pictures, including src, processed by CLAHE, crop and flip.
Fig. 9 shows the examples of augmented images. Moreover,
we randomly added Gaussian noise and Gaussian blur on
images. Finally, the multi-scene pedestrian dataset has 24000
pictures, it contains 10392 pictures with pedestrian and
13608 pictures with nobody.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

10 VOLUME XX, 2017

(a) (b)

 (c) (d)

FIGURE 9. Examples of augmented images. (a) Source (b) Processed by
CLAHE (c) Crop (d) flip

(2) Single-scene pedestrian dataset.
To verify the impact of further training, we collected 501

images of a particular situation in coal mine. Those images
include 500 images of pedestrians, and one image of no
pedestrian. We processed the above 501 images with same
way as A, forming a Single-scene pedestrian dataset of 2000
pedestrian images and 4 images without pedestrians. Then,
random noise is superimposed on the non-pedestrians images,
to expand it to the same number of pedestrians images. As a
result, the Single-scene dataset contains 4,000 images. Fig.
10 shows the examples of Single-scene dataset.

 (a) (b)

FIGURE 10. Examples of Single-scene pedestrian dataset. (a) Including
pedestrians (b) Non-pedestrian

We process those images and train models on Intel-i7
9700K (4.9 Ghz) with NVIDIA GTX 1080Ti. After training,
we deployed the model on NVIDIA GTX 1080Ti and
NVIDIA Jetson TX1 to test the performance of the model.

B. GENERIC MODEL PERFORMANCE
VALIDATION
In order to verify the performance of FL-YOLO, we analyze
the training process of FL-YOLO and other object detection
models. Furthermore, the detection speed and accuracy of
FL-YOLO is also compared with other models.

Training process reflects the performance of the model to
some extent. The faster the loss function converges and the
lower of the loss value is, the higher the accuracy of the
model is. To train the FL-YOLO model, we randomly divide
the dataset into training set and test set, where the test set
accounts for 20 percent of the multi-scene pedestrian dataset.
Fig. 11 shows the Loss-Epochs curves of FL-YOLO,
YOLOv3 and Tiny-YOLOv3. From the training process, it
can be seen that the loss function of Tiny-YOLOv3 decreases
unsteadily, converges slowly. The final loss value of Tiny-
YOLOv3 is higher than that of TOLOv3 and FL-YOLO. The
size of YOLOv3 is the largest among the three models, with
better feature extraction capabilities, and the convergence
process is faster and more stable than Tiny-YOLOv3. For
FL-YOLO, the feature extraction capability is enhanced by
depthwise separable convolution. However, the size of FL-
YOLO is lighter, and the residual structure allows FL-YOLO
has better data generalization capability. Thereby, the
training process of FL-YOLO performs better than Tiny-
YOLOv3 in terms of stability and speed, and the final loss
value of the former is also smaller than that of the latter.

 (a)

 (b)

FIGURE 11. (a) is the Loss-Epochs curves of FL-YOLO, YOLOv3 and
Tiny-YOLOv3. In order to make the curve more intuitive, (b) is the curve
fitting in (a) to make it more smooth and reflect the trend of training.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

VOLUME XX, 2017 11

AP and mAP are important metric to reflect detection
accuracy of object detection models. The higher value of AP
or mAP is, the higher accuracy of the model will make. In
this paper, we only detect coal mine underground pedestrians.
Therefore, AP and mAP are equal in this case. FPS (Frame
Per Second) reflects the detection speed of models, and the
real-time performance is positively correlated with FPS. FL-
YOLO and other models are deployed on GTX 1080ti GPU
and NVIDIA Jetson TX1 respectively, to measure the value
of AP and FPS.

TABLE III shows the results of various object detection
models on Multi-scene pedestrian dataset. A higher AP value
indicates a higher accuracy of the model, and the value of
FPS indicates the real-time performance of the model. Fig.
12 shows the PR curves of these models. Experiment results
show, YOLOv3 has the best performance for AP, P, and R
values, and it also runs faster than SSD and Faster R-CNN.
Then, mobilenetV2 is used to construct the YOLOv3-
mobilenetv2. YOLOv3-mobilenetv2 has better real-time
performance than YOLOv3, but it is still unable to be applied
on NVIDIA Jetson TX1. Tiny-YOLOv3 is a lite version of
YOLOv3 with considerably reduced computational cost and
model size. It runs more than five times faster than YOLOv3
and nearly three times faster than YOLOv3-mobilenetv2.
However, the accuracy of Tiny-YOLOv3 is the worst of
these models, so that it is difficult to applied. The AP value
of FL-YOLO is behind only YOLOv3 and Faster R-CNN,
but the speed of FL-YOLO is the fastest among all these
models including the Efficient YOLO(401.21 ms/frame on
NVIDIA Jetson TX2)[30]. The excellent accuracy and real-
time performance of FL-YOLO make it suitable for real-time
pedestrian detection in coal mine.

TABLE III
RESULTS OF SEVERAL OBJECT DETECTION MODEL

Model AP P R FPS-
1080Ti

FPS-
TX1

Faster R-CNN 79.3 83.4 81.7 9.4 1.6
SSD 72.9 77.9 73.6 15.3 3.4
SSD-mobilenetV2 59.3 68.3 63.9 32.6 6.9
YOLOv3 82.4 88.6 84.5 35.5 6.2
YOLOv3-mobilenetV2 70.3 75.1 71.8 76.1 9.8
Tiny-YOLOv3 52.8 55.3 61.7 197 27.3
FL-YOLO 76.7 79.2 81.3 217.7 36.7

 (a)

 (b)

 (c)

 (d)

 (e)

 (f)

 (g)
FIGURE 12. PR curves of the examined methods on Multi-scene
pedestrian dataset. (a) Faster R-CNN (b) SSD (c) SSD-mobilenetV2 (d)
YOLOv3 (e) YOLOv3-mobilenetV2 (f) Tiny-YOLOv3 (g) FL-YOLO

In order to verify the performance of FL-YOLO more
comprehensively, we randomly divided Multi-scene
pedestrian dataset into 5 groups of 4800 images each. Then,
we apply the method of k-fold [15], with k=5, and train the
FL-YOLO, YOLOv3, Tiny-YOLOv3 until convergence at
each fold. At the same time, we test the AP values of each
fold. The results of k-fold cross validation are show in
TABLE IV.

TABLE IV
RESULTS OF K-FOLD CROSS VALIDATION

The times of
Fold

AP of FL-
YOLO(%)

AP of Tiny-
YOLOv3(%)

AP of
YOLOv3(%)

1-fold 79.3 48.4 80.3
2-fold 76.7 56.7 86.6
3-fold 75.4 57.9 85.3
4-fold 82.0 58.1 78.9
5-fold 74.6 49.3 80.1
Mean 77.6 53.8 82.2
 3.04 4.34 3.46

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

12 VOLUME XX, 2017

TABLE III and TABLE IV show that the AP value of
YOLOv3 are higher than that of FL-YOLO and Tiny-
YOLOv3. However, the AP value of FL-YOLO is close to
YOLOv3 and much higher than Tiny-YOLOv3. Moreover,
the real-time performance of FL-YOLO is superior to that of
YOLOv3 and Tiny-YOLOv3.

The above results show that FL-YOLO has excellent
performance, and it can ensure the accuracy of detecting
pedestrians in coal mine. The reasons for the outstanding
performance of FL-YOLO can be summarized as follows:

(1) Depthwise separable convolution reduces the number
of parameters and computing cost, and increases the speed of
FL-YOLO.

(2) The down-sampling inverted residual block greatly
improves the capability of feature extraction and data
generalization.

(3) Multi-scale detection allows FL-YOLO to detect
objects with different sizes effectively.

C. SCENE OPTIMIZATION MODEL
PERFORMANCE VALIDATION
There is a large demand for intelligent video surveillance in
coal mine, and the surveillance scenes are different.
Therefore, the generic model is not able to achieve the ideal
accuracy, because the lightweight model is lack of data
generalization ability. Considering that FL-YOLO is
deployed in different regions, the model parameters can be
adjusted according to the environment to suit different
monitoring area. For a given surveillance scene, the
viewpoint tends not to change in the short term, so the
background of the surveillance scene can be considered as
fixed. However, the recognition mistake of background may
occur when using a generic model for intelligent surveillance.

According to the transfer learning, FL-YOLO takes a
Multi-scene pedestrian dataset as the source domain of the
model, while single-scene pedestrian dataset can be
considered as the target domain. Therefore, we optimized the
model's parameters by instance-based transfer learning. On
the basis of the generic model, we further train it using the
single-scene pedestrian dataset. Consider that only the Tiny-
YOLO and FL-YOLO have the speed to meet the practical
application on embedded platforms. Hence, we just analyze
the further training process of Tiny-YOLOv3 and FL-YOLO.

To optimize the FL-YOLO, we divide the single-scene
pedestrian dataset into a training set and a test set, where the
test set takes up 20 percent of the single-scene pedestrian
dataset. As shown in Fig. 13, the loss functions of FL-YOLO
and Tiny-YOLO are further reduced.

 (a)

 (b)

FIGURE 13. (a) is the Further training Loss-Epochs curves of FL-YOLO
and Tiny_YOLOv3. In order to make the curve more intuitive, (b) is the
curve fitting in (a) to make it more smooth and reflect the trend of
training.

The P-R curve of optimized FL-YOLO and Tiny-
YOLOv3 is shown in Fig. 14. Fig. 13 and Fig. 14 show that
the FL-YOLO and Tiny-YOLOv3 models become more
adaptable to the scene, and the performance is improved in
this scenario.

(a)

(b)
FIGURE 14. P-R curves optimized FL-YOLO and Tiny-YOLOv3 (a) FL-
YOLO (b) Tiny-YOLOv3

We also use the method of k-fold (k=5) to further validate
the effect of scene optimization. First, we randomly divided
the single-scene pedestrian dataset into 5 groups of 800
images each. Then, we optimize FL-YOLO and Tiny-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

VOLUME XX, 2017 13

YOLOv3 until convergence at each fold. Finally, we test the
AP values of FL-YOLO and Tiny-YOLOv3 at each fold. The
results of optimization k-fold cross validation are show in
TABLE V.

TABLE V
RESULTS OF K-FOLD CROSS VALIDATION

The times of
Fold

AP of FL-
YOLO(%)

AP of Tiny-
YOLOv3(%)

1-fold 80.3 67.5
2-fold 82.9 66.9
3-fold 81.2 60.8
4-fold 80.1 59.8
5-fold 83.7 61.4
Mean 81.6 63.3
 1.60 3.63

TABLE V shows that the average values of AP for FL-
YOLO and Tiny-YOLOv3 were significantly improved.
Meanwhile, the Standard Deviation of FL-YOLO and Tiny-
YOLOv3 is also decreased. The above results show that the
optimization leads to improve accuracy and generalization of
models in a single scenario.

As the Fig. 15 shows, YOLO incorrectly identifies objects
in the background as pedestrians before optimized, but this
mistake does not happen after optimization.

(a)

(b)
FIGURE 15. Example of optimization effect. (a) Before optimization, FL-
YOLO misidentify a machine as person. (b) After optimization, FL-YOLO
solve the misidentification problem and increases the confidence level
of correct identification.

Through the cooperation of edge computing and cloud
computing, the edge is used to complete real-time intelligent
video monitoring, while the cloud computing is responsible
for model optimization. Experimental results show that FL-
YOLO has excellent performance. After optimization, the
real-time performance and accuracy of FL-YOLO are all
superior to those of other mainstream object detection
models. Meanwhile, the Robustness of FL-YOLO is also
improved, and the influence of the noise and adversarial
attacks acting on edge model is reduced by further train of
edge-cloud framework.

D. SYSTEM TEST AND COMPARISON
(1) System implementation: A Surveillance Video Real-time
Analysis System was implemented on coal mine. We use the
NVIDIA Jetson TX1 as edge node, and a computer with Intel
i7-9700k @4.9Ghz CPU, NVIDIA GTX1080Ti GPU was
used as a cloud server. The deployment locations of the edge
nodes include Rock roadway, machine lane, Transfer Point
of Outer Lane, Ground entry channel and haulage tunnel. The
surveillance screens are show in Fig. 16.

In the above five scenarios, Ground Entry Channel and
Haulage Tunnel have access to Industrial Ethenet. They have
a low-latency and stable network. The edge nodes
implemented at Ground Entry Channel and Haulage Tunnel
can be seen as the edge node of class 1.

However, the Industrial Ethenet does not cover the
Machine Lane and Transfer Point of Outer Lane. Hence,
wireless communication is used to access network. Therefore,
the edge nodes deployed on the Machine Lane and Transfer
Point of Outer Lane can be considered the edge node of class
1.

The edge node deployed on Rock Roadway can been seen
as a temporary node added during construction. Therefore,
those edge nodes cannot be connected to Industrial Ethnet
and wireless network. So, the edge node implemented at
Rock Roadway can be seen as the edge node of class 2.
However, there is frequent movement of workers and
vehicles in Rock Roadway. Hence, we use the mobility of
workers and vehicles to build heterogeneous converged
networks to complete the transmission tasks of key videos,
images and models. The information transmission method of
the edge node implemented as Rock Roadway is shown in
Fig.17.

(a)

(b)

(c)

(d)

(e)
FIGURE 16. The surveillance screens (a) Rock Roadway (b) Machine
Lane (c) Transfer Point of Outer Lane (d) Ground Entry Channel (e)
Haulage Tunne

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

14 VOLUME XX, 2017

Rock roadway

Edge node
Fixed node

Industrial
Ethenet

Mobile
node

Mobile
node

Mobile
node

Cloud
Server

Monitoring Center

Roadway

FIGURE 17. Information transmission method of Rock Roadway. Edge
nodes deployed on the Rock Roadway transmit the information of the
nodes by mobbing vehicles or workers.

As the Fig.17 shows, we install mobile information
transmission nodes on workers and vehicles. Then, the
information of the edge node is carried by mobile nodes, and
those information will be forwarded to the fixed nodes
through the movement of workers and vehicles. Finally, the
fixed nodes send information to cloud server or monitoring
center through Industrial Ethenet.
(2) Comparison of Edge-cloud cooperation and cloud
computing

We deploy edge nodes at the above five sites. On the one
hand, Surveillance video is processed at edge in the edge-
cloud cooperation system. On the other hand, surveillance
video is sent to cloud, and the cloud server is used to process
the surveillance video. The latency of cloud computing and
edge-cloud cooperation to process surveillance video is
shown in TABLE VI.

TABLE VI
LATENCY OF PROCESS SURVEILLANCE VIDEO

Position Cloud
computing

Edge-Cloud
Cooperation

Rock Roadway 28.73ms
Machine Lane 5964.79ms 28.62ms
Transfer Point of Outer Lane 11471.94ms 28.79ms
Ground Entry Channel 60.13ms 28.65ms
Haulage Tunnel 69.31ms 28.81ms

The latency times shown in TABLE VI are the average
times used by the two systems for intelligent processing of
5000 images respectively. As shown in TABLE VI, the
latency of Edge-cloud cooperation is lower than that of
Cloud computing. Moreover, the latency of Cloud computing
is different due to the network conditions in different regions.

In the Edge-cloud cooperation environment, the latency of
video upload is still affected by network conditions. However,
the video has been processed by edge nodes, it is able to
respond to the video events in real time at the surveillance
sites. In addition, with the growth of system deployment time,
the edge model is continuously optimized. Hence, the edge-
cloud cooperation surveillance analysis system has an

excellent performance of real-time and accuracy, it ensures
the production safety of coal mine to a great extent.

VI. CONCLUSION

In this paper, we have introduced a cloud-edge cooperation
framework for real-time intelligent video surveillance in
underground coal mine environment. The main work of this
paper are as follows:

(1) A new cloud-edge cooperation framework is proposed.
In the real-time intelligent video surveillance, this framework
realize model optimization. For the scenarios with poor
network environments, this framework still enables data
interaction between edge and cloud.

(2) On the basis of YOLO, FL-YOLO real-time object
detection model is proposed.

(3) Pedestrian dataset is built to train FL-YOLO, and
validated the performance of FL-YOLO.

Compared with the traditional video surveillance method,
cloud-edge computing framework has excellent performance
of real-time and accuracy.

In the future, the main work is further optimization the
cloud-edge cooperation framework by two steps. Firstly, we
will further optimize the object detection model with the
goals of lightweight, high accuracy, and high speed.
Secondly, we will optimize the data transmission method
between edge and cloud, to improve the coverage of real-
time intelligent video surveillance and the speed of data
transmission.

REFERENCES
[1] S. S. Thomas, S. Gupta and V. K. Subramanian, "Smart surveillance

based on video summarization," in 2017 IEEE Region 10 Symposium
(TENSYMP), Cochin, India, 2017, pp. 1-5, doi:
10.1109/TENCONSpring.2017.8070003.

[2] T. Akiyama, Y. Kobayashi, J. Kishigami and K. Muto, "CNN-Based
Boat Detection Model for Alert System Using Surveillance Video
Camera," in 2018 IEEE 7th Global Conference on Consumer
Electronics (GCCE), Nara, Japan, 2018, pp. 669-670, doi:
10.1109/GCCE.2018.8574704.

[3] A. Mhalla, T. Chateau, S. Gazzah and N. E. B. Amara, "An Embedded
Computer-Vision System for Multi-Object Detection in Traffic
Surveillance," IEEE Transactions on Intelligent Transportation
Systems, vol. 20, no. 11, pp. 4006-4018, Nov. 2019, doi:
10.1109/TITS.2018.2876614.

[4] A. Shahbaz and K. Jo, "Deep Atrous Spatial Features based
Supervised Foreground Detection Algorithm for Industrial
Surveillance Systems," in IEEE Transactions on Industrial Informatics,
doi: 10.1109/TII.2020.3017078.

[5] W. Shi and S. Dustdar, "The Promise of Edge Computing," Computer,
vol. 49, no. 5, pp. 78-81, May 2016, doi: 10.1109/MC.2016.145.

[6] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look
Once: Unified, Real-Time Object Detection," in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, 2016, pp. 779-788, doi: 10.1109/CVPR.2016.91.

[7] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," in
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, 2017, pp. 6517-6525, doi:
10.1109/CVPR.2017.690.

[8] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental
improvement,’’ in Proc. CVPR, 2018, pp. 1–6.

[9] L. Xie, T. Ahmad, L. Jin, Y. Liu and S. Zhang, "A New CNN-Based
Method for Multi-Directional Car License Plate Detection," IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 2, pp.
507-517, Feb. 2018, doi: 10.1109/TITS.2017.2784093.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

VOLUME XX, 2017 15

[10] L. Zhou, W. Min, D. Lin, Q. Han and R. Liu, "Detecting Motion
Blurred Vehicle Logo in IoV Using Filter-DeblurGAN and VL-
YOLO," IEEE Transactions on Vehicular Technology, vol. 69, no. 4,
pp. 3604-3614, April 2020, doi: 10.1109/TVT.2020.2969427.

[11] D. Sadykova, D. Pernebayeva, M. Bagheri and A. James, "IN-YOLO:
Real-Time Detection of Outdoor High Voltage Insulators Using UAV
Imaging," IEEE Transactions on Power Delivery, vol. 35, no. 3, pp.
1599-1601, June 2020, doi: 10.1109/TPWRD.2019.2944741.

[12] C. Zhang, Q. Cao, H. Jiang, W. Zhang, J. Li and J. Yao, "A Fast
Filtering Mechanism to Improve Efficiency of Large-Scale Video
Analytics," IEEE Transactions on Computers, vol. 69, no. 6, pp. 914-
928, 1 June 2020, doi: 10.1109/TC.2020.2970413.

[13] W. Fang, L. Wang and P. Ren, "Tinier-YOLO: A Real-Time Object
Detection Method for Constrained Environments," IEEE Access, vol.
8, pp. 1935-1944, 2020, doi: 10.1109/ACCESS.2019.2961959.

[14] Z. Shao, L. Wang, Z. Wang, W. Du and W. Wu, "Saliency-Aware
Convolution Neural Network for Ship Detection in Surveillance
Video," IEEE Transactions on Circuits and Systems for Video
Technology, vol. 30, no. 3, pp. 781-794, March 2020, doi:
10.1109/TCSVT.2019.2897980.

[15] G .Olague, D. Hernández, P. Llamas and E Clemente. "Brain
programming as a new strategy to create visual routines for object

tracking," Multimed Tools Applications ,vol.78, pp. 5881–5918, 2019.

https://doi.org/10.1007/s11042-018-6634-9
[16] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, "Edge Computing: Vision

and Challenges," IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637-646, Oct. 2016, doi: 10.1109/JIOT.2016.2579198.

[17] M. Satyanarayanan, "The Emergence of Edge Computing," Computer,
vol. 50, no. 1, pp. 30-39, Jan. 2017, doi: 10.1109/MC.2017.9.

[18] J. Ren, Y. Guo, D. Zhang, Q. Liu and Y. Zhang, "Distributed and
Efficient Object Detection in Edge Computing: Challenges and
Solutions," IEEE Network, vol. 32, no. 6, pp. 137-143,
November/December 2018, doi: 10.1109/MNET.2018.1700415.

[19] A. Ahmed and E. Ahmed, "A survey on mobile edge computing," in
2016 10th International Conference on Intelligent Systems and
Control (ISCO), Coimbatore, 2016, pp. 1-8, doi:
10.1109/ISCO.2016.7727082.

[20] N. Abbas, Y. Zhang, A. Taherkordi and T. Skeie, "Mobile Edge
Computing: A Survey," IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450-465, Feb. 2018, doi: 10.1109/JIOT.2017.2750180.

[21] L. Xu, J. Han, T. Wang and L. Bai, "An Efficient CNN to Realize
Speckle Correlation Imaging Based on Cloud-Edge for Cyber-
Physical-Social-System," IEEE Access, vol. 8, pp. 54154-54163, 2020,
doi: 10.1109/ACCESS.2020.2979786.

[22] H. El-Sayed et al., "Edge of Things: The Big Picture on the
Integration of Edge, IoT and the Cloud in a Distributed Computing
Environment," IEEE Access, vol. 6, pp. 1706-1717, 2018, doi:
10.1109/ACCESS.2017.2780087.

[23] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. Chen,
"MobileNetV2: Inverted Residuals and Linear Bottlenecks," in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, 2018, pp. 4510-4520, doi:
10.1109/CVPR.2018.00474.

[24] G. Li, Y. Yang and X. Qu, "Deep Learning Approaches on Pedestrian
Detection in Hazy Weather," IEEE Transactions on Industrial
Electronics, vol. 67, no. 10, pp. 8889-8899, Oct. 2020, doi:
10.1109/TIE.2019.2945295.

[25] J. Liu and X. Wang, "Early recognition of tomato gray leaf spot
disease based on MobileNetv2-YOLOv3 model," Plant Methods. vol.
16. 2020, doi: 10.1186/s13007-020-00624-2.

[26] S. Han, H. Mao and W. Dally, "Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding," in 4th International Conference on Learning
Representations (ICLR), San Juan, Puerto Rico, 2017.

[27] Y. He, X. Dong, G. Kang, Y. Fu, C. Yan and Y. Yang, "Asymptotic
Soft Filter Pruning for Deep Convolutional Neural Networks," IEEE
Transactions on Cybernetics, vol. 50, no. 8, pp. 3594-3604, Aug. 2020,
doi: 10.1109/TCYB.2019.2933477.

[28] H. Li, A. Kadav, I. Durdanovic, H. Samet and H.P Graf, "Pruning
Filters for Efficient ConvNets," in 5th International Conference on
Learning Representations (ICLR), Toulon, France, 2016.

[29] J. Luo, J. Wu and W. Lin, "ThiNet: A Filter Level Pruning Method for
Deep Neural Network Compression," in 2017 IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 2017, pp.
5068-5076, doi: 10.1109/ICCV.2017.541.

[30] Z. Wang, J. Zhang, Z. Zhao and F. Su, "Efficient Yolo: A Lightweight
Model For Embedded Deep Learning Object Detection," in 2020
IEEE International Conference on Multimedia & Expo Workshops
(ICMEW), London, UK, 2020, pp. 1-6, doi:
10.1109/ICMEW46912.2020.9105997.

[31] S. Rui, T. Li, and Y. Yamaguchi. "An attribution-based pruning
method for real-time mango detection with YOLO network,"
Computers and Electronics in Agriculture, vol. 169, 2020.

[32] X. Wang, L. T. Yang, X. Xie, J. Jin and M. J. Deen, "A Cloud-Edge
Computing Framework for Cyber-Physical-Social Services," IEEE
Communications Magazine, vol. 55, no. 11, pp. 80-85, Nov. 2017, doi:
10.1109/MCOM.2017.1700360.

[33] Y. Wang, K. Hong, J. Zou, T. Peng and H. Yang, "A CNN-Based
Visual Sorting System With Cloud-Edge Computing for Flexible
Manufacturing Systems," IEEE Transactions on Industrial Informatics,
vol. 16, no. 7, pp. 4726-4735, July 2020, doi:
10.1109/TII.2019.2947539.

[34] Y. Wang, M. Liu, P. Zheng, H. Yang and J. Zou, "A smart surface
inspection system using faster R-CNN in cloud-edge computing
environment," Advanced Engineering Informatics, vol. 43, 2020,
https://doi.org/10.1016/j.aei.2020.101037.

[35] L Ye, "Study on embedded system in monitoring of intelligent city
pipeline network," Computer Communications, vol. 153, pp. 451-458,
2020, https://doi.org/10.1016/j.comcom.2020.02.004.

[36] C. Hung, A. Ganesh and P. Bodik., "VideoEdge: Processing Camera
Streams using Hierarchical Clusters," in 2018 IEEE/ACM Symposium
on Edge Computing (SEC), Seattle, WA, USA, 2018, pp. 115-131, doi:
10.1109/SEC.2018.00016.

[37] G. Ananthanarayanan et al., "Real-Time Video Analytics: The Killer
App for Edge Computing," Computer, vol. 50, no. 10, pp. 58-67, 2017,
doi: 10.1109/MC.2017.3641638.

[38] S. Trifunovic, S. T. Kouyoumdjieva, B. Distl, L. Pajevic, G. Karlsson
and B. Plattner, "A Decade of Research in Opportunistic Networks:
Challenges, Relevance, and Future Directions," IEEE
Communications Magazine, vol. 55, no. 1, pp. 168-173, January 2017,
doi: 10.1109/MCOM.2017.1500527CM.

[39] S. Wang, X. Wang, J. Huang, R. Bie, Z. Tian and F. Zhao, "The
Potential of Mobile Opportunistic Networks for Data Disseminations,"
IEEE Transactions on Vehicular Technology, vol. 65, no. 2, pp. 912-
922, Feb. 2016, doi: 10.1109/TVT.2015.2401605.

[40] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for
Image Recognition," in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016 pp.
770-778. doi: 10.1109/CVPR.2016.90

[41] L. Chen, Q. Ding, Q. Zou, Z. Chen and L. Li, "DenseLightNet: A
Light-Weight Vehicle Detection Network for Autonomous Driving,"
IEEE Transactions on Industrial Electronics, vol. 67, no. 12, pp.
10600-10609, Dec. 2020, doi: 10.1109/TIE.2019.2962413.

[42] Q. Mao, H. Sun, L. Zuo and R. Jia, "Finding every car: a traffic
surveillance multi-scale vehicle object detection method," Applied
Intelligence, vol. 50, pp. 3125–3136 ,2020, Available:
https://doi.org/10.1007/s10489-020-01704-5

[43] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks," IEEE
Transactions on Industrial Electronics, vol. 67, no. 12, pp. 10600-
10609, Dec. 2020, doi: 10.1109/TIE.2019.2962413.

[44] W Pan and Q Yang, "Transfer learning in heterogeneous collaborative
filtering domains," Artificial Intelligence, vol. 197, pp. 39-55, 2013,
Available: https://doi.org/10.1016/j.artint.2013.01.003.

[45] Y. Jiang et al., "Seizure Classification From EEG Signals Using
Transfer Learning, Semi-Supervised Learning and TSK Fuzzy
System," IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 25, no. 12, pp. 2270-2284, Dec. 2017, doi:
10.1109/TNSRE.2017.2748388.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3077499, IEEE Access

16 VOLUME XX, 2017

Zhi XU received the Bachelor's degree of Eletrical
Engineering in the college of Electrical and
Information Engineering, Anhui University of Science
and Technology (AUST), Huainan, China, in 2018.
Now he is pursuing ph.D degree in Mechanical
engineering in AUST. His current research interests
are in Edge computing and Artificial Intelligence.

Jingzhao Li received his M.A. degree from China
University of Mine and Technology in 1992, and PhD.
degree in the key Lab of Power Electronics and Power
Drives at Hefei University of Science and Technology,
in 2003. He is currently a Professor with the School of
Electrical Information and Engineering, Anhui
University of Science and Technology, China. His
research interests include Computer Control, Internet

of Things Technology and Embedded Systems. He has published more
than 100 papers in domestic and international academic journals and
conference proceedings’. These papers are embodied more than 60 times
by SCI and EI and are cited more than 100 times by others.

 MEI ZHANG was born in Suzhou, Anhui, China, in
1979. She received her bachelor’s degree in electrical
engineering from Anhui University of Science and
Technology in 2002, and the master’s degree in
electrical engineering from Anhui University of
Science and Technology in 2005. Now she is currently
an associate professor in School of Electrical and
Information Engineering, Anhui University of Science
and Technology. Her research interests include

intelligent control, the Internet of Things (IoT) technology, and embedded
systems.

