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Abstract

Text-to-image synthesis refers to computational methods which translate

human written textual descriptions, in the form of keywords or sentences, into

images with similar semantic meaning to the text. In earlier research, image

synthesis relied mainly on word to image correlation analysis combined with

supervised methods to find best alignment of the visual content matching to

the text. Recent progress in deep learning (DL) has brought a new set of

unsupervised DL methods, particularly deep generative models which are able

to generate realistic visual images using suitably trained neural network

models. The change of direction from the computer vision-based approaches to

artificial intelligence (AI)-driven methods ignited the intense interest in indus-

try, such as virtual reality, recreational & professional (eSports) gaming, and

computer-aided design, and so on, to automatically generate compelling

images from text-based natural language descriptions. In this paper, we review

the most recent development in the text-to-image synthesis research domain.

Our goal is to provide value by delivering a comparative review of the state-of-

the-art models in terms of their architecture and design. The survey first intro-

duces image synthesis and its challenges, and then reviews key concepts such

as generative adversarial networks (GANs) and deep convolutional encoder-

decoder neural networks (DCNNs). After that, we propose a taxonomy to sum-

marize GAN-based text-to-image synthesis into four major categories: semantic

enhancement GANs, resolution enhancement GANs, diversity enhancement

GANS, and motion enhancement GANs. We elaborate on the main objective

of each group, and further review typical GAN architectures in each group.

The taxonomy and the review outline the techniques and the evolution of dif-

ferent approaches, and eventually provide a roadmap to summarize the list of

contemporaneous solutions that utilize GANs and DCNNs to generate

enthralling results in categories such as human faces, birds, flowers, room inte-

riors, object reconstruction from edge maps (games), and so on. The survey

Abbreviations: AI, artificial intelligence; DCNN, deep convolutional encoder-decoder neural network; DL, deep learning; GAN, generative

adversarial network.
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concludes with a comparison of the proposed solutions, challenges that remain

unresolved, and future developments in the text-to-image synthesis domain.

This article is categorized under:

Algorithmic Development > Multimedia

Technologies > Machine Learning
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1 | INTRODUCTION

(GANs), and the variations that are now being proposed is the most interesting idea in the last 10 years in

ML, in my opinion. (2016)

– Yann LeCun

A picture is worth a thousand words! While written text provides efficient, effective, and concise ways for communi-

cation, visual content, such as images, is a more comprehensive, accurate, and intelligible method of information shar-

ing and understanding. Generation of images from text descriptions, that is, text-to-image synthesis, is a complex

computer vision and machine learning problem that has seen great progress over recent years. Automatic image gener-

ation from natural language may allow users to describe visual elements through visually rich text descriptions. The

ability to do so effectively is highly desirable as it could be used in artificial intelligence (AI) applications such as

computer-aided design, image editing (Chen, Shen, Gao, Liu, & Liu, 2018; Yan, Zhang, Wang, Paris, & Yu, 2016), game

engines for the development of the next generation of video games (Isola, Zhu, Zhou, & Efros, 2018), and pictorial art

generation (Elgammal, Liu, Elhoseiny, & Mazzone, 2017).

1.1 | Traditional learning-based text-to-image synthesis

In the early stages of research, text-to-image synthesis was mainly carried out through a search and supervised learning

combined process (Zhu, Goldberg, Eldawy, Dyer, & Strock, 2007), as shown in Figure 1. In order to connect text

descriptions to images, one could use correlation between keywords (or keyphrase) and images that identifies informa-

tive and “picturable” text units; then, these units would search for the most likely image parts conditioned on the text,

eventually optimizing the picture layout conditioned on both the text and the image parts. Such methods often inte-

grated multiple AI key components, including natural language processing, computer vision, computer graphics, and

machine learning.

The major limitation of the traditional learning-based text-to-image synthesis approaches is that they lack the ability

to generate new image content; they can only change the characteristics of the given/training images. Alternatively,

research in generative models has advanced significantly and delivers solutions to learn from training images and pro-

duce new visual content. For example, Attribute2Image (Yan, Yang, Sohn, & Lee, 2016) models each image as a com-

posite of foreground and background. In addition, a layered generative model with disentangled latent variables is

learned, using a variational auto-encoder, to generate visual content. Because the learning is customized/conditioned

by given attributes, the generative models of Attribute2Image can generate images with respect to different attributes,

such as gender, hair color, age, and so on, as shown in Figure 2.

1.2 | GAN-based text-to-image synthesis

Although generative model-based text-to-image synthesis provides much more realistic image synthesis results, the

image generation is still conditioned by the limited attributes. In recent years, several papers have been published on

the subject of text-to-image synthesis. Most of the contributions from these papers rely on multimodal learning
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approaches that include generative adversarial networks (GANs) and deep convolutional decoder networks as their

main drivers to generate entrancing images from text (Goodfellow et al., 2014; Odena, Olah, & Shlens, 2017; Reed et al.,

2016; Wu, Xu, & Hall, 2017; Xu et al., 2018).

First introduced by Ian Goodfellow et al. (2014), GANs consist of two neural networks paired with a discriminator

and a generator. These two models compete with one another, with the generator attempting to produce synthetic/fake

samples that will fool the discriminator and the discriminator attempting to differentiate between real (genuine) and

synthetic samples. Because GANs' adversarial training aims to cause generators to produce images similar to the real

(training) images, GANs can naturally be used to generate synthetic images (image synthesis), and this process can even

be customized further by using text descriptions to specify the types of images to generate, as shown in Figure 3.

Much like text-to-speech and speech-to-text conversion, there exists a wide variety of problems that text-to-image

synthesis could solve in the computer vision field specifically (Haynes, Norton, McParland, & Cooper, 2018; Reed,

Akata, Yan, et al., 2016). Nowadays, researchers are attempting to solve a plethora of computer vision problems with

the aid of deep convolutional networks, GANs, and a combination of multiple methods, often called multimodal

FIGURE 1 Early research on

text-to-image synthesis (Zhu et al.,

2007). The system uses correlation

between keywords (or keyphrase)

and images and identifies

informative and “picturable” text

units, then searches for the most

likely image parts conditioned on

the text, and eventually optimizes

the picture layout conditioned on

both the text and image parts

FIGURE 2 Supervised

learning-based text-to-image

synthesis (Yan, Yang, et al., 2016).

The supervised learning process

aims to learn layered generative

models to generate visual content.

Because the learning is customized/

conditioned by the given attributes,

the generative models of

Attribute2Image can generate

images with respect to different

attributes, such as hair color, age,

and so on
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learning methods (Reed, Akata, Yan, et al., 2016). For simplicity, multiple learning methods will be referred to as multi-

modal learning hereafter (Ngiam et al., 2011). Researchers often describe multimodal learning as a method that incor-

porates characteristics coming from several methods, algorithms, and ideas. This can include ideas from two or more

learning approaches in order to create a robust implementation to solve an uncommon problem or improve a solution

(Baltrusaitis, Ahuja, & Morency, 2017; Dash, Gamboa, Ahmed, Afzal, & Liwicki, 2017; Li, Wang, & Qi, 2018; Reed,

Akata, Yan, et al., 2016; Yang, Kannan, Batra, & Parikh, 2017).

In this survey, we focus primarily on reviewing recent works that aim to solve the challenge of text-to-image synthe-

sis using GANs. In order to provide a clear roadmap, we propose a taxonomy to summarize reviewed GANs into four

major categories. Our review will elaborate the motivations of methods in each category, analyze typical models, their

network architectures, and possible drawbacks for further improvement. The visual abstract of the survey and the list

of reviewed GAN frameworks are shown in Figure 4.

The remainder of the survey is organized as follows. Section 2 presents a brief summary of existing works on sub-

jects similar to that of this paper and highlights the key distinctions making ours unique. Section 3 gives a short intro-

duction to GANs and some preliminary concepts related to image generation, as they are the engines that make text-to-

image synthesis possible and are essential building blocks to achieve photo-realistic images from text descriptions.

Section 4 proposes a taxonomy to summarize GAN-based text-to-image synthesis, discusses models and architectures of

novel works focused solely on text-to-image synthesis. This section will also draw key contributions from these works

in relation to their applications. Section 5 reviews GAN-based text-to-image synthesis benchmarks, performance met-

rics, and comparisons, including a simple review of GANs for other applications. In Section 6, we conclude with a brief

summary and outline ideas for future interesting developments in the field of text-to-image synthesis.

2 | RELATED WORK

With the growth and success of GANs, deep convolutional decoder networks, and multimodal learning methods, these

techniques were some of the first procedures which aimed to solve the challenge of image synthesis. Many engineers

and scientists in computer vision and AI have contributed through extensive studies and experiments, with numerous

FIGURE 3 Generative adversarial network (GAN)-based text-to-image synthesis (Huang, Yu, & Wang, 2018). GAN-based text-to-image

synthesis combines discriminative and generative learning to train neural networks resulting in the generated images semantically resemble

to the training samples or tailored to a subset of training images (i.e., conditioned outputs). φ() is a feature embedding function, which

converts text as feature vector. z is a latent vector following normal distributions with zero mean. x̂=Gðz,φ tð Þ denotes a synthetic image

generated from the generator, using latent vector z and the text features φ(t) as the input. D x̂,φ tð Þð Þ
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proposals and publications detailing their contributions. Because GANs, introduced by Goodfellow et al. (2014), are

emerging research topics, their practical applications to image synthesis are still in their infancy. Recently, many new

GAN architectures and designs have been proposed to use GANs for different applications, for example, using GANs to

generate sentimental texts (Wang & Wan, 2018), or using GANs to transform natural images into cartoons (Chen,

Lai, & Liu, 2018).

Although GANs are becoming increasingly popular, very few survey papers currently exist to summarize and out-

line contemporaneous technical innovations and contributions of different GAN architectures (Creswell et al., 2018;

Hong, Hwang, Yoo, & Yoon, 2019). Survey papers specifically attuned to analyzing different contributions to text-to-

image synthesis using GANs are even more scarce. We have thus found two surveys (Huang et al., 2018; Wu et al.,

2017) on image synthesis using GANs, which are the two most closely related publications to our survey objective. In

the following paragraphs, we briefly summarize each of these surveys and point out how our objectives differ from

theirs.

In Huang et al. (2018), the authors provide an overview of image synthesis using GANs. In this survey, the authors

discuss the motivations for research on image synthesis and introduce some background information on the history of

GANs, including a section dedicated to core concepts of GANs, namely generators, discriminators, and the min–max

game analogy, and some enhancements to the original GAN model, such as conditional GANs, addition of variational

autoencoders, and so on. In this survey, we will carry out a similar review of the background knowledge because the

understanding of these preliminary concepts is paramount for the rest of the paper. Three types of approaches for image

generation are reviewed, including direct methods (single generator and discriminator), hierarchical methods (two or

more generator-discriminator pairs, each with a different goal), and iterative methods (each generator-discriminator

pair generates a gradually higher resolution image). Following the introduction, Huang et al. (2018) discusses methods

for text-to-image and image-to-image synthesis, respectively, and also describes several evaluation metrics for synthetic

images, including inception scores (ISs) and Frechet inception distance (FID), and explains the significance of the dis-

criminators acting as learned loss functions as opposed to fixed loss functions.

Different from the above survey, which has a relatively broad scope in GANs, our objective is heavily focused on

text-to-image synthesis. Although this topic, text-to-image synthesis, has indeed been covered in Huang et al. (2018),

they did so in a much less detailed fashion, mostly listing the many different works in a time-sequential order. In com-

parison, we will review several representative methods in the field and outline their models and contributions in detail.

Similarly to Huang et al. (2018), the second survey paper (Wu et al., 2017) begins with a standard introduction

addressing the motivation of image synthesis and the challenges it presents followed by a section dedicated to core

Output Input
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T21 Benchmarks, performance metrics, applications

GAN-based text-to-image (T2I) frameworks and methods

Semantic enhancement GANs
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- GAN-INT-CLS

- Dong-GAN

- Paired-D GAN

- MC-GAN

Resolution enhancement GANs

- StackGAN

- StackGAN++

- AttGAN

- obj-GANs

- HDGAN

Diversity enhancementNs

- AC-GANs

- TAC-GAN

- Text-SeGAN

- MirrorGAN

- Scene Graph GAN

Motion enhancement GANs

- ObamaNet

- T2S

- T2V

- StoryGAN

- DM-GAN

(True image)

Generative adversarial networks (GANs)

for text-to-image synthesis.

Discriminators Generators

(Frue image)

Real or fake?

Real or fake?

A
d
v
e
r
s
a
r
i
a
l

T
r
a
i
n
i
n
g

FIGURE 4 A visual summary of generative adversarial network (GAN)-based text-to-image (T2I) synthesis process, and the summary

of GAN-based frameworks/methods reviewed in the survey
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concepts of GANs and enhancements to the original GAN model. In addition, the paper covers the review of two types

of applications: (1) unconstrained applications of image synthesis such as super-resolution, image inpainting, and so

on, and (2) constrained image synthesis applications, namely image-to-image, text-to-image, and sketch-to image, and

also discusses image and video editing using GANs. Again, the scope of this paper is intrinsically comprehensive, while

we focus specifically on text-to-image and go into more detail regarding the contributions of novel state-of-the-art

models.

Other surveys have been published on related matters, mainly related to the advancements and applications of

GANs (Zhang, Tu, & Cui, 2017; Zhang, Zhai, Luo, Zhan, & Chen, 2018), but we have not found any prior works which

focus specifically on text-to-image synthesis using GANs. To our knowledge, this is the first paper to do so.

3 | PRELIMINARIES AND FRAMEWORKS

In this section, we first introduce preliminary knowledge of GANs and one of its commonly used variants, conditional

GAN (i.e., conditional generative adversarial networks [cGAN]), which is the building block for many GAN-based text-

to-image synthesis models. After that, we briefly separate GAN-based text-to-image synthesis into two types, Simple

GAN frameworks versus Advanced GAN frameworks, and discuss why advanced GAN architecture for image

synthesis.

Note that the simple versus advanced GAN framework separation is rather too brief, our taxonomy in the next

section will propose a taxonomy to summarize advanced GAN frameworks into four categories, based on their objective

and designs.

3.1 | Generative adversarial neural network

Before moving on to a discussion and analysis of works applying GANs for text-to-image synthesis, there are some pre-

liminary concepts, enhancements of GANs, datasets, and evaluation metrics that are present in some of the works

described in the next section and are thus worth introducing.

As stated previously, GANs were introduced by Ian Goodfellow et al. (2014), and consist of two deep neural net-

works, a generator and a discriminator, which are trained independently with conflicting goals: The generator aims to

generate samples closely related to the original data distribution and fool the discriminator, while the discriminator

aims to distinguish between samples from the generator model and samples from the true data distribution by calculat-

ing the probability of the sample coming from either source. A conceptual view of the GAN architecture is shown in

Figure 5.

Real data

D(x)

G(z)Random noise vector  z

real data
Sample x from

Real

Fake

Sigmoid
function

Fake sample
from generator

FIGURE 5 A conceptual view of the generative adversarial network (GAN) architecture. The Generator G(z) is trained to generate

synthetic/fake resemble to real samples, from a random noise distribution. The fake samples are fed to the Discriminator D(x) along with

real samples. The Discriminator is trained to differentiate fake samples from real samples. The iterative training of the generator and the

discriminator helps GAN deliver good generator generating samples very close to the underlying training samples
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The training of GANs is an iterative process that, with each iteration, updates the generator and the discriminator

with the goal of each defeating the other, leading each model to become increasingly adept at its specific task until a

threshold is reached. This is analogous to a min–max game between the two models, according to the following

equation:

min
θg

max
θd

V Dθd ,Gθg

� �

=Ex�Pdata xð Þ log Dθd xð Þð Þ½ �+Ex�Pz zð Þ log 1−Dθd Gθg zð Þ
� �� �� �

: ð1Þ

In Equation (1), x denotes a multidimensional sample, for example, an image, and z denotes a multidimensional

latent space vector, for example, a multidimensional data point following a predefined distribution function such as

that of normal distributions. DθdðÞ denotes a discriminator function, controlled by parameters θd, which aims to classify

a sample into a binary space. GθgðÞ denotes a generator function, controlled by parameters θg, which aims to generate a

sample from some latent space vector. For example, Gθg zð Þ means using a latent vector z to generate a synthetic/fake

image, and Dθd xð Þ means to classify an image x as binary output (i.e., true/false or 1/0). In the GAN setting, the discrim-

inator DθdðÞ is learned to distinguish a genuine/true image (labeled as 1) from fake images (labeled as 0). Therefore,

given a true image x, the ideal output from the discriminator Dθd xð Þ would be 1. Given a fake image generated from the

generator Gθg zð Þ, the ideal prediction from the discriminator Dθd Gθg zð Þ
� �

would be 0, indicating the sample is a fake

image.

Following the above definition, the minmax objective function in Equation (1) aims to learn parameters for the dis-

criminator (θd) and generator (θg) to reach an optimization goal: The discriminator intends to differentiate true versus

fake images with maximum capability maxθd whereas the generator intends to minimize the difference between a fake

image versus a true image minθg . In other words, the discriminator sets the characteristics and the generator produces

elements, often images, iteratively until it meets the attributes set forth by the discriminator. GANs are often used with

images and other visual elements and are notoriously efficient in generating compelling and convincing photorealistic

images. Most recently, GANs were used to generate an original painting in an unsupervised fashion (Radford, Metz, &

Chintala, 2016). The following sections go into further detail regarding how the generator and discriminator are trained

in GANs.

3.1.1 | Generator

In image synthesis, the generator network can be thought of as a mapping from one representation space (latent space)

to another (actual data) (Creswell et al., 2018). When it comes to image synthesis, all of the images in the data space fall

into some distribution in a very complex and high-dimensional feature space. Sampling from such a complex space is

very difficult, so GANs instead train a generator to create synthetic images from a much more simple feature space

(usually random noise) called the latent space. The generator network performs up-sampling of the latent space and is

usually a deep neural network consisting of several convolutional and/or fully connected layers (Creswell et al., 2018).

The generator is trained using gradient descent to update the weights of the generator network with the aim of produc-

ing data (in our case, images) that the discriminator classifies as real.

3.1.2 | Discriminator

The discriminator network can be thought of as a mapping from image data to the probability of the image coming

from the real data space, and is also generally a deep neural network consisting of several convolution and/or fully con-

nected layers. However, the discriminator performs down-sampling as opposed to up-sampling. Like the generator, it is

trained using gradient descent but its goal is to update the weights so that it is more likely to correctly classify images

as real or fake.

In GANs, the ideal outcome is for both the generator's and discriminator's cost functions to converge so that the

generator produces photorealistic images that are indistinguishable from real data, and the discriminator at the same

time becomes an expert at differentiating between real and synthetic data. This, however, is not possible since a reduc-

tion in cost of one model generally leads to an increase in cost of the other. This phenomenon makes training GANs

very difficult, and training them simultaneously (both models performing gradient descent in parallel) often leads to a
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stable orbit where neither model are able to converge. To combat this, the generator and discriminator are often trained

independently. In this case, the GAN remains the same, but there are different training stages. In one stage, the weights

of the generator are kept constant and gradient descent updates the weights of the discriminator, and in the other stage

the weights of the discriminator are kept constant while gradient descent updates the weights of the generator. This is

repeated for some number of epochs until a desired low cost for each model is reached (Salimans et al., 2016).

3.2 | cGAN: Conditional GAN

Conditional generative adversarial networks (cGAN) are an enhancement of GANs proposed by Mirza and Osindero

(2014) shortly after the introduction of GANs by Goodfellow et al. (2014). The objective function of the cGAN is defined

in Equation (2) which is very similar to the GAN objective function in Equation (1) except that the inputs to both dis-

criminator and generator are conditioned by a class label y.

min
θg

max
θd

V Dθd ,Gθg

� �

=Ex�Pdata xð Þ log Dθd xj yð Þð Þ½ �+Ex�Pz zð Þ log 1−Dθd Gθg zj yð Þ
� �� �� �

: ð2Þ

The main technical innovation of cGAN is that it introduces an additional input or inputs to the original GAN

model, allowing the model to be trained on information such as class labels or other conditioning variables as well as

the samples themselves, concurrently. Whereas the original GAN was trained only with samples from the data distribu-

tion, resulting in the generated sample reflecting the general data distribution, cGAN enables directing the model to

generate more tailored outputs.

In Figure 6, the condition vector is the class label (text string) “Red bird,” which is fed to both the generator and dis-

criminator. It is important, however, that the condition vector is related to the real data. If the model in Figure 6 was

trained with the same set of real data (red birds) but the condition text was “Yellow fish,” the generator would learn to

create images of red birds when conditioned with the text “Yellow fish.”

Note that the condition vector in cGAN can come in many forms, such as texts, not just limited to the class label.

Such a unique design provides a direct solution to generate images conditioned by predefined specifications. As a result,

cGAN has been used in text-to-image synthesis since the very first day of its invention although modern approaches

can deliver much better text-to-image synthesis results.

3.3 | Simple GAN frameworks for text-to-image synthesis

In order to generate images from text, one simple solution is to employ the conditional GAN (cGAN) designs and add

conditions to the training samples, such that the GAN is trained with respect to the underlying conditions. Several pio-

neer works have followed similar designs for text-to-image synthesis.

Real "still bird" images

D(x|y)

G(z|y)Random noise vector z

real data

Real

Sample x from

Fake

Sigmoid
function

Fake sample
from generator

"Still bird"

Condition vector y

FIGURE 6 A conceptual view

of the conditional GAN (cGAN)

architecture. The Generator G(z|y)

generates samples from a random

noise distribution and some

condition vector (in this case text).

The fake samples are fed to the

Discriminator D(x|y) along with real

samples and the same condition

vector, and the Discriminator

calculates the probability that the

fake sample came from the real data

distribution
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An essential disadvantage of using cGAN for text-to-image synthesis is that that it cannot handle complicated

textual descriptions for image generation, because cGAN uses labels as conditions to restrict the GAN inputs. If the

text inputs have multiple keywords (or long-text descriptions) they cannot be used simultaneously to restrict the

input. Instead of using text as conditions, another two approaches (Dash, Gamboa, Ahmed, Afzal, & Liwicki, 2017;

Reed, Akata, Yan, et al., 2016) use text as input features, and concatenate such features with other features to train

discriminator and generator, as shown in Figure 7b and c. To ensure text being used as GAN input, a feature

embedding or feature representation learning (Bengio, Courville, & Vincent, 2013; Zhang, Yin, Zhu, & Zhang,

2018) function φ() is often introduced to convert input text as numeric features, which are further concatenated

with other features to train GANs.

(a)

(b)

(c)

(d)

(e)

FIGURE 7 A simple architecture comparisons between five generative adversarial network (GAN) networks for text-to-image

synthesis. This figure also explains how texts are fed as input to train GAN to generate images. (a) Conditional GAN (cGAN) (Mirza &

Osindero, 2014) use labels to condition the input to the generator and the discriminator. The final output is discriminator similar to generic

GAN; (b) Manifold interpolation matching-aware discriminator GAN (GAN-INT-CLS) (Reed, Akata, Yan, et al., 2016) feeds text input to

both generator and discriminator (texts are preprocessed as embedding features, using function φ(), and concatenated with other input,

before feeding to both generator and discriminator). The final output is discriminator similar to generic GAN; (c) Auxiliary classifier GAN

(AC-GAN) (Odena, Olah, & Shlens, 2017) uses an auxiliary classifier layer to predict the class of the image to ensure that the output consists

of images from different classes, resulting in diversified synthesis images; (d) text conditioned auxiliary classifier GAN (TAC-GAN) (Dash,

Gamboa, Ahmed, Afzal, & Liwicki, 2017) share similar design as GAN-INT-CLS, whereas the output include both a discriminator and a

classifier (which can be used for classification); and (e) text conditioned semantic classifier GAN (Text-SeGAN) (Cha, Gown, & Kung, 2019)

uses a regression layer to estimate the semantic relevance between the image, so the generated images are not limited to certain classes and

are semantically matching to the text input
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3.4 | Advanced GAN frameworks for text-to-image synthesis

Motivated by the GAN and conditional GAN (cGAN) design, many GAN-based frameworks have been proposed to generate

images, with different designs and architectures, such as using multiple discriminators, using progressively trained discrimi-

nators, or using hierarchical discriminators. Figure 8 outlines several advanced GAN frameworks in the literature. In addi-

tion to these frameworks, many news designs are being proposed to advance the field with rather sophisticated designs. For

example, a recent work (Gao et al., 2019) proposes to use a pyramid generator and three independent discriminators, each

focusing on a different aspect of the images, to lead the generator toward creating images that are photorealistic on multiple

levels. Another recent publication (Cha, Gwon, & Kung, 2019) proposes to use discriminator to measure semantic relevance

between image and text instead of class prediction (like most discriminator in GANs does), resulting a new GAN structure

outperforming text conditioned auxiliary classifier (TAC-GAN) (Dash, Gamboa, Ahmed, Afzal, & Liwicki, 2017) and generat-

ing diverse, realistic, and relevant to the input text regardless of class.

In the following section, we will first propose a taxonomy that summarizes advanced GAN frameworks for text-to-image

synthesis, and review most recent proposed solutions to the challenge of generating photorealistic images conditioned on

natural language text descriptions using GANs. The solutions we discuss are selected based on relevance and quality of con-

tributions. Many publications exist on the subject of image generation using GANs, but in this paper, we focus specifically

on models for text-to-image synthesis, with the review emphasizing on the “model” and “contributions” for text-to-image

synthesis. At the end of this section, we also briefly review methods using GANs for other image-synthesis applications.

4 | TEXT-TO-IMAGE SYNTHESIS TAXONOMY AND CATEGORIZATION

In this section, we propose a taxonomy to summarize advanced GAN-based text-to-image synthesis frameworks, as

shown in Figure 9. The taxonomy organizes GAN frameworks into four categories, including semantic enhancement

GANs, resolution enhancement GANs, diversity enhancement GANs, and motion enhancement GAGs. Following the

proposed taxonomy, each subsection will introduce several typical frameworks and address their techniques of using

GANS to solve certain aspects of the text-to-mage synthesis challenges.

4.1 | GAN-based text-to-image synthesis taxonomy

Although the ultimate goal of Text-to-Image synthesis is to generate images closely related to the textual descriptions,

the relevance of the images to the texts are often validated from different perspectives, due to the inherent diversity of

FIGURE 8 A high level comparison of several advanced generative adversarial networks (GANs) framework for text-to-image

synthesis. All frameworks take text (red triangle) as input and generate output images. From left to right, (a) uses multiple discriminators

and one generator (Durugkar, Gemp, & Mahadevan, 2017; Nguyen, Le, Vu, & Phung, 2017), (b) uses multiple stage GANs where the output

from one GAN is fed to the next GAN as input (Denton, Chintala, szlam, & Fergus, 2015; Zhang et al., 2017), (c) progressively trains

symmetric discriminators and generators (Huang, Li, Poursaeed, Hopcroft, & Belongie, 2017), and (d) uses a single-stream generator with a

hierarchically nested discriminator trained from end-to-end (Zhang, Xie, & Yang, 2018)
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human perceptions. For example, when generating images matching to the description “rose flowers,” some users many

know the exact type of flowers they like and intend to generate rose flowers with similar colors. Other users, may seek

to generate high quality rose flowers with a nice background (e.g., garden). The third group of users may be more inter-

ested in generating flowers similar to rose but with different colors and visual appearance, for example, roses, begonia,

and peony. The fourth group of users may want to not only generate flower images, but also use them to form a mean-

ingful action, for example, a video clip showing flower growth, performing a magic show using those flowers, or telling

a love story using the flowers.

From the text-to-Image synthesis point of view, the first group of users intends to precisely control the semantic of

the generated images, and their goal is to match the texts and images at the semantic level. The second group of users is

more focused on the resolutions and the quality of the images, in addition to the requirement that the images and texts

are semantically related. For the third group of users, their goal is to diversify the output images, such that their images

carry diversified visual appearances and are also semantically related. The fourth user group adds a new dimension in

image synthesis, and aims to generate sequences of images which are coherent in temporal order, that is, capture the

motion information.

Based on the above descriptions, we categorize GAN-based text-to-image synthesis into a taxonomy with four major

categories, as shown in Figure 9.

• Semantic enhancement GANs: Semantic enhancement GANs represent pioneer works of GAN frameworks for text-

to-image synthesis. The main focus of the GAN frameworks is to ensure that the generated images are semantically

related to the input texts. This objective is mainly achieved by using a neural network to encode texts as dense fea-

tures, which are further fed to a second network to generate images matching to the texts.

• Resolution enhancement GANs: Resolution enhancement GANs mainly focus on generating high-quality images

which are semantically matched to the texts. This is mainly achieved through a multistage GAN framework, where

the outputs from earlier stage GANs are fed to the second (or later) stage GAN to generate better quality images.

• Diversity enhancement GANs: Diversity enhancement GANs intend to diversify the output images, such that the gen-

erated images are not only semantically related but also have different types and visual appearance. This objective is

mainly achieved through an additional component to estimate semantic relevance between generated images and

texts, in order to maximize the output diversity.

• Motion enhancement GANs: Motion enhancement GANs intend to add a temporal dimension to the output images,

such that they can form meaningful actions with respect to the text descriptions. This goal mainly achieved through

a two-step process which first generates images matching to the “actions” of the texts, followed by a mapping or

alignment procedure to ensure that images are coherent in the temporal order.

In the following, we will introduce how these GAN frameworks evolve for text-to-image synthesis, and will also

review some typical methods of each category.

FIGURE 9 A Taxonomy and

categorization of advanced generative

adversarial network (GAN)

frameworks for text-to-image

synthesis. We categorize advanced

GAN frameworks into four major

categories: semantic enhancement

GANs, resolution enhancement

GANs, diversity enhancement GANs,

and motion enhancement GAGs. The

relationship between relevant

frameworks and their publication

date are also outlined as a reference
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4.2 | Semantic enhancement GANs

Semantic relevance is one of the most important criteria of the text-to-image synthesis. For most GNAs discussed in this

survey, they are required to generate images semantically related to the text descriptions. However, the semantic rele-

vance is a rather subjective measure, and images are inherently rich in terms of its semantics and interpretations.

Therefore, many GANs are further proposed to enhance the text-to-image synthesis from different perspectives. In this

subsection, we will review several classical approaches which are commonly served as text-to-image synthesis baseline.

4.2.1 | Deep convolution generative adversarial network (DC-GAN)

Deep convolution generative adversarial network (DC-GAN) (Reed, Akata, Yan, et al., 2016) represents the pioneer

work for text-to-image synthesis using GANs. Its main goal is to train a DC-GAN on text features. During this process,

these text features are encoded by another neural network. This neural network is a hybrid convolutional recurrent net-

work at the character level. Concurrently, both neural networks have also feed-forward inference in the way they con-

dition text features. Generating realistic images automatically from natural language text is the motivation of several of

the works proposed in this computer vision field. However, actual AI systems are far from achieving this task (Li, Su, &

Liu, 2018; Liu, Meng, Xiang, & Pan, 2018; Mirza & Osindero, 2014; Reed, Akata, Yan, et al., 2016; Wang & Gupta, 2016;

Yang et al., 2019; Zhang, Tu, & Cui, 2017). Lately, recurrent neural networks (RNNs) led the way to develop frame-

works that learn discriminatively on text features. At the same time, GANs began recently to show some promise on

generating compelling images of a whole host of elements including but not limited to faces, birds, flowers, and non-

common images such as room interiors (Reed, Akata, Yan, et al., 2016). DC-GAN is a multimodal learning model that

attempts to bridge together both of the above mentioned unsupervised machine learning algorithms, the RNN and

GANs, with the sole purpose of speeding the generation of text-to-image synthesis.

Deep learning (DL) shed some light to some of the most sophisticated advances in natural language representation,

image synthesis (Huang et al., 2017; Reed, Akata, Yan, et al., 2016; Wang et al., 2017; Wu et al., 2017), and classification

of generic data (Han, Li, & Zhu, 2019). However, a bulk of the latest breakthroughs in DL and computer vision was

related to supervised learning (Reed, Akata, Yan, et al., 2016). Even though natural language and image synthesis were

part of several contributions on the supervised side of DL, unsupervised learning saw recently a tremendous rise in

input from the research community specially on two subproblems: text-based natural language and image synthesis

(Cha, Gwon, & Kung, 2017; Dong, Zhang, McIlwraith, & Guo, 2017; Reed, Akata, Yan, et al., 2016; Yang et al., 2017;

Zhang et al., 2018). These subproblems are typically subdivided as focused research areas. DC-GAN's contributions are

mainly driven by these two research areas. In order to generate plausible images from natural language, DC-GAN con-

tributions revolve around developing a straightforward yet effective GAN architecture and training strategy that allows

natural text to image synthesis. These contributions are primarily tested on the Caltech-UCSD Birds and Oxford-102

Flowers datasets. Each image in these datasets carries five text descriptions. These text descriptions were created by the

research team when setting up the evaluation environment. The DC-GANs model is subsequently trained on several

subcategories. Subcategories in this research represent the training and testing subdatasets. The performance shown by

these experiments displays a promising yet effective way to generate images from textual natural language descriptions

(Reed, Akata, Yan, et al., 2016).

4.2.2 | DC-GAN extensions

Following the pioneer DC-GAN framework (Reed, Akata, Yan, et al., 2016), many researches propose revised network

structures (e.g., different discriminaotrs) in order to improve images with better semantic relevance to the texts. Based

on the DC-GAN architecture, GAN-CLS with image-text matching discriminator, GAN-INT learned with text manifold

interpolation and GAN-INT-CLS which combines both are proposed to find semantic match between text and image.

Similar to the DC-GAN architecture, an adaptive loss function (i.e., perceptual loss, Johnson, Alahi, & Fei-Fei, 2016) is

proposed for semantic image synthesis which can synthesize a realistic image that not only matches the target text

description but also keep the irrelavant features (e.g., background) from source images (Dong, Yu, Wu, & Guo, 2017).

Regarding to the perceptual losses, three loss functions (i.e., pixel reconstruction loss, activation reconstruction loss,

and texture reconstruction loss) are proposed in Cha et al. (2017) in which they construct the network architectures
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based on the DC-GAN, that is, GAN-INT-CLS-Pixel, GAN-INT-CLS-VGG, and GAN-INT-CLS-Gram with respect to

three losses. In Dong, Yu, et al. (2017), a residual transformation unit is added in the network to retain similar structure

of the source image.

Following the Dong, Yu, et al. (2017) and considering the features in early layers address background while fore-

ground is obtained in latter layers in CNN, a pair of discriminators with different architectures (i.e., Paired-D GAN) is

proposed to synthesize background and foreground from a source image seperately (Vo & Sugimoto, 2018). Meanwhile,

the skip connection in the generator is employed to more precisely retain background information in the source image.

4.2.3 | MC-GAN

When synthesizing images, most text-to-image synthesis methods consider each output image as one single unit to

characterize its semantic relevance to the texts. This is likely problematic because most images naturally consist of two

crucial components: foreground and background. Without properly separating these two components, it's hard to char-

acterize the semantics of an image if the whole image is treated as a single unit without proper separation.

In order to enhance the semantic relevance of the images, a multiconditional GAN (MC-GAN) (Park, Yoo, & Kwak,

2018) is proposed to synthesize a target image by combining the background of a source image and a text-described

foreground object which does not exist in the source image. A unique feature of MC-GAN is that it proposes a synthesis

block in which the background feature is extracted from the given image without nonlinear function (i.e., only using

convolution and batch normalization) and the foreground feature is the feature map resulting the previous layer.

Because MC-GAN is able to properly model the background and foreground of the generated images, a unique

strength of MC-GAN is that users are able to provide a base image and MC-GAN is able to preserve the background

information of the base image to generate new images.

4.3 | Resolution enhancement GANs

Due to the fact that training GANs will be much difficult when generating high-resolution images, a two stage GAN

(i.e., stackGAN) is proposed in which rough images (i.e., low-resolution images) are generated in stage-I and refined in

stage-II. To further improve the quality of generated images, the second version of StackGAN (i.e., Stack++) is pro-

posed to use multistage GANs to generate multiscale images. A color-consistency regularization term is also added into

the loss to keep the consistency of images in different scales.

While stackGAN and StackGAN++ are both built on the global sentence vector, AttnGAN is proposed to use atten-

tion mechanism (i.e., deep attentional multimodal similarity model [DAMSM]) to model the multilevel information

(i.e., word level and sentence level) into GANs. In the following, StackGAN, StackGAN++, and AttnGAN will be

explained in detail.

Recently, dynamic memory generative adversarial network (DM-GAN) (Zhu, Pan, Chen, & Yang, 2019) which uses

a dynamic memory component is proposed to focus on refining the initial generated image which is the key to the suc-

cess of generating high-quality images.

4.3.1 | StackGAN

In 2017, Zhang et al. proposed a model for generating photorealistic images from text descriptions called StackGAN

(stacked generative adversarial network) (Zhang, Xu, et al., 2017). In their work, they define a two-stage model that

uses two cascaded GANs, each corresponding to one of the stages. The stage I GAN takes a text description as input,

converts the text description to a text embedding containing several conditioning variables, and generates a low-quality

64x64 image with rough shapes and colors based on the computed conditioning variables. The stage II GAN then takes

this low-quality stage I image as well as the same text embedding and uses the conditioning variables to correct and

add more detail to the stage I result. The output of stage II is a photorealistic 256times256 image that resembles the text

description with compelling accuracy.

One major contribution of StackGAN is the use of cascaded GANs for text-to-image synthesis through a sketch-

refinement process. By conditioning the stage II GAN on the image produced by the stage I GAN and text description,

AGNESE ET AL. 13 of 26



the stage II GAN is able to correct defects in the stage I output, resulting in high-quality 256x256 images. Prior works

have utilized “stacked” GANs to separate the image generation process into structure and style (Wang & Gupta, 2016),

multiple stages each generating lower-level representations from higher-level representations of the previous stage

(Huang et al., 2017), and multiple stages combined with a Laplacian pyramid approach (Denton, Chintala, Szlam, &

Fergus, 2015), which was introduced for image compression by P. Burt and E. Adelson in 1983 and uses the differences

between consecutive down samples of an original image to reconstruct the original image from its down sampled ver-

sion (Burt & Adelson, 1983). However, these works did not use text descriptions to condition their generator models.

Conditioning augmentation is the other major contribution of StackGAN. Prior works transformed the natural lan-

guage text description into a fixed text embedding containing static conditioning variables which were fed to the gener-

ator (Reed, Akata, Yan, et al., 2016). StackGAN does this and then creates a Gaussian distribution from the text

embedding and randomly selects variables from the Gaussian distribution to add to the set of conditioning variables

during training. This encourages robustness by introducing small variations to the original text embedding for a partic-

ular training image while keeping the training image that the generated output is compared to the same. The result is

that the trained model produces more diverse images in the same distribution when using conditioning augmentation

than the same model using a fixed text embedding (Zhang, Xu, et al., 2017).

4.3.2 | StackGAN++

Proposed by the same users as StackGAN, StackGAN++ is also a stacked GAN model, but organizes the generators and

discriminators in a “tree-like” structure (Zhang, Xu, et al., 2018) with multiple stages. The first stage combines a noise

vector and conditioning variables (with conditional augmentation introduced in Zhang, Xu, et al. (2017)) for input to

the first generator, which generates a low-resolution image, 64×64 by default (this can be changed depending on the

desired number of stages). Each following stage uses the result from the previous stage and the conditioning variables

to produce gradually higher resolution images. These stages do not use the noise vector again, as the creators assume

that the randomness it introduces is already preserved in the output of the first stage. The final stage produces a

256×256 high-quality image.

StackGAN++ introduces the joint conditional and unconditional approximation in their designs (Zhang, Xu, et al.,

2018). The discriminators are trained to calculate the loss between the image produced by the generator and the condi-

tioning variables (measuring how accurately the image represents the description) as well as the loss between the image

and real images (probability of the image being real or fake). The generators then aim to minimize the sum of these

losses, improving the final result.

4.3.3 | AttnGAN

Attentional generative adversarial network (AttnGAN) (Xu et al., 2018) is very similar, in terms of its structure, to

StackGAN++ (Zhang, Xu, et al., 2018), discussed in the previous section, but some novel components are added. Like

previous works (Reed et al., 2016; Zhang, Xu, et al., 2017, 2018), a text encoder generates a text embedding with condi-

tioning variables based on the overall sentence. Additionally, the text encoder generates a separate text embedding with

conditioning variables based on individual words. This process is optimized to produce meaningful variables using a

bidirectional recurrent neural network (BRNN), more specifically bidirectional long short-term memory (LSTM)

(Schuster & Paliwal, 2018), which, for each word in the description, generates conditions based on the previous word as

well as the next word (bidirectional). The first stage of AttnGAN generates a low-resolution image based on the

sentence-level text embedding and random noise vector. The output is fed along with the word-level text embedding to

an “attention model,” which matches the word-level conditioning variables to regions of the stage I image, producing a

word-context matrix. This is then fed to the next stage of the model along with the raw previous stage output. Each con-

secutive stage works in the same manner, but produces gradually higher resolution images conditioned on the previous

stage.

Two major contributions were introduced in AttnGAN: the attentional generative network and the DAMSM

(Zhang, Xu, et al., 2018). The attentional generative network matches specific regions of each stage's output image to

conditioning variables from the word-level text embedding. This is a very worthy contribution, allowing each consecu-

tive stage to focus on specific regions of the image independently, adding “attentional” details region by region as
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opposed to the whole image. The DAMSM is also a key feature introduced by AttnGAN, which is used after the result

of the final stage to calculate the similarity between the generated image and the text embedding at both the sentence

level and the more fine-grained word level. Table 2 shows scores from different metrics for StackGAN, StackGAN++,

AttnGAN, and HDGAN on the CUB, Oxford, and COCO datasets. The table shows that AttnGAN outperforms the

other models in terms of IS on the CUB dataset by a small amount and greatly outperforms them on the COCO dataset.

TABLE 2 A summary of performance of different methods with respect to the three benchmark datasets and four performance metrics:

Inception Score (IS), Frechet Inception Distance (FID), Human Classifier (HC), and SSIM scores

Datasets and Metrics

Methods CUB COCO Oxford

IS FID HC SSIM IS FID HC SSIM IS FID HC SSIM

DCGAN 2.88 68.79 2.76 — 7.88 60.82 1.82 — 2.66 79.55 1.84 —

GAN-INT-CLS 2.32 68.79 2.75 — 7.95 60.62 1.93 — 2.69 79.55 1.90 —

Dong-GAN — — — — — — — — 4.14 — — —

Paired-D-GAN — — — — — — — — 4.49 — — —

StackGAN 3.74 51.89 1.27 0.234 8.60 74.05 1.14 — 3.21 55.28 1.16 —

StackGAN++ 4.09 15.30 1.17 — 8.40 81.59 1.55 — 3.27 48.68 1.27 —

AttnGAN 4.39 23.98 — — 26.36 35.49 — — — — — —

Obj-GAN — — — — 30.11 20.75 — — — — — —

HDGAN 4.20 — — 0.215 12.04 — — — 3.52 — — —

DM-GAN 4.82 16.09 — — 31.06 32.64 — — — — — —

TAC-GAN — — — — — — — — 3.50 — — —

Text-SeGAN — — — — — — — — 4.1 — — —

Scene Graph GAN — — — — 7.40 — — — — — — —

MirrorGAN 4.61 — — — 26.88 — — — — — — —

Note: The generative adversarial networks inlcude DCGAN, GAN-INT-CLS, Dong-GAN, Paired-D-GAN, StackGAN, StackGAN++, AttnGAN, ObjGAN,

HDGAN, DM-GAN, TAC-GAN, Text-SeGAN, Scene Graph GAN, and MirrorGAN. The three benchmark datasets include CUB, Oxford, and COCO datasets. A

dash indicates that no data was found.

TABLE 1 A summary of different generative adversarial networks (GANs) and datasets used for validation

Method
Evaluation datasets

Names MNIST Oxford-102 COCO CUB CIFAR-10

cGAN (Mirza & Osindero, 2014) ✓

AC-GAN (Odena et al., 2017) ✓

TAC-GAN (Dash, Gamboa, Ahmed, Afzal, & Liwicki, 2017) ✓

Text-SeGAN (Cha, Gown, & Kung, 2019) ✓

GAN-INT-CLS (Reed, Akata, Yan, et al., 2016) ✓ ✓ ✓

StackGAN (Zhang, Xu, et al., 2017) ✓ ✓ ✓

StackGAN++ (Zhang, Xu, et al., 2017) ✓ ✓ ✓

AttnGAN (Xu et al., 2018) ✓ ✓ ✓

DC-GAN (Reed, Akata, Yan, et al., 2016) ✓ ✓ ✓

HDGAN (Zhang, Xie, & Yang, 2018) ✓ ✓ ✓

MirrorGAN (Qiao et al., 2019) ✓ ✓

Note: A ✓ symbol indicates that the model was evaluated using the corresponding dataset.
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4.3.4 | HDGAN

Hierarchically nested adversarial network (HDGAN) is a method proposed by Zhang, Xie, and Yang (2018), and its

main objective is to tackle the difficult problem of dealing with photographic images from semantic text descriptions.

These semantic text descriptions are applied on images from diverse datasets. This method introduces adversarial objec-

tives nested inside hierarchically oriented networks (Zhang, Xie, & Yang, 2018). Hierarchical networks help regularize

mid-level manifestations. In addition to regularize mid-level manifestations, it assists the training of the generator in

order to capture highly complex still media elements. These elements are captured in statistical order to train the gener-

ator based on settings extracted directly from the image. The latter is an ideal scenario. However, this paper aims to

incorporate a single-stream architecture. This single-stream architecture functions as the generator that will form an

optimum adaptability toward the jointed discriminators. Once jointed discriminators are setup in an optimum manner,

the single-stream architecture will then advance generated images to achieve a much higher resolution (Zhang, Xie, &

Yang, 2018).

The main contributions of the HDGANs include the introduction of a visual-semantic similarity measure (Zhang,

Xie, & Yang, 2018). This feature will aid in the evaluation of the consistency of generated images. In addition to check-

ing the consistency of generated images, one of the key objectives of this step is to test the logical consistency of the end

product (Zhang, Xie, & Yang, 2018). The end product in this case would be images that are semantically mapped from

text-based natural language descriptions to each area on the picture, for example, a wing on a bird or petal on a flower.

DL has created a multitude of opportunities and challenges for researchers in the computer vision AI field. Coupled

with GAN and multimodal learning architectures, this field has seen tremendous growth (Li, Su, & Liu, 2018; Liu et al.,

2018; Mirza & Osindero, 2015; Reed, Akata, Yan, et al., 2016; Wang & Gupta, 2016; Yang et al., 2017; Zhang, Tu, & Cui,

2017). Based on these advancements, HDGANs attempt to further extend some desirable and less common features

when generating images from textual natural language (Zhang, Xie, & Yang, 2018). In other words, it takes sentences

and treats them as a hierarchical structure. This has some positive and negative implications in most cases. For starters,

it makes it more complex to generate compelling images. However, one of the key benefits of this elaborate process is

the realism obtained once all processes are completed. In addition, one common feature added to this process is the

ability to identify parts of sentences with bounding boxes. If a sentence includes common characteristics of a bird, it will

surround the attributes of such bird with bounding boxes. In practice, this should happen if the desired image have

other elements such as human faces (e.g., eyes, hair, etc.), flowers (e.g., petal size, color, etc.), or any other inanimate

object (e.g., a table, a mug, etc.). Finally, HDGANs evaluated some of its claims on common ideal text-to-image datasets

such as CUB, COCO, and Oxford-102 (Li, Su, & Liu, 2018; Liu et al., 2018; Mirza & Osindero, 2015; Reed, Akata, Yan,

et al., 2016; Wang & Gupta, 2016; Yang et al., 2019; Zhang, Tu, & Cui, 2017; Zhang, Xie, & Yang, 2018). These datasets

were first utilized on earlier works (Reed, Akata, Yan, et al., 2016), and most of them sport modified features such

image annotations, labels, or descriptions. The qualitative and quantitative results reported by researchers in this study

were far superior of earlier works in this same field of computer vision AI.

4.4 | Diversity enhancement GANs

In this subsection, we introduce text-to-image synthesis methods which try to maximize the diversity of the output

images, based on the text descriptions.

4.4.1 | Auxiliary classifier GANs (AC-GAN)

Two issues arise in the traditional GANs (Mirza & Osindero, 2015) for image synthesis: (1) Scalabilirty problem: tradi-

tional GANs cannot predict a large number of image categories; and (2) diversity problem: images are often subject to

one-to-many mapping, so one image could be labeled as different tags or being described using different texts. To

address these problems, GAN conditioned on additional information, for example, cGAN, is an alternative solution.

However, although cGAN and many previously introduced approaches are able to generate images with respect to the

text descriptions, they often output images with similar types and visual appearance.

Slightly different from the cGAN, auxiliary classifier GANs (AC-GAN) (Odena et al., 2017) proposes to improve the

diversity of output images by using an auxiliary classifier to control output images. The overall structure of AC-GAN is
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shown in Figure 7c. In AC-GAN, every generated image is associated with a class label, in addition to the true/fake

label which is commonly used in GAN or cGAN. The discriminator of AC-GAN not only outputs a probability distribu-

tion over sources (i.e., whether the image is true or fake), it also output a probability distribution over the class label

(i.e., predict which class the image belong to).

By using an auxiliary classifier layer to predict the class of the image, AC-GAN is able to use the predicted class

labels of the images to ensure that the output consists of images from different classes, resulting in diversified synthesis

images. The results show that AC-GAN can generate images with high diversity.

4.4.2 | TAC-GAN

Building on the AC-GAN, TAC-GAN (Dash, Gamboa, Ahmed, Liwicki, & Afzal, 2017) is proposed to replace the class

information with textual descriptions as the input to perform the task of text to image synthesis. The architecture of

TAC-GAN is shown in Figure 7d, which is similar to AC-GAN. Overall, the major difference between TAC-GAN and

AC-GAN is that TAC-GAN conditions the generated images on text descriptions instead of on a class label. This design

makes TAC-GAN more generic for image synthesis.

For TAC-GAN, it imposes restrictions on generated images in both texts and class labels. The input vector of TAC-

GAN's generative network is built based on a noise vector and embedded vector representation of textual descriptions.

The discriminator of TAC-GAN is similar to that of the AC-GAN, which not only predicts whether the image is fake or

not, but also predicts the label of the images. A minor difference of TAC-GAN's discriminator, compared to that of the

AC-GAN, is that it also receives text information as input before performing its classification.

The experiments and validations, on the Oxford-102 flowers dataset, show that the results produced by TAC-GAN

are “slightly better” that other approaches, including GAN-INT-CLS and StackGAN.

4.4.3 | Text-SeGAN

In order to improve the diversity of the output images, both AC-GAN and TAC-GAN's discriminators predict class

labels of the synthesized images. This process likely enforces the semantic diversity of the images, but class labels are

inherently restrictive in describing image semantics, and images described by text can be matched to multiple labels.

Therefore, instead of predicting images' class labels, an alternative solution is to directly quantify their semantic

relevance.

The architecture of Text-SeGAN is shown in Figure 7e. In order to directly quantify semantic relevance, Text-

SeGAN (Cha, Gown, & Kung, 2019) adds a regression layer to estimate the semantic relevance between the image and

text instead of a classifier layer of predicting labels. The estimated semantic reference is a fractional value ranging

between 0 and 1, with a higher value reflecting better semantic relevance between the image and text. Due to this

unique design, an inherent advantage of Text-SeGAN is that the generated images are not limited to certain classes and

are semantically matching to the text input.

Experiments and validations, on Oxford-102 flower dataset, show that Text-SeGAN can generate diverse images that

are semantically relevant to the input text. In addition, the results of Text-SeGAN show improved IS compared to other

approaches, including GAN-INT-CLS, StackGAN, TAC-GAN, and HDGAN.

4.4.4 | MirrorGAN and Scene Graph GAN

Due to the inherent complexity of the visual images, and the diversity of text descriptions (i.e., same words could imply

different meanings), it is difficulty to precisely match the texts to the visual images at the semantic levels. For most

methods we have discussed so far, they employ a direct text to image generation process, but there is no validation

about how generated images comply with the text in a reverse fashion.

To ensure the semantic consistency and diversity, MirrorGAN (Qiao, Zhang, Xu, & Tao, 2019) employs a mirror

structure, which reversely learns from generated images to output texts (an image-to-text process) to further validate

whether generated are indeed consistent to the input texts. MirrowGAN includes three modules: a semantic text

embedding module (STEM), a global–local collaborative attentive module for cascaded image generation (GLAM), and
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a semantic text regeneration and alignment module (STREAM). The back to back Text-to-Image (T2I) and Image-to-

Text (I2T) are combined to progressively enhance the diversity and semantic consistency of the generated images.

In order to enhance the diversity of the output image, Scene Graph GAN (Johnson, Gupta, & Fei-Fei, 2018) proposes to

use visual scene graphs to describe the layout of the objects, allowing users to precisely specific the relationships between

objects in the images. In order to convert the visual scene graph as input for GAN to generate images, this method uses

graph convolution to process input graphs. It computes a scene layout by predicting bounding boxes and segmentation

masks for objects. After that, it converts the computed layout to an image with a cascaded refinement network.

4.5 | Motion enhancement GANs

Instead of focusing on generating static images, another line of text-to-image synthesis research focuses on generating

videos (i.e., sequences of images) from texts. In this context, the synthesized videos are often useful resources for auto-

mated assistance or story telling.

4.5.1 | ObamaNet and T2S

One early/interesting work of motion enhancement GANs is to generate spoofed speech and lip-sync videos (or talking

face) of Barack Obama (i.e., ObamaNet) based on text input (Kumar, Sotelo, Kumar, de Brébisson, & Bengio, 2017).

This framework is consisted of three parts, that is, text to speech using “Char2Wav,” mouth shape representation syn-

ced to the audio using a time-delayed LSTM and “video generation” conditioned on the mouth shape using “U-Net”

architecture. Although the results seem promising, ObamaNet only models the mouth region and the videos are not

generated from noise which can be regarded as video prediction other than video generation.

Another meaningful trial of using synthesized videos for automated assistance is to translate spoken language (e.g.,

text) into sign language video sequences (i.e., T2S) (Stoll, Camgöz, Hadfield, & Bowden, 2018). This is often achieved

through a two-step process: converting texts as meaningful units to generate images, followed by a learning component

to arrange images into sequential order for best representation. More specifically, using RNN-based machine translation

methods, texts are translated into sign language gloss sequences. Then, glosses are mapped to skeletal pose sequences

using a lookup-table. To generate videos, a conditional DCGAN with the input of concatenation of latent representation

of the image for a base pose and skeletal pose information is built.

4.5.2 | Text-to-video model (T2V)

In Li, Min, Shen, Carlson, and Carin (2018), a text-to-video model (T2V) is proposed based on the cGAN in which the

input is the isometric Gaussian noise with the text-gist vector served as the generator. A key component of generating

videos from text is to train a conditional generative model to extract both static and dynamic information from text,

followed by a hybrid framework combining a variational auto encoder (VAE) and a GAN.

More specifically, T2V relies on two types of features, static features and dynamic features, to generate videos. Static

features, called “gist” are used to sketch text-conditioned background color and object layout structure. Dynamic fea-

tures, on the other hand, are considered by transforming input text into an image filter which eventually forms the

video generator which consists of three entangled neural networks. The text-gist vector is generated by a gist generator

which maintains static information (e.g., background) and a text2filter which captures the dynamic information (i.e.,

actions) in the text to generate videos.

As demonstrated in the paper (Li, Min, et al., 2018), the generated videos are semantically related to the texts, but

have a rather low quality (e.g., only 64 × 64 resolution).

4.5.3 | Storyland

Different from T2V which generates videos from a single text, StoryGAN aims to produce dynamic scenes consistent of

specified texts (i.e., story written in a multi-sentence paragraph) using a sequential GAN model (Li, Gan, et al., 2019).
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Story encoder, context encoder, and discriminators are the main components of this model. By using stochastic sam-

pling, the story encoder intends to learn a low-dimensional embedding vector for the whole story to keep the continuity

of the story. The context encoder is proposed to capture contextual information during sequential image generation

based on a deep RNN. Two discriminators of StoryGAN are image discriminator which evaluates the generated images

and story discriminator which ensures the global consistency.

The experiments and comparisons, on CLEVR dataset and Pororo cartoon dataset which are originally used for

visual question answering, show that StoryGAN improves the generated video qualify in terms of structural similarity

index (SSIM), visual qualify, consistence, and relevance (the last three measure are based on human evaluation).

5 | GAN-BASED TEXT-TO-IMAGE SYNTHESIS APPLICATIONS,
BENCHMARK, AND EVALUATION AND COMPARISONS

5.1 | Text-to-image synthesis applications

Computer vision applications have strong potential for industries including but not limited to the medical, government, mili-

tary, entertainment, and online social media fields (Asmuth et al., 1998; Fang, Wang, & Tang, 2018; Hong, Yang, Choi, &

Lee, 2018; Mansimov, Parisotto, Ba, & Salakhutdinov, 2016; Nie, Trullo, Petitjean, Ruan, & Shen, 2016; Wu et al., 2017).

Text-to-image synthesis is one such application in computer vision AI that has become the main focus in recent years due to

its potential for providing beneficial properties and opportunities for a wide range of applicable areas.

Text-to-image synthesis is an application byproduct of deep convolutional decoder networks in combination with

GANs (Reed, Akata, Yan, et al., 2016; Wu et al., 2017; Xu et al., 2018). Deep convolutional networks have contributed

to several breakthroughs in image, video, speech, and audio processing. This learning method intends, among other

possibilities, to help translate sequential text descriptions to images supplemented by one or many additional methods.

Algorithms and methods developed in the computer vision field have allowed researchers in recent years to create real-

istic images from plain sentences. Advances in the computer vision, deep convolutional nets, and semantic units have

shined light and redirected focus to this research area of text-to-image synthesis, having as its prime directive: to aid in

the generation of compelling images with as much fidelity to text descriptions as possible.

To date, models for generating synthetic images from textual natural language in research laboratories at universi-

ties and private companies have yielded compelling images of flowers and birds (Reed, Akata, Yan, et al., 2016).

Although flowers and birds are the most common objects studied thus far, research has been applied to other classes as

well. For example, there have been studies focused solely on human faces (Reed, Akata, Yan, et al., 2016; Wang, Chang,

Cheng, Jin, & Cheng, 2018; Wu et al., 2017; Yin, Fu, Sigaly, & Xue, 2017).

It's a fascinating time for computer vision AI and DL researchers and enthusiasts. The consistent advancement in

hardware, software, and contemporaneous development of computer vision AI research disrupts multiple industries.
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These advances in technology allow for the extraction of several data types from a variety of sources. For example,

image data captured from a variety of photo-ready devices, such as smart phones, and online social media services

opened the door to the analysis of large amounts of media datasets (Fang et al., 2018). The availability of large media

datasets allow new frameworks and algorithms to be proposed and tested on real-world data.

5.2 | Text-to-image synthesis benchmark datasets

A summary of some reviewed methods and benchmark datasets used for validation is reported in Table 1. In addition,

the performance of different GANs with respect to the benchmark datasets and performance metrics is reported in

Table 2.

In order to synthesize images from text descriptions, many frameworks have taken a minimalistic approach by cre-

ating small and background-less images (Mao et al., 2017). In most cases, the experiments were conducted on simple

datasets, initially containing images of birds and flowers. Reed, Akata, Yan, et al. (2016) contributed to these datasets

by adding corresponding natural language text descriptions to subsets of the CUB, MSCOCO, and Oxford-102 datasets,

which facilitated the work on text-to-image synthesis for several papers released more recently.

While most DL algorithms use MNIST (LeCun & Cortes, 2010) dataset as the benchmark, there are three main

datasets that are commonly used for evaluation of proposed GAN models for text-to-image synthesis: CUB (Wang et al.,

2011), Oxford (Nilsback & Zisserman, 2008), COCO (Lin et al., 2015), and CIFAR-10 (Krizhevsky, 2009). CUB (Wang

et al., 2011) contains 200 birds with matching text descriptions and Oxford (Nilsback & Zisserman, 2008) contains

102 categories of flowers with 40–258 images each and matching text descriptions. These datasets contain individual

objects, with the text description corresponding to that object, making them relatively simple. COCO (Lin et al., 2015)

is much more complex, containing 328 k images with 91 different object types. CIFAI-10 (Krizhevsky, 2009) dataset

consists of 60,000 32times32 color images in 10 classes, with 6,000 images per class. In contrast to CUB and Oxford,

whose images each contain an individual object, COCO's images may contain multiple objects, each with a label, so

there are many labels per image. The total number of labels over the 328 k images is 2.5 million (Lin et al., 2015).

5.3 | Text-to-image synthesis benchmark evaluation metrics

Several evaluation metrics are used for judging the images produced by text-to-image GANs. Proposed by Salimans

et al. (2016), ISs calculates the entropy (randomness) of the conditional distribution, obtained by applying the inception

FIGURE 11 Examples of best

images of “birds” generated by

GAN-INT-CLS, StackGAN,

StackGAN++, AttnGAN, and

HDGAN.(Reprinted with permission

from Zhang, Xu, et al. (2017, 2018);

Xu et al. (2018), and Zhang, Xie, and

Yang (2018), respectively. Copyright

2020 IEEE)
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model introduced in Szegedy, Vanhoucke, Ioffe, and Shlens (2016), and marginal distribution of a large set of generated

images, which should be low and high, respectively, for meaningful images. Low entropy of conditional distribution

means that the evaluator is confident that the images came from the data distribution, and high entropy of the marginal

distribution means that the set of generated images is diverse, which are both desired features. The IS score is then com-

puted as the KL-divergence between the two entropies. Fully Convolutional Network (FCN)-scores (Isola et al., 2018)

are computed in a similar manner, relying on the intuition that realistic images generated by a GAN should be able to

be classified correctly by a classifier trained on real images of the same distribution. Therefore, if the FCN classifier clas-

sifies a set of synthetic images accurately, the image is probably realistic, and the corresponding GAN gets a high FCN

score. FID (Heusel, Ramsauer, Unterthiner, Nessler, & Hochreiter, 2018) is the other commonly used evaluation metric,

and takes a different approach, actually comparing the generated images to real images in the distribution. A high FID

means there is little relationship between statistics of the synthetic and real images and vice versa, so lower FIDs are

better.

The performance of different GANs with respect to the benchmark datasets and performance metrics is reported in

Table 2. In addition, Figure 10 further lists the performance of 14 GANs with respect to their ISs.

5.4 | GAN-based text-to-image synthesis results comparison

While we gathered all the data we could find on scores for each model on the CUB, Oxford, and COCO datasets using

IS, FID, FCN, and human classifiers, we unfortunately were unable to find certain data for AttnGAN and HDGAN

(missing in Table 2). The best evaluation we can give for those with missing data is our own opinions by looking at

examples of generated images provided in their papers. In this regard, we observed that HDGAN produced relatively

better visual results on the CUB and Oxford datasets while AttnGAN produced far more impressive results than the rest

on the more complex COCO dataset. This is evidence that the attentional model and DAMSM introduced by AttnGAN

are very effective in producing high-quality images. Examples of the best results of birds and plates of vegetables gener-

ated by each model are presented in Figures 11 and 12, respectively.

In terms of IS, which is the metric that was applied to majority models except DC-GAN, the results in Table 2 show

that StackGAN++ only showed slight improvement over its predecessor, StackGAN, for text-to-image synthesis. How-

ever, StackGAN++ did introduce a very worthy enhancement for unconditional image generation by organizing the

generators and discriminators in a “tree-like” structure. This indicates that revising the structures of the discriminators

and/or generators can bring a moderate level of improvement in text-to-image synthesis.

FIGURE 12 Examples of best

images of “a plate of vegetables”

generated by GAN-INT-CLS,

StackGAN, StackGAN++,

AttnGAN, and HDGAN. (Reprinted

with permission from Zhang, Xu,

et al. (2017, 2018); Xu et al. (2018),

and Zhang, Xie, and Yang (2018),

respectively. Copyright 2020 IEEE)
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In addition, the results in Table 2 also show that DM-GAN (Zhu et al., 2019) has the best performance, followed by Obj-

GAN (Li, Gan, et al., 2019). Note that both DM-GAN and Obj-GAN are most recently developed methods in the field (both

published in 2019), indicating that research in text to image synthesis is continuously improving the results for better visual

perception and interception. Technical wise, DM-GAN (Zhu et al., 2019) is a model using dynamic memory to refine fuzzy

image contents initially generated from the GAN networks. A memory writing gate is used for DM-GAN to select important

text information and generate images based on he selected text accordingly. On the other hand, Obj-GAN (Li, Zhang, et al.,

2019) focuses on object centered text-to-image synthesis. The proposed framework of Obj-GAN consists of a layout genera-

tion, including a bounding box generator and a shape generator, and an object-driven attentive image generator. The designs

and advancement of DM-GAN and Obj-GAN indicate that research in text-to-image synthesis is advancing to put more

emphasis on the image details and text semantics for better understanding and perception.

5.5 | Notable mentions

It is worth noting that although this survey mainly focuses on text-to-image synthesis, there have been other applica-

tions of GANs in broader image synthesis field that we found fascinating and worth dedicating a small section to. For

example, Yin et al. (2017) used Sem-Latent GANs to generate images of faces based on facial attributes, producing

impressive results that, at a glance, could be mistaken for real faces. Xu et al. (2018); Fang et al. (2018), and Karpathy

and Fei-Fei (2018) demonstrated great success in generating text descriptions from images (image captioning) with

great accuracy, with Xu et al. (2018) using an attention-based model that automatically learns to focus on salient objects

and Karpathy and Fei-Fei (2016) using deep visual-semantic alignments. Finally, there is a contribution made by

StackGAN++ that was not mentioned in the dedicated section due to its relation to unconditional image generation as

opposed to conditional, namely a color-regularization term (Zhang, Xu, et al., 2018). This additional term aims to keep

the samples generated from the same input at different stages more consistent in color, which resulted in significantly

better results for the unconditional model.

6 | CONCLUSION

The recent advancement in text-to-image synthesis research opens the door to several compelling methods and archi-

tectures. The main objective of text-to-image synthesis initially was to create images from simple labels, and this objec-

tive later scaled to natural languages. In this paper, we reviewed novel methods that generate, in our opinion, the most

visually rich and photorealistic images, from text-based natural language. These generated images often rely on GANs,

deep convolutional decoder networks, and multimodal learning methods.

In the paper, we first proposed a taxonomy to organize GAN-based text-to-image synthesis frameworks into four major

groups: semantic enhancement GANs, resolution enhancement GANs, diversity enhancement GANs, and motion enhance-

ment GANs. The taxonomy provides a roadmap to show the motivations, architectures, and difference of different methods,

and also outlines their evolution timeline and relationships. Following the proposed taxonomy, we reviewed important fea-

tures of each method and their architectures. We indicated the model definition and key contributions from some advanced

GAN framworks, including StackGAN, StackGAN++, AttnGAN, DC-GAN, AC-GAN, TAC-GAN, HDGAN, Text-SeGAn,

StoryGAN and so on. Many of the solutions surveyed in this paper tackled the highly complex challenge of generating

photorealistic images beyond swatch size samples. In other words, beyond the work of (Reed, Akata, Yan, et al., 2016) in

which images were generated from text in 64×64 tiny swatches. Last, all methods were evaluated on datasets that included

birds, flowers, humans, and other miscellaneous elements. We were also able to allocate some important papers that were as

impressive as the papers we finally surveyed. Though, these notable papers have yet to contribute directly or indirectly to the

expansion of the vast computer vision AI field. Looking into the future, an excellent extension from the works surveyed in

this paper would be to give more independence to the several learning methods (e.g., less human intervention) involved in

the studies as well as increasing the size of the output images.
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