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ABSTRACT As machine learning and artificial intelligence (ML/AI) are becoming more popular and
advanced, there is a wish to turn sensitive data into valuable information via ML/AI techniques revealing
only data that is allowed by concerned parties or without revealing any information about the data to third
parties. Collaborative ML approaches like federated learning (FL) help tackle these needs and concerns,
bringing a way to use sensitive data without disclosing critically sensitive features of that data. In this paper,
we provide a detailed analysis of state of the art for collaborative ML approaches from a privacy perspective.
A detailed threat model and security and privacy considerations are given for each collaborative method. We
deeply analyze Privacy Enhancing Technologies (PETs), covering secure multi-party computation (SMPC),
homomorphic encryption (HE), differential privacy (DP), and confidential computing (CC) in the context
of collaborative ML. We introduce a guideline on the selection of the privacy preserving technologies
for collaborative ML and privacy practitioners. This study constitutes the first survey to provide an in-
depth focus on collaborative ML requirements and constraints for privacy solutions while also providing
guidelines on the selection of PETs.

INDEX TERMS Collaborative Machine Learning, Privacy Enhancing Technologies, Privacy, Security,
Federated Learning, Artificial Intelligence, ML, AI

I. INTRODUCTION

Machine Learning (ML) and Artificial Intelligence (AI) tech-
niques are becoming popular for realizing autonomous ap-
plications and for benefiting from data in a clever way [1].
ML helps organizations to extract meaningful conclusions
from their data. For some cases, like medical studies, having
sufficiently large and diverse data sets is the key challenge.
As the data is the fuel of ML, having more data paves the
way for high-quality models. On the other hand, the required
amount and quality of training data may not be owned by any
single party in a collaborative ML process. A naive approach
to generate high quality models would entail collecting data
from multiple parties to train a global model. However, shar-
ing large quantities of data introduces communication ineffi-
ciencies, while exposing sensitive data to external parties for
the training process may also pose significant commercial,
privacy, and legal risks. Collaborative ML approaches help
to tackle these needs and concerns, introducing a way to
use multiple parties’ data without forcing parties to share
sensitive data.

Collaborative ML approaches differ in their approaches to
handling data and models, along with their trust assumptions
between parties. Parties can collaborate by sharing their data,
or splitting the model training computation, or both. For data
collaboration, Federated Learning (FL) is one of the most
adopted methodologies where a central model aggregator is
needed. Split Learning (SL) employs the trust relation similar
to FL, but it focuses on splitting the model into different
parts. Decentralized learning (DecL) approaches remove the
central aggregator requirement by involving each party in
model training individually and distributing the partial model
to achieve a common trained model. All these methodologies
can be considered as distributed learning cases. In addition,
distributed learning (DistL) also addresses those approaches
that focus more on efficient use of computational resources
in the presence of big data or large-scale modeling. Re-
cently, some studies focus on developing efficient enablers
for distributed learning e.g., matrix factorization techniques,
distributed alternating direction method of multipliers [2],
[3]. Some of those works shed light on privacy concerns [4].
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In our work we largely omit DistL, as it requires substantially
different analysis and domain knowledge.

The most important driver in the emergence of collabora-
tive learning models is privacy. These techniques are devel-
oped in which privacy-aware approaches as training data is
not shared among the collaborating parties, but it is arguable
that existing solutions meet all the privacy requirements.
The application of Privacy Enhancing Technologies (PETs)
for ML represents an approach to address the remaining
privacy concerns where there is a wish to turn sensitive
data into valuable information via ML techniques revealing
only data allowed by concerned parties or without revealing
any information about the data to the third parties. PETs
constitute a set of methods that can be used to improve
privacy containing different building blocks including secure
multi-party computation (SMPC), homomorphic encryption
(HE), differential privacy (DP), confidential computing using
trusted execution environments (TEE) [5]. While selecting
a method from this set, a practitioner must take several
elements into account, including collaboration topology with
ML algorithm, the threat model, and the use case con-
straints on computation and communication. Thus, a wide
perspective is required to decide on the best possible privacy-
enhanced solution. In this study, we concentrate on PETs
in collaborative ML settings and present a survey and a
guideline on the choice of PET solution in this area. For this
aim, we first present an analysis of collaborative ML model
techniques with their requirements and constraints and list
security and privacy-related attacks against them. Then, after
giving some brief information about the PET solutions, we
provide our guideline on the selection of the PET method to
be used in the collaborative ML technique.

The main contributions of this work are as follows:

• Different collaborative ML (federated learning, split
learning, decentralized learning) techniques are elabo-
rated from an architectural and privacy perspectives.

• Security and privacy considerations are explained for
each collaborative technique, and a threat model is
provided.

• A comprehensive review of existing works on collab-
orative ML privacy by focusing on the use of privacy-
enhancing technologies is presented.

• Collaborative ML requirements and constraints are
presented with privacy-enhancing solutions scope by
proposing a how-to methodology for ML and privacy
practitioners. This is the first work to shed light on the
PET selection process to the best of our knowledge.

The rest of the paper continues as follows. First, some
background information about privacy objectives for ML is
provided in section II. Then related survey works are given
in section III. Section IV covers different collaborative ML
techniques. Potential privacy and security and attacks on
collaborative ML techniques and threat models are provided
in section V. PETs and current applications to prevent privacy
attacks in collaborative ML are presented in section VI. In

section VII, we propose a methodology on how PETs should
be chosen under different constraints and requirements. Sec-
tion VIII provides a discussion on open issues and future
directions. The paper concludes in section IX.

II. PRIVACY OBJECTIVES FOR ML
ML itself is about understanding data and benefiting from
it. When we say data, we refer to a broad variety of data
sources, including (but not necessarily limited to) application
specific data, telemetry data, behavioral data or personally
identifiable information (PII). In the ML context, data can
be used during training and inference phases. Data content
may include private indicators explicitly like PII that require
special care. Even if the data does not include PII, it may
be possible to extract sensitive information from the data
if it includes potentially linkable or interpretable auxiliary
information. Studies [6]–[8] unveil that model parameters
are as important as data since they may leak information
about the processed data. Therefore, where the data is kept
and used is as important as its content. During the ML life
cycle, which comprises training, model creation, and model
inference, privacy issues may exist depending on the threat
and data ownership model. We generalize privacy concerns
into the following three categories:

1) Privacy for training data
Privacy breaches for training data may occur via unautho-
rized direct access to the data. Training data exposure may
also happen in Machine Learning as a Service (MLaaS) set-
ting, where the model can be trained on the cloud. Monitoring
by the data owner may not be possible if the cloud service
does not provide any auditing mechanism on how and where
the data is processed and stored during training and how it
is erased after the training. In addition to protecting training
data from unauthorized access, practitioners may want to
protect the data against third parties who utilize the data to
create an ML model.

2) Privacy for model inference
Even though the data or models are isolated from the ad-
versary, vulnerabilities remain during the inference phase.
In this phase, there can be two different privacy concerns:
1) protection of the model parameters, and 2) protection of
query data. In the first case, the adversary may collect the
query/result pairs and try to recover the model parameters.
The transferability property of many models and memory of
deep neural networks (DNNs) enables this kind of attack [6].
For the second type of privacy threat, the user of the model,
who sends queries to the model, may want to learn query
result without revealing any information about the query
itself.

3) Protection of model at rest and in transit
Trained models can be considered as intellectual property of
model owners. Hence, accessing or extracting information
about a model can lead to negative business implications.
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Model hyper-parameters, trained model parameters, or other
generic information about the model can be extracted via
gaining access to shared environments e.g., from a Machine
Learning as a Service (MLaaS) setting [9]. Also, the model
itself and the local model updates computed by clients in
some collaborative ML settings such as FL need security
and privacy protection while they are in transit in addition
to protection at rest.

III. EXISTING SURVEYS
In this section, existing surveys related to this study are
investigated according to their scope and relation to our work.
We focus on the surveys in the collaborative ML/AI privacy
domain.

In [10], Mothukuri et al. presented security and privacy
aspects of FL from different perspectives. They provided
available approaches and technologies by means of network
topology, data availability (cross-silo/cross-device), data par-
titioning (horizontal, vertical, transfer learning), aggregation
algorithms (FedAvg [22], etc.), and open-source frameworks
(like Tensorflow [23]). Differently from our approach, they
classified decentralized ML under FL as one of the network
topologies. On the other hand, the work did not explicitly
describe the security and privacy aspects of decentralized
ML. Mothukuri et al. also included a severity analysis, in
their work, for security attacks based on the probability of the
adversary exploiting vulnerabilities resulted from possible
different sources. Although the severity evaluation was not
clear, the analysis depicted where most of the attacks are
concentrated. Distributed ML specific attacks were out of
their scope like in our work, but still, the work highlights the
common attacks on FL and distributed ML. For privacy solu-
tions, the study covered the SMPC and DP as PETs. Two ad-
ditional mitigation strategies, VerifyNet [24] and Adversarial
Training, were presented in that work as inference phase
protections where VerifyNet introduces a double-masking
protocol and Adversarial Training adds adversarial samples
to minimize the leakage for the latter.

Blanco-Justicia et al. [11] pointed out both security and
privacy attacks against federated learning. The authors ana-
lyzed these types of attacks and surveyed existing solutions
against them. According to the survey, the privacy solutions
make it difficult to prevent security attacks such as poisoning
attacks because the server may not be able to analyze the
updates sent encrypted by the client using privacy enhancing
solutions. The survey states the construction of solutions that
can mitigate the security and privacy attacks at the same time
as a research challenge. Also, the survey proposes a possible
way forward to construct such solutions. According to the
proposal, anonymizing the sender of the model updates is
enough to mitigate privacy attacks while enabling possible
integration of solutions against security attacks. Since the
sender will be known by neither the server nor the other
clients, there will be no privacy threat and since there will
be no encryption requirement for the updates sent by the
clients to the server, the server can analyze the updates to

prevent security attacks. To hide the identity of the sender
client, the survey proposes a peer-to-peer privacy-enhanced
data forwarding solution.

Boulemtafes et al. [12] provided a multi-level taxonomy
from a deep learning perspective. The study considered
the related works by dividing them into three ML phases;
learning, inference, and release. For each phase, they in-
vestigated existing works with a different multi-level clas-
sification providing performance metrics. For the learning
phase taxonomy, they presented works both for collaborative
and traditional ML settings. Then each setting was analyzed
in two categories as server-based and server-assisted. In
the server-based category, all training is done on servers
while in the server-assisted setting the training is performed
collaboratively like in FL. In the inference phase, server-
based and server-assisted PET studies were given. However,
collaborative and traditional ML settings were not considered
in this phase. For the model release phase, only differential
privacy techniques were considered. The usage of confiden-
tial computing technologies is not considered in the study and
privacy preserving collaborative ML studies were covered
only under the learning phase, not under the inference and
the release phases.

Li et al. [13] provided a taxonomy for federated learning,
which classifies FL considering data distribution, machine
learning model, privacy mechanism, communication archi-
tecture, the scale of federation, and motivation of federation.
The authors analyzed mostly FL system building blocks and
presented a comparison with conventional federated database
and cloud systems. Existing studies were summarized with
different aspects without dealing with the issue of privacy in
detail. A design guideline was provided for FL considering
effectiveness, efficiency, privacy, and autonomy as the de-
sign factors. Although their perspective resembles ours, our
guideline focuses more deeply on privacy aspects.

Yin et al. [14] provided a 5W-based (who, what, when,
where, why) taxonomy of privacy leakages in FL. The au-
thors presented state of the art privacy preserving solutions
covering HE, SMPC, DP, and other perturbation techniques.
Solutions using trusted execution environment are not con-
sidered. Our study differentiates from that study by consider-
ing other collaborative ML techniques, including trusted exe-
cution environments as a privacy enhancing tool, comparing
the PETs and providing a guideline.

In [15], Kairouz et al. provided a survey with a comprehen-
sive description of FL and challenges considering the attack
strategies for cross-device settings. The study targeted FL and
considered decentralized learning, cross-silo FL, and split
learning as a relaxation of FL. Although their focus was not
solely on privacy, the authors presented privacy technologies
for user data from three perspectives: how FL computation is
done, what is computed by FL algorithm, and the execution
verification of the computed model. The addressed privacy
technologies were given as SMPC, HE, DP, and TEE.

In [16], Zhang et al. presented a short survey for deep
learning focusing on two settings: direct collaborative learn-
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TABLE 1: |hlSummary of existing surveys

Reference Year Privacy Focus Collaboration Setting PETs Covered # of References
Mothukuri et al. [10] 2021 Attacks and Defences FL and DecL SMPC, DP 215
Blanco-Justicia et al. [11] 2021 Attacks and Defences FL SMPC, DP 37
Boulemtafes et al. [12] 2020 Solutions FL SMPC, DP, HE 73
Li et al. [13] 2021 Solutions FL SMPC, DP, TEE 228
Yin et al. [14] 2021 Attacks and Defences FL SMPC, DP, HE 229
Kayrouz et al. [15] 2021 Attacks and Defences FL SMPC, DP, HE, TEE 511
Zhang et al. [16] 2018 Solutions FL SMPC, DP, HE, TEE 55
Ma et al. [17] 2020 Challenges FL SMPC, DP, HE 15
Vepakomma et al. [18] 2018 Solutions FL and SL SMPC, DP, HE 115
Rigaki et al. [19] 2020 Attacks FL and DistL DP 131
Lyu et al. [20] 2020 Attacks FL and DecL DP, HE 43
Enthoven et al. [21] 2021 Attacks FL SMPC, DP, HE 81
Our survey 2022 Attacks and Defences FL, DecL, SL SMPC, DP, HE, TEE 155

ing, where user data is aggregated on central servers, and
indirect collaborative learning such as FL setting. Their
privacy scope addressed direct and indirect learning cases
by investigating some works that use HE, TEE, SMPC, and
DP. Ma et al. [17] pointed out security and privacy issues
in FL by concentrating on convergence, poisoning, model
aggregation, and scale-up challenges in designing security
and privacy in FL solutions.

Split learning privacy aspects were covered in [18]by
Vepakomma et al. along with the FL and large batch syn-
chronous stochastic gradient descent (SGD) for deep learn-
ing. The study provides comparisons for these three tech-
niques by means of the privacy level offered over data, hyper-
parameters, intermediate model representations, and resource
requirements such as computation, memory, and bandwidth
without considering any privacy enhancing methods. Further,
they suggested the use of DP, SMPC, and HE techniques to
enhance the privacy level.

Some studies [19]–[21] focused on privacy attacks aiming
to reconstruct training samples or inferring properties by
providing attack taxonomies. These studies also included
defense strategies to address the attacks by using PETs and
other techniques such as changing the collaborative learning
setting like selective sharing of gradients, compressing the
gradients, robust aggregation, or employing the dropouts.
However, these techniques do not provide as strong of pri-
vacy guarantees as PETs do.

Previous surveys consider FL challenges and issues with
different aspects providing privacy perspective at some level.
In comparison with the previous works, our study aims to in-
vestigate all aspects of privacy attacks and solutions covering
broader set of PETs for not only FL but also decentralized
learning and split learning. In addition, we aim to support
practitioners by giving a guideline on selecting the most
appropriate privacy enhancing technologies based on their
needs and the collaborative setting.

IV. COLLABORATIVE ML
In recent years, collaborative utilization of the distributed
data owned by different data owners is in great demand
since data is distributed among different entities. Depending
on the application scenarios, collaborative learning can be
generally classified as cross-device and cross-silo learning.
In cross-device learning, the clients are mobile or IoT devices
having limited computing power and possibly unreliable
communication. In contrast, the clients in cross-silo learning
settings are a small number of organizations (e.g., medical)
with reliable communications. It is important to understand
the core challenges of the collaborative ML settings such
as communication, computation, cost and privacy require-
ments to design efficient models. In this section, we provide
background information on collaborative ML models. We
consider Federated Learning, Decentralized Learning, and
Split Learning as collaboration methods. There can be other
methods where parties can collaborate, but for generalization
and common understanding, we limit the study to these three
methods. Centralized learning may also be considered a col-
laboration technique since the data is shared by end devices to
contribute to the global model. On the other hand, there is no
decoupling during the model training in this setting. For the
sake of completeness, we provide a definition of this model,
but it is not considered in the privacy discussions for the rest
of the paper.

A. CENTRALIZED LEARNING
In centralized learning, illustrated in Figure 1, each client
transfers its own data to the server, where data is aggregated,
and then the model training is performed centrally. As a
result, one single model is produced, which can be made
available to the clients via either sending model to the clients
or enable inference over the server. In this kind of setting,
the server usually has more computing power than clients,
e.g., the server is located in the cloud or has access to larger
computing resources. Although this gives computation flexi-
bility, it may not be preferred when communication cost is a
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concern as all data is transferred to the server. Additionally,
data transfer may not be allowed due to user privacy or
legislative reasons.

FIGURE 1: Centralized Learning Topology

B. FEDERATED LEARNING
FL [22] is a collaborative ML technique that allows data
owners to jointly train a model with the help of a server
without revealing the data to other data owners and the server.
The main steps in this technique are that a trusted server
initializes the training and sends the initial model to data
owners. Each data owner locally trains the model using their
local sensitive data. Only updated parameters are sent to the
server for global model aggregation. These steps are repeated
until the training is completed. The overall architecture of FL
is depicted in Figure 2.

FIGURE 2: Federated Learning Topology

Only the server is allowed to update the parameters in
the global model. One example case is Google Keyboard
[25] which includes features like text auto-correction, word
completion, and next word or emoji prediction. Without
collecting sensitive raw data from users, the models are
trained collaboratively using FL. The result computed by
the server is returned to each user. A principal advantage of

this approach is that there is no need to directly access raw
training data for model training.

FL can be classified as horizontal FL (HFL), vertical FL
(VFL), and federated transfer learning (FTL) with respect
to how data is distributed over a sample or feature spaces
among clients [26]. In HFL, the samples are different for
each data owner, but they share the same feature space. For
this scenario, a server can aggregate the information from
different data owners. In VFL, there is a large overlap in
the sample spaces among multiple clients, but the feature
spaces are different. A variety of secure models are proposed
for VFL, including association rule mining, decision tree,
and Naïve Bayes classifier. In [27], the authors propose a
secure machine learning where data is partitioned in feature
space. FL can be implemented using the most popular ML
algorithms such as neural networks, decision tree, and lin-
ear/logistic regression where data is horizontally partitioned
[13]. In the case of vertical FL, a more complex mechanism
to decompose the loss function at each party is required [28],
[29]. Being in the same feature space and having the same
distribution are key assumptions for training and testing data
in many machine learning algorithms. However, in many
real-world applications, we may have two or more domains
of interest where users’ data have different feature spaces and
follow a different data distribution. FTL is a new learning
framework emerging in recent years where the data has
little overlap over the sample and feature space. Benefiting
from transfer learning [30] where knowledge (features and
weights) from previously trained models is used for training
newer models, FTL brings solutions for both the sample and
feature space. Using FTL, the complementary knowledge is
transferred across domains in a federation; thus, flexible and
effective models can be built for the target domain using the
information from the other source domains.

FL approaches may differ in optimization strategies that
are performed during training cycles. The most preferred
optimization method is SGD. FL approaches can use SGD in
different settings. Federated SGD (FedSGD) and Federated
Averaging (FedAVG) are the two algorithms that are widely
adopted in the FL implementations [22]. FedSGD imple-
ments a single batch gradient calculation on the local model.
In each round, clients perform the gradient calculation for a
single batch and send the result to the server. Then the server
aggregates the gradient updates from each client then applies
the update. However, this requires a large number of rounds
to achieve the desired convergence. FedAVG suggests an
improvement to reduce the number of rounds by increasing
the number of gradient calculations on the local model. In
FedAVG, each client performs the iteration multiple times
(called epoch number) on the gradient. Then, the locally
updated weights are sent to the server.

While the training data is not shared with the server or with
the other data owners, there are still privacy concerns about
the deployment of federated learning because the model up-
dates shared with the server may reveal sensitive information
about training data. Therefore, a number of works try to
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address this issue [31]–[33].

C. DECENTRALIZED LEARNING
In decentralized learning (DecL), the aim is that nodes have
peer-to-peer communication with each other instead of hav-
ing communication with the server, where each node has its
own data and performs its own learning. A connected graph
represents the communication topology as illustrated in Fig-
ure 3 where the communication channel between two nodes
is indicated by an arrow. Each node sends/receives messages
to/from a certain number of peers. Each node performs a local
update in each round of a fully decentralized algorithm, and
updates are exchanged with neighbors. The global state of the
model is not iterated by the server as in FL, but the process
proceeds such that individual models converge to the desired
global model. In DecL, setting up a learning task (such as
deciding on the algorithm to be used, the hyper-parameters)
might be done by a central authority who can alternatively
be a node or through a consensus scheme in a collaborative
way [15]. In this learning model, no centralized infrastructure
is needed, and data is fully distributed. As in the FL case,
privacy concerns still remain although the model provides
better data privacy compared to centralized topology since
the models are shared instead of participants’ sensitive data.

FIGURE 3: Decentralized Learning Topology

D. SPLIT LEARNING
Split learning (SL) is a type of distributed deep learning
method. It allows different cooperative clients to train deep
learning models without sharing any training data or detailed
information about the model [34]. In a split learning setting,
each client trains a deep neural network up to a specific
layer called the cut layer. The rest of the flow is completed
by sending the outputs at the cut layer to a server without
observing raw data from any client that holds it, as shown in
Figure 4. In this way, without sharing raw data, a round of
forward propagation is being completed. Then, at the server,
the gradients are back propagated until the cut layer. The
gradients at the cut layer are sent back to clients. Until the
learning task is converged, this process is continued. In split
learning, the activations and gradients are communicated
just from the split layer, unlike other methods where the

parameters resulting from local training tasks are shared.
There is a difference between split learning and federated
learning regarding computation overload on the clients and
how quickly split learning converges. Also, in terms of
communication bandwidth, when the number of clients or
the model size is large, split learning is more communication
efficient. If the training data size is large but the number of
clients and model size is small, FL is more communication
efficient [35].

FIGURE 4: Split Learning Topology

Comparied to FL, SL provides better model privacy be-
cause the ML model is split between the clients and the
server, which is useful for two reasons [35]. It offers model
privacy since the users, and the server has no access to each
other’s model. Also, the processing workload at the client
side can be significantly reduced by assigning computation
of only a small part of the network to the clients considering
the clients’ capacity, which makes this method more suitable
for resource constrained devices. In terms of speed, because
of the sequential nature of ML model training across the in
SL, it is significantly slower than FL.

However, there remain questions regarding whether pri-
vacy leakage exists stemming from the cut layer activation
information sent by the client to the server during the training
process as the activation information may leak a piece of
information about the training data. In [36], the authors
showed that it is possible to reconstruct the raw data from
the activation values in the intermediate split layer, which
are passed to the server. In their threat model, the server is
honest-but-curious and tries to reconstruct the raw data from
the activated vector of the cut layer.

E. COLLABORATIVE ML CHALLENGES
A brief comparison of different key aspects of collaborative
ML approaches is given in Table 2. Most of the collaborative
ML applications try to solve an optimization problem. Chal-
lenges for distributed optimization problems are inherited in
collaborative ML as well. However, there are some differen-
tiating properties as pointed out in [22] that summarize these
aspects in FL context. hlThese apply to all collaborative ML
approaches, as given below:
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TABLE 2: Comparison of Collaborative ML Methods

CL FL SL DecL
# of Communication Rounds One Round Multiple Multiple Multiple
Shared Data Training Data Model Weights Parameters in Cut Layer Model Weights
Computation Overhead on Clients No Local Training Partial Local Training Local Training
Privacy Awareness No Yes Yes Yes

• Non-IID (identically and independently distributed)
data: The training data on the clients, especially for
cross-device settings, may not represent the overall dis-
tribution. IID sampling of the training data ensures the
unbiased estimate of the full gradient in SGD. In neural
networks, training with asymmetric non-IID data, de-
creases the accuracy significantly by up to 55%, where
a single class of data is trained on each client device
[37]. It is not realistic to assume that on each client, the
local data is always IID.

• Unbalanced data size: The local training data size may
vary for each client, e.g., the usage of the mobile service
or application by some users may be much heavier than
the others, or the data produced by one institution may
dominate others.

• Communication constraint: Unavailability of client de-
vices, dropouts, and synchronization latency resulted
from network connectivity and power source issues,
and computing constraints impact the algorithm perfor-
mance. Increasing communication efficiency is a chal-
lenging task, and it may be needed to redesign the algo-
rithms, e.g., reducing the communication cost of trans-
ferring large weight matrices of deep networks [38]. For
wireless communications, communication media brings
noise, which affects the convergence of the algorithm.

• Privacy: Comparing with centralized training, collab-
orative learning approaches have privacy benefits by
allowing the model to be learned cooperatively without
sacrificing data privacy. The exchanged updates contain
minimum information about the raw data, and the ag-
gregation algorithm does not need to know the source of
the updates. However, if the parameters and architecture
are not protected, an adversary may reconstruct the
raw data. Furthermore, malicious users may cause more
security problems, as discussed in section V. As a result,
further protection of parameters and studying the trade-
off between privacy level and the system performance
are still needed [17].

For collaborative ML methods, in term of communication
efficiency, SL is more efficient when the number of clients
is increased and is highly scalable with respect to the number
of model parameters. On the other hand, FL is more com-
munication efficient when the number of data samples are
increased but the number of clients and model size are small
[39]. SL outperforms FL in terms of accuracy and requires
lower computation resources per client. For setup with a large
number of clients, SL requires lower computation bandwidth

per client in comparison to FL [34]. Decentralized learning
does not need a central authority to be trusted as federated
learning does. Additionally, DecL is more resilient than FL
because there is no single point of failure as in FL. However,
DecL is generally slower to converge compared to FL [40].

V. SECURITY AND PRIVACY CONSIDERATIONS FOR
COLLABORATIVE ML
In this section, we first give a brief introduction to our
threat model in a collaborative ML setting and focus on each
collaborative ML model. Then, we cover security attacks
in ML to make this work more comprehensive. Finally, we
explain existing privacy attacks in machine learning.

A. THREAT MODEL
This section examines potential threats in collaborative ma-
chine learning, which enable us to understand the attack
model and construct mechanisms to defend the ML process
against attacks from a privacy perspective [41]. For collab-
orative ML, we can consider training dataset, the model pa-
rameters, and hyper-parameters as assets which are sensitive
and at risk of attacks. The data owners, the model owner, the
model consumers, and the adversary are those actors which
are specified in our threat model. The data owners own the
data and are not willing to share the data due to security
reasons or privacy considerations. The model owner who
does not necessarily own the data, creates an ML model from
the training data using data mining and machine learning
techniques. The model owner is unwilling to share its model
with other parties to prevent model inversion attacks and
does not want to create a poisoned model because of the
attacks from malicious data owners. The model consumers
are those who use the service provided by the model owner
through some programming or user interface. The adversary,
as a usual consumer, may access the interfaces and access
all communication between the parties. Additionally, the
adversary may have a priori knowledge of data or models.

Adversarial knowledge is a key factor in determining
variable attack surfaces against ML models. The adversary
might have limited, partial, or full knowledge of model
architecture, hyper-parameters, or training setup. From the
dataset point of view, in majority of the works, it is assumed
that the adversary has only some knowledge about the data
distribution but not the training data samples. Attacks can
be classified as black-box , white-box, and partial white-box
with respect to the knowledge of the adversary [42], [43].
In black-box attacks, the adversary does not know about the
model parameters, architecture, or training data [44], [45].
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MLaaS, is an example of a black-box system where cloud
hosts a pre-trained model, and users can query the model and
learn a prediction vector or a class label. White box attacks
are type of attacks that adversary has full knowledge about
the model, including ML algorithm, ML model parameters,
and architecture during training. Partial white-box attacks,
which are also referred to as gray-box attacks, are those
attacks where the assumptions are stronger than black-box
setting. The adversary cannot access to the model parameters
as in the white-box attacks.

We consider two main types of possible adversarial be-
havior known as honest-but-curious and malicious [46]. The
honest-but-curious adversaries are the adversaries who fol-
low the protocol steps but want to learn more information
about private inputs of other parties from the messages re-
ceived in the execution of the protocol. They try to infer
information about the data during or after the training. The
malicious adversaries can be defined as the adversaries who
may not follow the protocol steps to recover more informa-
tion about private inputs of other parties or to prevent the
execution of the ML model creation or lead to wrong model
creation. For example, they can inject non-legitimate mes-
sages in the protocol transcript, may not execute a protocol
step, and may send a message more than once.

There are two kinds of attacks against machine learning,
considering the intent of the attacks. One of them is security
attacks which do not intend to gather information about
sensitive data but try to influence the model’s thinking to
incorrect output prediction such as poisoning and evasion
attacks. The other is privacy attacks, where the goal of the
adversary is to gain more information about the sensitive
data, such as the training data and the ML model, rather than
gather the information that can be retrieved from the output.
We explain them in the following sections.

B. THREAT MODELS FOR COLLABORATIVE ML
In the following, we discuss privacy attacks’ design for each
collaborative ML model from adversarial behavior view. A
malicious and honest-but-curious adversary are represented
by black and white evil respectively in the figures. The
adversary can reside at the aggregator server, or client side.

Federated learning mostly employs federated averaging or
Synchronous SGD [47] algorithms. In both algorithms, the
global model parameters can be accessed by each client, and
model parameters or loss gradients can be obtained by the
server. As illustrated in Figure 5, in federated learning, a
malicious adversary represented by the black evil could be
either a client or the server. A malicious client can observe
the global parameter updates and creates his own adversarial
parameter updates and gain knowledge about aggregated
training data of all participants [48]. Alternatively, the ma-
licious server can inspect clients’ update and tamper training
process by modifying each client’s view on the global model
and extract more information about training data.

However, the honest-but-curious (white evil) server only
observes the updates and wants to gain information about

clients’ local data. In addition, an honest-but-curious client
can only observe global updates and launch an attack to gain
knowledge about other clients’ local data.

FIGURE 5: Threat model against FL

In Figure 6, where we describe decentralized learning
attack model, there is no aggregator server, and all nodes
are going to send updates to each other. A malicious node
observes updates from all other participants and can modify
its own parameters to tamper with the training process and
gain knowledge about other nodes’ data. However, an honest-
but-curious node can only observe the updates and the global
model to launch the attack to extract information about
training data.

FIGURE 6: Threat model against decentralized learning

In Figure 7, the attack model against split learning is
depicted. The honest-but-curious server follows the opera-
tions as specified, and it wants to gain information about
the raw data stored on the client. The server has access to
the activated vector of the cut layer sent by the participants
during the forward propagation. It aims to reconstruct the raw
data of the clients’ data. Alternatively, an honest-but-curious
node has access to the gradients sent by the server during the
backward propagation and wants to gain information about
the data of other clients. However, the malicious server can
use each node’s activated vector of the cut layer and modify
gradients during the backward propagation to tamper the
training process and extract more information about training
data.
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FIGURE 7: Threat model against split learning

C. SECURITY ATTACKS
Although we focus on privacy attacks in this work, we
present security attacks briefly for the sake of completeness.
Security attacks, also called as adversarial attacks, attempt
to create a misbehaving model [17], such as poisoning and
evasion attacks, [20], [41].

In Figure 8 we also provide a classification for security
and privacy attacks based on their occurrence in the training
or inference phase.

FIGURE 8: Classification of Security and Privacy attacks

1) Poisoning Attacks
Poisoning attacks mostly occur in the training phase. In
poisoning attacks, the data can be altered directly by data
injection or manipulation; logic corruption can also alter the
model directly [41]. The adversary can modify the training
data by adding adversarial entries to the original training data
aiming to reduce the accuracy of the model, which changes
the underlying data distribution without changing the features
or labels of the data. The adversary may also want to modify
the output labels or input features of training data or also may
want to alter the ML model directly by tampering with the
ML algorithm process. Poisoning attacks enable adversaries
to insert backdoors or trojans to the model either at training
time or after initial model training [49]. For example, Gu et
al. [50] inserted stop sign images with a special sticker (the
backdoor trigger) into the training set and labeled them as
speed limit signs. In this way, a backdoor in a street sign
classifier is generated where the common street signs are
classified properly, but the stop sign possessing the backdoor
trigger are incorrectly classified as speed limit signs. Thus,
simply by placing a sticker on any stop sign, the adversary

can trick the model to classify it as a speed limit causing
potential accidents in self-driving cars.

The invisibility of model updates generated by each client
leads FL to be vulnerable to model-poisoning attacks. In
order to add backdoors to the joint model, a malicious
client can use model replacement. The adversary can act
as a single client or by colluding with multiple clients to
modify a classifier to assign desired labels [51]. In FL,
user-level differential privacy can be used to defend against
targeted poisoning attacks. In [52], the authors implement
the sybil attack, a model poisoning attack on differential
privacy based federated learning and explore some protection
mechanisms. The adversary arranges manipulation of model
updates by creating several fake clients or colluding compro-
mised clients.

2) Evasion Attacks
These attacks occur during the inference/testing phase. The
adversary aims to perturb the input samples at inference/test
time to ML classifier to cause a misclassification. For exam-
ple, the adversary can change some pixels in the image of
the ‘stop’ sign, which causes it to be predicted as a ‘Speed
Limit’ sign by the classification model. In [53], the authors
proposed data transformations, including dimensional reduc-
tion as a defense mechanism against evasion attacks. They
demonstrate that the adversarial success rates are reduced at
a fixed budget but are not completely solved.

D. PRIVACY ATTACKS
Privacy concerns in machine learning may arise in many
cases such as sharing a public dataset, participating in a
training procedure using sensitive data to generate a model,
sharing the learned model publicly, and sharing query results
with the end user. In all such cases, the privacy of an indi-
vidual’s data or a service provider’s model is at risk. In the
following, we explain such attacks which can arise both at
training or testing phase of machine learning.

1) Data Access Attacks
These kinds of attacks can be executed by one or more
collaborating parties who want to learn sensitive informa-
tion about other parties’ data. For example, in the federated
learning scenario, the server sends the updated model to the
data owners in each iteration. The difference between two
consecutive models sent by the server can be used by semi-
honest or malicious data owners to recover some information
about the private inputs of other data owners. Alternatively,
the server can be honest-but-curious and tries to learn some
extra information about the private inputs, for example, by
linking the model updates of each client. There are solutions
to mitigate such attacks, like secure aggregation and making
FL server oblivious to hide the data owners’ identities [54].

2) Membership Inference Attacks
This attack was first introduced by Shokri et al. [55], and
it is one of the most popular categories of attacks. This is
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an oracle attack where the adversary can infer whether a
specific record belongs to the training dataset by utilizing the
difference between the model’s confidence on data records
that were or were not seen during training. Membership in-
ference attacks against ML can be quantified by investigating
how much information that machine learning models disclose
about the data records used in the training phase [55]. That
is, with black-box access to a model and data, the attack
specifies whether a record existed in the training dataset of
the model. The target model can be queried with a data
record, and the prediction of the model on that record is
obtained by the adversary. The prediction is represented by
a vector where each element represents the probability that
the record belongs to a certain class. In [56], the authors
investigate membership inference attacks under a black-box
access scenario in which the trained model is private, and an
adversary may only query the prediction API and receive the
prediction output. They show that it is a complex strategic
process to generate a membership inference attack model.
Also, to understand why certain models and dataset are more
vulnerable, and when and how these kinds of attacks work,
they study these kinds of attacks across different target model
types and different type of training dataset. Using attribute
inference (guessing type of data), valuable information about
training data can be extracted.

Nasr et al. [48] showed that the membership inference
attack is more effective than the black-box one when data
from the training dataset is accessed by the adversary. In the
honest-but-curious scenario, in order to differentiate between
members and non-members, the model parameters and gra-
dients are used as an input to train another model. In the
malicious case, instead of gradient decent, the adversary can
perform gradient ascent by altering the gradient updates for
the data whose membership is questionable. If the data is
used by some other participants for training, the gradient of
the loss will be reduced significantly by other participants’
local SGD, which as a result affects the updated model
and lets the adversary to extract membership information as
presented in the attack in [19]. The attack accuracy from a
malicious local participant reaches 76.3%. The effect of the
number of participants on attack accuracy is adverse, i.e.,
after five or more participants, the accuracy notably drops.
However, the attack accuracy from a malicious server, which
is in a more desirable position, reaches 92.1%.

3) Model Extraction Attacks
These attacks, also known as exploratory attacks, are oracle
attacks where the goal is to obtain parameters or structure of
the model by inspecting the model’s predictions, including
the probabilities returned from each class. An adversary with
access to prediction API or model outputs tries to rebuild
a surrogate model that approximately matches the target
model. This attack can be implemented by querying the
prediction API and learning the predictions for the input
feature vectors. When there is no constraint in the number
of queries and the queries themselves, the adversary can

construct a model similar to the target model by querying
many times and using the inference results as training inputs.
One of the trivial solutions to prevent such attacks is to
limit the number of queries from users. The most obvious
countermeasures for ML services are to remove the confi-
dence values and only output the class labels [6]. Embedding
a watermark can be another approach for IP (Intellectual
property) protection of ML models to determine that the
model is stolen. Watermarking is regarded as selecting a
set of inputs (i.e., a trigger set) that are labeled randomly
and can be used by a legitimate model owner along with
normal training data to generate a watermarked model. To
demonstrate ownership of the model, the surrogate model
is queried with a trigger set. If incorrect labels are matched
with enough predictions, it can be concluded that the model
has been stolen. In this way, a legitimate model owner can
detect misuse of their models [57]. In addition, in [58] the
authors propose an active defense that perturbs prediction to
poison adversary’s training objectives. They claimed that the
accuracy of the adversary could be decreased by up to 65%,
where the defender accuracy is not affected significantly.

4) Model Inversion Attacks
A model inversion attack is another oracle attack type that
uses a priori information about the model and auxiliary data
to explore training data or other sensitive data. The inferred
information enables the adversary to reconstruct the data
sample used to train the model, which may violate the privacy
of an individual whose personal information is included in
the data [41].

5) Property Inference Attacks
Property inference is the ability to infer properties other
than those explicitly encoded as features where the model
producer did not intend to share. Inferring the fraction of the
data that comes from a certain class, for example in a patient
dataset the aim of attacks is to infer the fraction of men and
women when such information was not an encoded attribute.
The information was learned unintentionally from the model,
which is not related to the training task [19]. In collaborative
settings, one of the clients can be maliciously trying to infer
the uncorrelated features of the dataset, e.g., if the model is
for gender classifier, adversary tries to infer the facial id of
the picture. The attack can be performed passively or actively.
In the passive setting, the adversary saves the snapshots of
the joint model at different rounds reflecting aggregated gra-
dients. Then, the adversary calculates the difference between
these gradients and tries to infer information based on the
assumption that the gradient updates can leak the features of
the input data learned by the model to predict the output. In
the active setting, the adversary attaches an extra classifier for
inference e.g., for facial id inference and crafts the gradient
updates so that it can infer extra information. The attack,
which is inferring properties from observation, is also a
learning problem.
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VI. PETS FOR COLLABORATIVE PPML
In this section, we give background information about the
main privacy enhancing technologies that can be utilized to
prevent the privacy attacks under the threat models presented
in the previous section. We focus on the following PETs:
differential privacy, homomorphic encryption, secure multi-
party computation, and confidential computing techniques.
We provide a state of the art for the PETs and how they are
used in collaborative ML settings. Note that secret sharing
can also be included in the list but throughout the paper
we consider the secret sharing primitive in the secure multi-
party computation where this primitive is widely used in this
computation paradigm. In the differential privacy technique,
noise is added to the data before sending it to another
party to prevent information leakage. The secure multi-party
computation and homomorphic encryption are two different
approaches to allow computation on encrypted data. In the
secure multi-party setting, the involved parties collabora-
tively compute a function of the private inputs of the parties.
Homomorphic encryption schemes allow computation on
ciphertext without needing decryption of them. Finally, the
confidential computing approaches enable trusted executions
based on the hardware guarantees on isolated and protected
memory regions.

A. DIFFERENTIAL PRIVACY
Differential privacy (DP) is a data anonymization technique
that enables privacy measurement by bringing some math-
ematical definitions. It is widely used with the objective of
protecting the privacy of the individuals whose information is
in a dataset in the context of statistical and machine learning
analysis [59]. In this sense, it is a new approach for protecting
privacy in a more quantifiable way than the literary norms
that usually appear in many laws, policies, and practices
[60]. There is increased attention to DP solutions as they
can prevent several types of security and privacy attacks
such as poisoning, model extraction, model inference, and
membership inference.

Definition VI.1. DP is defined formally as follows [61]. A
randomized algorithm M is ϵ-differentially private if for any
subset of the output S in the range of M, and for all dataset
D1 and D2 differing on at most one record:

Prob[M(D1) ∈ S] ≤ exp(ϵ)Prob[M(D2) ∈ S] + δ (1)

The given formulation is called (ϵ, δ)-differential privacy
where δ is the relaxation parameter. If δ is neglected, then
ϵ-differential privacy provides stronger privacy guarantees.
ϵis the control parameter for privacy level, denoting privacy
budget. There are other approaches like Rényi differential
privacy (RDP), that is, an algorithm is (α, ϵ)-RDP if the Rényi
divergence of order α between any two adjacent databases is
no more than ϵ. RDP can be preferred for its simple privacy
budget accounting. A more detailed mathematical foundation
can be found in [62].

In FL context, D1 and D2 dataset relate to client training

sets that are adjacent if D2 can be formed from D1 by
inserting or removing all of the training samples associated
with a single client. This approach is called user (or client)
level privacy [63], where standalone ML DP applications are
called example level privacy [64], [65].

DP applications can be classified as Central DP and Local
DP depending on the FL trust model. In the FL setting,
given in Figure 2, which uses central trust model, the FL
server collects the client updates in cleartext. Central DP
applications employ the same trust model but add noise on
the server. In this way, the server sends the privacy pro-
tected model parameters. After receiving from the server,
clients perform local training, clip their updates to bound
their contribution, and then send the clipped updates to the
server. Server aggregates the updates and again adds noise
proportional to sensitivity. In each round of FL this process
is repeated.

Three mechanisms can be used for noise sampling in DP,
Laplace [66], Gaussian, and the exponential [61] mechanism.
Gaussian is the most widely used mechanism in Central DP
and defined as:

For a query function f:D→R a randomized algorithm M
satisfies (ϵ, δ)-DP if

M(D) = f(D) +N(0, σ2) (2)

where N indicates the noise from Gaussian distribution with
the standard deviation of σ calculated from sensitivity of the
f.

Central DP requires clients to trust the server as the server
controls the aggregation and DP mechanism. If this is not
the case, Central DP can be improved from the privacy point
of view by adding noise on client side so that clients don’t
have to trust the server. This model is called Local DP. This
removes the trusted FL server assumption, on the other hand,
reduces the utility [67]–[69].

Local DP allows the individual client to set different local
privacy guarantees and was first formalized in [70]. However,
it was also introduced in the database community, by Hsu
et al. [71] with the name “amplification”, and it gained
attention with the work of Duchi et al. [72]. Local DP has
been deployed effectively on end-user device application and
real-world deployments gave rise to its popularity. Google’s
Rappor [73] framework uses Local DP to protect individ-
ual’s browsing habits to identify popular destinations and
settings. Apple, [74] uses Local DP to discover typing habits
to improve keyboard auto-correction service and to identify
energy and memory consumption of the browser. Microsoft
[75] also uses Local DP to collect telemetry data to improve
user experience.

Definition VI.2. The Local DP guarantee is formalized as
follows [70]. For a given ϵ ∈ R+, a randomized mechanism
M satisfies ϵ-LDP if and only if for any pair of inputs x1, x2,
and any output y, the probability ratio of outputting the same
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y should be bounded

Prob[M(x1) = y]

Prob[M(x2) = y]
≤ eϵ (3)

In the literature, Local DP (LDP) in FL has gained at-
tention to address the honest-but-curious aggregator threats
after its introduction in [66]. Different LDP mechanisms have
been suggested for matrix factorization [76], key-valued data
[77], [78] and multidimensional data [79]–[83]. In [84], the
authors proposed an LDP algorithm in vehicular communica-
tion domain to predict the traffic status using crowd-sourcing
applications for numerical data represented as a single nu-
meric attribute. They integrated the LDP algorithm to FL,
called as LDP-FedSGD. Wang et al. addressed the problem
of perturbing multidimensional numeric and categorical data
in [79] with optimal worst-case error. They proposed two
methods for single attribute numerical data, called Piecewise
Mechanism and Hybrid Mechanism to improve previous
work by Duchi et al. [80]. Then, they extended these methods
to handle both numeric and categorical attributes for multidi-
mensional data. Similar to [79], the study in [85], provided
a new approach for LDP to handle high dimensional, con-
tinuous, and large-scale model parameter updates during FL
while allowing the clients to customize their privacy budget.

In [86], the authors concentrated on the efficiency prob-
lems of LDP stemming from the high variance of the noises.
This leads to more communication rounds between server
and clients and more privacy costs to achieve desired results
[85]. Their design provides splitting and shuffling to each
clients’ gradients just before sending to the server to mitigate
the privacy degradation caused by multidimensional data and
a high number of iterations.

[87] adapted robustness and privacy perspective to analyze
how both CDP and LDP mitigate the backdoor, membership
inference and property inference attacks with an experimen-
tal framework. Their results show that LDP is ineffective
for property inference attacks while CDP can defend with
a significant loss in utility. CDP and LDP protect against
backdoor [88] and membership inference attacks [55].

Recent works try to balance Central DP and Local DP
to have higher utility without too much privacy loss using
distributed differential privacy (DDP) approach. In DDP,
FL is not necessarily used, and other security mechanisms
support the Local DP mechanism as in the secure aggregation
protocol. The clients protect their updates locally via Local
DP, and secure aggregation ensures that the FL server does
not reveal the intermediate parameters [89]–[91]. In [89],
the authors tailored the setting to fit the FL by taking the
FL client drop-out challenge into account. Another approach
in DDP is to use Shuffling [92]–[94] and Mixnets [95].
These approaches try to hide the link between the data and
the client. [94]m presented Encode, Shuffle, Analyze (ESA)
architecture with the idea “hide in the crowd”. Basically,
clients first perform Local DP, then the output is securely
shuffled and sent to the server. In shuffling methods, privacy
can be adjusted with the use of moderate ϵ to enable the

protocol with far smaller error than using only Local DP,
while not solely relying on the trusted server model.

The preference and trade-off between CDP and LDP come
from the trust model of the deployments. CDP cannot provide
privacy protection in cases of the malicious server model.
Although LDP does protect the clients from the malicious
server, it reduces the accuracy of the model. Moreover, the
malicious colliding client model is not taken into account in
the DP itself. Bringing other privacy enhancing techniques
with a hybrid solution would be an alternative way. Without
sacrificing accuracy, it is still possible to protect from the
malicious server model in the solution using SMPC and HE.
On the other hand, these approaches come with a price,
inducing additional communication, and computation costs.

DP allows controlling and tracking the privacy with the
moments accountant method [96] so that the defined privacy
budget given with the via (ϵ, δ) parameters is not exceeded.
In collaborative learning, the iterative nature of the training
algorithm should also be reflected in privacy accounting.
Privacy accounting for multiple iterations can be done using
the composability feature of DP to compute and accumulate
the privacy cost at each round of training.

B. HOMOMORPHIC ENCRYPTION
Homomorphic encryption (HE) is a type of encryption that
enables computation on ciphertexts without access to the
secret key or need for decryption; when the encrypted re-
sult is decrypted, it matches the result of operations as if
performed on plain text. Unlike other encryption algorithms
in use today, lattice-based HE [97] algorithms are claimed
to be safe against quantum computer attacks. A public key
is used to encrypt the data, and the algebraic structure in
lattice-based HE systems is utilized to allow functions to
be performed directly on the encrypted data. After apply-
ing the functions to the encrypted data, the result can be
accessed only by the party that owns the private key. HE
includes different types of encryption schemes that can per-
form different classes of computations over encrypted data
[98]. Commonly known homomorphic encryption types are
partially homomorphic encryption (PHE), somewhat homo-
morphic encryption (SWHE), and fully Homomorphic en-
cryption (FHE) [98]. The computations are represented as
either Boolean or arithmetic circuits. PHE [99] supports an
unlimited number of operations of only one type (i.e. addition
or multiplication) on the ciphertext. Due to its relatively low
computation and storage overhead, PHE-based algorithms
are used in many practical applications, although they sup-
port only one kind of operation. PHE can be divided into
two types: additively homomorphic encryption and multi-
plicatively homomorphic encryption. One example is Paillier
cryptosystem [100], where only addition operations can be
performed on encrypted data and for multiplying values
under encryption, additional interaction with the party having
access to the private key is needed. For multiplying values
under encryption, additional interaction with the party having
access to the private key is needed. The Paillier cryptosystem
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is widely used for keyword search on the remote encrypted
data, privacy-preserving aggregation, etc. SWHE [101] sup-
ports all sorts of arithmetic and logic operations. The most
important drawback of SWHE system is that the number
of homomorphic operations is limited. Another limitation
of SWHE is that application of all operations to all types
of data is not possible at the same time. SWHE is suitable
for a variety of real time applications such as financial,
medical, and recommender systems. Since SWHE supports
a limited number of operations, it will be much faster than
fully homomorphic schemes. FHE [102] scheme supports
arbitrary operations with an unlimited number of times over
encrypted data. The main problem of FHE is costly opera-
tions, including bootstrapping step used to reduce the noises
in the ciphertext. If the applications are time-critical and the
message size is big, then using FHE can be impractical. Due
to computational overhead, FHE is less efficient than PHE
and SWHE. As of today, for a particular application PHE and
SWHE schemes are much more practical compared to FHE
schemes.

Ensuring data privacy is a highly valuable advantage of
HE. Without decrypting the data, HE allows multiple compu-
tations to be done on encrypted data. HE is especially useful
for privacy-preserving computation over data, whose storage
is outsourced to third parties. In particular, after having been
homomorphically encrypted, data can be outsourced to a
commercial cloud storage service and processed while it is
encrypted. HE can be used in highly regulated industries such
as health care to enable new services, where data barriers
can be removed by inhibiting data sharing. Homomorphic
encryption can also be used in the delegated computation
of trained ML models. In this approach, one of the parties
encrypts data and sends it to another party to process it and
return the result. None of the parties can gain information
about other parties’ training data other than what can be
inferred.

Although HE provides stronger privacy protection, there
are three main weaknesses of HE schemes [103]. 1) High
computational cost: the efficiency of the system is decreased
by requiring several modular exponent arithmetic for design-
ing the secure computation protocol for most of PHE and
SWHE schemes, also requiring bootstrapping technique for
reducing the noises from the ciphertext in case of FHE. 2)
Large storage overhead: comparing with the original plain-
text, the storage cost for ciphertexts will be expanded many
times (e.g. hundreds or even thousand times) for most of FHE
scheme and some PHE and SWHE schemes. 3) requiring
trusted authority (TA): TA is responsible to generate and
distribute public/private keys for all the parties.

In the context of collaborative learning, in order to learn
models privately using homomorphic encryption, parties first
need to distribute keys. Below we first explain about key
distribution in homomorphic encryption procedure between
parties in collaborative learning.

In one scheme, a typical cross-silo FL system is mentioned
[104]. Each client has an HE module, and there is an honest-

but-curious aggregator server that coordinates the clients and
aggregates the encrypted gradients. A cryptographic protocol
such as SSL/TLS protocol is used to secure the communica-
tion between the clients and the aggregator server; thus, the
transferred messages cannot be learned. One client is selected
randomly by the aggregator as the leader to generate an HE
key pair. The selected random client synchronizes the keys
to all the other clients; also generates the ML model initially
and sends the weights to other clients. Whenever the clients
receive the key-pair and the initial model, they start training
and computing the local gradient updates. Clients encrypt
the updates using the public key and send the results to the
server. The server performs homomorphic computation on all
received updates (e.g., add them up) and sends out the results
to all clients. The aggregated gradients are decrypted by the
clients and the local models are being updated. The assump-
tions behind this scheme may be considered prohibitively
strong; it is assumed that the server will not collude with
any client. If the server chooses a client intentionally as a
leader, it can learn the HE key pair and consequently learns
gradients sent by other clients. In addition, the leader client
has to communicate with all other clients to distribute the
key-pair which can increase the communication cost.

In another scheme, a Multiparty Homomorphic Encryption
(MHE) [105] uses HE scheme to encrypt and exchange
the input data between multiple parties. Using some secret-
sharing scheme, the secret key is distributed securely among
the participants to preserve the privacy of inputs. The partic-
ipants need to collaborate with each other for the decryption
process according to the access structure of the used secret
sharing scheme. In this scheme, the clients collaboratively
generate a private key. Even if the server colludes with one
client, it could not get information about gradients of other
clients.

The multi-key HE scheme is an important class of Multi-
party HE which is firstly proposed by López-Alt et al. [106].
In this scheme, computations can be made on ciphertexts
which are encrypted under different and independent keys
without a joint key setup. The decryption of the ciphertext
can be done jointly by all users who are involved in the
computation.

Now, we give an overview of existing solutions in the
literature, which enhance privacy in collaborative ML using
homomorphic encryption.

Mittal et al. [107] proposed a secure k-means data mining
approach where the data is assumed to be distributed among
different hosts (i.e., horizontally partitioned and stored).
Their approach is to mine data securely using k-means al-
gorithm from the cloud even when adversaries exist. The
privacy of data at each host must be preserved, and no in-
termediate values can be leaked to the adversary. Thus, each
host only knows about its inputs and the final outputs, but not
the intermediate values. They use Pallier cryptosystem for
the privacy of the data of each host and also the intermediate
results.

In [108], the authors aim to perform a federated logistic
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regression in the feature space. They proposed an end-to-end
three-party solution for situation where data is vertically par-
titioned between two organizations. A linear model will be
learned collaboratively in a federated setting. They propose
a secure protocol where additively homomorphic encryption
and privacy-preserving entity resolution is employed by the
coordinator (i.e., a third party), assuming the exchange of
raw data is not possible. The values in each organization’s
data are protected from another organization using additively
homomorphic encryption. Protection from the coordinator
(who has the private key) is provided by sending only cal-
culated values (such as gradient) that are not considered
private. In [109], using homomorphic encryption, the authors
proposed a secure system for protecting both the training and
predicting data in logistic regression. Data from distributed
devices (as in the Internet of Things) can be securely handled
by their design; a central server might be needed to receive,
store, and process the data. Using homomorphic encryption,
plain data is never disclosed to the server.

In [110], the authors presented a privacy-preserving deep
learning system, in which local data of participants are not
revealed to a central server, and learning participants per-
form neural network-based deep learning over a combined
dataset of all. Using additively homomorphic encryption,
they protect the gradients over the honest-but-curious cloud
server. The additive homomorphic property makes compu-
tation possible over gradients encrypted and stored on the
cloud server. There is a trade-off between protecting the gra-
dients against the cloud server and increased communication
between learning participants and the cloud server. Their pro-
vided system does not reduce the accuracy of deep learning.
In [111], the authors proposed the first federated transfer
learning framework for wearable healthcare. They used fed-
erated learning and HE to aggregate the data from different
users/organizations to build machine learning models while
the users’ privacy is preserved. Using a public dataset, the
cloud model is constructed on the server and distributed to
all users/organizations. Each user model is trained based on
the shared cloud model and its own data. The user models
are uploaded to the server for aggregation using HE, and the
new cloud model is trained. Using cloud model and local
data, each user can train personalized models. All parameter-
sharing processes are made through HE. In [112], the aim is
to learn a linear model collaboratively in a federated setting,
where data is vertically partitioned between data providers.
The shared model is trained using locally computed updates.
They propose a secure protocol managed by a coordinator
that implements privacy-preserving entity resolution and an
additively homomorphic encryption scheme. The third party
holds a private key and receives only the encrypted aggre-
gated model updates from participants which are not consid-
ered private in their setting. They provided a formal study
on the impact of entity resolution errors on learning since
identifying corresponding entities in a vertically partitioned
dataset is challenging.

In the cross-silo FL framework, to ensure that clients’

updates are not revealed during aggregation, they are allowed
to mask their local gradient updates using additive HE.
However, the computation and communication cost of HE
operation is extremely high. In [104], the authors proposed a
BatchCrypt, a simple batch encryption technique, to solve the
communication and computation bottlenecks caused by HE.
Each client represents its gradient value with low-bit integer
using quantization. Then the batch of quantized values is
encoded into a long integer, and then batch encryption is per-
formed, which decreases the overhead of encryption and total
volume of ciphertext. The authors validated their techniques
with experimental results.

In [113], [114], the authors proposed privacy preserving
multi-party machine learning based on federated learning and
homomorphic encryption where each node has a different
HE private key in the same FL-based system. In [115], the
authors proposed a privacy-preserving FL approach which
use a momentum gradient decent optimization algorithm
(MGD) to accelerate the model convergence rate during the
training process. To preserve the local privacy information
of each agent, a fully homomorphic encryption is adopted to
encrypt gradient parameters.

C. SECURE MULTIPARTY COMPUTATION
Secure multi-party computation (SMPC) is another paradigm
for computation on encrypted data in addition to the homo-
morphic encryption technique. In the SMPC setting, there are
parties with their sensitive inputs, and they want to compute a
joint function using their inputs but don’t want to reveal their
private inputs to each other. In other words, at the end of the
protocol, the parties learn nothing beyond what is revealed by
the output itself. The term "Secure two-party computation" is
used for the special case that the number of parties is just two.
Note that in this computation paradigm, there is no need for
a trusted server/party.

Collaborative ML training can be considered as a function
that receives sensitive data of data owners as input and
outputs the collaborated machine learning model itself to the
data owners or to a server. The output of the SMPC can be
inference results for given inputs instead of the model itself.

In literature, there are two generic secure multi-party pro-
tocols that can execute any function securely. One of them is
Yao’s garbled circuits introduced by Andrew C. Yao in 1986
[116], which works only for a two-party case. In that solution,
the sending party creates a circuit for the function needed to
be computed, randomly selects two symmetric keys for each
wire in the circuit for two possible values ‘0’ and ‘1’, then
sends the truth table for each gate in the circuit in a random
order, with the corresponding keys for its inputs. The receiver
party gets the corresponding keys for its input bits obliviously
by running oblivious transfer (OT) protocol with the sender
party and then evaluates the circuit by decrypting the garbled
truth table of each gate.

The second generic secure multi-party computation proto-
col is GMW protocol proposed by O. Goldreich, S. Micali,
and A. Wigderson [117]. Similar to Yao’s garbled circuit,
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the function needs to be computed is represented as a circuit
of XOR and AND gates. Each party divides their inputs
into shares and sends the shares to each other. For XOR
gates, it is free to compute the output because XOR of
shares gives the shares of the XOR result of inputs. For the
computation of AND gate output, the parties have to run the
oblivious transfer protocol. The OT protocol, first proposed
by Michael O. Rabin in 1981 [118], is a two-party protocol
that is widely used in secure multi-party computation, as
two examples are given above. In the OT protocol setting,
a sending party who holds two messages sends only one of
the messages depending on the choice of the receiver party,
without knowing any piece of information about the choice.
OT protocols use public key cryptographic algorithms that
need more computation time and resources when compared
with symmetric key algorithms. However, with the devel-
opment of OT extension algorithms [119], the number of
public key operations is reduced to constant numbers such as
128 to execute many OT operations. With this development,
the computation cost of secure two-party and multi-party
computation protocols is decreased dramatically. However,
to execute OT and other necessary operations, more than
two communication rounds and transfer of messages are
needed, which increases the communication cost of secure
multi-party computation protocols. Although there is a recent
improvement in the number of rounds of OT extension pro-
tocol, which reduces the number of rounds from three to two,
the setting requires some offline operations between parties
[120].

While Yao’s garbled circuit protocol and GMW protocol
can compute any function, sometimes it is preferred to design
function-specific secure multi-party computation protocols
considering computation and communication complexities of
the generic protocols. Secure equality testing, comparison,
and private set intersection protocols can be given as exam-
ples for such specific functions. In secure equality testing
protocols, two parties holding private inputs can learn equal-
ity results without revealing their sensitive data to each other.
Secure comparison protocol is similar to the secure equality
testing protocol except that the output is the comparison
result. In the secure private set intersection protocols, the
parties holding a set of items learn the intersection of the sets
without revealing the items that are not in the intersection
to each other. These functionalities (secure equality test-
ing, comparison, and private set intersection) are commonly
used functionalities in protocols, and because of that, many
specific constructions have been proposed for these specific
protocols.

Collaborative ML setting can be regarded as a specific
SMPC setting where the function to be computed in the
SMPC is the ML model training or ML model inference
where the inputs are the training data used in the model
training or the query for the inference, respectively. At first
glance, it can be seen that SMPC solutions can be costly
because of heavy cryptographic operations and the need
for communication between data sources as pointed out

in [11]. It can also be concluded that SMPC techniques
mitigate only the privacy attacks as stated in [11], [21] for
FL. Nevertheless, there are some solutions and advances to
mitigate these drawbacks of SMPC and allow the utiliza-
tion of this privacy enhancing technology. For example, to
not require communication between data owners, a trusted
authority, who distributes necessary keys to the participants
and then leaves the protocol, can be used. Such a solution
for secure aggregation was proposed in [121]. Also, with the
deployment of oblivious extension transfer techniques [119],
the computation cost of cryptographic operations can be
decreased. Regarding the other drawback pointed out in [11],
[21], it can be argued that in addition to mitigation of privacy
attacks, SMPC techniques can support mitigation of security
attacks by allowing execution of security attack mitigation
steps without leaking any sensitive data. In this setting, the
function to be computed in SMPC does not only include
the ML model training and execution but also includes the
security attack prevention steps. Such usage of SMPC is
introduced in [122], where poisoning attacks are prevented
without any sensitive data leakage. Some other solutions that
use SMPC to protect the privacy and preventing backdoor
attacks in federated learning are introduced in [123]–[125].

Since collaborative ML is a function, the privacy of the
parties’ input can be protected by using generic SMPC
solutions: Yao’s Garbled Circuits or GMW. However, the
realization of privacy preserving collaborative ML by using
these techniques is not so practical because of heavy com-
putation and communication costs. Because of that, custom
SMPC protocols have been offered to enhance privacy in
collaborative ML. Instead of the construction of the SMPC
protocol for the whole training algorithm, some parts of the
training algorithm can be implemented in the SMPC proto-
col. For example, in the federated learning scenario, solving
the secure aggregation of weight updates can be enough to
prevent sensitive data leakage. Commonly used primitives
in construction of SMPC protocols are secure aggregation
protocols [126], [127], secret sharing schemes, and usage of
generic protocols (GMW and Yao’s garbled circuits). In the
secure aggregation setting, the server (called as aggregator)
aggregates the sensitive data of the parties without learning
any sensitive information about the data. Below we give a
short overview of existing solutions in the literature.

For the federated learning method, [126] proposed a solu-
tion to prevent the server from learning the weight updates
by obscuring the aggregation from the server. Another work
related to federated learning setting proposed a method to
privately aggregate the model parameter updates and detect
malicious update values using secret sharing scheme [122].
In that solution, two non-colluding servers are required. Sim-
ilar to that work, many of the solutions in literature make use
of secret sharing schemes and usage of non-colluding servers
such as [128], [129]. With that approach, [128] proposed
new protocols for privacy preserving ML methods such as
linear regression, logistic regression, and neural networks.
In that setting, there are two non-colluding servers which
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are honest-but-curious and data owners distribute their data
among the servers where none of the servers can learn any
piece of information about the sensitive data without making
any collaboration. The servers train the models using secure
two-party computation. While most of the works in literature
compute linear operations in a privacy-enhanced way such as
secure aggregation, in that work MPC-friendly alternatives
for non-linear functions such as sigmoid and softmax opera-
tions were introduced. Another work that uses secret sharing
is [130], which was presented at ESORICS 2020. Yet another
privacy solution for neural networks in addition to [128] can
be found in [131]. [132] proposes privacy solutions for deep
learning using Yao’s garbled circuits. Also, some proposals
combine SMPC and HE, such as the one introduced in
[133]. That work proposes a privacy preserving prediction
solution. Note that most of the solutions have been proposed
under the semi-honest (honest-but-curious) adversary model.
To make the protocols secure against malicious adversaries,
some techniques such as zero knowledge proofs need to be
used, which makes the protocols impractical as stated in
[134]. Also, the solutions in literature can be categorized
considering the number of parties involved in the SMPC pro-
tocol. For example, the proposals in [129], [135], [136] use
two-party SMPC protocol while [137] includes three-party
communication. For the linear regression model learning,
[138] proposes SMPC protocol using Yao’s garbled circuits.
Here the training data set is vertically distributed among
parties.

D. CONFIDENTIAL COMPUTING
Confidential computing (CC) is a secure computation model
that assures users that their environment is secure when
they run applications on the virtualized environments ben-
efiting from hardware security offerings. It provides hard-
ware enforced isolation with memory encryption via enclave
technologies and uses advances of trusted execution envi-
ronments (TEE) to build enclaves. Enclaves are hardware-
isolated and protected memory regions of the code and data
that run on reserved part of the physical memory, so they
cannot be accessed directly from RAM. The technology is
provided mostly by hardware vendors like Intel, ARM, and
AMD and can be named differently.

The trust model for secure enclave technologies ensures
protection for malicious insider actors like malicious hyper-
visor on virtualized cloud environments. On the other hand,
side channel attacks [139] to the processors that provide the
security functionality are still possible. Although vendors
release some countermeasures or patches, they do not guar-
antee that the processors are safe from side channel attacks.
Mitigating the risk is left to the solution provider. Hence, the
security functionalities and threat model might be limiting
the intended security design, and the system is protected
as much as the security of the vendor’s solutions. As for
the other outsourced services, integrity, confidentiality and
privacy is a growing need for ML services that use remote
or shared environment, no matter there are different actors

involved in or not. The confidential computing paradigm en-
abled by TEE is a natural pragmatic solution to this problem
as it provides secure training and inference for ML by iso-
lating sensitive computations from the untrusted stack. The
use of confidential computing comes at a price; it requires
additional capabilities on hardware. In the FL setting, TEE
can be used for server-side operations or can be used in client
devices. If the client-side is a massive deployment environ-
ment like IoT cases, the requirement that each IoT device
has TEE would be costly. Although there are IoT specific
solutions like ARM TrustZone, current implementations are
mostly done on server-side. On the other hand, recent sybil
attacks show that protection against malicious client devices
is required to prevent sybil based poisoning attacks [140].

Most of the recent works exploiting TEE in ML focus on
providing privacy on Machine Learning as a Service (MaaS)
setting, which does not use FL topology necessarily. For
the studies in [139]–[149], the authors focused on how to
protect the DNN model in MaaS setting using TEE. They
try to solve the problem arising from the fact that execut-
ing model inference within the TEE is not practical due
to hardware constraints. The code running inside the TEE
(enclave) is bounded by a threshold, e.g., 128 MB for Intel
SGX. If the threshold is exceeded, then data swapping occurs
creating performance and security issues as the data must
be decrypted and encrypted during swapping operations. To
overcome this problem, the model can be split up, and GPU
accelerators are used for the untrusted code. Since GPUs do
not provide trusted execution, how to outsource to GPU and
how to split the DNN are the most important issues, which
most of the studies try to deal with. To provide some level
of protection, in some of the works, a blinding operation is
performed before outsourcing the computation from enclave
to GPU. After GPU complete with its operations and send
back to the enclave in blinded form, unblinding is performed
within the enclave [143], [146]–[148].

Depending on the trust model, there can be two scenarios
where TEE usage can be leveraged in FL cases. The first
scenario is the untrusted aggregation server case. Even if
SMPC is used to protect the model updates, a malicious
server may still be a problem in semi-honest models. In
this case, TEE (like Intel SGX) can be used to provide
protection for server-side operations. The second scenario is
the existence of malicious client devices. Since client devices
hold the data, they can see the model and can tamper with
the protocol. Even if the devices behave benignly, external
factors may create threats e.g., malicious mobile application
can poison local training data or tamper updates. In these
cases, TEEs (like ARM Trustzone) on the client-side can
be used. In the worst-case scenario, when both server-side
and client-side can be malicious, TEE can be employed on
both sides [149]. Although a lot of work has been done
in ML using TEEs, especially for cloud settings, very few
works implement FL setting using TEE. Joint work with
Intel and UPenn [150] used Intel SGX in FL setting for
medical imaging. FL clients (medical institutions) locally
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train their data and send updated in encrypted form. The
model is aggregated in SGX, and then it is sent to the clients
in encrypted form. Both model data and data updates are
protected in the scenario. In [149], Chen et al. used TEE for
both client and server-side operations. On the other hand,
they didn’t provide a protection mechanism for the model
updates, and they stated that updates are sent over the secure
channel. In [151], only client-side operations are protected
by TEE (Arm Trustzone), by partitioning the DNN model
so that part of the model can be executed in TEE. For side-
channel attacks, authors used Ohrimenko’s approach, and for
update protection, DP is used. The work was extended in
[152] and in [153]. The work in [153] is the first attempt
integrating TEEs both client and server side in FL setting.
Authors used Arm Trustzone for client side and Intel SGX
for server side. They conclude that the overhead introduced
to client side is acceptable for the privacy improvements.
This works also differ from [154] and [152] in term of DNN
layer protection. The work aims to protect all DNN layers
while previous works protect the most sensitive DNN layers
leaving others unprotected. Therefore, it defends the model
from model inversion, property and model inference attacks.

E. COMPARISON OF PRIVACY ENHANCING
TECHNOLOGIES
We summarize the pros and cons of these privacy enhancing
technologies and compare them. We considers the compu-
tation complexity, amount of data that needs to be trans-
ferred, communication round, accuracy level and the need
for a special hardware as the performance metrics while
comparing these PETs. Before starting the comparison of
these technologies, we recall their functionalities briefly. HE
allows execution of computation on encrypted data; SMPC
enables parties to compute a joint function on their private
data without revealing any additional information except the
information learned from the output; DP introduces noise to
the data for privacy but also allows computation on the data;
TEE ensures the execution of computation in a secure and
verifiable hardware environment. In terms of computation
complexity, it is well known that the computation cost in HE
is heavier than the others. The second costly solution is the
SMPC where there may need some public key operations.
The computation cost of usage of TEE is the least one
because of not needing additional operations. In terms of
communication data amount, HE and SMPC are not good
candidates because of having long ciphertexts and additional
data transfer needs, respectively. We don’t see such costs in
DP and TEE. Regarding the communication round overhead,
some SMPC solutions may be considered as heavy because
of needing more than two communication rounds. From the
accuracy perspective, DP is the worst candidate because there
is noise in the data in this type of solution while SMPC, HE
and TEE outputs the same result when compared to the plain
computation. Also, it should also be considered while com-
paring these solutions, TEE needs special hardware while
others don’t. This high-level comparison of the focused PETs

and their functionalities are presented in Table 3.
In the context of privacy-preserving federated learning

(PPFL), choosing the right privacy enhancing method is
not straightforward because these methods are different in
terms of effectiveness and computation cost. Using different
metrics for evaluating data utility and data privacy can be a
way to optimize the deployment of defense mechanisms [14].
In addition, since each privacy enhancing techniques have
dominant advantages, combining different techniques may be
useful to develop effective PPFL frameworks.

VII. GUIDELINES ON CHOOSING PETS
This section proposes a methodology for practitioners to
select the right privacy approach for collaborative ML mod-
els. We first introduce the collaborative ML considerations
and PETs constraints for different metrics. We start with
discussing the collaborative ML model characteristics inves-
tigating the different angles. Then, we provide an analysis on
the PETs constraints, mapping the appropriate PETs to the
identified constraints. For each metric, we provide questions
to be evaluated by the practitioners. Then we introduce a
selection machinery based on evaluation of these questions
as shown given in Figure 10.

A. COLLABORATIVE ML CONSIDERATIONS
1) Collaboration Model
What type of collaboration model and communication topol-
ogy is employed by the parties?

Depending on the relations and interactions between the
devices/parties, the collaboration model may change. Com-
munication architecture is also tied to device interactions
and affects the selection of collaborative ML model, e.g.,
what kind of communication protocol will be used and
any resource (energy, compute, storage) limitation in place.
These differences affect the PET selection in terms of what
is shared during the training, the ownership of the model
(or inference model), and the threat model, which will be
analyzed separately.

What is shared among the parties involved in the training
process changes with the collaboration model and impacts
the communication and computation load. In FL and split
learning, each client only exchanges the parameters with
the server, so there is no communication between clients.
In decentralized learning, each client exchanges with the
neighboring client synchronously or asynchronously bring-
ing more communication need. Therefore, SMPC solutions
may be cumbersome in decentralized cases.

From the ownership of the model perspective, in FL and
split learning cases, a server can serve the model for inference
to the 3rd party users based on the business model. Like in
cross-device FL, resulting model may be dispatched to other
devices. In these cases, the model itself should be protected
from malicious 3rd parties. Additionally, compromised de-
vices may have white-box access to the model parameters.
Hence, TEE solutions would be a good alternative to protect
the model parameters from malicious 3rd party users. Since
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TABLE 3: Functionality and comparison of PETs in terms of Computation Overhead (COMP), Communication Overhead
(COMM), Communication Round Overhead (ROUND), Loss of Accuracy (ACCURACY LOSS), and requirement of a special
hardware (HW).

COMP COMM ROUND ACCURACY LOSS HW Functionality
HE High High No Low No Computation on encrypted data

SMPC Medium High Yes Low No Joint computation on private data privately
DP Low Low No High No Computation on noised data

TEE Low Low No Low Yes Computation in secured environment

decentralized learning use cases mostly focus on local in-
ference performed by participants themselves, malicious 3rd
parties might not be an important concern.

2) ML Algorithm
How do the selected ML algorithm setting and operations
impact the intended PET method?

In collaborative ML context, the distribution of data and
collaboration models can affect the selection of ML algo-
rithms. For horizontal and vertical settings, different algo-
rithms may be chosen, and their efficiency may differ. A
practitioner’s choice of ML algorithm, collaboration model,
and data distribution affect computation operations that need
to be executed privately and so the selection of PET solutions.
Algorithms that require extensive non-linear operations, us-
age of SMPC and HE might be costly compared to the DP.
Additionally, the construction of efficient SMPC protocols
depends on the ML algorithm’s operations, and it is hard to
provide an efficient generic algorithm while DP solutions are
agnostic.

3) Data Distribution
How does the data distribution among parties impact the
intended PET method?

The clients may have different data samples for the same
feature space (called horizontal distribution), different fea-
ture spaces for the same data samples (called vertical dis-
tribution) or may have different data samples for different
feature spaces (transfer learning). When data is distributed
horizontally among clients, the local models can be trained
using clients’ local data with the same model architecture.
All local parameters of the clients can simply be averaged
to update the global model. In the case of vertical learning,
methods like entity alignment techniques [155] are applied to
gather common samples among parties which are then used
to train machine learning models. Thus, the communication
cost in the vertical split setting is increased in comparison
with horizontal split. Also, a more complex mechanism is
required to decompose the loss function at each client. Hence,
the usage of methods like HE and DP, which have lower
communication costs, might be preferred for vertical distri-
butions.

The distribution of data with collaboration and ML models
affects the computation operations that need to be executed
privately and the selection of PET solutions. In horizontal

case, which requires simple operations such as averaging,
usage of somewhat or partially homomorphic encryption
schemes are more practical compared to the fully homomor-
phic encryption schemes.

4) Threat Model
What is the adversary model and his/her capabilities? How
the data ownership and trust boundaries are defined for the
parties?

Based on the identified collaboration model, data owner-
ship, trust model, and adversary capabilities, the threat model
can be identified to decide appropriate privacy solution.
The adversary model should be defined for both server and
clients, which can be trusted, honest-but-curious, or mali-
cious. Honest-but-curious clients access the updated model
parameters received from the server. In addition, malicious
clients can tamper with the training process in the rounds
they participate. Similarly, an honest-but-curious server may
infer all client updates during the training process. In addition
to this, a malicious server can tamper with the training
process. In the scenarios where the server can be trusted
for the computation of the global model, not trusted for the
privacy of the clients, and the clients may be regarded as
trusted entities, a PET solution such as secure aggregation
may be enough. However, when the server has the potential
to manipulate the global model in the direction of its intent,
then more advanced solutions that make the clients ensure the
correctness of the model need to be constructed, which will
increase the overhead. Considering these types of threat mod-
els, possible PET solutions should be evaluated for whether
they meet this requirement while keeping the computation
and communication overhead as low as possible. Similar
considerations are also needed for other threats, such as
preventing the clients to provide non-legitimate updates for
the model construction. The construction of privacy solutions
with low overhead for honest-but-curious adversaries is more
feasible than the solutions against malicious adversaries. As a
result, the decision of the appropriate PET solution is highly
dependent on the threat model.

5) Domain Specific Needs
What are the domain specific needs, and how much does the
intended PET method meet them?

As with the above-mentioned considerations, the domain
characteristics of the data are important in applying AI/ML.
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Different use cases in vertical domains have different key per-
formance indicators. For example, in mobile telecommunica-
tion domain, latency, energy efficiency, and secure handling
and management of distributed data processing are important
targets to achieve dependable, sustainable, and trustworthy
networks. Hexa-X, which is a 6G flagship project, studies
the pervasive use of AI/ML in future networks [156] and its
privacy concerns. In healthcare and medical domain, accu-
racy, and processing of sensitive data in accordance with the
regulations are critic aspects to consider, e.g., the accuracy
concern prevents to integrate DP in medical data use cases,
SMPC is preferred instead [157]. In the smart grid domain,
consumption data is aggregated at different nodes, hence
secure aggregation methods can be envisioned to increase
efficiency.

FIGURE 9: Constraints vs PETs mapping

B. CONSTRAINTS
Selecting appropriate PETs also depends on constraints like
computation capability and accuracy. For example, if there
are constraints like accuracy or communication overhead,
differential privacy or SMPC may not meet the concerns. If
there is a need for distributed computation to improve the
performance, this also may change the data ownership and
trust boundaries since data or model will be distributed to
compute nodes. In the following, we explain each constraint,
as depicted in Figure 9, in detail. In addition to explaining the
constraints, we provide recommendations about the selection
of PET solutions with some selection motivations consid-
ering characteristics of PET solutions. We also depict this
recommendation in Figure 9.

1) Communication Rounds
How many extra data exchange rounds introduced by the
intended PETs is tolerable for the execution of collaborative

ML?
Communication rounds refer to the number of times data

communicates between participants during a protocol or
learning process. The number of communication rounds be-
tween parties is the main issue for collaborative learning
tasks affecting the total communication overhead. Increasing
communication efficiency is a challenging task and may
cause redesigning the algorithms e.g., to reduce the commu-
nication cost of sending big weight matrices. If the bandwidth
is limited and the concern is to have less communication
rounds, then a privacy enhancing techniques that brings no
overhead on the communication rounds, such as DP and
HE, must be considered, where SMPC which may require to
perform additional rounds might not be feasible. Since TEE
solutions are mostly used to protect operations performed on
the devices or attestation purposes, no additional communi-
cation cost is introduced. However, if attestation is used in
TEE solution, additional communication rounds are needed.

2) Transmitted Data Size
How much data is allowed to be transferred between parties?

The amount of data transmitted among the parties during
the protocol is an important efficiency parameter. In collabo-
rative learning, the parameters might be updated and sent be-
tween parties several times. In SMPC solutions, there may be
many communication rounds that increases the total amount
of data needed to be transferred. In SMPC, the amount of data
can also be very high because of the nature of the techniques.
For example, in Yao’s garbled circuits solution, which is
a secure two-party computation protocol, to compute one-
bit output of a function of two private bits of two parties,
more than 768 bits must be transferred. When the transmitted
data size is a constraint, DP can be preferred. TEEs do not
put additional overhead in the network since their protection
deals execution phase. If attestation is required in the system
security design, additional steps are needed, hence latency
concerns should be considered.

3) Computation Capability
How much computation resource is available to each party?

The need for computation demand increases as ML is
adopted extensively a use case enabler. Bringing privacy also
adds one more angle to this demand. Therefore, one needs
to think about the available resources while investigating the
appropriate privacy solution. When privacy preserving tech-
niques are considered, their computation overhead should
be considered as well. Considering the current privacy en-
hancing techniques, the computation overhead relationship,
as discussed in Section VI.E, tends to order as such: HE
> SMPC > DP. If the client devices have limited compu-
tation capability, the choice for privacy solution should be
first DP then SMPC and HE, respectively. Bringing privacy
using TEE depends on where TEE is available. If server-side
protection e.g., protecting model privacy is the concern, then
client-side limitations would not affect the choice. If client-
side devices have the TEE capability, the natural choice to
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FIGURE 10: PET selection machinery

enable privacy would benefit from the feature. Depending
on the client-side TEE capability, TEE can pave the way for
protection against malicious client use cases.

4) Accuracy
How much the accuracy loss could be allowed implementing
the intended PET method.

In our context, accuracy can be defined as having mini-
mum difference between the success probability of a model
when there is a privacy solution is implemented or not. Since
the differential privacy solutions add noise to the model
parameters, the success probability of the model is decreased,
which is called privacy versus utility trade-off. If accuracy is
one of the critical parameters, then DP will not be the most
appropriate privacy solution. Since homomorphic encryption
allows computation on encryption of the actual data and not
noise added data, the computation result will be the same
as done in the computation on the plaintext data. Similar to
homomorphic encryption, SMPC solutions allow the use of
parties’ private inputs to construct the model without reveal-
ing the private inputs. Thus, SMPC is another good candidate
for collaborative ML when accuracy is very important. There
may be some cases where to improve the performances by
means of computation and communication, some tricks can
be applied which may result in some information loss about
data and decrease the accuracy. For example, truncation of
weights in neural network can decrease the communication
and computation cost but also decreases the accuracy. Using
the TEE as part of the privacy solution does not affect the
accuracy of the model.

5) Shared Environment
Will the solution be deployed in a multi-tenant environment?

Concerns stemming from multi-tenant cloud environments
also apply for ML use cases if a ML as a service (MaaS)
cloud model is in place. For example, if FL server-side
operations are performed on the cloud environment, then
as in the other cloud-based services, memory isolation and
shared environment access vulnerabilities will be important
parameters. TEE is the only way forward to achieve pro-
tection for the data in memory. The most important aspect
when using TEE is to partition the code into trusted and
untrusted parts since they have memory and performance
constraints [158]. The code should be partitioned in a secure
way so that information disclosed outside of the enclave
should not be used for adversarial purposes. Recent devel-
opments on library operating systems (lib-OS) pave the way
for running applications without any decomposition effort.
Although they are arguable for performance overhead and
trusted computing base size, they are preferred for ease of
development and comparable performance. Graphene SGX
[159], Occlum [160], Fortanix [161], Anjuna [162], Scone
[163] are some examples of lib-OSs that can be used to
execute applications on Intel SGX. Another approach for the
shared environment considerations could be dividing the data
and operations between non-colluding servers, utilizing MPC
techniques, into non-colluding servers running on different
cloud environments.

6) The Number of Device Dropouts
Is there any possibility of devices getting dropout?

Especially in cross-device cases, some devices cannot par-
ticipate in some iterations because of any intentional or unin-
tentional reasons. To clarify the issue, the following example
can be given for unintentional dropouts. To construct an ML
model which is used for word prediction, many mobile phone
users make contributions using users’ wording behavior. In
the model training phase, it is natural that some of the users
may have some connection problems. For performance con-
siderations, usage of small subsets of users can be considered,
especially in federated learning. Usage of different subsets
for each iteration can be given as an example for such an
intentional dropout. Since secure multi-party computation
requires no trusted party and enables execution of functions
without revealing private inputs, this technique can overcome
the dropout cases. Also, with the help of threshold cryp-
tography it is not needed to have all the clients to join to
the recovery of secrets, sensitive data, and decryption keys,
which may help SMPC and HE solutions to handle the device
dropouts during the execution of collaborative ML.

VIII. OPEN ISSUES AND FUTURE DIRECTIONS
In this section we listed some of the identified issues and
research directions as follows.

• Collaborative ML and privacy enhancements have been
heavily studied in the last decades, and new approaches
have been proposed, like FL and SL. The main moti-
vation of both approaches is enabling the generation of
the global model from data without allowing the server
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to observe the data. The clients send some parameters
computed from local data to the server to contribute
to the construction of the global model. In FL, these
parameters are the updates of the model, while in split
learning, they are gradients of the cut layer. Although
the clients don’t send their data to the server, the param-
eters sent to the server may leak sensitive information
about the data. To prevent this information leakage,
researchers have proposed a considerable amount of
work using privacy-enhancing technologies for FL in
the literature. However, for the split learning case, pri-
vacy analysis and privacy enhancement studies are not
enough to understand the remaining privacy issues in
split learning yet.

• Also, considering the existing studies on privacy en-
hancements in collaborative ML, there is no significant
effort on a systematic approach or a generic framework.
Proposed solutions are mainly custom solutions that try
to solve privacy issues from a specific point of view, not
by a systematic approach. One possible future direction
would be scrutinizing privacy issues on recent advances
in collaborative ML and creating systematic approaches
and frameworks both for analysis of privacy issues and
solutions.

• Another possible study area would be the construction
of hybrid solutions that use multiple privacy enhancing
technologies instead of adopting only one of them. For
example, using secure multi-party computation with
confidential computing may be more feasible consider-
ing not only privacy but also performance point of view.
Also, thinking of the trust relations, TEE may not solve
all privacy considerations; complementing it with e.g.,
HE or SMPC may provide a stronger privacy guarantee.

• Verifiability of computations to provide proof points in
collaborative ML/AI message flow is another important
aspect for further studies. This can be considered from
three angles in the collaborative scenarios: The first
one is examining by the server-side to determine if
the clients perform the intended computations in good
faith. Second is examining by the client-side to de-
termine if the server behaves in a good manner fol-
lowing the protocol steps. And the third is to prove
that the environment on which server and client-side
computations run has not been maliciously tampered.
Different methodologies enable these kinds of proofs
including formal cryptographic zero-knowledge proofs
and attestation protocols based on TEEs.

• Last but not least, considering the different use cases
and their constraints or requirements, a use-case specific
framework can be provided to guide the privacy and
industry practitioners. For example, the requirement for
the IoT cases where resource constrained IoT devices
are used would be different from the cross-silo use cases
where different enterprises participate.

IX. CONCLUSION
As more data is generated and circulates in distributed de-
vices, training the data in a centralized fashion is not feasible
due to communication overhead and privacy implications.
Therefore, ML methodologies with better efficiency and
greater privacy considerations are needed where different
actors and data owners involved in the training process.
Collaborative ML approaches like federated learning pave
the way for more privacy for the end users as they do not need
to send raw data to any central server but rather contribute to
the global model by local training. On the other hand, these
approaches do not solve all privacy concerns, as studies show
that model updates can leak private information. Fortunately,
privacy enhancing technologies serve as a set of building
blocks to remedy privacy issues.

In this study, different collaborative ML techniques and
their challenges are explained. A detailed threat model, pos-
sible security and privacy attacks on these techniques are
covered. Then, a comprehensive literature review of privacy
preserving technologies applicable for collaborative ML is
provided.

To the best of our knowledge, while there are taxonomies
on collaborative ML techniques and attacks in literature,
there is no guideline for choosing appropriate privacy en-
hancing techniques. To fill this gap, we introduce a guide-
line on how to approach PETs when designing a privacy-
enhanced collaborative ML method taking the collaborative
ML requirements and PETs’ constraints into account. Addi-
tionally, possible research areas are discussed to shed light on
further studies.
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