
 

 

  
Abstract—The clustering ensembles combine multiple partitions 

generated by different clustering algorithms into a single clustering 
solution. Clustering ensembles have emerged as a prominent method 
for improving robustness, stability and accuracy of unsupervised 
classification solutions. So far, many contributions have been done to 
find consensus clustering. One of the major problems in clustering 
ensembles is the consensus function. In this paper, firstly, we 
introduce clustering ensembles, representation of multiple partitions, 
its challenges and present taxonomy of combination algorithms. 
Secondly, we describe consensus functions in clustering ensembles 
including Hypergraph partitioning, Voting approach, Mutual 
information, Co-association based functions and Finite mixture 
model, and next explain their advantages, disadvantages and 
computational complexity. Finally, we compare the characteristics of 
clustering ensembles algorithms such as computational complexity, 
robustness, simplicity and accuracy on different datasets in previous 
techniques. 
 
Keywords—Clustering Ensembles, Combinational Algorithm, 

Consensus Function, Unsupervised Classification. 

I. INTRODUCTION 
N contrast to supervised classification, clustering is 
inherently an ill-posed problem whose solution violates at 

least one of the common assumptions about scale invariance, 
richness, and cluster consistency. Different clustering solutions 
may seem equally plausible without a priori knowledge about 
the underlying data distributions. Every clustering algorithm 
implicitly or explicitly assumes a certain data model and it 
may produce erroneous or meaningless results when these 
assumptions are not satisfied by the sample data. Thus, the 
availability of prior information about the data domain is 
crucial for successful clustering, though such information can 
be hard to obtain, even from experts. Identification of relevant 
subspaces or visualization may help to establish the sample 
data’s conformity to the underlying distributions or, at least, to 
the proper number of clusters [1]. 

The exploratory nature of clustering tasks demands efficient 
methods that would benefit from combining the strengths of 
many individual clustering algorithms. This is the focus of the 
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research on clustering ensembles, seeking a combination of   
multiple partitions that provides improved overall clustering of 
the given data. Clustering ensembles can go beyond what is 
typically achieved by a single clustering algorithm in several 
respects:  
Robustness: Better average performance across the domains 
and datasets. 
Novelty: Finding a combined solution unattainable by any 
single clustering algorithm. 
Stability and confidence estimation: Clustering solutions with 
lower sensitivity to noise, outliers, or sampling variations. 
Clustering uncertainty can be assessed from ensemble 
distributions. 
Parallelization and Scalability: Parallel clustering of data 
subsets with subsequent combination of results. Ability to 
integrate solutions from multiple distributed sources of data or 
attributes (features) [1], [2]. 

Clustering ensembles can also be used in multiobjective 
clustering as a compromise between individual clusterings 
with conflicting objective functions. Fusions of clusterings 
using multiple sources of data or features become increasingly 
important in distributed data mining. Several recent 
independent studies [3], [4], [5], [6], [7], [8] have pioneered 
clustering ensembles as a new branch in the conventional 
taxonomy of clustering algorithms [9], [10]. Other related 
work includes [1] ,[2], [11], [12], [13]. 

Section 2 describes concept of clustering, clustering 
ensembles, its problems and section 3 explains representation 
of multiple partitions. In section 4, we summarize taxonomy of 
clustering combination approaches. In sections 4 and 5, we 
describe different consensus functions in clustering ensembles 
and compare their advantages, disadvantages and 
computational complexity. 

II. CLUSTERING ENSEMBLES 
In this section, we introduce clustering ensembles and its 

problems. Next we describe representation of multiple 
partitions. 

Clustering analysis has been widely applied in many real 
world application domains such as data compression, data 
mining and pattern recognition. However, it is in fact an ill-
posed combinatory optimization problem and no single 
clustering algorithm is able to achieve satisfactory clustering 
solutions for all types of data sets. Numbers of clustering 
algorithms exist so far and some of them often produce 
contradictory clustering solutions. There are many feasible 
approaches to improve the performance of clustering analysis. 
Among them is the clustering ensembles method [8]. The 
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clustering ensembles method leverages the consensus across 
multiple clustering solutions and combines these multiple 
clustering solutions into a single consensus one. It has often 
been noted in the literature that the clustering ensembles 
method is able to improve the robustness and stability of 
clustering analysis [5]. Therefore, the clustering ensembles 
method has gained a lot of real world applications such as gene 
classification, image segmentation [16], video retrieval and so 
on [14], [15], [17]. 

Combination of multiple partitions can be viewed as a 
partitioning task itself. Typically, each partition in the 
combination is represented as a set of labels assigned by a 
clustering algorithm. The combined partition is obtained as a 
result of yet another clustering algorithm whose inputs are the 
cluster labels of the contributing partitions. We will assume 
that the labels are nominal values. In general, the clusterings 
can be “soft”, i.e. described by the real values indicating the 
degree of pattern membership in each cluster in a partition. We 
consider only “hard” partitions below, noting however, that 
combination of “soft” partitions can be solved by numerous 
clustering algorithms and does not appear to be more complex 
[2]. 

Clustering ensembles usually are two stage algorithms. At 
the first, it stores the results of some independent runs of K-
means or other clustering algorithms. Then, it uses the specific 
consensus function to find a final partition from stored results. 
Fig. 1 shows clustering ensembles architecture as following: 
 

 
 

Fig. 1 Clustering Ensembles Architecture 
 
The cluster ensembles design problem is more difficult than 

designing classifier ensembles since cluster labels are 
symbolic and so one must also solve a correspondence 
problem. In addition, the number and shape of clusters 
provided by the individual solutions may vary based on the 
clustering method as well as on the particular view of the data 
available to that method. Moreover, the desired number of 
clusters is often not known in advance. In fact, the “right” 
number of clusters in a dataset often depends on the scale at 
which the data is inspected, and sometimes equally valid (but 
substantially different) answers can be obtained for the same 
data [8]. 

The problem of clustering ensembles or clustering 
combination can be defined generally as follows: Given 
multiple clusterings of the dataset, find a combined clustering 
with better quality. Whereas the problem of clustering 
combination bears some traits of a classical clustering 
problem, it also has three major problems which are specific to 
combination design:  

1. Consensus function: How to combine different clusterings? 
How to resolve the label correspondence problem? How to 
ensure symmetrical and unbiased consensus with respect to all 
the component partitions? [2], [18] 
2. Diversity of clustering: How to generate different partitions? 
What is the source of diversity in the components? [2], [18]. 
Diversity of the individual clusterings of a give dataset can be 
achieved by a number of approaches. Applying various 
clustering algorithms [8], using one algorithm with different 
built-in initialization and parameters [4], [5], [19], projecting 
data onto different subspaces [8], [12], choosing different 
subsets of features [8], and selecting different subsets of data 
points [3], [6], [16] are instances of these generative 
mechanism [20]. 
3. Strength of constituents/components: How “weak” could 
each input partition is? What is the minimal complexity of 
component clusterings to ensure a successful combination? [1] 

In order to optimally integrate clustering ensembles in a 
robust and stable manner, one needs a diversity of component 
partitions for combination. Generally, this diversity can be 
obtained from several sources [18], [21]: 
1) Using different clustering algorithms to produce partitions 
for combination [3]. 
2) Changing initialization or other parameters of a clustering 
algorithm [11], [19]. 
3) Using different features via feature extraction for 
subsequent clustering [8], [22]. 
4) Partitioning different subsets of the original data [3], [16], 
[23]. 

The major hardship in clustering ensembles is consensus 
functions and partitions combination algorithm to produce 
final partition, or in other words finding a consensus partition 
from the output partitions of various clustering algorithms [2], 
[18]. 

Similar questions have already been addressed in the 
framework of multiple classifier systems. Combining results 
from many supervised classifiers is an active research area and 
it provides the main motivation for clusterings combination. 
However, it is not possible to mechanically apply the 
combination algorithms from classification (supervised) 
domain to clustering (unsupervised) domain. Indeed, no 
labeled training data is available in clustering; therefore, the 
ground truth feedback necessary for boosting the overall 
accuracy cannot be used. In addition, different clusterings may 
produce incompatible data labeling, resulting in intractable 
correspondence problems, especially when the numbers of 
clusters are different [1]. 

Unlike supervised classification, the patterns are unlabeled; 
therefore, there is no explicit correspondence between the 
labels delivered by different partitions. The combination of 
multiple clustering can also be viewed as finding a median 
partition with respect to the given partitions which is proven to 
be NP-complete [18]. 

III. PRESENTATION OF MULTIPLE PARTITIONS 
Clustering ensembles need a partition generation procedure. 

Several methods are known to create partitions for clustering 
ensembles. For example, one can use: 1) different regular 
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clustering algorithms [8], 2) different initializations, parameter 
values or built-in randomness of a specific clustering algorithm 
[5], 3) weak clustering algorithms [19], 4) data resampling [3], 
[16]. All these methods generate ensemble partitions 
independently, in a sense that the probability to obtain the 
ensemble consisting of H partitions {π1, π2, … ,πH } of the 
given data D can be factorized in (1) [23]: 

 

∏
=

=
H

t
tH DPDP

1
21 )()}),...,,({ ππππ

 (1)        

 
Hence, the increased efficacy of an ensemble is mostly 

attributed to the number of identically distributed and 
independent partitions, assuming that a partition of data is 
treated as a random variable p. Even when the clusterings are 
generated sequentially, it is traditionally done without 
considering previously produced clusterings as in (2): 
 

)();,...,,({ 121 DPDP tttt πππππ =−−
 (2) 

 
Strehl and Ghosh presented a presentation for multiple 

partitions. They assumed X = {x1,x2,…,xn} denote a set of 
objects/samples/points. A partitioning of these n objects into k 
clusters can be represented as a set of k sets of objects {Cℓ | ℓ = 
1,…,k} or as a label vector λ ε Nn. A clusterer Ф is a function 
that delivers a label vector given a tuple of objects. Fig. 2 
shows the basic setup of the cluster ensemble: A set of r  
labelings λ(1,…,r) is combined into a single labeling λ (the 
consensus labeling) using a consensus function Γ [8]. 

 

 
Fig. 2 Representation of multiple partitions by function Γ 

 
Fern and Brodley [24] described a basic definition of graph 

partitioning. A weighted graph is represented by G = (V,W), 
where V is a set of vertices and W is a nonnegative and 
symmetric |V|×|V| similarity matrix characterizing the 
similarity between each pair of vertices. The input to a graph 
partitioning problem is a weighted graph G and a number K. 
To partition a graph into K parts is to find K disjoint clusters 
of vertices P = {P1,P2 ,···,PK}, where UPk = V . Unless a given 
graph has K, or more than K, strongly connected components, 
any K-way partition will cross some of the graph edges. The 
sum of the weights of these crossed edges is defined as the cut 
of a partition P: Cut(P,W) = ∑ W(i, j), where vertices i and j do 
not belong to the same cluster. 

IV. TAXONOMY OF CLUSTERING COMBINATION APPROACHES 
We summarize clustering combination approaches in Fig. 3. 

We focus on consensus function methods and describe them in 
next section. 

 

 
 

Fig. 3 Taxonomy of Clustering Combination Approaches 

V. CONSENSUS FUNCTIONS IN CLUSTERING ENSEMBLES 
There are some types of consensus function such as: 

Hypergraph Partitioning, Voting Approach, Mutual 
Information Algorithm, Co-association based functions and 
Finite Mixture model. We introduce all of kind of consensus 
functions and some previous research works in them, 
separately.  

A. Hypergraph Partitioning 
The clusters could be represented as hyperedges on a graph 

whose vertices correspond to the objects to be clustered, so 
each hyperedge describes a set of objects belonging to the 
same clusters. The problem of consensus clustering is then 
reduced to finding the minimum-cut of a hypergraph. The 
minimum k-cut of this hypergraph into k components gives the 
required consensus partition [8], [22]. Hypergraph partitioning 
is NP-hard problem, but efficient heuristics to solve the k way 
min-cut partitioning problem are known, some with 
computational complexity on the order of O( |ε| ), where ε is 
the number of hyperedges [2], [18]. 

Strehl and Ghosh [8] used a knowledge reuse framework 
and they have considered three different consensus functions 
for ensemble clustering. The Cluster based Similarity 
Partitioning Algorithm (CSPA) induces a graph from a co-
association matrix and clusters it using the METIS algorithm. 
The Hypergraph Partitioning Algorithm (HGPA) represents 
each cluster by a hyperedge in a graph where the nodes 
correspond to a given set of objects. Good hypergraph 
partitions are found using minimal cut algorithms such as 
HMETIS coupled with the proper objective functions, which 
also control partition size. Hyperedge collapsing operations 
are considered in another hypergraph based Meta Clustering 
Algorithm (MCLA). The MCLA uses these operations to 
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determine soft cluster membership values for each object. 
Computing complexity of CSPA, HGPA and MCLA are 
O(kN2H), O(kNH), and O(k2NH2), respectively. They defined a 
mutual information based objective function that can select 
automatically the best solution from several algorithms and to 
build a supra consensus function as well. Their proposed 
algorithms improved the quality and robustness of the solution, 
but their proposed greedy approach is the slowest and often is 
intractable for large n. 

Fern and Brodley [24] proposed another cluster ensemble 
method based on graph partitioning named Hybrid Bipartite 
Graph Formulation (HBGF) [8]. It constructs a bipartite graph 
from a set of partitions to be combined, modeling objects and 
clusters simultaneously as vertices, and later partitioning the 
graph by a traditional graph partitioning technique. Their 
approach retained all of the information provided by a given 
ensemble, allowing the similarity among instances (IBGF) and 
the similarity among clusters (CBGF) to be considered 
collectively in forming the final clustering. HBGF has high 
robust clustering performance against IBGF and CBGF and 
the reduction of HBGF is lossless. The computing complexity 
of HBGF is O(kN). Their proposed method’s implementation 
is difficult. 

Ng et al. [25] proposed a popular multiway spectral graph 
partitioning algorithm (SPEC) which seeks to optimize the 
normalized cut criterion. SPEC can be simply described as a 
graph G = (V,W), it first computes the degree matrix D, which 
is a diagonal matrix such that D(i, i) = ∑j W(i, j). Based on D, 
it then computes a normalized weight matrix L = D−1W and 
finds L’s K largest eigenvectors u1, u2, · · · , uK to form matrix 
U = [u1, · · · , uK]. The rows of U are then normalized to have 
unit length. Treating the rows of U as K-dimensional 
embeddings of the vertices of the graph, SPEC produces the 
final clustering solution by clustering the embedded points 
using K-means. Comparing to HBGF, SPEC has low robust 
clustering performance. It’s computing complexity is O(N3). 

Karypis and Kumar [26] proposed a multilevel graph 
partitioning system named METIS, approaches the graph 
partitioning problem from a different angle. It partitions a 
graph using three basic steps: (1) coarsen the graph by 
collapsing vertices and edges; (2) partition the coarsened 
graph and (3) refine the partitions. In comparison to other 
graph partitioning algorithms, METIS is highly efficient and 
achieves competitive performance. Comparing to HBGF, 
METIS has low robust clustering performance. It’s computing 
complexity is O(kNH). 

B. Voting Approach 
It calls also direct approach or relabeling. In the other 

algorithms there is no need to explicitly solve the 
correspondence problem between the labels of known and 
derived clusters. The voting approach attempts to solve the 
correspondence problem, then a simple voting produce can be 
used to assign objects in clusters to determine the final 
consensus partition. However, label correspondence is exactly 
what makes unsupervised combination difficult. The main idea 
is to permute the cluster labels such that best agreement 
between the labels of two partitions is obtained. All the 
partitions from the ensemble must be relabeled according to a 

fixed reference partition. The reference partition can be taken 
as one from the ensemble, or from a new clustering of the 
dataset. Also, a meaningful voting procedure assumes that the 
number of clusters in every given partition is the same as in the 
target partition. This requires that the number of clusters in the 
target consensus partition is known. The complexity of this 
process is k! , which can be reduced to O(k3) if the Hungarian 
method is employed for the minimal weight bipartite matching 
problem [2], [3], [11], [18]. 

Fischer and Buhmann [6], [16], and also Dudoit and 
Fridlyand [3], have implemented a combination of partitions 
by relabeling and voting. Their works pursued direct 
relabeling approaches to the correspondence problem. A 
relabeling can be done optimally between two clusterings 
using the Hungarian algorithm. After an overall consistent 
relabeling, voting can be applied to determine cluster 
membership for each object. However, this voting method 
needs a very large number of clusterings to obtain a reliable 
result. Computing complexity of their proposed algorithm is 
O(k3). 

Fischer and Buhmann [6], [16] presented path based 
clustering with automatic outlier detection that captures the 
empirical observation that group structures in embedding 
spaces might appear as manifolds with considerable extension 
but are characterized by local homogeneity and connectivity. 
Path based clustering is applicable, even in situations when the 
parametric form of such a transformation is unknown. Two 
central applications of perceptual organization, edge grouping 
and texture segmentation, have been solved by path based 
clustering. 

Dudoit and Fridlyand [3] proposed two bagged clustering 
procedures to improve and assess the accuracy of a 
partitioning clustering method. The bagging is used to generate 
and aggregate multiple clusterings and to assess the confidence 
of cluster assignments for individual observations. As in 
prediction, the motivation behind the application of bagging to 
cluster analysis is to reduce variability in the partitioning 
results via averaging. The proposed bagged clustering 
procedures are illustrated using the Partitioning Around 
Medoids or PAM method of Kaufman and Rousseeuw (1990). 
As implemented in the R and S-Plus libraries cluster, the two 
main arguments of the PAM function are: a dissimilarity 
matrix and the number of clusters K. The PAM procedure is 
based on the search for K representative objects, or medoids, 
such that the sum of the dissimilarities of the observations to 
their closest medoid is minimized. They suspected that, as in 
prediction, the increase in accuracy observed with PAM is due 
to a decrease in variability achieved by aggregating multiple 
clusterings. Application of bagging to cluster analysis can 
substantially improve clustering accuracy and yields 
information on the accuracy of cluster assignments for 
individual observations. In addition, bagged clustering 
procedures are more robust to the variable selection scheme, 
i.e. their accuracy is less sensitive to the number and type of 
variables used in the clustering. 

C. Mutual Information 
The objective function for a clustering ensemble can be 

formulated as the mutual information (MI) between the 
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empirical probability distribution of labels in the consensus 
partition and the labels in the ensemble. Under the assumption 
of independence of partitions, MI can be written as sum of 
pair-wise MIs between target and given partitions. Using the 
classical definition of MI, one can easily compute its value for 
a candidate partition solution and the ensemble. However, 
such a definition does not offer a search algorithm for 
maximizing the consensus. An elegant solution can be 
obtained from a generalized definition of MI. Quadratic 
Mutual Information (QMI) or feature based approach can be 
effectively maximized by the K-means algorithm in the space 
of specially transformed cluster labels of given ensemble. It 
treats the output of each clustering algorithm as a categorical 
feature. The collection of L features can be regarded as an 
“intermediate feature space” and another clustering algorithm 
can be run on it. Computational complexity of the algorithm is 
O(kNH), but it may require a few restarts in order to avoid 
convergence to low quality local minima [2]. 

Topchy et al. [19] have developed a different consensus 
function based on information theoretic principles, namely 
using generalized mutual information (MI). It was shown that 
the underlying objective function is equivalent to the total 
intra-cluster variance of the partition in the specially 
transformed space of labels. Therefore, the K-means algorithm 
in such a space can quickly find corresponding consensus 
solutions. They proposed two different weak clustering 
algorithms as the components of the combination: 1) 
Clustering of random 1-dimensional projections of 
multidimensional data. This can be generalized to clustering in 
any random subspace of the original data space. 2) Clustering 
by splitting the data using a number of random hyperplanes. 
For example, if only one hyperplane is used then data is split 
into two groups. Computational complexity of this algorithm is 
low, O(kNH), but it may require a few restarts in order to 
avoid convergence to low quality local minima. 

Luo et al. [20] proposed a consensus scheme via the genetic 
algorithm based on information theory. A combined clustering 
is found by minimizing an information theoretical criterion 
function using genetic algorithm. The searching capability of 
genetic algorithms has been used in this article for the purpose 
of appropriately deriving a consensus clustering from a 
clustering ensemble. The clustering metric that has been 
adopted is the sum of the entropy based dissimilarity of the 
consensus clustering from the component clusterings in the 
ensemble. The optimal correspondence can be obtained using 
the Hungarian method for minimal weight bipartite matching 
problem with O (k3) complexity for k clusters.  

Azimi et al. [21], proposed a new clustering ensemble 
method, which generates a new feature space from initial 
clustering outputs. Multiple runs of an initial clustering 
algorithm like k-means generate a new feature space, which is 
significantly better than pure or normalized feature space. 
Therefore, running a simple clustering algorithm on generated 
feature space can obtain the final partition significantly better 
than pure data. In this method is used a modification of k-
means for initial clustering runs named as “Intelligent k-
means”, which is especially defined for clustering ensembles. 
Fast convergence and appropriate behavior are the most 

interesting points of the proposed method. The proposed 
method uses k-means for clustering data. The complexity of k-
means is O(kNId ) where k is the number of clusters and N is 
the number of samples and I is the number of iterations of k-
means to converge in each execution and d is the number of 
features (dimensions). Therefore, the complexity of the 
proposed method is O(k!+kNIdd′) , where, d′ is the number of 
partitions, in the other words, the number of generated 
features. k! is the complexity time to generate spanning tree. 
Since k is a small number, k! can be neglected. Therefore, the 
complexity of the proposed method is very low. The proposed 
method has unsuitable accuracy and its implementation is 
difficult. 

D. Co-association based functions 
It calls also pair wise approach. The consensus function 

operates on the co-association matrix. Numerous hierarchical 
agglomerative algorithms (criteria) can be applied to the co-
association matrix to obtain the final partition, including 
Single Link (SL), Average Link (AL), Complete Link (CL) 
and Voting k-means [4], [5]. Note that the computational 
complexity of co-association based consensus algorithms is 
very high, O(kN2d2) [18]. 

The co-association matrix values are used in fitness 
function. Therefore we explain the co-association function 
specially as in (3). Let D be a dataset of N data points in d-
dimensional space. The input data can be represented as an N * 
d pattern matrix or N * N dissimilarity matrix, potentially in a 
nonmetric space. Suppose that X = {x1, ... , xB} is a set of 
bootstrap samples or sub samples of input dataset D. A chosen 
clustering algorithm is run on each of the samples in X that 
results in B partitions P = {p1,...,pB}. Each component partition 
in P is a set of clusters Pi={C i

1, C i
2,…,C i

k(i)}, Xi = C i
1 U C i

2  
…U C i

k(i) and k(i) is the number of clusters in the i-th 
partition. 

 

))(),((1),(
1

ypxpByxassociateCo i

B

i
i∑

=

=− ϕ  (3) 

 
Where φ(a,b) = 1, if a = b and φ(a,b) = 0, if a ≠ b. 

Similarity between a pair of objects simply counts the 
number of clusters shared by these objects in the partitions 
{p1,..., pB} [2], [18]. 

There are three main concerns with this intuitively appealing 
approach. First, it has a quadratic complexity in the number of 
patterns O(N2). Second, there are no established guidelines 
concerning which clustering algorithm should be applied, e.g. 
single linkage or complete linkage. The shapes of the clusters 
embedded in the space of clustering labels may or may not 
reflect cluster shapes in the original space. Third, an ensemble 
with a small number of clusterings may not provide a reliable 
estimate of the co-association values [2]. 

Fred [4] proposed to summarize various clustering results in 
a co-association matrix. The rational of the his approach is to 
weight associations between sample pairs by the number of 
times they co-occur in a cluster from the set of data partitions 
produced by independent runs of clustering algorithms, and 
propose this co-occurrence matrix as the support for consistent 
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clusters development using a minimum spanning tree like 
algorithm. The validity of this majority voting scheme is tested 
in the context of k-means based clustering, a new algorithm - 
voting-k-means - being presented. It can simultaneously handle 
the problem of initialization dependency and selection of the 
number of clusters. The proposed technique does not entail 
any specificity towards a particular clustering strategy. 

Further work by Fred and Jain [5] also used co-association 
values, but instead of a fixed threshold, they applied a 
hierarchical (single link) clustering to the co-association 
matrix. They explored the idea of evidence accumulation for 
combining the result of multiple clusterings. The proposed 
strategy followed a split-and-merge approach. The final 
clusters were obtained by applying a MST based clustering 
algorithm. Their proposed method is able to identify arbitrary 
shaped clusters in multidimensional data. Their method 
performed poorly, however, in situations of touching clusters. 
One drawback of the co-association consensus function is its 
quadratic computational complexity in the number of objects 
O(N2). 

Kellam et al. [13] have looked at several different methods 
for clustering from both the statistical and Artificial 
Intelligence communities and their application to viral gene 
expression profiles. They have compared the results of each 
method, firstly by using a comparison metric known as 
Weighted-Kappa which scores the differences between 
resulting clusters, and secondly in the context of finding 
known biological relationships amongst genes. They have 
found that whilst each method performs relatively well - the 
number of features found being very high - certain methods 
appear more geared towards certain features than others. They 
have also introduced an algorithm for generating robust 
clusters where all of the methods agree. Due to this algorithm 
taking the consensus of all methods, a proportion of genes will 
not be allocated to a cluster. However, it does allow the 
remaining allocated genes to be clustered with greater 
confidence than relying on the results of any one method. An 
n×n agreement matrix was generated with each cell containing 
the number of agreements amongst methods for clustering 
together the two variables represented by the indexing row and 
column indices. This matrix was then used to cluster variables 
based upon their cluster agreement (as found in the matrix). 
Their resulting algorithm, Clusterfusion, works by taking in 
the agreement matrix in order to generate a list, which contains 
all the pairs where the appropriate cell in the agreement matrix 
contains a value equal to the number of methods being 
combined. The proposed method’s implementation is difficult 
and its computing complexity is O(N2).  

E. Finite Mixture Model 
The main assumption is that the labels are modeled as 

random variables drawn from a probability distribution 
described as a mixture of multinomial component densities. 
The objective of consensus clustering is formulated as a 
maximum likelihood estimation problem as in (4). To find the 
best fitting mixture density for a given data Y we must 
maximize the likelihood function with respect to the unknown 
parameters Θ as in (5) : 
 

)()()(
1 1 1

mim

N

i

N

i

M

m
mi ypaLogypLogYLogL Θ=Θ=Θ ∏ ∑ ∑

= = =

  (4) 

 
)(arg* YMaxLogL Θ=Θ Θ

               (5) 
   

Expectation Maximization Algorithm (EM) is used to solve 
this maximum likelihood problem. 

Analoui and Sadighian [27] have proposed a probabilistic 
model of consensus using a finite mixture of multinomial 
distributions in a space of clustering, a combined partition is 
found as a solution to the corresponding maximum likelihood 
problem using the genetic algorithm. The excellent scalability 
of this algorithm and comprehensible underlying model are 
particularly important for clustering of large datasets. They 
calculated a correlation matrix that show correlation between 
samples and found the best samples that can be in the center of 
clusters. Next, they employed a genetic algorithm to produce 
the most stable partitions from an evolving ensemble 
(population) of clustering algorithms along with a special 
objective function. The objective function evaluates multiple 
partitions according to changes caused by data perturbations 
and prefers those clustering that are least susceptible to those 
perturbations. A critical problem in this clustering manner is 
how to adjust initial parameters that they approach this 
problem by create correlation's matrix and genetic algorithm. 
The complexity of the proposed algorithm is O(N2 ). Their 
proposed model has unsuitable accuracy. 
Topchy et al. [2] offered a probabilistic model of consensus 
using a finite mixture of multinomial distributions in the space 
of cluster labels. A combined partition is found as a solution to 
the corresponding maximum likelihood problem using the 
Expectation Maximization Algorithm (EM). The likelihood 
function of an ensemble is optimized with respect to the 
parameters of a finite mixture distribution. Each component in 
this distribution corresponds to a cluster in the target 
consensus partition. Their approach completely avoids solving 
the label correspondence problem. The excellent scalability of 
this algorithm and comprehensible underlying model are 
particularly important for clustering of large datasets. EM 
consensus function need to estimate at least kHN parameters. 
Therefore, accuracy degradation will inevitably occur with 
increasing number of partitions when sample size is fixed [2]. 
Their approach able to handle missing data, in this case 
missing cluster labels (or labels determined to be unknown) for 
certain patterns in the ensemble (for example, when bootstrap 
method is used to generate the ensemble). Their approach can 
operate with arbitrary partitions with varying numbers of 
clusters, not necessarily equal to the target number of clusters 
in the consensus partition. The optimal correspondence can be 
obtained using the Hungarian method for minimal weight 
bipartite matching problem with O(k3) complexity for k 
clusters. 

Topchy et al. [1] have introduced a unified representation 
for multiple clusterings and formulate the corresponding 
categorical clustering problem. They proposed a probabilistic 
model of consensus using a finite mixture of multinomial 
distributions in a space of clusterings. A combined partition is 
found as a solution to the corresponding maximum likelihood 
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problem using the EM algorithm. They also have defined a 
new consensus function that is related to the classical 
intraclass variance criterion using the generalized mutual 
information definition (QMI) and reduced to the k-means 
clustering in the space of specially transformed cluster labels. 
Finally, they have demonstrated the efficacy of combining 
partitions generated by weak clustering algorithms that use 
data projections and random data splits. A simple explanatory 
model is offered for the behavior of combinations of such 
weak clustering components. 

VI. COMPARSION OF TECHNIQUES 
In table I, we summarize some previous research works 

related to different types of consensus functions. Next, we 
compare them based on robustness, accuracy, simplicity and 
computing complexity.   

 
TABLE I 

SUMMARIZED CLUSTERING ENSEMBLES TECHNIQUES 
 

Authors                    Advantages                     Disadvantages          Computing 
                                                                                                         Complexity 

 
Karypis 

& Kumar 
[26] 

 
1998 

• Coarsen the graph by 
collapsing vertices and 
edge 
• Partition the coarsened 
graph Refine the 
partitions 

 
 

• Comparing to 
HBGF, low 
robust clustering 
performance of 
METIS 
• Low 
computational 
cost 

O(kNH) 

Ng et al. 
[25] 

 
2002 

• A popular multiway 
spectral graph  
partitioning algorithm 
(SPEC) that seek to 
optimize the normalized 
cut criterion 

• Comparing to 
HBGF, low 
robust clustering 
performance  of 
SPEC 
• High 
computational 
cost 

O(N3) 

Strehl & 
Gosh [8], 

[22] 
 

2002 

• Knowledge reuse; to 
influence a new cluster 
based on different set of 
features 
• Control size of 
partitions 
• Low computational 
cost of HGPA 
• Improving the quality 
and robustness of the 
solution 
• Allowing one to add a 
stage that selects the best 
consensus function 
without any supervisory 
information by objective 
function 

• High 
computational 
cost of CSPA, 
MCLA 
• The proposed 
greedy approach 
is slowest and 
often is 
intractable for 
large n 

O(kN2H) 
O(kNH) 

O(k2NH2) 

Fern & 
Brodley 

[24] 
 

2004 

• Low computational 
cost 
• High robust clustering 
performance against 
instance based and cluster 
based approaches 
• Comparing to IBGF 
and CBGF, the reduction 
of HBGF is lossless 

• Retaining all 
of the 
information of an 
ensemble 
• Difficult 
implementation 

O(kN) 

Fischer 
& 

Buhman
n [6], 
[16] 

 
2003 

• Extracting arbitrary 
shaped structures from 
the data 
• Automatic outlier 
detection 
• Avoiding the 
dependency on small 
fluctuation in the data 
• High stability 
 

• To need a very 
large number of 
clusterings to 
obtain a reliable 
result 
• High 
computational 
cost 

O(k3) 

Dudoit & 
Fridlyan

d [3] 
 

2003 

• Reduce variability in 
the partitioning results via 
averaging 
• Improving clustering 
accuracy by using 
bagging to cluster 
analysis 
• More robust to the 
variable selection scheme 
by bagged clustering 
procedures 

• The increase 
in accuracy 
observed with 
PAM is due to a 
decrease in 
variability 
achieved by 
aggregating 
multiple 
clusterings 
• High 
computational 
cost 
 

O(k3) 

Topchy 
et al. 
[19] 

 
2003 

• Using two different 
weak clustering 
algorithms: clustering of 
multidimensional data ; 
clustering by splitting the 
data using a number of 
random hyperplanes 
• Low computational 
cost 
 

• Requiring a 
few restart in 
order to avoid 
convergence to 
low quality local 
minima 

O(kNH) 

Luo et 
al. [20] 

 
2006 

• Using  a consensus 
scheme via the genetic 
algorithm 
• Improving accuracy 
and robustness 
 

• High 
computational 
cost 

O(k3) 

Azimi et 
al. [21] 

 
2007 

• Generating a new 
feature space from initial 
clustering outputs better 
than pure or normalized 
feature space 
• Using a modification 
of k-means for initial 
clustering named 
Intelligent k-means 
• Fast convergence 
• Low computational     
cost 
 

• Difficult 
implementation 
• Unsuitable 
accuracy 

O(k!+kNIdd’) 

Fred [4] 
 

2001 

• Using a minimum 
spanning tree for 
consistent clusters 
development 
• Handling the problem 
of initialization 
dependency and selection 
of the number of clusters 
by voting-k-means 
algorithm 
• Not entail any 
specificity toward a 
particular clustering 
strategy by the proposed 
technique 
 

• Not 
corresponding to 
known number of 
classes with 
number of 
concluded 
clusters 
• High 
computational 
cost 
• Fixed 
threshold 

O(N2) 
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Kellam 
et al. 
[13] 

 
2001 

• Using a comparison 
metric known as 
weighted-kappa and 
finding known biological 
relationships amongst 
gene 
• Generating robust 
clusters 

 
 

• Difficult 
implementation 
• High 
computational 
cost 

O(N2) 

Fred & 
Gain [5] 

 
2002 

• Applying a Minimum 
spanning tree (MST) 
based clustering 
algorithm on co-
association matrix based 
on a voting mechanism 
• The ability of the 
proposed method to 
identify arbitrary shaped 
clusters in 
multidimensional data 

 
 

• High 
computational 
cost 
• Poorly 
performing of 
method in 
situations of 
touching clusters 

O(N2) 

Topchy 
et al. 
[23] 

 
2004 

• Using a finite mixture 
of multinomial 
distributions in the space 
of cluster labels 
• The excellent 
scalability of algorithm 
• Comprehensible 
underlying model 
• Completely avoiding 
from to solve the label 
correspondence problem 
• The ability to handle 
missing data in this case 
missing cluster labels for 
certain patterns in the 
ensembles 
• Operating with 
arbitrary partitions with 
varying numbers of 
clusters 

 
 

• High 
computational 
cost for minimal 
weight bipartite 
matching 
problem 

O(k3) 
O(kNH) 

Analoui 
& 

Sadeghia
n [27] 

 
2006 

• Using the genetic 
algorithm for producing 
the most stable partitions 
• Using a correlation 
matrix for finding the best 
samples 
• The excellent 
scalability of the 
proposed genetic 
algorithm 
• Comprehensible model 
for clustering of large 
datasets 
• Selecting of clusters 
with at least perturbation 
from multiple partitions 
by objective function 

 
 

• High 
computational 
cost 
• Unsuitable 
accuracy 

O(N2) 

 
Table I presents the advantages and disadvantages of the 

previous related research works in clustering ensembles 
techniques. We investigate their abilities and compare them 
based on robustness, simplicity, comprehensibility and 
scalability.  

Many proposed algorithms in the previous research works 
are which based on Hypergraph Partitioning technique contain 
high robustness, however several algorithms such as METIS, 
SPEC are compared to HBGF have lower robustness. In the 
proposed algorithms, researchers confront some difficulties in 
implementing are their algorithms due to lacking of simplicity 
in the algorithm. In addition, their proposed approaches often 
require more time to process the algorithm, and their proposed 
approaches are often intractable. In this technique, the 
proposed algorithms contain comparatively low computing 
complexity. Minimum computing complexity can be found in 
the algorithm proposed by Fern & Brodley, O(kN), and 
maximum computing complexity can be found in this 
algorithm proposed by Ng et al., O(N3). 

Many of the proposed algorithms in the previous research 
works are which based on Voting Approach contains high 
robustness and high stability. In this technique, the 
implementation of the proposed algorithms is simpler than 
other techniques. However, the proposed algorithms contain 
high computing complexity, O(k3). 

Many of the proposed algorithms in the previous research 
works are which based on Mutual Information technique 
achieved while comparatively high robustness. Minimum 
computing complexity achieved the proposed algorithm by 
Topchy et al., O(kHN), and maximum computing complexity 
achieved the proposed algorithm by Luo et al., O(k3). 

Many of the proposed algorithms in the previous research 
works are which based on Co-association based functions 
technique produced high robust clusters and generally they 
achieved comparatively high robustness. Implementation of 
many proposed algorithms in this technique is difficult and 
complicated, in the other hand; the simplicity in the proposed 
algorithms is not obvious. Nevertheless some of these 
algorithms emerged fast convergence. Many of the proposed 
algorithms have high computing complexity, O(N2). 

Many of the proposed models in the previous research 
works are which based on Finite Mixture Model technique are 
comprehensible models and their proposed algorithms have 
comparatively high scalability. Computing complexity in many 
of the proposed algorithms is high and the maximum 
computing complexity is O(k3).  

In these research works, the experiments were performed on 
the datasets from the UCI benchmark repository, including: 
"Iris", "Wine", "Soybean", "Galaxy", "Thyroid", "Biochem", 
"Pending", "Yahoo", "Glass", "Isolet6" and some the real 
world dataset, including: "08X" and some the artificial 
datasets, including: "3-circle", "Smile", "Half-rings", "2-
Spirals", "2D2k", "8D5k", "EOS", "HRCT", "MODIS" [2], 
[4], [5], [8], [18], [19], [20], [21], [24], [27]. 

In table II, we show the experiments performed by pervious 
algorithms and compare their mean error rate (%) of clustering 
accuracy. In table 2, the mean error rate of some different 
consensus functions are reported: Co-association function and 
Average Link (CAL), Co-association function and K-means 
(CK), Hypergraph Partitioning Algorithm (HGPA), Cluster 
based Similarity Partitioning Algorithm (CSPA), Meta 
Clustering Algorithm (MCLA), Expectation Maximization 
Algorithm (EM) and Mutual Information (MI). 
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TABLE II 
COMPARSION OF ACCURACY IN DIFFERENT CLUSTERING ENSEMBLES 

TECHNIQUES 
        Authors           Dataset         Error rate of Clustering          Description 
 

Strehl & 
Gosh [8], 

[22] 
 

2002 

2D2k 
8D5k 

Pending 
Yahoo 

0.68864 
0.98913 
0.63918 
0.41008 

Feature 
Distributed 
Clustering (FDC) 
results 

Fern & 
Brodley 

[24] 
 

2004 

EOS 
 
 

Glass 
 
 

HRCT 
 
 

ISOLAT6 
 

 

0.263 , 0.264 
0.263 , 0.247 
0.321, 0.342 
0.398 , 0.360 
0.396 , 0.378 
0.401 , 0.393 
0.312 , 0.295 
0.279 , 0.266 
0.314 , 0.289 
0.805 , 0.792 
0.834 , 0.781 
0.830 , 0.793 

Random Sup 
sample and 
Random 
Projection on : 
IBGF,  
CBGF,  
HBGF. 

Fischer & 
Buhmann 
[6], [16] 

 
2003 

BSDS100 Mean error for PBC 
with agglomerative 

optimization = 
16.2% LCE; 
22.4%GCE 

The Bootstrap improve 
the errors to = 
12.4% LCE; 
17.0%GCE 

 
 

Path Based 
clustering (PBC) 
Method 
Two error measure 
for human 
segmentation: 
LCE & GCE 
(Local 
Consistency Error 
& General 
Consistency Error) 

Dudoit & 
Fridlyand 

[3] 
 

2003 

Leukemia 
Melnoma 

Improvements in 
accuracy of at least 15% 
for a majority of models 

and up to 70% for 
BagClus1 applied to 

model 2 

To quantify the 
improvement of 
bagging over a 
single application 
of PAM 

Topchy et 
al. [19] 

 
2003 

Iris 
 
 

2-Spirals 
 
 

Half-rings 

5.25% ; by Hypergraph 
methods 

 
0% ; by Single Link 

Algorithm 
 

5.25% ; by Average 
Link Algorithm 

Misassignment 
rate (error) of the 
consensus 
partition as a 
measure of 
performance of 
clustering 
combination 

Luo et al. 
[20] 

 
2006 

Wine 
 

Iris 
 

3-Circles 
 

Smile 

0.3101, 0.3033, 
0.3440, 0.3045 
0.3533, 0.2133, 
0.2733, 0.2533 
0.3405, 0.2753, 
0.2719, 0.2853 
0.3872, 0.1730, 
0.3421, 0.2444 

Using different 
generator 
functions 
including: 
Gini, Entropy, 
Peak, Ge, 
separately 

Azimi et 
al. [21] 

 
2007 

Thyroid 
 

Iris 
 

Wine 
 

Soybean 

15.99% , 48.89% , 
39,03% 

6.89% , 4.63% , 
6.09% 

10.62% , 10.35% , 
9.01% 

5.97% , 13.78% , 
15.51% 

Using function for 
labeling: 
f3 (w(i,j)) =      
w(i,j) / min w(i,j) 
 

Fred [4] 
 

2001 

Iris 0.67 : 2 Clusters 
0.75 : 3 Clusters 

Consistency 
indexes ranging 

Fred & 
Jain [5] 

 
2002 

Half-rings 
Spiral 

Random 
Iris 

No of Clusters = 2,2,2 
No of Clusters = 1,1 

No of Clusters = 1,1,3 
No of Clusters = 2,3,9 

Threshold = 
0.4,0.5,0.6,0.7 

Topchy et 
al. [23] 

 
2004 

 
 
 
 
 

 
Topchy et 

al. [23] 
 

2004 

Galaxy 
 

Biochem 
 

Half-rings 
 

2-Spirals 
 

Iris 
 

Galaxy 
 

Biochem 
 

Half-rings 
 

2-Spirals 
 

Iris 

21.1% 
by  k-means algorithm 

47.4% 
by  k-means algorithm 

25.6% 
by  k-means algorithm 

43.5% 
by  k-means algorithm 

15.1% 
by  k-means algorithm 

14.43% 
Average of error rates 

42.63% 
Average of error rates 

27.73% 
Average of error rates 

43.2% 
Average of error rates 

10.92% 
Average of error rates 

Mixture Model 
 
Mixture Model 
 
Mixture Model 
 
Mixture Model 
 
Mixture Model 
 
For EM Algorithm 
 
For EM Algorithm 
 
For EM Algorithm 
 
For EM Algorithm 
 
For EM Algorithm 

Topchy et 
al. [1] 

 
2005 

Biochem 
 
 

Galaxy 
 
 

2-Spirals 
 
 
 

Half-rings 
 
 
 

Iris 

42.63% , 44.59% , 
42.86% 

 
14.43% , 15.70% ,  

50% , 14.65% 
 

43.20% , 43.35% , 
43.11% , 46.15% , 

42.20% 
 

22.73% , 34.9% , 
26.52% , 40.89% , 

24.54% 
 

10.92% , 12.99% , 
9.38% , 41.36% , 

11.06% 

EM , QMI , 
MCLA 
 
EM , QMI ,  
HGPA , MCLA 
 
EM , QMI , 
CSPA, HGPA , 
MCLA 
 
EM , QMI ,  
CSPA , HGPA , 
MCLA 
 
EM , QMI ,  
CSPA , HGPA , 
MCLA 

Analoui & 
Sadighian 

[27] 
 

2006 

Any 
Dataset 

Initial Value Fitness = 
0.021556 

 
Highest Value Fitness = 

0.04096 

Using Genetic 
Algorithm 

 
As table II shows, important research works in clustering 

ensembles techniques have empirical results on some different 
real world and artificial datasets. Researchers encounter 
accuracy problem. It’s clear that many of the proposed 
algorithms achieved highest accuracy on "Iris" and "Wine" 
datasets and also, many of the proposed algorithms achieved 
lowest accuracy on "Biochem" and "2-Spirals" by Topchy et 
al. [1], [2], [19]. Generally, most of the clustering ensembles 
techniques need to improve their accuracy. 

VII. CONCLUSION AND FUTURE WORKS 
Clustering ensembles have emerged as a prominent method 

for improving robustness, stability and accuracy of 
unsupervised classification solutions. So far, many 
contributions have been done to find consensus clustering. 
Firstly, we introduced clustering ensembles and research area 
and showed different representation of multiple partitions. 
There are several challenges for clustering ensemble that one 
of the major problems in clustering ensembles is the consensus 
function. We summarized clustering combination approaches 
and focused on consensus function method including: 
Hypergraph partitioning, Voting approach, Mutual 
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information, Co-association based functions and Finite mixture 
model. We investigated some of the most important previous 
research works in each approach and compared their 
advantages, disadvantages and computational complexity. The 
comparison results show that robustness in all of the 
techniques is high. There are difficulties in implementing the 
algorithms especially in Hypergraph partitioning and Co-
association based functions techniques, thus, simplicity in their 
algorithms is necessary. Voting approach has the simplest 
implementation of algorithms between all of these techniques 
and ideas in this technique can contribute to researchers in 
implementing their algorithms. High scalability can be found 
in Finite mixture model technique that more research works 
can be done. It is clear researchers can do more to investigate 
scalability in other techniques. One of the most important 
problems in Hypergraph partitioning technique is to require 
more time to process the algorithm and also their algorithms 
are intractable, so it can be a necessary research in future. In 
Co-association based functions technique, there is fast 
convergence that it can be useful for researcher to achieve high 
speed, but it causes the algorithms can not achieve results with 
high accuracy. As an alternative, researchers can utilize 
genetic algorithms to achieve better results. Researchers can 
control generation, crossover and mutation operators in genetic 
algorithms and this causes their algorithms can not achieve fast 
convergence and so they achieve better results. Hypergraph 
partitioning and mutual information have lowest computational 
complexity between all of the clustering ensembles techniques 
and other techniques need to improve their computational 
complexity. Thus, improving computational complexity in 
voting approach, Finite mixture model and Co-association 
based functions can be an important investigation in future. 
We compared accuracy on different datasets in previous 
techniques. Some of the most important research works in 
clustering ensembles techniques have empirical results on 
some different real world and artificial datasets and it shows 
researchers encounter accuracy problem. Generally, most of 
the clustering ensembles techniques need to improve their 
accuracy, therefore improving of accuracy can be an important 
research in future. 
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