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Introduction

Intrusion detection is the accurate identification of various attacks capable of damaging 

or compromising an information system. An (IDS) can be host-based, network-based, 

or a combination of both. A host-based IDS is primarily concerned with the internal 

monitoring of a computer. Windows registry monitoring, log analysis, and file integrity 

checking are some of the tasks performed by a host-based IDS [1]. A network-based IDS 

monitors and analyzes network traffic to detect threats that include Denial-of-Service 

(DoS) attacks, SQL injection attacks, and password attacks  [2]. �e rapid growth of 

computer networks and network applications worldwide has encouraged an increase in 

cyberattacks [3]. In 2019, business news channel CNBC reported that the average cost of 

a cyberattack was $200,000 [4].
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An IDS can also be categorized as signature-based or anomaly-based. A signature-

based IDS contains patterns for known attacks and is unable to detect unknown attacks. 

�is means that the database of a signature-based IDS must be updated ad nauseam to 

keep up with all known attack signatures. By contrast, an anomaly-based IDS identi-

fies deviations from normal traffic behavior. Since various machine learning approaches 

can generally be successfully applied to anomaly detection, it makes intuitive sense that 

anomaly-based intrusion detection is a productive research area.

Datasets such as CSE-CIC-IDS2018  [5] were created to train predictive models on 

anomaly-based intrusion detection for network traffic. CSE-CIC-IDS2018 is not an 

entirely new project, but part of an existing project that produces modern, realistic data-

sets in a scalable manner [6]. In the next three paragraphs we trace the development of 

this project, from the foundational dataset (ISCXIDS2012 [7]) to CSE-CIC-IDS2018.

Created in 2012 by the Information Security Centre of Excellence (ISCX) at the Uni-

versity of New Brunswick (UNB) over a seven-day period, ISCXIDS2012 contains both 

normal and anomalous network traffic. �e dataset contains several attack types (e.g. 

DoS, Distributed Denial-of-Service (DDoS), and brute force), but these have all been 

labeled as “attack” [8]. ISCXIDS2012 is big data, with 20 independent features and 

2,450,324 instances, of which roughly 2.8% typifies attack traffic. Big data is associated 

with specific properties, such as volume, variety, velocity, variability, value, and complex-

ity [9]. �ese properties may make classification more challenging for learners trained 

on big data. Hereafter, “ISCXIDS2012” will be referred to as “ISCX2012” throughout the 

text.

In 2017, the creators of ISCX2012 and the Canadian Institute of Cybersecurity (CIC) 

acted on the fact that the dataset was limited to only six traffic protocols (HTTP, SMTP, 

SSH, IMAP, POP3, FTP). A case in point was the lack of representation of HTTPS, 

an important protocol accounting for about 70% of current network traffic in the real 

world  [5]. Also, the distribution of simulated attacks did not conform to reality. CIC-

IDS2017, which contains five days of network traffic, was released to remedy the defi-

ciencies of its predecessor. Among the many benefits of this new dataset, the high 

number of features (80) facilitates machine learning. CICIDS2017 contains 2,830,743 

instances, with attack traffic amounting to about 19.7 % of this total number. �e dataset 

has a class imbalance and a wider range of attack types than ISCX2012. Class imbalance, 

which is a phenomenon caused by unequal distribution between majority and minority 

classes, can skew results in a big data study. At a granular level, CICIDS2017 has a high 

class imbalance with respect to some of the individual attack types. High class imbalance 

is defined by a majority-to-minority ratio between 100:1 and 10,000:1 [10].

�e Communications Security Establishment (CSE) joined the project, and in 2018, 

the latest iteration of the intrusion detection dataset was released, CSE-CIC-IDS2018. 

�e updated version also has a class imbalance and is structurally similar to CICIDS2017. 

However, CSE-CIC-IDS2018 was prepared from a much larger network of simulated 

client-targets and attack machines  [11], resulting in a dataset that contains 16,233,002 

instances gathered from 10 days of network traffic. About 17% of the instances is attack 

traffic. Table 1 shows the percentage distribution for the seven types of network traffic 

represented by CSE-CIC-IDS2018. Hereafter, “CSE-CIC-IDS2018” and “CICIDS2018” 

will be used interchangeably throughout the text. �e dataset is distributed over ten 
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CSV files that are downloadable from the cloud.1 Nine files consist of 79 independent 

features, and the remaining file consists of 83 independent features.

Our exhaustive search for relevant, peer-reviewed papers ended on September 22, 

2020. To the best of our knowledge, this is the first survey to exclusively present and 

analyze intrusion detection research on CICIDS2018 in such detail. CICIDS2018 is 

the most recent intrusion detection dataset that is big data, publicly available, and cov-

ers a wide range of attack types. �e contribution of our survey centers around three 

important findings. In general, we observed that the best performance scores for each 

study, where provided, were unusually high. �is may be a consequence of overfitting. 

�e second finding deals with the apparent lack of concern in most studies for the class 

imbalance of CICIDS2018. Finally, we note that for all works, the data cleaning of CIC-

IDS2018 has been given little attention, a shortcoming that could hinder reproducibility 

of experiments. Data cleaning involves the modification, formatting, and removal of data 

to enhance dataset usability [12].

�e remainder of this paper is organized as follows: "Research papers using CIC-

IDS2018" section describes and analyzes the compiled works; "Discussion of surveyed 

works" section discusses survey findings, identifies gaps in the current research, and 

explains the performance metrics used in the curated works; and "Conclusion" section 

concludes with the main points of the paper and offers suggestions for future work.

Research papers using CICIDS2018

In this section, we examine research papers that use CICIDS2018. Works of research are 

presented in alphabetical order by author. All scores obtained from metrics (accuracy, 

recall, etc.) are the best scores in each study for binary classification [13].

Table 2 provides an alphabetical listing by author of the papers discussed in this sec-

tion, along with the best respective performance score(s) for CICIDS2018. Comparisons 

between scores for separate works of research or separate experiments in the same paper 

may not be valid. �is is because datasets may differ in the number of instances and 

features, and possibly the choice of computational framework. Furthermore, variations 

of an original experiment may be performed on the same dataset. However, providing 

Table 1 CICIDS2018: Network tra�c distribution

Tra�c type Distribution (%)

Benign 83.070

DDoS 7.786

DoS 4.031

Brute force 2.347

Botnet 1.763

Infiltration 0.997

Web attack 0.006

1 https ://www.unb.ca/cic/datas ets/ids-2018.html.

https://www.unb.ca/cic/datasets/ids-2018.html
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Table 2 CICIDS2018: Performance scores

a  All scores shown are percentages

Authors Accuracya Precisiona Recalla AUC 

Atefinia and Ahmadi [14] 100.00 100.00 100.00 n/a

Basnet et al.  [15] 99.00 n/a n/a n/a

Catillo et al. [16] 99.20 95.00 98.90 n/a

Chadza et al. [17] 97.00 n/a n/a n/a

Chastikova and Sotnikov [18] n/a n/a n/a n/a

D’hooge et al. [19] 96.00 99.00 79.00 n/a

Ferrag et al. [20] 97.38 n/a 98.18 n/a

Filho et al. [21] n/a 100.00 100.00 n/a

Fitni and Ramli [22] 98.80 98.80 97.10 0.94

Gamage and Samarabandu [23] 98.40 97.79 98.27 n/a

Hua [24] 98.37 98.14 98.37 n/a

Huancayo Ramos et al. [25] 99.99 100.00 99.99 n/a

Kanimozhi and Jacob  [26] 100.00 100.00 100.00 1

Kanimozhi and Jacob [27] 99.97 99.96 100.00 1

Karatas et al. [28] 99.69 99.70 99.69 n/a

Kim et al. [29] 99.99 81.75 82.25 n/a

Li et al. [30] n/a n/a 100.00 1

Lin et al. [31] 96.20 96.00 96.00 n/a

Zhao et al. [32] 97.90 98.00 98.00 n/a

Table 3 CICIDS2018: Proposed models

Authors Proposed model(s)

Atefinia and Ahmadi [14] Modular Deep Neural Network

Basnet et al. [15] MLP

Catillo et al.  [16] Deep Autoencoder

Chadza et al. [17] Baum Welch, Viterbi

Chastikova and Sotnikov [18] LSTM

D’hooge et al. [19] XGBoost

Ferrag et al. [20] RNN, Deep Autoencoder

Filho et al. [21] Random Forest

Fitni and Ramli [22] Logistic Regression + Decision Tree 
+ Gradient Boosting

Gamage and Samarabandu [23] Deep Feed-forward Neural Network

Hua [24] LightGBM

Huancayo Ramos et al. [25] Random Forest, Decision Tree

Kanimozhi and Jacob [26] MLP

Kanimozhi and Jacob [27] MLP

Karatas et al. [28] Adaboost

Kim et al. [29] CNN

Li et al. [30] Deep Autoencoder

Lin et al. [31] LSTM

Zhao et al. [32] Deep Autoencoder
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these scores may be valuable for future comparative research. Table 3 provides an alpha-

betical listing by author of the papers discussed in this section, along with the proposed 

respective model(s) for CICIDS2018, and Table  4 shows the same ordered listing by 

author coupled with the associated computing environment(s) for CICIDS2018.  

Ate�nia and Ahmadi [14] (Network intrusion detection using multi-architectural modular 

deep neural network)

Using an aggregator module  [33] to integrate four network architectures, the authors 

aimed to obtain a higher precision rate than any of those produced in the related works 

described in their paper. �e four network components included a restricted Boltz-

mann machine [34], a deep feed-forward neural network [35], and two Recurrent Neu-

ral Networks (RNNs)  [36], specifically a Long Short-term Memory (LSTM) [37] and a 

Gated Recurrent Unit (GRU) [38]. �e models were implemented with Python and the 

Scikit-learn2 library. Data preprocessing involved the removal of source and destina-

tion IP addresses and also source port numbers. Labels with string values were one-hot 

encoded, and feature scaling was used to normalize the feature space of all the attrib-

utes between a range of 0 and 1. Rows with missing values and columns with too many 

missing values were dropped from CICIDS2018. However, no information is provided 

on how many rows and columns were removed. Stratified sampling with a train to test 

Table 4 CICIDS2018: Computing environment

Authors Computing environment

Atefinia and Ahmadi [14] Python, Scikit-learn

Basnet et al. [15] fast.ai, GPU, Python

Catillo et al. [16] Keras, Python, Tensorflow

Chadza et al. [17] MATLAB 2019a, Snort IDS

Chastikova and Sotnikov [18] n/a

D’hooge et al. [19] Python, Scikit-learn, XGBoost

Ferrag et al. [20] Google Colab, GPU, Python,Tensorflow

Filho et al. [21] Python, Scikit-learn

Gamage and Samarabandu [23] GPU (on some PCs)

Fitni and Ramli [22] Python, Scikit-learn

Hua [24] Scikit-learn, Tensorflow

Huancayo Ramos et al. [25] Python, Scikit-learn

Kanimozhi and Jacob [26] Python, Scikit-learn

Kanimozhi and Jacob [27] Python, Scikit-learn

Karatas et al. [28] GPU, Keras, Python, Scikit-learn, Tensorflow

Kim et al. [29] Python, Tensorflow

Li et al. [30] Python

Lin et al. [31] Tensorflow

Zhao et al. [32] Python, Tensorflow

2 https ://sciki t-learn .org.

https://scikit-learn.org
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ratio of 80-20 was performed on each of the four modules. Information was then fed to 

the aggregator module, which used a weighted averaging technique to produce the out-

put for the modular network. �e highest accuracies (100%) were obtained for the DoS, 

DDoS, and brute force attack types. �ese accuracies were associated with precision and 

recall scores of 100%. One drawback is the authors’ comparison of results from their 

study with results from the related works. A better approach is to empirically evaluate 

at least two models, one of which would be the proposed modular network. Another 

shortcoming relates to the non-availability of performance scores that cover the collec-

tive attack types. In other words, the scores of precision, recall, etc. for the combination 

of attacks could provide additional insight. �is does not detract from the usefulness of 

reporting precision, recall, etc. for each attack type.

Basnet et al. [15] (Towards detecting and classifying network intrusion tra�c using deep 

learning frameworks)

�e authors experimented with various deep learning frameworks (fast.ai,3 Keras,4 

PyTorch,5 TensorFlow,6 �eano7) to detect network intrusion traffic and classify attack 

types. For preprocessing, samples with “Infinity”, “NaN”, or missing values were dropped 

and timestamps converted to Unix epoch numeric values (number of seconds since Jan-

uary 1, 1970). About 20,000 samples were dropped after the data cleanup process. �e 

destination port and protocol features were treated as categorical data, and the remain-

der were treated as numerical data. Ten-fold cross validation with either an 80–20 or 

70–30 split was used for training and testing. Both binary class and multi-class classifi-

cation [39] were considered. A Multilayer Perceptron (MLP) [40] served as the only clas-

sifier. With the aid of GPU acceleration, the authors observed that fast.ai outperformed 

the other frameworks consistently among all the experiments, yielding an optimum 

accuracy of 99% for binary classification. �e main limitation of this study is the use of 

only one classifier.

Catillo et al. [16] (2L-ZED-IDS: a two-level anomaly detector for multiple attack classes)

Based on an extension of previous research with CICIDS2017, this study trained a deep 

autoencoder  [41] on CICIDS2017 and CICIDS2018. In the preprocessing stage, the 

Flow_ID and Timestamp features of the datasets were not selected because they were 

deemed not relevant to the study. �e autoencoder was implemented with Python, 

Keras, and TensorFlow and trained on normal and DoS attack traffic. �e train to test 

ratio was 80–20 for both datasets. �e highest accuracy for CICIDS2018 (99.2%) was 

obtained for the botnet attack type, corresponding to a precision of 95.0% and a recall 

of 98.9%. �e highest accuracy (99.3%) of the entire study was obtained for CICIDS2017 

(botnet attack type), coupled with a precision of 94.8% and a recall of 98.6%. One draw-

back of the study is the non-availability of an accuracy score for the collective attack 

types. Another disadvantage is the use of only one classifier.

3 https ://docs.fast.ai/.
4 https ://githu b.com/keras -team/keras .
5 https ://pytor ch.org/.
6 https ://www.tenso rflow .org/.
7 http://deepl earni ng.net/softw are/thean o/.

https://docs.fast.ai/
https://github.com/keras-team/keras
https://pytorch.org/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
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Chadza et al. [17] (Contemporary sequential network attacks prediction using hidden 

Markov Model)

By way of MATLAB software, two conventional Hidden Markov Model (HMM) 

training algorithms, namely Baum Welch [42] and Viterbi [43], were applied to CIC-

IDS2018. HMM is a probabilistic machine learning framework that generates states 

and observations. For this study, information is clearly lacking on data preprocess-

ing. About 457,550 records (selection criteria set in Snort Intrusion Detection Sys-

tem  [44]) were selected from CICIDS2018. From that sample of records, 70% were 

allocated to training and the remainder to testing. �e authors found that the highest 

accuracy of about 97% was achieved by both the Baum Welch and Viterbi algorithms. 

�is paper is only three pages in length. �e main shortcoming of this work is the lack 

of detail on the experiments performed.

Chastikova and Sotnikov [18] (Method of analyzing computer tra�c based on recurrent 

neural networks)

�is highly theoretical study, which was submitted to the Journal of Physics Con-

ference series, does not give any empirical results and is extremely short on details. 

It merely proposes a LSTM model to analyze computer network traffic using CIC-

IDS2018. �e authors note that their use of the Focal Loss function  [45] (initially 

developed by Facebook AI research) addresses class imbalance. �e fact that no met-

rics have been used and no computing environment was provided is a major draw-

back of this six-page paper.

D’hooge et al. [19] (Inter-dataset generalization strength of supervised machine learning 

methods for intrusion detection)

By including both CICIDS2017 and CICIDS2018, this study investigates how effi-

ciently the results of an intrusion detection dataset can be generalized. For performance 

evaluation, the authors used 12 supervised learning algorithms from different fami-

lies: Decision Tree (DT) [46], Random Forest (RF)  [47], DT-based Bagging [48], Gradi-

ent Boosting  [49], Extratree  [50], Adaboost  [51], XGBoost  [52], k-Nearest Neighbor 

(k-NN) [53], Ncentroid [54], linearSVC [55], RBFSVC [56], and Logistic Regression [57]. 

�e models were built within a Python framework with Scikit-learn and XGBoost mod-

ules. Feature scaling was used to normalize the feature space of all the attributes. �e 

tree-based classifiers performed best, and among them, XGBoost ranked first. �e top 

accuracy, precision, and recall scores for CICIDS2018 were 96%, 99%, and 79%, respec-

tively. For intrusion detection, the authors concluded that a model trained on one data-

set (CICIDS2017) cannot generalize to another dataset (CICIDS2018). One shortcoming 

of this work is the assumption that certain categorical features, such as destination port, 

have the same number of unique values for both datasets. Drawing upon an example, we 

expound on this limitation: a classifier trained on a dataset with feature ’X’ of {car, boat} 
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is not expected to generalize well to a related dataset with feature ’X’ of {car, boat, train, 

plane}.

Ferrag et al. [20] (Deep learning for cyber security intrusion detection: approaches, 

datasets, and comparative study)

Seven deep learning models were evaluated on CICIDS2018 and the Bot-IoT data-

set  [58]. �e models included RNNs, deep neural networks [59], restricted Boltzmann 

machines, deep belief networks  [60], Convolutional Neural Networks (CNNs) [61], 

deep Boltzmann machines [62], and deep autoencoders. �e Bot-IoT dataset is a 2018 

creation from the University of New South Wales (UNSW) that incorporates about 

72,000,000 normal and botnetInternet of �ings (IoT) instances with 46 features. �e 

experiment was performed on Google Colaboratory8 using Python and TensorFlow 

with GPU acceleration. Only 5% of the instances were used in this study, as determined 

by [58]. �e highest accuracy for the Bot-IoT dataset (98.39%) was obtained with a deep 

autoencoder, while the highest accuracy for CICIDS2018 (97.38%) was obtained with an 

RNN. �e highest recall for the Bot-IoT dataset (97.01%) came from a CNN, whereas the 

highest recall for CICIDS2018 (98.18%) came from a deep autoencoder. �e bulk of this 

paper deals with classifying 35 cyber datasets and describing the seven deep learning 

models. Only the last three pages discuss the actual experimentation, which is lacking in 

detail. �is is a major shortcoming of the study.

Filho et al. [21] (Smart detection: an online approach for DoS/DDoS attack detection using 

machine learning)

�e authors used a customized dataset and four well-known ones (CIC-DoS [63], ISCX2012, 

CICIDS2017, and CICIDS2018) to obtain online random samples of network traffic and 

classify them as DoS attacks or normal. �ere were 33 features obtained for each dataset. 

�ese features were derived from source and destination ports, transport layer protocol, IP 

packet size, and TCP flags. �e individual datasets were combined into one unit contain-

ing normal traffic (23,088 instances), TCP flood attacks (14,988 instances), UDP flood (6,894 

instances), HTTP flood (347 instances), and HTTP slow (183 instances). For the combined 

dataset, the authors noted that ISCX2012 was only used to provide data traffic with normal 

activity behavior. Recursive Feature Elimination with Cross Validation [64] was performed 

on six learners (RF, DT, Logistic Regression, SGDClassifier [65], Adaboost, MLP). �e learn-

ers were built with Scikit-learn. With regard to the combined dataset, Random Forest (20 

features selected) had the highest accuracy among the learners. For CICIDS2018, the preci-

sion and recall for RF were both 100%. One shortcoming of this study is the use of ISCX2012 

to provide normal traffic for the combined dataset. ISCX2012 is outdated, and as we previ-

ously pointed out, it is limited to only six traffic protocols.

Fitni and Ramli [22] (Implementation of ensemble learning and feature selection 

for performance improvements in anomaly-based intrusion detection systems)

Adopting an ensemble model approach, this study compared seven single learners to 

evaluate the top performers for integration into a classifier unit. �e seven learners are 

as follows: RF, Gaussian Naive Bayes  [66], DT, Quadratic Discriminant Analysis  [67], 

8 https ://colab .resea rch.googl e.com/.

https://colab.research.google.com/
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Gradient Boosting, and Logistic Regression. �e models were built with Python and 

Scikit-learn. During preprocessing, samples with missing values and infinity were 

removed. Records that were actually a repetition of the header rows were also removed. 

�e dataset was then divided into training and testing validation sets in an 80-20 ratio. 

Feature selection [68], a technique for selecting the most important features of a predic-

tive model, was performed using the Spearman’s rank correlation coefficient  [69] and 

Chi-squared test  [70], resulting in the selection of 23 features. After the evaluation of 

the seven learners with these features, Gradient Boosting, Logistic Regression, and DT 

emerged as the top performers for use in the ensemble model. Accuracy, precision, and 

recall scores for this model were 98.80%, 98.80%,and 97.10%, respectively, along with 

an Area Under the Receiver Operating Characteristic Curve (AUC) of 0.94. We believe 

that the performance of the ensemble model could be improved by substituting a Cat-

boost  [71], LightGBM  [72], or XGBoost classifier for the Gradient Boosting classifier. 

�e three possible substitutions are enhanced gradient boosting variants [73].

Gamage and Samarabandu [23] (Deep learning methods in network intrusion detection: 

a survey and an objective comparison)

�is work introduces a taxonomy of deep learning models for intrusion detection and 

summarizes relevant research papers. Four deep learning models (feed-forward neural 

network, autoencoder, deep belief network, LSTM) were then evaluated on the KDD 

Cup 1999 [74], NSL-KDD [75], CICIDS2017, and CICIDS2018 datasets. �e KDD Cup 

1999 dataset, which was developed by Defense Advanced Research Project Agency 

(DARPA), contains four categories of attacks, including the DoS category. Preprocessing 

of the datasets consisted of removing invalid flow records (missing values, strings, etc.) 

and feature scaling. One-hot encoding was done for the protocol type, service, and flag 

features, three attributes that are categorical and non-numerical. �e full datasets were 

split into train and test sets, with hyperparameter tuning applied. Results show that the 

feed-forward neural networks performed well on all four datasets. For this classifier, the 

highest accuracy (99.58%) was obtained on the CICIDS2017 dataset. �is score is asso-

ciated with a precision of 99.43% and a recall of 99.45%. With respect to CICIDS2018, 

the highest accuracy for the feed-forward network was 98.4%, corresponding to a preci-

sion of 97.79% and a recall of 98.27%. GPU acceleration was used on the some of the PCs 

involved in the experiments. One shortcoming of this study stems from the use of KDD 

Cup 1999 and NSL-KDD, both of which are outdated and have known issues. �e main 

problem with KDD Cup 1999 is its significant number of duplicate records [75]. NSL-

KDD is an improved version that does not have the issue of redundant instances, but it 

is far from ideal. For example, there are some attack classes without records in the test 

dataset of NSL-KDD [12].

Hua [24] (An e�cient tra�c classi�cation scheme using embedded feature selection 

and LightGBM)

To tackle the class imbalance of CICIDS2018, the author incorporates an undersam-

pling and embedded feature selection approach with a LightGBM classifier. LightGBM 

contains algorithms that address high numbers of instances and features in datasets. 
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Undersampling  [76] randomly removes majority class instances to affect distribution. 

During the data cleaning stage of this study, missing values and useless features were 

removed from the full dataset, resulting in a modified set of 77 features. String labels 

were consequently converted to integer labels, which were then one-hot encoded. 

Six other learners were evaluated in this research work: Support Vector Machine 

(SVM)  [47], RF, Adaboost, MLP, CNN, and Naive Bayes  [77]. Learners were imple-

mented with Scikit-learn and TensorFlow. �e train to test ratio was 70–30, and the 

XGBoost algorithm was used to perform feature selection. �e LightGBM classifier 

had the best performance of the group, with an optimum accuracy of 98.37% when the 

sample size was three million and the top ten features were selected. For this accuracy, 

the precision and recall were 98.14% and 98.37%, respectively. LightGBM also had the 

second fastest training time among the classifiers. Although this study provides more 

information about data preprocessing than other works in our survey, it deals with data 

cleaning in a superficial matter.

Huancayo Ramos et al. [25] (Benchmark-based reference model for evaluating Botnet 

detection tools driven by tra�c-�ow analytics)

Five learners were evaluated on two datasets (CICIDS2018 and ISOT HTTP Botnet [78]) 

to determine the best botnet classifier. �e ISOT HTTP Botnet dataset contains mali-

cious and benign instances of Domain Name System (DNS) traffic. �e learners in the 

study include RF, DT, k-NN, Naive Bayes, and SVM. Feature selection was performed 

using various techniques, including the feature importance method [79] of RF. After fea-

ture selection, CICIDS2018 had 19 independent attributes while ISOT HTTP had 20, 

with destination port number, source port number, and transport protocol among the 

selected features. �e models were implemented with Python and Scikit-learn. Five-fold 

cross-validation was applied to a training set comprising 80% of the botnet instances. 

�e remainder of the botnet instances served as the testing set. For optimization, the 

Grid Search algorithm [80] was used. With regard to CICIDS2018, the RF and DT learn-

ers scored an accuracy of 99.99%. Tied to this accuracy, the precision was 100% and the 

recall was 99.99% for both learners. �e RF and DT learners also had the highest accu-

racy for ISOT HTTP (99.94% for RF and 99.90% for DT). One limitation of this paper is 

the inadequate information provided on data preprocessing.

Kanimozhi and Jacob [26] (Arti�cial Iitelligence based network intrusion detection 

with hyper-parameter optimization tuning on the realistic cyber dataset CSE-CIC-IDS2018 

using cloud computing)

�e authors trained a two-layer MLP, implemented with Python and Scikit-learn, to 

detect botnet attacks. GridSearchCV  [81] performed hyper-parameter optimization, 

and L2 regularization [82] was used to prevent overfitting. Overfitting refers to a model 

that has memorized training data instead of learning to generalize it [83]. �e MLP clas-

sifier was trained only on the botnet instances of CICIDS2018, with ten-fold cross vali-

dation [84] implemented. For this study the AUC was 1, which is a perfect score. Related 

accuracy, precision, and recall scores were all 100%. �e paper is four pages long (with 

two references), and one major shortcoming is an obvious lack of detail. Another draw-

back is the use of only one classifier to evaluate performance.
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Kanimozhi and Jacob [27] (Calibration of various optimized machine learning classi�ers 

in network intrusion detection system on the realistic cyber dataset CSE-CIC-IDS2018 using 

cloud computing)

�e purpose of this study was to determine the best classifier out of six candidates 

(MLP, RF, k-NN, SVM, Adaboost, Naive Bayes). �e models were developed with 

Python and Scikit-learn. A calibration curve was used, which is a graph showing 

the deviation of classifiers from a perfectly calibrated plot. Botnet instances of CIC-

IDS2018 were split into train and test instances, with no information provided on the 

ratio of train to test instances. �e MLP model emerged as the top choice with an 

AUC of 1. Accuracy, precision, and recall scores associated with this perfect AUC 

score were 99.97%, 99.96%, and 100%, respectively. No information was provided on 

the MLP classifier, but it is most likely the same two-layer network as in  [26]. �e 

main shortcoming of this paper is the lack of detail.

Karatas et al. [28] (Increasing the performance of machine learning-based IDSs 

on an imbalanced and up-to-date dataset)

Using the Synthetic Minority Oversampling Technique (SMOTE)  [85] algorithm to 

address class imbalance, the authors evaluated the performance of six learners on 

CICIDS2018. �e classifiers involved were k-NN, RF, Gradient Boosting, Adaboost, 

DT, and Linear Discriminant Analysis [86]. �e learners were developed in a Python 

environment using Keras, TensorFlow, and Scikit-learn. According to the authors, 

CICIDS2018 contains about 5,000,000 samples. However, the full dataset inarguably 

contains about 16,000,0000 instances, so the authors should clearly indicate that a 

subset was used. �e dataset was preprocessed to address issues such as missing val-

ues and “Infinity.” In addition, one-hot encoding was used, and rows were shuffled 

for randomness. Five-fold cross-validation was applied to a training set comprising 

80% of the instances. �e remaining instances served as the test set. After SMOTE 

was applied, the total dataset size increased by 17%. �e Adaboost learner was shown 

to be the best performer, with an accuracy of 99.69%, along with precision and recall 

scores of 99.70% and 99.69%, respectively. In our opinion, this study should have gone 

into a little more detail on data cleaning. Nevertheless, among the surveyed works, 

this paper has done the best job at covering data cleaning.

Kim et al. [29] (CNN-based network intrusion detection against denial-of-service attacks)

In this study, the authors trained a CNN on DoS datasets from KDD Cup 1999 and 

CICIDS2018. �e model was implemented with Python and TensorFlow. For both 

datasets, the train to test ratio was 70–30. In the case of KDD, the authors used about 

283,000 samples, and for CICIDS2018, about 11,000,000. Image datasets were sub-

sequently generated, and binary and multi-class classification was performed. �e 

authors established that for the two datasets, the accuracy was about 99% for binary 

classification, which corresponded to precision and recall scores of 81.75% and 

82.25%, respectively. An RNN model was subsequently introduced into the study for 

comparative purposes. �e main drawback of this work arises from the use of the 
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KDD Cup 1999 dataset, which, as previously discussed, is an outdated dataset with a 

high number of redundant instances.

Li et al. [30] (Building auto-encoder intrusion detection system based on random forest 

feature selection)

In this online real-time detection study, unsupervised clustering and feature selection 

play a major role. For preprocessing, “Infinity” and “NaN” values were replaced by 0, 

and the data was then divided into sparse and dense matrices, normalized by L2 regu-

larization. A sparse matrix has a majority of elements with value 0, while a dense matrix 

has a majority of elements with non-zero values. �e model was built within a Python 

environment. �e best features were selected by RF, and the train to test ratio was set as 

85–15. �e Affinity Propagation (AP) clustering [87] algorithm was subsequently used 

on 25% of the training dataset to group features into subsets, which were relayed to the 

autoencoder. Recall rates for all attack types for the proposed model were compared 

with those of another autoencoder model called Kitnet [88]. Several attack types for both 

models had a recall of 100%. Only the proposed model was evaluated with the AUC met-

ric, with several attack types yielding a score of 1. Based on detection time results, the 

authors showed that their model has a faster detection time than KitNet. �e authors 

provided performance scores for AUC and recall for each attack type of CICIDS2018. 

�is is a deficiency of the study as scores covering the collective attack types could pro-

vide additional insight. �e absence of AUC values for Kitnet is another shortcoming.

Lin et al. [31] (Dynamic network anomaly detection system by using deep learning 

techniques)

�e authors investigated the use of Attention Mechanism (AM) [89] with LSTM to 

improve performance. Attention mechanism imitates the focus mechanism of the 

human brain, extracting and representing information most relevant to the target 

through an automatic weighing scheme. �e model was built with TensorFlow and fur-

ther optimized with Adam Gradient Descent [90], a replacement algorithm for Stochas-

tic Gradient Descent  [91]. Seven other learners (DT, Gaussian Naive Bayes, RF, k-NN, 

SVM, MLP, LSTM without AM) were also evaluated. Preprocessing of a CICIDS2018 

subset (about 50% of the original size) involved removing the timestamp feature and 

IP address feature. �e dataset was then divided into training, test, and validation sets 

in the ratios of 90%, 9%, and 1%. Normal dataset traffic was randomly undersampled 

to obtain 2,000,000 records, while Web and infiltration attacks were oversampled with 

SMOTE to address class imbalance. �e LSTM model with AM outperformed the other 

learners with an accuracy of 96.2% and a precision and recall of 96%. �e contribution 

of this useful study is limited by the inadequate information provided on data cleaning. 

Another shortcoming is the omission of the oversampling rate for SMOTE.

Zhao et al. [32] (A semi-self-taught network intrusion detection system)

�e authors used a denoising autoencoder  [92] with a heuristic method of class sepa-

ration based on the fuzzy c-means algorithm  [93]. �is approach was adopted to get 

rid of samples with problems such as missing values and redundant data. However, it 

is ineffective against class noise. Class noise is caused either by different class labels for 
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duplicate instances or by misclassified instances  [94]. �e autoencoder was developed 

using Python and TensorFlow. Training, validation, and test sets comprised 70%, 15%, 

and 15% of the data, respectively. �e highest accuracy obtained was 97.9%, accompa-

nied by a score of 98.0% for both precision and recall. One limitation of this study is a 

lack of details about the experiments. Another limitation is the use of only one learner.

Discussion of surveyed works

In general, the best performance scores are unusually high for studies where scores are 

provided. �is finding is notable. Accuracy scores are between 96 (D’hooge et al., 2020) 

and 100 (Atefinia & Ahmadi, 2020; Kanimozhi & Jacob, 2019a). Several papers show 

recall scores of 100 (Atefinia & Ahmadi, 2020; Kanimozhi & Jacob, 2019a; Kanimozhi & 

Jacob, 2019b; Li et al., 2020; Filho et al., 2019) and also precision scores of 100 (Atefinia 

& Ahmadi, 2020; Kanimozhi & Jacob, 2019a; Huancayo Ramos et al., 2020; Filho et al., 

2019). In addition, three studies show a perfect AUC score (Kanimozhi & Jacob, 2019a; 

Kanimozhi & Jacob, 2019b ;Li et al., 2020). �ese noticeably high scores for the various 

metrics may be due to overfitting.

Surprisingly, use of the accuracy metric is prevalent throughout the surveyed works, 

while use of the AUC metric has only been used in four studies (Fitni & Ramli, 2020; 

Kanimozhi & Jacob, 2019a; Kanimozhi & Jacob, 2019b; Li et al., 2020). �is observation 

relates to the class imbalance of CICIDS2018. �e high imbalance makes identification 

of the minority class more burdensome for learners, especially in the case of big data, 

and tends to introduce a bias in favor of the majority class. Hence, the use of accuracy 

alone may not be beneficial since a deceptively high score could be obtained when the 

influence of the minority class is greatly reduced. It is always better to provide accuracy 

along with other metrics, such as precision and recall, and in all fairness, most of the 

works have shown this. We point out that the use of AUC as a robust, standalone metric 

for class imbalance has been demonstrated in several studies [95–97]. Please see "Perfor-

mance metrics" for an explanation of the various metrics provided.

As mentioned previously, the CICIDS2018 dataset has a class imbalance. �e effects of 

this imbalance can be mitigated by techniques at the data level (e.g. random undersam-

pling, feature selection) and algorithm level (e.g. cost-sensitive classification, ensemble 

techniques)  [9]. We make the important observation that less than half of the curated 

papers discuss techniques for addressing the high imbalance of CICIDS2018. Hua, 2020, 

for example, has highlighted the use of embedded feature selection and undersampling 

with a LightGBM classifier.

None of the papers satisfactorily discuss the data cleaning of CICIDS2018. �is is a 

significant revelation. About 60% of data scientists believe that no task is more time-

consuming than data cleaning  [12]. A discussion of data cleaning in a research paper 

should provide detailed information on all rows and columns of a dataset that have been 

dropped or modified, along with a rationale for these actions. Insufficient information 

on data cleaning in a study can make duplication of an experiment problematic for out-

side researchers. Data cleaning is a subset of data preprocessing, a task that makes a 

dataset more usable. It is important to note that data preprocessing should be performed 

on a dataset such as CICIDS2018 before learners are trained, as failure to do so could 

lead to inaccurate analytics.
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Another important consideration pertains to the use of outdated datasets, such as 

KDD 1999, NSL-KDD, and ISCX2012, alongside CICIDS2018 in a study. For some or all 

attack traffic embodied within these older datasets, patches have long been issued and 

updated software versions hardened. A much greater concern, however, are the issues 

(discussed in Section  2) associated with these datasets. Researchers using intrusion 

detection datasets that are outdated should thoroughly understand how these known 

issues could affect the outcome of experiments.

Finally, our survey shows that statistical analysis of performance scores appears to have 

been overlooked. Determining the statistical significance of these scores provides clarity, 

and there are some established techniques for doing this, such as ANalysis Of VAriance 

(ANOVA) [98] and Tukey’s Honestly Significant Difference (HSD) [99]. ANOVA reveals 

whether the means of one or more independent factors are significant. Tukey’s HSD 

ascribes group letters to means that are significantly different from each other.

Gaps in current research

Significant gaps exist in intrusion detection research with CICIDS2018. Topics such as 

big data processing frameworks, concept drift, and transfer learning are missing from 

the literature. We explain further in the following paragraphs.

�ere are specialized frameworks for handling the processing and analysis of big data, 

where computations are enhanced by the utilization of computing clusters and parallel 

algorithms. One example is Apache Hadoop, an open source variant of the MapReduce 

framework, which divides a dataset into subsets for easier processing and then recom-

bines the partial solutions [100]. �e Apache Spark framework, another example, ena-

bles faster distributed computing by using in-memory operations  [101]. Apache Spark 

is currently one of the most popular engines for big data processing, and we encourage 

researchers to evaluate learner performance on CICIDS2018 with this framework.

Concept drift is the variation of data distributions over time  [102]. For example, a 

model trained today on CICIDS2018 may have a lower optimum recall score in five or 

ten years when tested against an up-to-date intrusion detection dataset. As discussed 

previously, some of the attack instances in a modern dataset would be rendered inef-

fective in the future (patches, updated software, etc.) and not reflect current reality. 

Research examining the effect of time on intrusion detection models is a promising area.

Transfer learning attempts to boost the performance of target learners on target 

domains by transferring knowledge from related but different source domains [103]. �e 

aim is to construct models with a reduced number of target data instances. Within the 

context of intrusion detection, Singla et al. [104] note that models are better able to iden-

tify new attacks, through transfer learning, when the training data is limited. We sur-

mise that CICIDS2018, with its ample supply of instances, could serve as an ideal source 

domain.

Performance metrics

In order to explain the metrics provided in this survey, it is necessary to start with the 

fundamental metrics and then build on the basics. Our list of applicable performance 

metrics is explained as follows:
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• True Positive (TP) is the number of positive instances correctly identified as positive.

• True Negative (TN) is the number of negative instances correctly identified as nega-

tive.

• False Positive (FP), also known as Type I error, is the number of negative instances 

incorrectly identified as positive.

• False Negative (FN), also known as Type II error, is the number of positive instances 

incorrectly identified as negative.

Based on these fundamental metrics, the other performance metrics are derived as 

follows:

• Recall, also known as sensitivity or True Positive Rate (TPR), is equal to 

TP/(TP + FN).

• Precision, also known as positive predictive value, is equal to TP/(TP + FP).

• Fall-Out, also known as False Positive Rate (FPR), is equal to FP/(TP + FN).

• Accuracy is equal to (TP + TN)/(TP + TN + FP + FN).

• AUC provides the area under the Receiver Operating Characteristic (ROC) curve, 

which plots TPR against FPR for various classification cut-offs. �e behavior of a 

classifier is shown across all thresholds of the ROC curve. AUC is a popular met-

ric that counters the adverse effects of class imbalance. A model with 100% correct 

predictions has an AUC of 1, while a model with 100% incorrect predictions has an 

AUC of 0.

Conclusion

A marked increase in cyberattacks has shadowed the rapid growth of computer net-

works and network applications. In light of this, several intrusion detection datasets, 

including CICIDS2018, have been created to train predictive models. CICIDS2018 is 

multi-class, contains about 16,000,000 instances, and is class-imbalanced. As late as Sep-

tember 22, 2020, we aggressively searched for relevant studies based on this dataset.

For the most part, we observed that the best performance scores for each study, where 

provided, were unusually high. �is may be attributable to overfitting. Furthermore, we 

note that only a few of the surveyed works explored treatment for the class imbalance 

of CICIDS2018. Class imbalance, particularly for big data, can skew the results of an 

experiment. As a final point, we emphasize that the level of detail paid to the data clean-

ing of CICIDS2018 failed to meet our expectations. �is concern has a bearing on the 

reproducibility of experiments.

Several gaps have been identified in the current research. Topics such as big data pro-

cessing frameworks, concept drift, and transfer learning are missing from the literature. 

Future work should address these gaps.
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