
A survey and analysis of intrusion detection
models based on CSE‑CIC‑IDS2018 Big Data

Joffrey L. Leevy* and Taghi M. Khoshgoftaar

Introduction

Intrusion detection is the accurate identification of various attacks capable of damaging

or compromising an information system. An (IDS) can be host-based, network-based,

or a combination of both. A host-based IDS is primarily concerned with the internal

monitoring of a computer. Windows registry monitoring, log analysis, and file integrity

checking are some of the tasks performed by a host-based IDS [1]. A network-based IDS

monitors and analyzes network traffic to detect threats that include Denial-of-Service

(DoS) attacks, SQL injection attacks, and password attacks [2]. �e rapid growth of

computer networks and network applications worldwide has encouraged an increase in

cyberattacks [3]. In 2019, business news channel CNBC reported that the average cost of

a cyberattack was $200,000 [4].

Abstract

The exponential growth in computer networks and network applications worldwide
has been matched by a surge in cyberattacks. For this reason, datasets such as CSE-CIC-
IDS2018 were created to train predictive models on network-based intrusion detection.
These datasets are not meant to serve as repositories for signature-based detection
systems, but rather to promote research on anomaly-based detection through various
machine learning approaches. CSE-CIC-IDS2018 contains about 16,000,000 instances
collected over the course of ten days. It is the most recent intrusion detection data-
set that is big data, publicly available, and covers a wide range of attack types. This
multi-class dataset has a class imbalance, with roughly 17% of the instances compris-
ing attack (anomalous) traffic. Our survey work contributes several key findings. We
determined that the best performance scores for each study, where available, were
unexpectedly high overall, which may be due to overfitting. We also found that most
of the works did not address class imbalance, the effects of which can bias results in a
big data study. Lastly, we discovered that information on the data cleaning of CSE-
CIC-IDS2018 was inadequate across the board, a finding that may indicate problems
with reproducibility of experiments. In our survey, major research gaps have also been
identified.

Keywords: CSE-CIC-IDS2018, Big data, Intrusion detection, Machine learning, Class
imbalance

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco
mmons .org/licen ses/by/4.0/.

SURVEY PAPER

Leevy and Khoshgoftaar J Big Data (2020) 7:104

https://doi.org/10.1186/s40537‑020‑00382‑x

*Correspondence:
jleevy2017@fau.edu
Florida Atlantic University,
777 Glades Road, Boca Raton,
FL 33431, USA

http://orcid.org/0000-0002-7079-7540
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00382-x&domain=pdf

Page 2 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

An IDS can also be categorized as signature-based or anomaly-based. A signature-

based IDS contains patterns for known attacks and is unable to detect unknown attacks.

�is means that the database of a signature-based IDS must be updated ad nauseam to

keep up with all known attack signatures. By contrast, an anomaly-based IDS identi-

fies deviations from normal traffic behavior. Since various machine learning approaches

can generally be successfully applied to anomaly detection, it makes intuitive sense that

anomaly-based intrusion detection is a productive research area.

Datasets such as CSE-CIC-IDS2018 [5] were created to train predictive models on

anomaly-based intrusion detection for network traffic. CSE-CIC-IDS2018 is not an

entirely new project, but part of an existing project that produces modern, realistic data-

sets in a scalable manner [6]. In the next three paragraphs we trace the development of

this project, from the foundational dataset (ISCXIDS2012 [7]) to CSE-CIC-IDS2018.

Created in 2012 by the Information Security Centre of Excellence (ISCX) at the Uni-

versity of New Brunswick (UNB) over a seven-day period, ISCXIDS2012 contains both

normal and anomalous network traffic. �e dataset contains several attack types (e.g.

DoS, Distributed Denial-of-Service (DDoS), and brute force), but these have all been

labeled as “attack” [8]. ISCXIDS2012 is big data, with 20 independent features and

2,450,324 instances, of which roughly 2.8% typifies attack traffic. Big data is associated

with specific properties, such as volume, variety, velocity, variability, value, and complex-

ity [9]. �ese properties may make classification more challenging for learners trained

on big data. Hereafter, “ISCXIDS2012” will be referred to as “ISCX2012” throughout the

text.

In 2017, the creators of ISCX2012 and the Canadian Institute of Cybersecurity (CIC)

acted on the fact that the dataset was limited to only six traffic protocols (HTTP, SMTP,

SSH, IMAP, POP3, FTP). A case in point was the lack of representation of HTTPS,

an important protocol accounting for about 70% of current network traffic in the real

world [5]. Also, the distribution of simulated attacks did not conform to reality. CIC-

IDS2017, which contains five days of network traffic, was released to remedy the defi-

ciencies of its predecessor. Among the many benefits of this new dataset, the high

number of features (80) facilitates machine learning. CICIDS2017 contains 2,830,743

instances, with attack traffic amounting to about 19.7 % of this total number. �e dataset

has a class imbalance and a wider range of attack types than ISCX2012. Class imbalance,

which is a phenomenon caused by unequal distribution between majority and minority

classes, can skew results in a big data study. At a granular level, CICIDS2017 has a high

class imbalance with respect to some of the individual attack types. High class imbalance

is defined by a majority-to-minority ratio between 100:1 and 10,000:1 [10].

�e Communications Security Establishment (CSE) joined the project, and in 2018,

the latest iteration of the intrusion detection dataset was released, CSE-CIC-IDS2018.

�e updated version also has a class imbalance and is structurally similar to CICIDS2017.

However, CSE-CIC-IDS2018 was prepared from a much larger network of simulated

client-targets and attack machines [11], resulting in a dataset that contains 16,233,002

instances gathered from 10 days of network traffic. About 17% of the instances is attack

traffic. Table 1 shows the percentage distribution for the seven types of network traffic

represented by CSE-CIC-IDS2018. Hereafter, “CSE-CIC-IDS2018” and “CICIDS2018”

will be used interchangeably throughout the text. �e dataset is distributed over ten

Page 3 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

CSV files that are downloadable from the cloud.1 Nine files consist of 79 independent

features, and the remaining file consists of 83 independent features.

Our exhaustive search for relevant, peer-reviewed papers ended on September 22,

2020. To the best of our knowledge, this is the first survey to exclusively present and

analyze intrusion detection research on CICIDS2018 in such detail. CICIDS2018 is

the most recent intrusion detection dataset that is big data, publicly available, and cov-

ers a wide range of attack types. �e contribution of our survey centers around three

important findings. In general, we observed that the best performance scores for each

study, where provided, were unusually high. �is may be a consequence of overfitting.

�e second finding deals with the apparent lack of concern in most studies for the class

imbalance of CICIDS2018. Finally, we note that for all works, the data cleaning of CIC-

IDS2018 has been given little attention, a shortcoming that could hinder reproducibility

of experiments. Data cleaning involves the modification, formatting, and removal of data

to enhance dataset usability [12].

�e remainder of this paper is organized as follows: "Research papers using CIC-

IDS2018" section describes and analyzes the compiled works; "Discussion of surveyed

works" section discusses survey findings, identifies gaps in the current research, and

explains the performance metrics used in the curated works; and "Conclusion" section

concludes with the main points of the paper and offers suggestions for future work.

Research papers using CICIDS2018

In this section, we examine research papers that use CICIDS2018. Works of research are

presented in alphabetical order by author. All scores obtained from metrics (accuracy,

recall, etc.) are the best scores in each study for binary classification [13].

Table 2 provides an alphabetical listing by author of the papers discussed in this sec-

tion, along with the best respective performance score(s) for CICIDS2018. Comparisons

between scores for separate works of research or separate experiments in the same paper

may not be valid. �is is because datasets may differ in the number of instances and

features, and possibly the choice of computational framework. Furthermore, variations

of an original experiment may be performed on the same dataset. However, providing

Table 1 CICIDS2018: Network tra�c distribution

Tra�c type Distribution (%)

Benign 83.070

DDoS 7.786

DoS 4.031

Brute force 2.347

Botnet 1.763

Infiltration 0.997

Web attack 0.006

1 https ://www.unb.ca/cic/datas ets/ids-2018.html.

https://www.unb.ca/cic/datasets/ids-2018.html

Page 4 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

Table 2 CICIDS2018: Performance scores

a All scores shown are percentages

Authors Accuracya Precisiona Recalla AUC

Atefinia and Ahmadi [14] 100.00 100.00 100.00 n/a

Basnet et al. [15] 99.00 n/a n/a n/a

Catillo et al. [16] 99.20 95.00 98.90 n/a

Chadza et al. [17] 97.00 n/a n/a n/a

Chastikova and Sotnikov [18] n/a n/a n/a n/a

D’hooge et al. [19] 96.00 99.00 79.00 n/a

Ferrag et al. [20] 97.38 n/a 98.18 n/a

Filho et al. [21] n/a 100.00 100.00 n/a

Fitni and Ramli [22] 98.80 98.80 97.10 0.94

Gamage and Samarabandu [23] 98.40 97.79 98.27 n/a

Hua [24] 98.37 98.14 98.37 n/a

Huancayo Ramos et al. [25] 99.99 100.00 99.99 n/a

Kanimozhi and Jacob [26] 100.00 100.00 100.00 1

Kanimozhi and Jacob [27] 99.97 99.96 100.00 1

Karatas et al. [28] 99.69 99.70 99.69 n/a

Kim et al. [29] 99.99 81.75 82.25 n/a

Li et al. [30] n/a n/a 100.00 1

Lin et al. [31] 96.20 96.00 96.00 n/a

Zhao et al. [32] 97.90 98.00 98.00 n/a

Table 3 CICIDS2018: Proposed models

Authors Proposed model(s)

Atefinia and Ahmadi [14] Modular Deep Neural Network

Basnet et al. [15] MLP

Catillo et al. [16] Deep Autoencoder

Chadza et al. [17] Baum Welch, Viterbi

Chastikova and Sotnikov [18] LSTM

D’hooge et al. [19] XGBoost

Ferrag et al. [20] RNN, Deep Autoencoder

Filho et al. [21] Random Forest

Fitni and Ramli [22] Logistic Regression + Decision Tree
+ Gradient Boosting

Gamage and Samarabandu [23] Deep Feed-forward Neural Network

Hua [24] LightGBM

Huancayo Ramos et al. [25] Random Forest, Decision Tree

Kanimozhi and Jacob [26] MLP

Kanimozhi and Jacob [27] MLP

Karatas et al. [28] Adaboost

Kim et al. [29] CNN

Li et al. [30] Deep Autoencoder

Lin et al. [31] LSTM

Zhao et al. [32] Deep Autoencoder

Page 5 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

these scores may be valuable for future comparative research. Table 3 provides an alpha-

betical listing by author of the papers discussed in this section, along with the proposed

respective model(s) for CICIDS2018, and Table 4 shows the same ordered listing by

author coupled with the associated computing environment(s) for CICIDS2018.

Ate�nia and Ahmadi [14] (Network intrusion detection using multi-architectural modular

deep neural network)

Using an aggregator module [33] to integrate four network architectures, the authors

aimed to obtain a higher precision rate than any of those produced in the related works

described in their paper. �e four network components included a restricted Boltz-

mann machine [34], a deep feed-forward neural network [35], and two Recurrent Neu-

ral Networks (RNNs) [36], specifically a Long Short-term Memory (LSTM) [37] and a

Gated Recurrent Unit (GRU) [38]. �e models were implemented with Python and the

Scikit-learn2 library. Data preprocessing involved the removal of source and destina-

tion IP addresses and also source port numbers. Labels with string values were one-hot

encoded, and feature scaling was used to normalize the feature space of all the attrib-

utes between a range of 0 and 1. Rows with missing values and columns with too many

missing values were dropped from CICIDS2018. However, no information is provided

on how many rows and columns were removed. Stratified sampling with a train to test

Table 4 CICIDS2018: Computing environment

Authors Computing environment

Atefinia and Ahmadi [14] Python, Scikit-learn

Basnet et al. [15] fast.ai, GPU, Python

Catillo et al. [16] Keras, Python, Tensorflow

Chadza et al. [17] MATLAB 2019a, Snort IDS

Chastikova and Sotnikov [18] n/a

D’hooge et al. [19] Python, Scikit-learn, XGBoost

Ferrag et al. [20] Google Colab, GPU, Python,Tensorflow

Filho et al. [21] Python, Scikit-learn

Gamage and Samarabandu [23] GPU (on some PCs)

Fitni and Ramli [22] Python, Scikit-learn

Hua [24] Scikit-learn, Tensorflow

Huancayo Ramos et al. [25] Python, Scikit-learn

Kanimozhi and Jacob [26] Python, Scikit-learn

Kanimozhi and Jacob [27] Python, Scikit-learn

Karatas et al. [28] GPU, Keras, Python, Scikit-learn, Tensorflow

Kim et al. [29] Python, Tensorflow

Li et al. [30] Python

Lin et al. [31] Tensorflow

Zhao et al. [32] Python, Tensorflow

2 https ://sciki t-learn .org.

https://scikit-learn.org

Page 6 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

ratio of 80-20 was performed on each of the four modules. Information was then fed to

the aggregator module, which used a weighted averaging technique to produce the out-

put for the modular network. �e highest accuracies (100%) were obtained for the DoS,

DDoS, and brute force attack types. �ese accuracies were associated with precision and

recall scores of 100%. One drawback is the authors’ comparison of results from their

study with results from the related works. A better approach is to empirically evaluate

at least two models, one of which would be the proposed modular network. Another

shortcoming relates to the non-availability of performance scores that cover the collec-

tive attack types. In other words, the scores of precision, recall, etc. for the combination

of attacks could provide additional insight. �is does not detract from the usefulness of

reporting precision, recall, etc. for each attack type.

Basnet et al. [15] (Towards detecting and classifying network intrusion tra�c using deep

learning frameworks)

�e authors experimented with various deep learning frameworks (fast.ai,3 Keras,4

PyTorch,5 TensorFlow,6 �eano7) to detect network intrusion traffic and classify attack

types. For preprocessing, samples with “Infinity”, “NaN”, or missing values were dropped

and timestamps converted to Unix epoch numeric values (number of seconds since Jan-

uary 1, 1970). About 20,000 samples were dropped after the data cleanup process. �e

destination port and protocol features were treated as categorical data, and the remain-

der were treated as numerical data. Ten-fold cross validation with either an 80–20 or

70–30 split was used for training and testing. Both binary class and multi-class classifi-

cation [39] were considered. A Multilayer Perceptron (MLP) [40] served as the only clas-

sifier. With the aid of GPU acceleration, the authors observed that fast.ai outperformed

the other frameworks consistently among all the experiments, yielding an optimum

accuracy of 99% for binary classification. �e main limitation of this study is the use of

only one classifier.

Catillo et al. [16] (2L-ZED-IDS: a two-level anomaly detector for multiple attack classes)

Based on an extension of previous research with CICIDS2017, this study trained a deep

autoencoder [41] on CICIDS2017 and CICIDS2018. In the preprocessing stage, the

Flow_ID and Timestamp features of the datasets were not selected because they were

deemed not relevant to the study. �e autoencoder was implemented with Python,

Keras, and TensorFlow and trained on normal and DoS attack traffic. �e train to test

ratio was 80–20 for both datasets. �e highest accuracy for CICIDS2018 (99.2%) was

obtained for the botnet attack type, corresponding to a precision of 95.0% and a recall

of 98.9%. �e highest accuracy (99.3%) of the entire study was obtained for CICIDS2017

(botnet attack type), coupled with a precision of 94.8% and a recall of 98.6%. One draw-

back of the study is the non-availability of an accuracy score for the collective attack

types. Another disadvantage is the use of only one classifier.

3 https ://docs.fast.ai/.
4 https ://githu b.com/keras -team/keras .
5 https ://pytor ch.org/.
6 https ://www.tenso rflow .org/.
7 http://deepl earni ng.net/softw are/thean o/.

https://docs.fast.ai/
https://github.com/keras-team/keras
https://pytorch.org/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/

Page 7 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

Chadza et al. [17] (Contemporary sequential network attacks prediction using hidden

Markov Model)

By way of MATLAB software, two conventional Hidden Markov Model (HMM)

training algorithms, namely Baum Welch [42] and Viterbi [43], were applied to CIC-

IDS2018. HMM is a probabilistic machine learning framework that generates states

and observations. For this study, information is clearly lacking on data preprocess-

ing. About 457,550 records (selection criteria set in Snort Intrusion Detection Sys-

tem [44]) were selected from CICIDS2018. From that sample of records, 70% were

allocated to training and the remainder to testing. �e authors found that the highest

accuracy of about 97% was achieved by both the Baum Welch and Viterbi algorithms.

�is paper is only three pages in length. �e main shortcoming of this work is the lack

of detail on the experiments performed.

Chastikova and Sotnikov [18] (Method of analyzing computer tra�c based on recurrent

neural networks)

�is highly theoretical study, which was submitted to the Journal of Physics Con-

ference series, does not give any empirical results and is extremely short on details.

It merely proposes a LSTM model to analyze computer network traffic using CIC-

IDS2018. �e authors note that their use of the Focal Loss function [45] (initially

developed by Facebook AI research) addresses class imbalance. �e fact that no met-

rics have been used and no computing environment was provided is a major draw-

back of this six-page paper.

D’hooge et al. [19] (Inter-dataset generalization strength of supervised machine learning

methods for intrusion detection)

By including both CICIDS2017 and CICIDS2018, this study investigates how effi-

ciently the results of an intrusion detection dataset can be generalized. For performance

evaluation, the authors used 12 supervised learning algorithms from different fami-

lies: Decision Tree (DT) [46], Random Forest (RF) [47], DT-based Bagging [48], Gradi-

ent Boosting [49], Extratree [50], Adaboost [51], XGBoost [52], k-Nearest Neighbor

(k-NN) [53], Ncentroid [54], linearSVC [55], RBFSVC [56], and Logistic Regression [57].

�e models were built within a Python framework with Scikit-learn and XGBoost mod-

ules. Feature scaling was used to normalize the feature space of all the attributes. �e

tree-based classifiers performed best, and among them, XGBoost ranked first. �e top

accuracy, precision, and recall scores for CICIDS2018 were 96%, 99%, and 79%, respec-

tively. For intrusion detection, the authors concluded that a model trained on one data-

set (CICIDS2017) cannot generalize to another dataset (CICIDS2018). One shortcoming

of this work is the assumption that certain categorical features, such as destination port,

have the same number of unique values for both datasets. Drawing upon an example, we

expound on this limitation: a classifier trained on a dataset with feature ’X’ of {car, boat}

Page 8 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

is not expected to generalize well to a related dataset with feature ’X’ of {car, boat, train,

plane}.

Ferrag et al. [20] (Deep learning for cyber security intrusion detection: approaches,

datasets, and comparative study)

Seven deep learning models were evaluated on CICIDS2018 and the Bot-IoT data-

set [58]. �e models included RNNs, deep neural networks [59], restricted Boltzmann

machines, deep belief networks [60], Convolutional Neural Networks (CNNs) [61],

deep Boltzmann machines [62], and deep autoencoders. �e Bot-IoT dataset is a 2018

creation from the University of New South Wales (UNSW) that incorporates about

72,000,000 normal and botnetInternet of �ings (IoT) instances with 46 features. �e

experiment was performed on Google Colaboratory8 using Python and TensorFlow

with GPU acceleration. Only 5% of the instances were used in this study, as determined

by [58]. �e highest accuracy for the Bot-IoT dataset (98.39%) was obtained with a deep

autoencoder, while the highest accuracy for CICIDS2018 (97.38%) was obtained with an

RNN. �e highest recall for the Bot-IoT dataset (97.01%) came from a CNN, whereas the

highest recall for CICIDS2018 (98.18%) came from a deep autoencoder. �e bulk of this

paper deals with classifying 35 cyber datasets and describing the seven deep learning

models. Only the last three pages discuss the actual experimentation, which is lacking in

detail. �is is a major shortcoming of the study.

Filho et al. [21] (Smart detection: an online approach for DoS/DDoS attack detection using

machine learning)

�e authors used a customized dataset and four well-known ones (CIC-DoS [63], ISCX2012,

CICIDS2017, and CICIDS2018) to obtain online random samples of network traffic and

classify them as DoS attacks or normal. �ere were 33 features obtained for each dataset.

�ese features were derived from source and destination ports, transport layer protocol, IP

packet size, and TCP flags. �e individual datasets were combined into one unit contain-

ing normal traffic (23,088 instances), TCP flood attacks (14,988 instances), UDP flood (6,894

instances), HTTP flood (347 instances), and HTTP slow (183 instances). For the combined

dataset, the authors noted that ISCX2012 was only used to provide data traffic with normal

activity behavior. Recursive Feature Elimination with Cross Validation [64] was performed

on six learners (RF, DT, Logistic Regression, SGDClassifier [65], Adaboost, MLP). �e learn-

ers were built with Scikit-learn. With regard to the combined dataset, Random Forest (20

features selected) had the highest accuracy among the learners. For CICIDS2018, the preci-

sion and recall for RF were both 100%. One shortcoming of this study is the use of ISCX2012

to provide normal traffic for the combined dataset. ISCX2012 is outdated, and as we previ-

ously pointed out, it is limited to only six traffic protocols.

Fitni and Ramli [22] (Implementation of ensemble learning and feature selection

for performance improvements in anomaly-based intrusion detection systems)

Adopting an ensemble model approach, this study compared seven single learners to

evaluate the top performers for integration into a classifier unit. �e seven learners are

as follows: RF, Gaussian Naive Bayes [66], DT, Quadratic Discriminant Analysis [67],

8 https ://colab .resea rch.googl e.com/.

https://colab.research.google.com/

Page 9 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

Gradient Boosting, and Logistic Regression. �e models were built with Python and

Scikit-learn. During preprocessing, samples with missing values and infinity were

removed. Records that were actually a repetition of the header rows were also removed.

�e dataset was then divided into training and testing validation sets in an 80-20 ratio.

Feature selection [68], a technique for selecting the most important features of a predic-

tive model, was performed using the Spearman’s rank correlation coefficient [69] and

Chi-squared test [70], resulting in the selection of 23 features. After the evaluation of

the seven learners with these features, Gradient Boosting, Logistic Regression, and DT

emerged as the top performers for use in the ensemble model. Accuracy, precision, and

recall scores for this model were 98.80%, 98.80%,and 97.10%, respectively, along with

an Area Under the Receiver Operating Characteristic Curve (AUC) of 0.94. We believe

that the performance of the ensemble model could be improved by substituting a Cat-

boost [71], LightGBM [72], or XGBoost classifier for the Gradient Boosting classifier.

�e three possible substitutions are enhanced gradient boosting variants [73].

Gamage and Samarabandu [23] (Deep learning methods in network intrusion detection:

a survey and an objective comparison)

�is work introduces a taxonomy of deep learning models for intrusion detection and

summarizes relevant research papers. Four deep learning models (feed-forward neural

network, autoencoder, deep belief network, LSTM) were then evaluated on the KDD

Cup 1999 [74], NSL-KDD [75], CICIDS2017, and CICIDS2018 datasets. �e KDD Cup

1999 dataset, which was developed by Defense Advanced Research Project Agency

(DARPA), contains four categories of attacks, including the DoS category. Preprocessing

of the datasets consisted of removing invalid flow records (missing values, strings, etc.)

and feature scaling. One-hot encoding was done for the protocol type, service, and flag

features, three attributes that are categorical and non-numerical. �e full datasets were

split into train and test sets, with hyperparameter tuning applied. Results show that the

feed-forward neural networks performed well on all four datasets. For this classifier, the

highest accuracy (99.58%) was obtained on the CICIDS2017 dataset. �is score is asso-

ciated with a precision of 99.43% and a recall of 99.45%. With respect to CICIDS2018,

the highest accuracy for the feed-forward network was 98.4%, corresponding to a preci-

sion of 97.79% and a recall of 98.27%. GPU acceleration was used on the some of the PCs

involved in the experiments. One shortcoming of this study stems from the use of KDD

Cup 1999 and NSL-KDD, both of which are outdated and have known issues. �e main

problem with KDD Cup 1999 is its significant number of duplicate records [75]. NSL-

KDD is an improved version that does not have the issue of redundant instances, but it

is far from ideal. For example, there are some attack classes without records in the test

dataset of NSL-KDD [12].

Hua [24] (An e�cient tra�c classi�cation scheme using embedded feature selection

and LightGBM)

To tackle the class imbalance of CICIDS2018, the author incorporates an undersam-

pling and embedded feature selection approach with a LightGBM classifier. LightGBM

contains algorithms that address high numbers of instances and features in datasets.

Page 10 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

Undersampling [76] randomly removes majority class instances to affect distribution.

During the data cleaning stage of this study, missing values and useless features were

removed from the full dataset, resulting in a modified set of 77 features. String labels

were consequently converted to integer labels, which were then one-hot encoded.

Six other learners were evaluated in this research work: Support Vector Machine

(SVM) [47], RF, Adaboost, MLP, CNN, and Naive Bayes [77]. Learners were imple-

mented with Scikit-learn and TensorFlow. �e train to test ratio was 70–30, and the

XGBoost algorithm was used to perform feature selection. �e LightGBM classifier

had the best performance of the group, with an optimum accuracy of 98.37% when the

sample size was three million and the top ten features were selected. For this accuracy,

the precision and recall were 98.14% and 98.37%, respectively. LightGBM also had the

second fastest training time among the classifiers. Although this study provides more

information about data preprocessing than other works in our survey, it deals with data

cleaning in a superficial matter.

Huancayo Ramos et al. [25] (Benchmark-based reference model for evaluating Botnet

detection tools driven by tra�c-�ow analytics)

Five learners were evaluated on two datasets (CICIDS2018 and ISOT HTTP Botnet [78])

to determine the best botnet classifier. �e ISOT HTTP Botnet dataset contains mali-

cious and benign instances of Domain Name System (DNS) traffic. �e learners in the

study include RF, DT, k-NN, Naive Bayes, and SVM. Feature selection was performed

using various techniques, including the feature importance method [79] of RF. After fea-

ture selection, CICIDS2018 had 19 independent attributes while ISOT HTTP had 20,

with destination port number, source port number, and transport protocol among the

selected features. �e models were implemented with Python and Scikit-learn. Five-fold

cross-validation was applied to a training set comprising 80% of the botnet instances.

�e remainder of the botnet instances served as the testing set. For optimization, the

Grid Search algorithm [80] was used. With regard to CICIDS2018, the RF and DT learn-

ers scored an accuracy of 99.99%. Tied to this accuracy, the precision was 100% and the

recall was 99.99% for both learners. �e RF and DT learners also had the highest accu-

racy for ISOT HTTP (99.94% for RF and 99.90% for DT). One limitation of this paper is

the inadequate information provided on data preprocessing.

Kanimozhi and Jacob [26] (Arti�cial Iitelligence based network intrusion detection

with hyper-parameter optimization tuning on the realistic cyber dataset CSE-CIC-IDS2018

using cloud computing)

�e authors trained a two-layer MLP, implemented with Python and Scikit-learn, to

detect botnet attacks. GridSearchCV [81] performed hyper-parameter optimization,

and L2 regularization [82] was used to prevent overfitting. Overfitting refers to a model

that has memorized training data instead of learning to generalize it [83]. �e MLP clas-

sifier was trained only on the botnet instances of CICIDS2018, with ten-fold cross vali-

dation [84] implemented. For this study the AUC was 1, which is a perfect score. Related

accuracy, precision, and recall scores were all 100%. �e paper is four pages long (with

two references), and one major shortcoming is an obvious lack of detail. Another draw-

back is the use of only one classifier to evaluate performance.

Page 11 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

Kanimozhi and Jacob [27] (Calibration of various optimized machine learning classi�ers

in network intrusion detection system on the realistic cyber dataset CSE-CIC-IDS2018 using

cloud computing)

�e purpose of this study was to determine the best classifier out of six candidates

(MLP, RF, k-NN, SVM, Adaboost, Naive Bayes). �e models were developed with

Python and Scikit-learn. A calibration curve was used, which is a graph showing

the deviation of classifiers from a perfectly calibrated plot. Botnet instances of CIC-

IDS2018 were split into train and test instances, with no information provided on the

ratio of train to test instances. �e MLP model emerged as the top choice with an

AUC of 1. Accuracy, precision, and recall scores associated with this perfect AUC

score were 99.97%, 99.96%, and 100%, respectively. No information was provided on

the MLP classifier, but it is most likely the same two-layer network as in [26]. �e

main shortcoming of this paper is the lack of detail.

Karatas et al. [28] (Increasing the performance of machine learning-based IDSs

on an imbalanced and up-to-date dataset)

Using the Synthetic Minority Oversampling Technique (SMOTE) [85] algorithm to

address class imbalance, the authors evaluated the performance of six learners on

CICIDS2018. �e classifiers involved were k-NN, RF, Gradient Boosting, Adaboost,

DT, and Linear Discriminant Analysis [86]. �e learners were developed in a Python

environment using Keras, TensorFlow, and Scikit-learn. According to the authors,

CICIDS2018 contains about 5,000,000 samples. However, the full dataset inarguably

contains about 16,000,0000 instances, so the authors should clearly indicate that a

subset was used. �e dataset was preprocessed to address issues such as missing val-

ues and “Infinity.” In addition, one-hot encoding was used, and rows were shuffled

for randomness. Five-fold cross-validation was applied to a training set comprising

80% of the instances. �e remaining instances served as the test set. After SMOTE

was applied, the total dataset size increased by 17%. �e Adaboost learner was shown

to be the best performer, with an accuracy of 99.69%, along with precision and recall

scores of 99.70% and 99.69%, respectively. In our opinion, this study should have gone

into a little more detail on data cleaning. Nevertheless, among the surveyed works,

this paper has done the best job at covering data cleaning.

Kim et al. [29] (CNN-based network intrusion detection against denial-of-service attacks)

In this study, the authors trained a CNN on DoS datasets from KDD Cup 1999 and

CICIDS2018. �e model was implemented with Python and TensorFlow. For both

datasets, the train to test ratio was 70–30. In the case of KDD, the authors used about

283,000 samples, and for CICIDS2018, about 11,000,000. Image datasets were sub-

sequently generated, and binary and multi-class classification was performed. �e

authors established that for the two datasets, the accuracy was about 99% for binary

classification, which corresponded to precision and recall scores of 81.75% and

82.25%, respectively. An RNN model was subsequently introduced into the study for

comparative purposes. �e main drawback of this work arises from the use of the

Page 12 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

KDD Cup 1999 dataset, which, as previously discussed, is an outdated dataset with a

high number of redundant instances.

Li et al. [30] (Building auto-encoder intrusion detection system based on random forest

feature selection)

In this online real-time detection study, unsupervised clustering and feature selection

play a major role. For preprocessing, “Infinity” and “NaN” values were replaced by 0,

and the data was then divided into sparse and dense matrices, normalized by L2 regu-

larization. A sparse matrix has a majority of elements with value 0, while a dense matrix

has a majority of elements with non-zero values. �e model was built within a Python

environment. �e best features were selected by RF, and the train to test ratio was set as

85–15. �e Affinity Propagation (AP) clustering [87] algorithm was subsequently used

on 25% of the training dataset to group features into subsets, which were relayed to the

autoencoder. Recall rates for all attack types for the proposed model were compared

with those of another autoencoder model called Kitnet [88]. Several attack types for both

models had a recall of 100%. Only the proposed model was evaluated with the AUC met-

ric, with several attack types yielding a score of 1. Based on detection time results, the

authors showed that their model has a faster detection time than KitNet. �e authors

provided performance scores for AUC and recall for each attack type of CICIDS2018.

�is is a deficiency of the study as scores covering the collective attack types could pro-

vide additional insight. �e absence of AUC values for Kitnet is another shortcoming.

Lin et al. [31] (Dynamic network anomaly detection system by using deep learning

techniques)

�e authors investigated the use of Attention Mechanism (AM) [89] with LSTM to

improve performance. Attention mechanism imitates the focus mechanism of the

human brain, extracting and representing information most relevant to the target

through an automatic weighing scheme. �e model was built with TensorFlow and fur-

ther optimized with Adam Gradient Descent [90], a replacement algorithm for Stochas-

tic Gradient Descent [91]. Seven other learners (DT, Gaussian Naive Bayes, RF, k-NN,

SVM, MLP, LSTM without AM) were also evaluated. Preprocessing of a CICIDS2018

subset (about 50% of the original size) involved removing the timestamp feature and

IP address feature. �e dataset was then divided into training, test, and validation sets

in the ratios of 90%, 9%, and 1%. Normal dataset traffic was randomly undersampled

to obtain 2,000,000 records, while Web and infiltration attacks were oversampled with

SMOTE to address class imbalance. �e LSTM model with AM outperformed the other

learners with an accuracy of 96.2% and a precision and recall of 96%. �e contribution

of this useful study is limited by the inadequate information provided on data cleaning.

Another shortcoming is the omission of the oversampling rate for SMOTE.

Zhao et al. [32] (A semi-self-taught network intrusion detection system)

�e authors used a denoising autoencoder [92] with a heuristic method of class sepa-

ration based on the fuzzy c-means algorithm [93]. �is approach was adopted to get

rid of samples with problems such as missing values and redundant data. However, it

is ineffective against class noise. Class noise is caused either by different class labels for

Page 13 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

duplicate instances or by misclassified instances [94]. �e autoencoder was developed

using Python and TensorFlow. Training, validation, and test sets comprised 70%, 15%,

and 15% of the data, respectively. �e highest accuracy obtained was 97.9%, accompa-

nied by a score of 98.0% for both precision and recall. One limitation of this study is a

lack of details about the experiments. Another limitation is the use of only one learner.

Discussion of surveyed works

In general, the best performance scores are unusually high for studies where scores are

provided. �is finding is notable. Accuracy scores are between 96 (D’hooge et al., 2020)

and 100 (Atefinia & Ahmadi, 2020; Kanimozhi & Jacob, 2019a). Several papers show

recall scores of 100 (Atefinia & Ahmadi, 2020; Kanimozhi & Jacob, 2019a; Kanimozhi &

Jacob, 2019b; Li et al., 2020; Filho et al., 2019) and also precision scores of 100 (Atefinia

& Ahmadi, 2020; Kanimozhi & Jacob, 2019a; Huancayo Ramos et al., 2020; Filho et al.,

2019). In addition, three studies show a perfect AUC score (Kanimozhi & Jacob, 2019a;

Kanimozhi & Jacob, 2019b ;Li et al., 2020). �ese noticeably high scores for the various

metrics may be due to overfitting.

Surprisingly, use of the accuracy metric is prevalent throughout the surveyed works,

while use of the AUC metric has only been used in four studies (Fitni & Ramli, 2020;

Kanimozhi & Jacob, 2019a; Kanimozhi & Jacob, 2019b; Li et al., 2020). �is observation

relates to the class imbalance of CICIDS2018. �e high imbalance makes identification

of the minority class more burdensome for learners, especially in the case of big data,

and tends to introduce a bias in favor of the majority class. Hence, the use of accuracy

alone may not be beneficial since a deceptively high score could be obtained when the

influence of the minority class is greatly reduced. It is always better to provide accuracy

along with other metrics, such as precision and recall, and in all fairness, most of the

works have shown this. We point out that the use of AUC as a robust, standalone metric

for class imbalance has been demonstrated in several studies [95–97]. Please see "Perfor-

mance metrics" for an explanation of the various metrics provided.

As mentioned previously, the CICIDS2018 dataset has a class imbalance. �e effects of

this imbalance can be mitigated by techniques at the data level (e.g. random undersam-

pling, feature selection) and algorithm level (e.g. cost-sensitive classification, ensemble

techniques) [9]. We make the important observation that less than half of the curated

papers discuss techniques for addressing the high imbalance of CICIDS2018. Hua, 2020,

for example, has highlighted the use of embedded feature selection and undersampling

with a LightGBM classifier.

None of the papers satisfactorily discuss the data cleaning of CICIDS2018. �is is a

significant revelation. About 60% of data scientists believe that no task is more time-

consuming than data cleaning [12]. A discussion of data cleaning in a research paper

should provide detailed information on all rows and columns of a dataset that have been

dropped or modified, along with a rationale for these actions. Insufficient information

on data cleaning in a study can make duplication of an experiment problematic for out-

side researchers. Data cleaning is a subset of data preprocessing, a task that makes a

dataset more usable. It is important to note that data preprocessing should be performed

on a dataset such as CICIDS2018 before learners are trained, as failure to do so could

lead to inaccurate analytics.

Page 14 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

Another important consideration pertains to the use of outdated datasets, such as

KDD 1999, NSL-KDD, and ISCX2012, alongside CICIDS2018 in a study. For some or all

attack traffic embodied within these older datasets, patches have long been issued and

updated software versions hardened. A much greater concern, however, are the issues

(discussed in Section 2) associated with these datasets. Researchers using intrusion

detection datasets that are outdated should thoroughly understand how these known

issues could affect the outcome of experiments.

Finally, our survey shows that statistical analysis of performance scores appears to have

been overlooked. Determining the statistical significance of these scores provides clarity,

and there are some established techniques for doing this, such as ANalysis Of VAriance

(ANOVA) [98] and Tukey’s Honestly Significant Difference (HSD) [99]. ANOVA reveals

whether the means of one or more independent factors are significant. Tukey’s HSD

ascribes group letters to means that are significantly different from each other.

Gaps in current research

Significant gaps exist in intrusion detection research with CICIDS2018. Topics such as

big data processing frameworks, concept drift, and transfer learning are missing from

the literature. We explain further in the following paragraphs.

�ere are specialized frameworks for handling the processing and analysis of big data,

where computations are enhanced by the utilization of computing clusters and parallel

algorithms. One example is Apache Hadoop, an open source variant of the MapReduce

framework, which divides a dataset into subsets for easier processing and then recom-

bines the partial solutions [100]. �e Apache Spark framework, another example, ena-

bles faster distributed computing by using in-memory operations [101]. Apache Spark

is currently one of the most popular engines for big data processing, and we encourage

researchers to evaluate learner performance on CICIDS2018 with this framework.

Concept drift is the variation of data distributions over time [102]. For example, a

model trained today on CICIDS2018 may have a lower optimum recall score in five or

ten years when tested against an up-to-date intrusion detection dataset. As discussed

previously, some of the attack instances in a modern dataset would be rendered inef-

fective in the future (patches, updated software, etc.) and not reflect current reality.

Research examining the effect of time on intrusion detection models is a promising area.

Transfer learning attempts to boost the performance of target learners on target

domains by transferring knowledge from related but different source domains [103]. �e

aim is to construct models with a reduced number of target data instances. Within the

context of intrusion detection, Singla et al. [104] note that models are better able to iden-

tify new attacks, through transfer learning, when the training data is limited. We sur-

mise that CICIDS2018, with its ample supply of instances, could serve as an ideal source

domain.

Performance metrics

In order to explain the metrics provided in this survey, it is necessary to start with the

fundamental metrics and then build on the basics. Our list of applicable performance

metrics is explained as follows:

Page 15 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

• True Positive (TP) is the number of positive instances correctly identified as positive.

• True Negative (TN) is the number of negative instances correctly identified as nega-

tive.

• False Positive (FP), also known as Type I error, is the number of negative instances

incorrectly identified as positive.

• False Negative (FN), also known as Type II error, is the number of positive instances

incorrectly identified as negative.

Based on these fundamental metrics, the other performance metrics are derived as

follows:

• Recall, also known as sensitivity or True Positive Rate (TPR), is equal to

TP/(TP + FN).

• Precision, also known as positive predictive value, is equal to TP/(TP + FP).

• Fall-Out, also known as False Positive Rate (FPR), is equal to FP/(TP + FN).

• Accuracy is equal to (TP + TN)/(TP + TN + FP + FN).

• AUC provides the area under the Receiver Operating Characteristic (ROC) curve,

which plots TPR against FPR for various classification cut-offs. �e behavior of a

classifier is shown across all thresholds of the ROC curve. AUC is a popular met-

ric that counters the adverse effects of class imbalance. A model with 100% correct

predictions has an AUC of 1, while a model with 100% incorrect predictions has an

AUC of 0.

Conclusion

A marked increase in cyberattacks has shadowed the rapid growth of computer net-

works and network applications. In light of this, several intrusion detection datasets,

including CICIDS2018, have been created to train predictive models. CICIDS2018 is

multi-class, contains about 16,000,000 instances, and is class-imbalanced. As late as Sep-

tember 22, 2020, we aggressively searched for relevant studies based on this dataset.

For the most part, we observed that the best performance scores for each study, where

provided, were unusually high. �is may be attributable to overfitting. Furthermore, we

note that only a few of the surveyed works explored treatment for the class imbalance

of CICIDS2018. Class imbalance, particularly for big data, can skew the results of an

experiment. As a final point, we emphasize that the level of detail paid to the data clean-

ing of CICIDS2018 failed to meet our expectations. �is concern has a bearing on the

reproducibility of experiments.

Several gaps have been identified in the current research. Topics such as big data pro-

cessing frameworks, concept drift, and transfer learning are missing from the literature.

Future work should address these gaps.

Abbreviations

AM: Attention Mechanism; ANOVA: ANalysis Of VAriance; AP: Affinity Propagation; AUC : Area Under the Receiver Operat-
ing Characteristic Curve; CIC: Canadian Institute of Cybersecurity; CNN: Convolutional Neural Network; CSE: Communica-
tions Security Establishment; DARPA: Defense Advanced Research Project Agency; DNS: Domain Name System; DDoS:
Distributed Denial-of-Service; DoS: Denial-of-Service; DT: Decision Tree; FN: False Negative; FNR: False Negative Rate; FP:
False Positive; FPR: False Positive Rate; GRU : Gated Recurrent Unit; HMM: Hidden Markov Model; HSD: Honestly Significant

Page 16 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

Difference; IDS: Intrusion Detection System; IoT: Internet of Things; ISCX: Information Security Centre of Excellence; k-NN:
k-Nearest Neighbor; LSTM: Long Short-term Memory; MLP: Multilayer Perceptron; NSF: National Science Foundation;
RF: Random Forest; RNN: Recurrent Neural Network; ROC: Receiver Operating Characteristic; SMOTE: Synthetic Minority
Oversampling Technique; SRBMM: Synthetic Minority Oversampling Technique; SVM: Support Vector Machine; TN: True
Negative; TNR: True Negative Rate; TP: True Positive; TPR: True Positive Rate; UNB: University of New Brunswick; UNSW:
University of New South Wales.

Acknowledgements

We would like to thank the reviewers in the Data Mining and Machine Learning Laboratory at Florida Atlantic University.
Additionally, we acknowledge partial support by the National Science Foundation (NSF) (CNS-1427536). Opinions, find-
ings, conclusions, or recommendations in this paper are the authors’ and do not reflect the views of the NSF.

Authors’ contributions

JLL performed the literature review and drafted the manuscript. TMK worked with JLL to develop the article’s framework
and focus. TMK introduced this topic to JLL. All authors read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 21 October 2020 Accepted: 15 November 2020

References

 1. Singh AP, Singh MD. Analysis of host-based and network-based intrusion detection system. IJ Comput Netw Inf
Secur. 2014;8:41–7.

 2. Patil A, Laturkar A, Athawale S, Takale R, Tathawade P. A multilevel system to mitigate ddos, brute force and sql
injection attack for cloud security. In: International Conference on Information, Communication, Instrumentation
and Control (ICICIC), 2017. p. 1–7. IEEE.

 3. Saxena AK, Sinha S, Shukla P. General study of intrusion detection system and survey of agent based intrusion
detection system. In: 2017 International Conference on Computing, Communication and Automation (ICCCA),
2017. p. 471–421. IEEE.

 4. CNBC: Cyberattacks now cost companies $200,000 on average, putting many out of business. https ://www.cnbc.
com/2019/10/13/cyber attac ks-cost-small -compa nies-200k-putti ng-many-out-of-busin ess.html.

 5. Sharafaldin I, Lashkari AH, Ghorbani AA. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. In: ICISSP, 2018. p. 108–116.

 6. D’hooge L, Wauters T, Volckaert B, De Turck F. In-depth comparative evaluation of supervised machine learning
approaches for detection of cybersecurity threats. In: Proceedings of the 4th International Conference on Internet
of Things, Big Data and Security; 2019.

 7. Shiravi A, Shiravi H, Tavallaee M, Ghorbani AA. Toward developing a systematic approach to generate benchmark
datasets for intrusion detection. Computers Secur. 2012;31(3):357–74.

 8. Bouteraa I, Derdour M, Ahmim A. Intrusion detection using data mining: A contemporary comparative study. In:
2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS), 2018. p. 1–8. IEEE.

 9. Leevy JL, Khoshgoftaar TM, Bauder RA, Seliya N. A survey on addressing high-class imbalance in big data. J Big
Data. 2018;5(1):42.

 10. He H, Garcia EA. Learning from imbalanced data. IEEE Trans knowl Data Eng. 2009;21(9):1263–84.
 11. Thakkar A, Lohiya R. A review of the advancement in intrusion detection datasets. Procedia Comput Sci.

2020;167:636–45.
 12. Groff Z, Schwartz S. Data preprocessing and feature selection for an intrusion detection system dataset. In: 34th

Annual Conference of The Pennsylvania Association of Computer and Information Science Educators, 2019. p.
103–110.

 13. Menon AK, Williamson RC. The cost of fairness in binary classification. In: Conference on Fairness, Accountability
and Transparency, 2018. p. 107–118.

 14. Atefinia R, Ahmadi M. Network intrusion detection using multi-architectural modular deep neural network. J
Supercomput. 2020. https ://doi.org/10.1007/s1122 7-020-03410 -y

 15. Basnet RB, Shash R, Johnson C, Walgren L, Doleck T. Towards detecting and classifying network intrusion traffic
using deep learning frameworks. J Internet Serv Inf Secur. 2019;9(4):1–17.

 16. Catillo M, Rak M, Villano U. 2l-zed-ids: A two-level anomaly detector for multiple attack classes. In: Workshops of
the International Conference on Advanced Information Networking and Applications. 2020. p. 687–696.

https://www.cnbc.com/2019/10/13/cyberattacks-cost-small-companies-200k-putting-many-out-of-business.html
https://www.cnbc.com/2019/10/13/cyberattacks-cost-small-companies-200k-putting-many-out-of-business.html
https://doi.org/10.1007/s11227-020-03410-y

Page 17 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

 17. Chadza T, Kyriakopoulos KG, Lambotharan S. Contemporary sequential network attacks prediction using hidden
markov model. In: 2019 17th International Conference on Privacy, Security and Trust (PST), 2019. p. 1–3.

 18. Chastikova V, Sotnikov V. Method of analyzing computer traffic based on recurrent neural networks. J Phys.
2019;1353:012133.

 19. D’hooge L, Wauters T, Volckaert B, De Turck F. Inter-dataset generalization strength of supervised machine learning
methods for intrusion detection. J Inf Secur Appl. 2020;54:102564.

 20. Ferrag MA, Maglaras L, Moschoyiannis S, Janicke H. Deep learning for cyber security intrusion detection:
approaches, datasets, and comparative study. J Inf Secur Appl. 2020;50:102419.

 21. Lima Filho FSd, Silveira FA, de Medeiros Brito Junior A, Vargas-Solar G, Silveira LF. Smart detection: an online
approach for dos/ddos attack detection using machine learning. Security and Communication Networks 2019;
2019.

 22. Fitni QRS, Ramli K. Implementation of ensemble learning and feature selection for performance improvements in
anomaly-based intrusion detection systems. In: 2020 IEEE International Conference on Industry 4.0, Artificial Intel-
ligence, and Communications Technology (IAICT), 2020. p. 118–124.

 23. Gamage S, Samarabandu J. Deep learning methods in network intrusion detection: a survey and an objective
comparison. J Netw Comput Appl. 2020;169:102767.

 24. Hua Y. An efficient traffic classification scheme using embedded feature selection and lightgbm. In: 2020 Informa-
tion Communication Technologies Conference (ICTC), 2020. p. 125–130.

 25. Huancayo Ramos KS, Sotelo Monge MA, Maestre Vidal J. Benchmark-based reference model for evaluating botnet
detection tools driven by traffic-flow analytics. Sensors. 2020;20(16):4501.

 26. Kanimozhi V, Jacob TP. Artificial intelligence based network intrusion detection with hyper-parameter optimiza-
tion tuning on the realistic cyber dataset cse-cic-ids2018 using cloud computing. In: 2019 International Confer-
ence on Communication and Signal Processing (ICCSP), 2019, p. 0033–0036.

 27. Kanimozhi V, Jacob TP. Calibration of various optimized machine learning classifiers in network intrusion detec-
tion system on the realistic cyber dataset cse-cic-ids2018 using cloud computing. Int J Eng Appl Sci Technol.
2019;4(6):2143–455.

 28. Karatas G, Demir O, Sahingoz OK. Increasing the performance of machine learning-based idss on an imbalanced
and up-to-date dataset. IEEE Access. 2020;8:32150–62.

 29. Kim J, Kim J, Kim H, Shim M, Choi E. Cnn-based network intrusion detection against denial-of-service attacks.
Electronics. 2020;9(6):916.

 30. Li X, Chen W, Zhang Q, Wu L. Building auto-encoder intrusion detection system based on random forest feature
selection. Comput Secur. 2020;95:101851.

 31. Lin P, Ye K, Xu C-Z. Dynamic network anomaly detection system by using deep learning techniques. In: Interna-
tional Conference on Cloud Computing. Springer; 2019, 161–176.

 32. Zhao F, Zhang H, Peng J, Zhuang X, Na S-G. A semi-self-taught network intrusion detection system. Neural Com-
put Appl. 2020;32:17169–79.

 33. Happel BL, Murre JM. Design and evolution of modular neural network architectures. Neural Netw.
1994;7(6–7):985–1004.

 34. Lu N, Li T, Ren X, Miao H. A deep learning scheme for motor imagery classification based on restricted Boltzmann
machines. IEEE Trans Neural Syst Rehab Eng. 2016;25(6):566–76.

 35. Varsamopoulos S, Criger B, Bertels K. Decoding small surface codes with feedforward neural networks. Quantum
Sci Technol. 2017;3(1):015004.

 36. De Mulder W, Bethard S, Moens M-F. A survey on the application of recurrent neural networks to statistical lan-
guage modeling. Comput Speech Lang. 2015;30(1):61–98.

 37. Madan A, George AM, Singh A, Bhatia M. Redaction of protected health information in ehrs using crfs and bi-
directional lstms. In: 2018 7th International Conference on Reliability, Infocom Technologies and Optimization
(Trends and Future Directions)(ICRITO), 2018. p. 513–517.

 38. Lee K, Filannino M, Uzuner Ö. An empirical test of grus and deep contextualized word representations on de-
identification. Stud Health Technol Inform. 2019;264:218–22.

 39. Chaudhary A, Kolhe S, Kamal R. An improved random forest classifier for multi-class classification. Inf Process Agric.
2016;3(4):215–22.

 40. Rynkiewicz J. Asymptotic statistics for multilayer perceptron with Relu hidden units. Neurocomputing.
2019;342:16–23.

 41. Chen J, Xie B, Zhang H, Zhai J. Deep autoencoders in pattern recognition: A survey. Bio-inspired Computing Mod-
els And Algorithms. World Scientific;2019. 229–55.

 42. Joshi J, Kumar T, Srivastava S, Sachdeva D. Optimisation of hidden Markov model using Baum-Welch algorithm for
prediction of maximum and minimum temperature over Indian Himalaya. J Earth Syst Sci. 2017;126(1):3.

 43. Lember J, Sova J. Regenerativity of viterbi process for pairwise markov models. J Theor Probab. 2020;. https ://doi.
org/10.1007/s1095 9-020-01022 -z.

 44. Shah SAR, Issac B. Performance comparison of intrusion detection systems and application of machine learning to
snort system. Future Gener Comput Syst. 2018;80:157–70.

 45. Pasupa K, Vatathanavaro S, Tungjitnob S. Convolutional neural networks based focal loss for class imbalance prob-
lem: A case study of canine red blood cells morphology classification. J Ambient Intell Human Comput. 2020;.
https ://doi.org/10.1007/s1265 2-020-01773 -x.

 46. Chen W, Zhang S, Li R, Shahabi H. Performance evaluation of the gis-based data mining techniques of best-
first decision tree, random forest, and naïve bayes tree for landslide susceptibility modeling. Sci Total Environ.
2018;644:1006–188.

 47. Ahmad I, Basheri M, Iqbal MJ, Rahim A. Performance comparison of support vector machine, random forest, and
extreme learning machine for intrusion detection. IEEE Access. 2018;6:33789–95.

 48. Taşer PY, Birant KU, Birant D. Comparison of ensemble-based multiple instance learning approaches. In: 2019 IEEE
International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), 2019. p. 1–5.

https://doi.org/10.1007/s10959-020-01022-z
https://doi.org/10.1007/s10959-020-01022-z
https://doi.org/10.1007/s12652-020-01773-x

Page 18 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

 49. Ayyadevara VK. Gradient boosting machine. In: Pro Machine Learning Algorithms. Berkeley, CA: Apress; 2018. https
://doi.org/10.1007/978-1-4842-3564-5_6.

 50. Wang R, Zeng S, Wang X, Ni J. Machine learning for hierarchical prediction of elastic properties in fe-cr-al system.
Comput Mater Sci. 2019;166:119–23.

 51. Baig MM, Awais MM, El-Alfy E-SM. Adaboost-based artificial neural network learning. Neurocomputing.
2017;248:120–6.

 52. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd Interna-
tional Conference on Knowledge Discovery and Data Mining, 2016. p. 785–794.

 53. Vajda S, Santosh K. A fast k-nearest neighbor classifier using unsupervised clustering. In: International Conference
on Recent Trends in Image Processing and Pattern Recognition, 2016. p. 185–193.

 54. Saikia T, Brox T, Schmid C. Optimized generic feature learning for few-shot classification across domains. arXiv
preprint arXiv :2001.07926 2020.

 55. Sulaiman S, Wahid RA, Ariffin AH, Zulkifli CZ. Question classification based on cognitive levels using linear svc. Test
Eng Manag. 2020;83:6463–70.

 56. Rahman MA, Hossain MA, Kabir MR, Sani MH, Awal MA et al.. Optimization of sleep stage classification using
single-channel eeg signals. In: 2019 4th International Conference on Electrical Information and Communication
Technology (EICT), 2019. p. 1–6.

 57. Rymarczyk T, Kozłowski E, Kłosowski G, Niderla K. Logistic regression for machine learning in process tomography.
Sensors. 2019;19(15):3400.

 58. Koroniotis N, Moustafa N, Sitnikova E, Turnbull B. Towards the development of realistic botnet dataset in the inter-
net of things for network forensic analytics: Bot-iot dataset. Future Gener Comput Syst. 2019;100:779–96.

 59. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE. A survey of deep neural network architectures and their applica-
tions. Neurocomputing. 2017;234:11–26.

 60. Li J, Xi B, Li Y, Du Q, Wang K. Hyperspectral classification based on texture feature enhancement and deep belief
networks. Remote Sensing. 2018;10(3):396.

 61. Zhao Y, Li H, Wan S, Sekuboyina A, Hu X, Tetteh G, Piraud M, Menze B. Knowledge-aided convolutional neural
network for small organ segmentation. IEEE J Biomed Health Inform. 2019;23(4):1363–73.

 62. Taherkhani A, Cosma G, McGinnity TM. Deep-fs: A feature selection algorithm for deep boltzmann machines.
Neurocomputing. 2018;322:22–37.

 63. Jazi HH, Gonzalez H, Stakhanova N, Ghorbani AA. Detecting http-based application layer dos attacks on web serv-
ers in the presence of sampling. Comput Netw. 2017;121:25–36.

 64. Akhtar F, Li J, Pei Y, Xu Y, Rajput A, Wang Q. Optimal features subset selection for large for gestational age classifica-
tion using gridsearch based recursive feature elimination with cross-validation scheme. In: International Confer-
ence on Frontier Computing, 2019. p. 63–71.

 65. Scikit-learn: SGDClassifier. https ://sciki t-learn .org/stabl e/modul es/gener ated/sklea rn.linea r_model .SGDCl assifi er.
html

 66. Fadlil A, Riadi I, Aji S. Ddos attacks classification using numeric attribute based Gaussian Naive Bayes. Int J Adv
Comput Sci Appl. 2017;8(8):42–50.

 67. Elkhalil K, Kammoun A, Couillet R, Al-Naffouri TY, Alouini M-S. Asymptotic performance of regularized quadratic
discriminant analysis based classifiers. In: 2017 IEEE 27th International Workshop on Machine Learning for Signal
Processing (MLSP), 2017. p. 1–6.

 68. Abd Elrahman SM, Abraham A. A review of class imbalance problem. J Netw Innov Comput. 2013;1(2013):332–40.
 69. Zhang W-Y, Wei Z-W, Wang B-H, Han X-P. Measuring mixing patterns in complex networks by spearman rank cor-

relation coefficient. Phys A Stat Mech Appl. 2016;451:440–50.
 70. Shi D, DiStefano C, McDaniel HL, Jiang Z. Examining chi-square test statistics under conditions of large model size

and ordinal data. Struct Equ Model. 2018;25(6):924–45.
 71. Hancock J, Khoshgoftaar TM. Medicare fraud detection using catboost. In: 2020 IEEE 21st International Conference

on Information Reuse and Integration for Data Science (IRI), 2020. p. 97–103. IEEE Computer Society.
 72. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y. Lightgbm: A highly efficient gradient boosting deci-

sion tree. In: Advances in Neural Information Processing Systems, 2017. p. 3146–3154.
 73. Bentéjac C, Csörgő A, Martínez-Muñoz G. A comparative analysis of gradient boosting algorithms. Artif Int Rev.

2020;1–31.
 74. KDD: KDD Cup. https ://kdd.ics.uci.edu/datab ases/kddcu p99/task.html/.
 75. Tavallaee M, Bagheri E, Lu W, Ghorbani AA. A detailed analysis of the kdd cup 99 data set. In: 2009 IEEE Symposium

on Computational Intelligence for Security and Defense Applications, 2009. p. 1–6. IEEE.
 76. Yap BW, Abd Rani K, Abd Rahman HA, Fong S, Khairudin Z, Abdullah NN. An application of oversampling,

undersampling, bagging and boosting in handling imbalanced datasets. In: Proceedings of the First International
Conference on Advanced Data and Information Engineering (DaEng-2013), 2014. p. 13–22. Springer.

 77. Saritas MM, Yasar A. Performance analysis of ann and Naive Bayes classification algorithm for data classification. Int
J Intell Syst Appl Eng. 2019;7(2):88–91.

 78. Alenazi A, Traore I, Ganame K, Woungang I. Holistic model for http botnet detection based on dns traffic analysis.
In: International Conference on Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environ-
ments, 2017. p. 1–18.

 79. Gupta V, Bhavsar A. Random forest-based feature importance for hep-2 cell image classification. In: Annual Confer-
ence on Medical Image Understanding and Analysis, 2017. p. 922–934. Springer.

 80. Yuanyuan S, Yongming W, Lili G, Zhongsong M, Shan J. The comparison of optimizing svm by ga and grid search.
In: 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), 2017. p. 354–360.

 81. Ranjan G, Verma AK, Radhika S. K-nearest neighbors and grid search cv based real time fault monitoring system for
industries. In: 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), 2019. p. 1–5.

 82. Bilgic B, Chatnuntawech I, Fan AP, Setsompop K, Cauley SF, Wald LL, Adalsteinsson E. Fast image reconstruction
with l2-regularization. J Magn Reson Imaging. 2014;40(1):181–91.

https://doi.org/10.1007/978-1-4842-3564-5_6
https://doi.org/10.1007/978-1-4842-3564-5_6
http://arxiv.org/abs/2001.07926
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://kdd.ics.uci.edu/databases/kddcup99/task.html/

Page 19 of 19Leevy and Khoshgoftaar J Big Data (2020) 7:104

 83. Meyer H, Reudenbach C, Hengl T, Katurji M, Nauss T. How to detect and avoid overfitting in spatio-temporal
machine learning applications. In: EGU General Assembly Conference Abstracts, vol. 20, 2018. p. 8365.

 84. Yadav S, Shukla S. Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality clas-
sification. In: 2016 IEEE 6th International Conference on Advanced Computing (IACC), 2016. p. 78–83.

 85. Fernández A, Garcia S, Herrera F, Chawla NV. Smote for learning from imbalanced data: progress and challenges,
marking the 15-year anniversary. J Artif Intell Res. 2018;61:863–905.

 86. Negi S, Kumar Y, Mishra V. Feature extraction and classification for emg signals using linear discriminant analysis.
In: 2016 2nd International Conference on Advances in Computing, Communication, & Automation (ICACCA)(Fall),
2016. p. 1–6.

 87. Wei Z, Wang Y, He S, Bao J. A novel intelligent method for bearing fault diagnosis based on affinity propagation
clustering and adaptive feature selection. Knowl Based Syst. 2017;116:1–12.

 88. Mirsky Y, Doitshman T, Elovici Y, Shabtai A. Kitsune: an ensemble of autoencoders for online network intrusion
detection. arXiv preprint arXiv :1802.09089 2018.

 89. Chorowski JK, Bahdanau D, Serdyuk D, Cho K, Bengio Y. Attention-based models for speech recognition. In:
Advances in Neural Information Processing Systems, 2015. p. 577–585.

 90. Zhang Z. Improved adam optimizer for deep neural networks. In: 2018 IEEE/ACM 26th International Symposium
on Quality of Service (IWQoS), 2018. p. 1–2.

 91. Sharma A. Guided stochastic gradient descent algorithm for inconsistent datasets. Appl Soft Comput.
2018;73:1068–80.

 92. Chiang H-T, Hsieh Y-Y, Fu S-W, Hung K-H, Tsao Y, Chien S-Y. Noise reduction in ECG signals using fully convolutional
denoising autoencoders. IEEE Access. 2019;7:60806–133.

 93. Deng Z-H, Qiao H-H, Song Q, Gao L. A complex network community detection algorithm based on label propaga-
tion and fuzzy c-means. Phys A Stat Mech Appl. 2019;519:217–26.

 94. Zhu X, Wu X, Chen Q. Eliminating class noise in large datasets. In: Proceedings of the 20th International Confer-
ence on Machine Learning (ICML-03), 2003. p. 920–927.

 95. Lee J-S. Auc4. 5: Auc-based c4. 5 decision tree algorithm for imbalanced data classification. IEEE Access.
2019;7:106034–42.

 96. Sulam J, Ben-Ari R, Kisilev P. Maximizing auc with deep learning for classification of imbalanced mammogram
datasets. In: VCBM, 2017. p. 131–135.

 97. Buda M, Maki A, Mazurowski MA. A systematic study of the class imbalance problem in convolutional neural
networks. Neural Netw. 2018;106:249–59.

 98. Iversen GR, Wildt AR, Norpoth H, Norpoth HP. Analysis of Variance. Thousand Oaks: Sage; 1987.
 99. Tukey JW. Comparing individual means in the analysis of variance. Biometrics. 1949;5:99–114.
 100. Del Río S, López V, Benítez JM, Herrera F. On the use of map reduce for imbalanced big data using random forest.

Inf Sci. 2014;285:112–37.
 101. Triguero I, Galar M, Merino D, Maillo J, Bustince H, Herrera F. Evolutionary undersampling for extremely imbalanced

big data classification under apache spark. In: 2016 IEEE Congress on Evolutionary Computation (CEC), 2016. p.
640–647. IEEE.

 102. Moreno-Torres JG, Raeder T, Alaiz-RodríGuez R, Chawla NV, Herrera F. A unifying view on dataset shift in classifica-
tion. Pattern Recogn. 2012;45(1):521–30.

 103. Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q. A comprehensive survey on transfer learning. Proceed-
ings of the IEEE. 2020.

 104. Singla A, Bertino E, Verma D. Overcoming the lack of labeled data: training intrusion detection models using
transfer learning. In: 2019 IEEE International Conference on Smart Computing (SMARTCOMP), 2019. p. 69–74.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1802.09089

	A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 Big Data
	Abstract
	Introduction
	Research papers using CICIDS2018
	Atefinia and Ahmadi [14] (Network intrusion detection using multi-architectural modular deep neural network)
	Basnet et al. [15] (Towards detecting and classifying network intrusion traffic using deep learning frameworks)
	Catillo et al. [16] (2L-ZED-IDS: a two-level anomaly detector for multiple attack classes)
	Chadza et al. [17] (Contemporary sequential network attacks prediction using hidden Markov Model)
	Chastikova and Sotnikov [18] (Method of analyzing computer traffic based on recurrent neural networks)
	D’hooge et al. [19] (Inter-dataset generalization strength of supervised machine learning methods for intrusion detection)
	Ferrag et al. [20] (Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study)
	Filho et al. [21] (Smart detection: an online approach for DoSDDoS attack detection using machine learning)
	Fitni and Ramli [22] (Implementation of ensemble learning and feature selection for performance improvements in anomaly-based intrusion detection systems)
	Gamage and Samarabandu [23] (Deep learning methods in network intrusion detection: a survey and an objective comparison)
	Hua [24] (An efficient traffic classification scheme using embedded feature selection and LightGBM)
	Huancayo Ramos et al. [25] (Benchmark-based reference model for evaluating Botnet detection tools driven by traffic-flow analytics)
	Kanimozhi and Jacob [26] (Artificial Iitelligence based network intrusion detection with hyper-parameter optimization tuning on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing)
	Kanimozhi and Jacob [27] (Calibration of various optimized machine learning classifiers in network intrusion detection system on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing)
	Karatas et al. [28] (Increasing the performance of machine learning-based IDSs on an imbalanced and up-to-date dataset)
	Kim et al. [29] (CNN-based network intrusion detection against denial-of-service attacks)
	Li et al. [30] (Building auto-encoder intrusion detection system based on random forest feature selection)
	Lin et al. [31] (Dynamic network anomaly detection system by using deep learning techniques)
	Zhao et al. [32] (A semi-self-taught network intrusion detection system)

	Discussion of surveyed works
	Gaps in current research
	Performance metrics

	Conclusion
	Acknowledgements
	References

