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Combustion diagnostics play an essential role in energy engineering, transportation, and
aerospace industries, which has great potential in combustion efficiency improvement and
polluting emission control. The three-dimensional (3D) visualization of the combustion field
and the measurement of key physical parameters such as temperature, species
concentration, and velocity during the combustion process are important topics in the
field of combustion diagnostics. Benefiting from the non-contact and non-intrusive
advantages of the optical detection method as well as the advantages of the 3D full-
field measurement of the measured field by computational tomography, flame
chemiluminescence tomography (FCT) has the ability to realize non-intrusive and
instantaneous 3D quantitative measurement and 3D full-field visualization of key
physical parameters in the combustion process, which has crucial research
significance in combustion diagnostics. In this study, we review the progress of FCT
technique. First, we provide an extensive review of practical applications of FCT in state-of-
the-art combustion diagnostics and research. Then, the basic concepts and mathematical
theory of FCT are elaborated. Finally, we introduce the conventional reconstruction
algorithm and proceed to more popular artificial intelligence-based algorithms.
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INTRODUCTION

As a kind of complex reaction process, combustion phenomenon combines chemical, physical,
and mechanical knowledge, which is accompanied by the formation of a large number of
intermediate products such as OH*, CH*, and C2* radicals. It has been reported that CH*, C2*,
and OH* radicals can be considered the critical parameters in the combustion process of
hydrocarbon fuels as well as be intimately related to the combustion status (Gaydon and
Wolfhard, 1953; Nori and Seitzman, 2008; Alviso et al., 2017; Navakas et al., 2018). As a
consequence, with the aid of the detection and measurement of OH*, CH*, and C2* radicals in
the combustion process, the diagnosis of combustion characteristics such as combustion
components, combustion structure, temperature, velocity, pollution emissions, and the heat
release rate of the combustion field can be realized, which will further facilitate the control of
the combustion process and gain an in-depth understanding of the combustion reaction
mechanism in the industrial fields of aerospace and energy (Kojima et al., 2005; Jeong et al.,
2006; Orain and Hardalupas, 2010; Hossain and Nakamura, 2014; Sun et al., 2015; Ax and
Meier, 2016).
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During the combustion process, the radicals emit spectra of
specific wavelengths from the excited state to the ground state,
which is defined as the flame chemiluminescence spectrum
(Gupta et al., 1999). For instance, the chemiluminescence
spectrum measurement of high-temperature propane flame
has been provided in Gupta et al. (1999). On account of the
flame chemiluminescence spectrum being the inherent optical
property of flame in the combustion process, the measurement
of flame chemiluminescence spectrum becomes the most
straightforward strategy to analyze the combustion
properties (Griffiths and Barnard, 1995; Kathrotia et al.,
2012). Compared to the commonly employed methods in
combustion diagnostics, such as the laser induced
fluorescence (LIF) technique (Daniele et al., 2013;
Wellander et al., 2014; Lee et al., 2015) and the particle
image velocimetry (PIV) technique (Weinkauff et al., 2013;
Liu et al., 2018; Liu and Ma, 2020), flame chemiluminescence
spectrum technology eliminates the demand for an external
detection source and the requirement of spreading tracer
particles in the tested flame. Flame chemiluminescence
spectrum technology focuses on the wavelength of specific
radicals; the intensity of radicals can be accessed directly after
filtering and acquiring via industrial cameras or optical fiber
detectors. Furthermore, in contrast with spatial single-point or
planar detection methods, the chemiluminescence 3D imaging
strategy shows better performance in full-field 3D quantitative
visualization and detection of crucial physical parameters in a
complex combustion phenomenon, not only in modern
aviation, aerospace, and military fields, for instance, the 3D
combustion structure detection of rocket motor exhaust
flames, but also for a wide range of industrial and civil
applications, such as energy engineering of an industrial
power plant boiler chamber and high-temperature cutting
and smelting. As a consequence, benefited by the non-
contact, easy implementation, and simple arrangement of
the experiment setup as well as full-field measurement
ability, chemiluminescence 3D imaging tactics has attracted
a lot of attention in the field of combustion diagnostics.

In a bid to achieve 3D visualization as well as measurement of
the combustion field, computerized tomography (CT) technology
is used and integrated with the flame chemiluminescence
spectrum method, and then the flame chemiluminescence
tomography (FCT) technique is developed (Sebald, 1980;
Melnikova and Pickalov, 1984; Iwama et al., 1989). With the
advantages of the non-contact and non-intrusiveness of the
optical detection method and the ability of 3D full-field
measurement of CT, FCT is capable of achieving both
instantaneous 3D quantitative measurement and full-field
visualization of key physical parameters in the combustion
field, which has essential research significance in combustion
diagnostics. Recently, with the continuous advancement in the
performance of photoelectric detection equipment and the
tremendous improvement of computing power, numerous
scholars have carried out extensive research in the acquisition
and calibration of multidirectional projection data, the
establishment of projection models, and the improvement of
3D reconstruction algorithms of FCT.

In order to provide a comprehensive review of flame
chemiluminescence-based tomographic imaging and
technology, the remainder of this article is organized as
follows: the applications of FCT in practical combustion
diagnostics are given in Section 2. Section 3 focuses on
background information of FCT and begins with concepts of
the projection model before presenting an explanation of
projection acquirement as well as multi-view calibration;
Section 4 depicts the mathematical formulation of the
reconstruction algorithm of tomographic inverse problem;
furthermore, Section 5 concludes the review with a summary
and an outlook on the potential developments of FCT in the
future.

APPLICATION OF FCT

FCT technique has been extensively employed in practical
combustion measurement of laboratory and industry to
provide key insights into flame physics. This section surveys
four main aspects of application of FCT, including combustion
status, geometric measurement, temperature measurement,
and propagation speed measurement.

Combustion Status
The chemiluminescence intensity of excited OH*, CH*, and
C2* has been reported having maxima of the flame spectra at
309, 431.5, and 516.5 nm, respectively (Gupta et al., 1999).
Many scholars focus on the measurement of OH*, CH*, and
C2* concentration and pay extensive attention to figure out
the relationship between the measured chemiluminescence
and flame combustion status with various experimental
conditions, such as the equivalence ratio and fuel type in
practical systems.

The relationship between the intensity ratios (C2*/CH*, C2*/
OH*, and CH*/OH*) of methane/air partially premixed flame
with different equivalence ratios were investigated and compared
with the results of a photomultiplier tube (PMT) in the study by
Y. Jeong. Abel inversion was applied here to reconstruct
cylindrically symmetric flame to yield 2D “slices” (Jeong et al.,
2006). Likewise, Denisova et al. (2013) attempted to reconstruct
the spatial distributions of CH*, OH*, and C2*
chemiluminescence of axisymmetric as well as non-
axisymmetric flames to further monitor the fuel–air ratio and
completeness of combustion. Similarly, Liu et al. (2020) employed
intensified-CCD and the Abel inversion method to retrieve 2D
radial distribution of chemiluminescence characteristics of OH*
and CH* in a low swirl burner with the equivalence ratio varying
from 0.8 to 1.2. Analogous work has been mentioned in D.
Sellan’s research. The OH*/CH* signals of a swirl-stabilized
axisymmetric flame with changing equivalence ratios were
measured and reconstructed by Abel inversion (Sellan and
Balusamy, 2021).

In contrast to aforementioned 2D reconstruction, taking
the transmissivity of a customized double-channel band-pass
filter and a color camera into account, Y. Jin et al. proposed a
quantitative multispectral separation technique to realize both
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CH* and C2* intensities. As seen in Figure 1, the dynamic 3D
chemiluminescence emission structure of CH* and C2* were
reconstructed simultaneously. Afterward, quantitative analysis
of CH* and C2* components was conducted in details (Jin
et al., 2017).

Temperature Measurement
The measurement of flame temperature plays an essential role
in combustion diagnostics and is necessary to access an in-
depth understanding of combustion physics. Several methods
have been utilized for flame temperature measurements, such
as LIF, moiré deflection, and tunable diode laser absorption
spectroscopy (TDLAS) (Kaminski and Kaminski, 2014).
However, limited by the complex arrangement of the
aforementioned technique, they are somehow unsuitable for
industrial requirement. With the increasing employment of
the FCT method, it also gives a potential tactic for recovering
3D flame temperature distribution.

On the basis of two-color pyrometric techniques and optical
CT theory, 3D temperature and emission distributions of
propane flame were reconstructed simultaneously by M. M.
Hossain. In their study, two RGB CCD cameras coupled with
eight OFB were used to acquire flame images. Red and green
components were extracted to further achieve temperature and
emission measurements in view of the two-color method
(Hossain et al., 2013). Similar methods were reported in
Brisley et al. (2005). Also, double-wave spectral tomography
was adopted to retrieve distribution features of the 3D
temperature field. Different from the aforementioned studies,
Gao et al. (2010) established an orthographic CCD array
coupled with the narrowband filters (central wavelength: 696.5
and 763.5 nm) to acquire images via four views. Using 4D
temperature measurements a weakly turbulent diffusion flame
was studied in the same way in Yu et al. (2021). Recently, Y. Liu
et al. proposed a light-field sectioning pyrometry (LFSP) method
which combined light-field imaging and color ratio
pyrometry (CRP) to achieve in situ temperature measurement
of ethylene flame. Moreover, the spatial resolution of
reconstruction was improved in lateral and depth
directions based on their cage-typed light-field camera (Liu
et al., 2021a; Shi et al., 2022).

Geometric Measurement
Flame geometrical characteristics give instantaneous information
on the quality of the combustion process. The monitoring and
measurement of flame geometric are essential for deepening the
understanding and optimizing the combustion conditions.
Benefiting from the rise of 3D tomography technology, FCT
technique has been a promising tactic for providing 3D whole-
field geometric measurement of the flame, which is generally
impossible by using traditional 2D measurement methods.

Several parameters, such as orientation, volume, length,
surface area, and circularity, were defined to characterize the
flame geometry by H. C. Bheemul. Combined with the mesh-
generating technique and the FCT method, a ‘fishnet’ was
generated to cover the flame surface. The aforementioned
geometric parameters were measured and analyzed based on
3D reconstruction results of the diffusion flame (Bheemul
et al., 2002). By means of FCT, T. D. Upton investigated
structural details of a turbulent, premixed propane/air flame.
The 3D flame front and 2D contours were recovered with high
resolution (Upton et al., 2011). It is worth pointing out that 3D
flame topography and curvature were inspected in detail by L.
Ma. The projections of premixed turbulent Bunsen flame were
captured from six perspectives at a rate of 5 kHz. Probability
density function (PDF) of flame topography was derived from a
series of 3D reconstruction results, and the calculation of flame
curvature was achieved in Ma et al. (2016). Recently, R. Dong
focused on the relationship between flame edge deformations and
oscillations. The 3D instantaneous flame edge structures with
fine-scale corrugations were retrieved using the FCT tactic, which
enabled the observation of small vortices’ evolution (Dong et al.,
2021a). An analogous strategy was employed in 4D fire events
imaging for temporal evolution of flame (Windle et al., 2021).

Flame Propagation Speed Measurement
Flame propagation speed plays a crucial role in combustion
diagnostics owing to the straightforward reflection of flame
stabilization. Generally, flame propagation speed refers to the
moving speed of the flame surface in the combustion process,
which is also called the absolute flame velocity in some cases. In
contrast to the commonly used tactic for velocity measurement,
such as PIV and PLIF methods, the FCT technique shows

FIGURE 1 | Multispectral separation algorithm and 3D radical distribution of CH* and C2*. Adapted with permission from Jin et al. (2017) © The Optical Society.
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privileged advantages in the measurement of flame propagation
speed, owing to the successful application in geometric
measurement.

The flame propagation and local burning velocity of a
propane/air turbulent flame were investigated in Ishino et al.
(2009). A set of flame images were acquired from 40 views with a
short time interval to reveal the 3D distributions of the turbulent
flame and to further calculate the local burning velocity. On the
basis of geometric measurement of two non-axisymmetric
premixed flames, Wiseman et al. (2017) depicted the surface
speed measurement algorithm and especially focused on the
influence of the number of perspective. Considering the
frequently used surface fitting and normal vectors methods
being not suitable for turbulent flame of laboratory, Y. Chi
proposed two novel methods to deal with this problem.
Numerical and experimental validations on the turbulent jet
flame were conducted. Meanwhile, the relationship between
the flame curvature and the propagation speed was analyzed
(Chi et al., 2021). Recently, Liu et al. (2021b) concentrated on the
influence of the external direct current electric field on the
propagation speed of swirl flames. With the help of FCT
strategy, the velocity vectors and magnitude contours at
various horizontal cross sections were accessed.

BACKGROUND INFORMATION

In this section, some background information about FCT are
presented, including a brief demonstration of the acquirement of
projections, an introduction to the multi-camera calibration
method, and several kinds of projection models often
employed for FCT research.

Acquirement of Projections
In FCT practical measurement, the acquirement of projections of
the test field is the fundamental for further tomography
reconstruction. According to the different combustion state of
the test field, the achievement of projections acquisition in
practical experiment can be divided into two categories: single
directional arrangement and multidirectional arrangement.

A single directional arrangement can be utilized to reveal an
axisymmetric flame. Based on the assumption of rotational
symmetry of the laboratory-scale flame in their study, Brisley
et al. (2004) developed a single monochromatic CCD camera
instrumentation system to complete the 3D temperature
measurement of a gaseous flame. Similarly, in order to
investigate the partial premixing effects of a laminar CH4–air
flames with different equivalence ratios, an intensified charge-
coupled device (ICCD) system was presented by Jeong et al.
(2006) to detect OH*, CH*, and C2* radicals and tomographic
reconstruction. Furthermore, the single directional acquirement
assembly could be capitalized on stable flame tomographic
measurement, which can be achieved by rotating the test
flame. Hertz and Faris (1988) proposed a simple experiment
setup and sequentially recorded the projections of a steady-state
Bunsen flame by rotating for recovering CH* emission
distribution. Although the single-direction projection

acquisition system has a simple structure as well as low cost, it
is only applicable for test flame with good axial symmetry or
stable-state combustion measurement, which is not suitable for
instantaneous non-axisymmetric and unstable flame
tomographic experiments.

Benefited by the rapid development of optical sensing and
computing power, simultaneous multidirectional projection
acquirement can be realized. H. C. Bheemul and coworkers
built a detection system with three monochromatic CCD
cameras to visualize and quantitatively demonstrate the
gaseous flames. In their study, three CCD enclosed the burner
with equidistance and an equal angle and obtained the 2D
projections of the flame simultaneously from three different
views (Bheemul et al., 2002). Moreover, a 10 direction Kepler
telescopes tomographic system was reported by Anikin et al.
(2010) to measure the OHp-chemiluminescence distribution of
diffusion as well as premixed flames, respectively. L. Ma et al.
reported a five CMOS camera arrangement to record CH*
chemiluminescence simultaneously and further retrieved the
instantaneous structures of McKenna burner and jet flame
volumetrically (Cai et al., 2013a; Li and Ma, 2014; Li and Ma,
2015). A 24-view acquirement setup was proposed by Mohri et al.
(2017) to investigate the strengths of the FCT technique in a real
highly turbulent swirl flame measurement. It is worth noting that
a semicircular shape of cameras equipped with forty small high-
performance lenses was designed by Ishino et al. (2005); Ishino
and Ohiwa (2005); Ishino et al. (2007); and Ishino et al. (2009).
On the basis of their famous forty-lens equipment, further
expansion has been applied to achieve a 158-lens FCT system,
which was awarded the Guinness world record in 2009 (Ishino
et al., 2011).

Additionally, multidirectional capture could be accessed by
the combination of a camera and a mirror. GilabertLuYan et al.
(2007) established a special imaging system incorporating three
identical RGB cameras and an optical transmission unit and
captured flame projections concurrently from six perspectives.
Similarly, combined with a mirror array, Upton et al. (2011)
presented a six camera optical system to collect a turbulent
premixed flame projection data from 12 views for 3D
reconstruction. Floyd and Kempf (2011) demonstrated an
instantaneous computed tomography of the
chemiluminescence (CTC) experimental setup, which
comprises five cameras and mirrors providing two perspectives
for each camera. As demonstrated in Figure 2C, Wei presented a
high-speed FCT system which included three customized
mirror–prism–camera blocks to capture multiple projections of
an unconfined turbulent swirl flame from distinct views (Yu et al.,
2018a; Ruan et al., 2019).

With the expeditious development of optical fiber technology
as well as the advantage of an excellent optical waveguide
property, devices based on the optical fiber and industrial
cameras have also become a way of multidirectional projection
acquisition for FCT. Considering the complex arrangement of
multi-camera system, G. Lu et al. designed an imaging fiber-based
FCT system coupled with two cameras to acquire flame
projections simultaneously from eight fiber bundles around
the burner (Hossain et al., 2011; Moinul Hossain et al., 2012).
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Wan et al. (2009; Wan et al. (2013) established an optical fiber
bundle tomography (OFBT) system consisting of four telecentric
lens and a number of fiber bundle units. Similarly, W. Cai et al.
developed a variety of endoscopy-based multidirectional FCT
projection acquisition systems (Yu et al., 2018b; Liu et al., 2019a;
Liu et al., 2019b; Yu et al., 2019a; Yu et al., 2019b). As indicated in
Figure 3A, two synchronized cameras equipped with customized
fiber bundles were utilized to obtain the Bunsen flame projections
from eight views simultaneously. In order to maximize the
differences between flame projections, eight input fiber
bundles were arranged in nearly an equiangular manner in a
circular shape (Yu et al., 2018b). A nine inputs optical fiber
bundle-based experimental setup was proposed by Q. Lei et al. to
transmit the CH* chemiluminescence signals of the swirl flame in
the gas turbine to one high-speed camera (Dong et al., 2021b;
Rising et al., 2021). Recently, considering the drawbacks of FBT of
low SNR imaging and signal diminishment with various
equivalence ratios, C. Rising et al. proposed a filter-intensified
FBE approach to capture the CH* radical and obtained more
precise reconstruction results (Ishino and Ohiwa, 2005).

Recently, taking into account the complexity of installing and
operating multidirectional FCT system, as shown in Figures
3B,C. Xu et al. designed a cage-typed light-field camera (LFC)

system and conducted a series of studies on 3D reconstruction of
flame temperature distribution under different combustion
operating conditions, including the improvement of spatial
resolution as well as the reduction of sampling redundancy
(Liu et al., 2017a; Zhao et al., 2018; Liu et al., 2021a; Qi et al.,
2021a). Likewise, a light-field camera was used in H. Qi’s study.
Based on their light-field convolution imaging model,
multidimensional radiation information of the flame was
collected by LFC, and 3D temperature distribution was further
retrieved (Qi et al., 2021b; Niu et al., 2021; Shi et al., 2022).

Calibration of Multi-Camera
The measurement of the spatial positions of multiple
acquirement directions and the internal parameters of camera
play a critical role in FCT research. View registration is able to
unify the placement and orientation of each camera into the same
world coordinate system, which have a significant effect on
following reconstruction quality.

The spatial location of multiple cameras was generally roughly
determined by a very simple angle determination device in
previous research. An illuminated alignment tool was utilized
in T. D. Upton’s study to determine the angular viewing
directions, image orientation, and image magnification of a 12

FIGURE 2 | Multidirectional system with mirror–prism–camera blocks. Adapted with permission from Yu et al. (2018a) © The Optical Society.

FIGURE 3 | (A) Schematic of the endoscopic multidirectional FCT system. Adapted with permission from Yu et al. (2018b) © The Optical Society. (B) Experimental
setup of the light-field imaging system. Adapted with permission from Qi et al. (2021a) © The Optical Society.
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view FCT system. The numbers near the bottom of the tool was
separated azimuthally by π/12 radians to indicate the orientation
of different projections (Upton et al., 2011). Similarity, J. Floyd
et al. employed a cylindrical calibration object to locate the view
angles by the scale affixed around the circumference (Moinul
Hossain et al., 2012). Additionally, the rectangular object in target
contributed to locate the object domain center in each
perspective. However, the aforementioned calibration methods
can only roughly determine the spatial location of the camera. For
the sake of improving the spatial resolution and reconstruction
precision of FCT technology, there is an urgent need to develop a
more flexible and accurate multi-camera calibration technology.

In the field of computer vision, a large number of studies have
been reported on the camera calibration of internal and external
parameters (Remondino and Fraser, 2006; Zhang, 2000; Zhang,
1999; Hwang et al., 2013; Huang et al., 2019a). Generally, the
commonly used camera calibration method is mainly based on
the pinhole camera model, and the spatial position as well as
internal parameters of the camera is determined by 2D
checkerboard. First, the world coordinate system is established.
As a consequence, the position of the corner points of
checkerboard in the world coordinate system can be
determined. Next, the images of checkerboard are captured via
camera from various views. On the basis of the image processing
algorithm, the identification and location confirmation of the
corner points in the camera image coordinate system are
completed. Finally, the internal and external parameters of the

camera are derived from the world coordinates and image
coordinates of the corner points. Worth and Dawson (2012)
utilized a custom-made calibration plate to accomplish the view
registration in OH* chemiluminescence measurement of two
interacting turbulent flames. Plate images were recorded at
translation positions corresponding to the measurement
volume. World and image coordinates for each camera were
established and related via a third-order polynomial calibration
function. L. Ma et al. adapted 2D check board and an open source
camera calibration tool of MATLAB to complete the view
registration of the multiple fiber-based endoscopes
tomography system (Worth and Dawson, 2012; Kang et al.,
2014). Likewise, in order to figure out the geometrical
relationship between the reconstruction domain and flame
projections, 2D check board was applied in W. Cai’s research
and placed in the burner’s position to conduct the view
registration process (Liu et al., 2019a; Yu et al., 2017).
Furthermore, J. Wang et al. proposed a 3D pattern with dot
arrays for the camera calibration of the multidirectional FCT
system. As illustrated in Figure 4, three specified points on the
surface were used to indicate the focus level of cameras (Wang
et al., 2015; Wang et al., 2016a). Nonetheless, the accuracy of this
approach is limited by the manufacturing precision of calibration
object. Recently, without the special calibration object, Cai et al.
(2020) developed a convenient multi-view registration method
that capitalized on a synergistic combination of rotating
calibration plate and multi-view stereo vision.

Additionally, a number of combustion phenomena of practical
environment happen in a confined space, which means the light
refractions fostered by the imaging through optical walls will
seriously influence the imaging process, and further result in the
degradation of calibration precision. As a consequence, the
developed view registration method based on an open space
will be not applicable for the confined-space problems. In view
of this question, Falkhytten (2018) presented a polynomial
camera calibration model to address view registration in the
FCT system for annular combustion chambers. However, the
polynomial calibration model does not indicate a clear physical
meaning. Meanwhile, higher-order polynomial functions are
often required to ensure higher calibration accuracy, which
inevitably introduces a large number of fitting parameters and
computational consumption in the computational model. On the
basis of the calibration model that takes into account the
refraction effect of cylindrical glass (Paolillo and Astarita,
2019), H. Liu et al. proposed a refined model combined with
the pinhole camera model with Snell’s laws in a swirl flame
measurement confined within a 20 mm thick glass. In their
strategy, the reverse ray-tracing approach was utilized to
incorporate the effects of light refraction (Liu et al., 2019c). As
indicated in Figure 5, inspired by the study of Liu, a new
algorithm was built by Ling et al. (2020) to figure out the ray
tracing of the reconstructed domain through the optical cylinder
to overcome the time consumption of multiple iterations.

Projection Model of FCT
In order to describe the relationship between the reconstructed
domain and the corresponding image, a large and growing body

FIGURE 4 | 3D view registration object.

Frontiers in Photonics | www.frontiersin.org March 2022 | Volume 3 | Article 8459716

Jin and Situ Survey for Flame Chemiluminescence Tomography

https://www.frontiersin.org/journals/photonics
www.frontiersin.org
https://www.frontiersin.org/journals/photonics#articles


of literature has investigated the establishment of the projection
model of FCT. Generally, the reconstructed domain is discretized
into several voxels with equal size, and different projection
models depict various calculation methods of the weight
factor, which refer to the contribution by each voxel to the
pixels of the image plane.

To date, the parallel projection model is one of methods
adopted in FCT research. Based on the parallel projection
model, the light intensity value of pixels on the camera image
plane can be considered as a linear integration of the light

intensity along the parallel projection direction, as shown in
Figure 6A (Floyd, 2009). In this context, the weight factor
represents the intersection length of the light line and the
pixel. However, considering the discrete measurement of each
perspective has an associated bin width, and strip integrals are a
more appropriate way to calculate the weight factor. Taking into
account the limitation of computing resources, the original
calculation of the weight factor based on strip integration
adopted a binary approximation tactic, which means when the
center of a pixel was within the boundary of the strip, a unity

FIGURE 5 | Reversed ray-tracing model with the optical cylinder. Adapted with permission from Ling et al. (2020) © The Optical Society.

FIGURE 6 | (A) Schematic of projection based on line integrals. (B) Example of the calculation of weight factor by the exact intersection area. (C) Diagram of the
conic projection model. (D) Light propagation of a single voxel to the image plane.
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value was given to the weight factor; otherwise, the weight factor
was set as zero. However, this assumption leads to salt and pepper
noise in the reconstruction result. As indicated in Figure 6B, with
the development of computer technology as well as the increase of
computing power, the calculation of the weight factor becomes
available by dealing with the exact intersection area (2D) or
volume (3D) of the projection beam and pixels (Floyd, 2009). In
1990, Deutsch (1990) of Placer Dome Inc. designed the
FORTRAN program to achieve the calculation process. In the
light of the aforementioned theory and two-color pyrometric
techniques, Hossain et al. (2013) investigated the 3D temperature
and emissivity distribution of the laboratory-scale gas-fired flame.

However, the most widely used projection acquisition devices
in FCT are industrial cameras, and the impact of the perspective
effect of camera lens on the imaging process becomes particularly
important and non-negligible, especially when the depth-of-field
of the camera is small or the reconstruction domain is large. In
this case, the description of the imaging process based on the
parallel projectionmodel is not suitable. An alternative projection
model was presented in light of a weighted double cone, derived
from geometric optics to provide a complimentary modification,
which is able to use non-parallel projections to account for
perspective effects. Figure 6C briefly demonstrates the light
propagation of a point source in the reconstructed domain
through the lens to the image plane (Floyd, 2009). It is
noticeable that the light intensity of point p on the image
plane can be obtained by summing the intensity in two
conical regions before and after point v on the object plane,
instead of the simple approximation of the linear integration of
the light intensity along the projection ray (Floyd, 2009; Anikin
et al., 2010). Walsh et al. (2000) paid special attention to analyze
the influence of a perspective effect of the camera lens on the
reconstruction results of an axisymmetric diffusion flame
measurement. However, Walsh’s study predominantly focused
on considering the reconstruction field with axisymmetric
distribution and within the depth-of-field of the camera; as a
consequence, the weight factor of all voxels located within the
cone region was uniformly simplified to 1. In essence, for the
voxel located outside the depth-of-field of the camera, it cannot
be clearly imaged on the image plane, and in this regard, the
weight factor of this voxel can no longer be treated as 1.

In view of the perspective imaging effect, J. Floyd et al.
established a 3D projection model considering the depth-of-
field effect of lens, which involved the blurring effect of the
reconstructed domain outside the depth-of-field range of lens in
the imaging process. The weight factor in this projection model
can be obtained as follows: first, the cone area of the 3D
reconstructed domain corresponding to the pixel on the image
plane is determined according to the ray-tracing method;
secondly, the position on the image plane of each spatially
discrete voxel within the cone area is analyzed; and finally, the
weight factor of a voxel to the pixel on image plane is procured via
estimating the intersection area of the imaging blur circle with the
pixel. Their model was validated in the measurements of a
methane–oxygen matrix burner as well as a turbulent opposed
jet flame. Furthermore, the instantaneous flame-surface density,
wrinkling factor, flame normal direction, and heat release were

figured out (Floyd et al., 2009; Floyd and Kempf, 2011; Floyd
et al., 20112011). As illustrated in Figure 6D, on the basis of
Floyd’s study, Wang et al. (2015) developed a 3D projection
model including light collection effect of lens. Additionally, the
relationship between the camera pixel and the blur circle was
analyzed in detail to provide a more complete calculation of the
weight factor, as can be seen in Figure 7A. However, it is
inevitable that some image spots appear within a pixel while
some out of the corresponding circle in the practical imaging
process. As a result, the ignored weight factors in such
circumstances always cause information missing, which
influence the quality of further reconstructions. For the sake of
overcoming the drawback of the simplified calculation model, Jin
et al. (2016a) presented the equal area and the sub-pixel
calculation model of weight factor, respectively, as
demonstrated in Figure 7B. Moreover, K. Wang et al. further
investigated the performance of clear-imaging, out-of-focus
imaging, and deconvolution models, as indicated in
Figure 7C. Considering the bokeh effect, the deconvolution
model provided the best precision with low computational
time (Wang et al., 2017). However, the aforementioned
models are on the basis of the uniform distribution of voxel,
which further leads to the large gradient between neighboring
voxels and certain discretization errors. In light of the finite
element and interpolation operation, Liu et al. (2021c) estimated
the distribution within each voxel to defeat uniform voxel
problem.

Likewise, the point spread function (PSF) was utilized in W.
Cai’s study to represent the projection formed by a point-source
located at the reconstruction domain, which was only related to
the location angle and position of the acquisition device rather
than the intensity distribution of the reconstruction domain.
Meanwhile, the projections that the camera acquired in the
image plane were composed of the summation of all voxels in
the reconstruction domain with the interplay of respective PSF
(Cai et al., 2013b). A large number of statistical calculations were
carried out that capitalized on theMonte Carlo statistical method,
and finally the weight factor of one voxel was figured out (Cai
et al., 2013a; Li andMa, 2014). However, the tremendous demand
of computing power and relatively low computational efficiency
inevitably become the drawback of the Monte Carlo statistical
method. In contrast to Cai’s method, M. Wan et al. applied the
low-discrepancy sequence of the Monte Carlo method instead of
the pseudorandom sequence to achieve the Meker burner flame
measurement with higher reconstruction accuracy (Wan et al.,
2015). Furthermore, by combining the ray-tracing technique and
the Monte Carlo method, Wan and Zhuang (2018) took the
inhomogeneous distribution of captured radiance on the image
plane into account and analyzed the performance numerically.

RECONSTRUCTION ALGORITHM

Apart from the projections acquirement and imaging model
establishment, another research focus is the reconstruction
algorithm of FCT. As a branch of optical tomography, the
reconstruction algorithm of FCT is also derived from the
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algorithm study of X-ray CT (Beister et al., 2012). On the other
hand, due to the different experimental conditions of practical
combustion diagnostics and limitation of optical access, the
reconstruction of FCT belongs to incomplete data
reconstruction problem. Numerous scholars have conducted
extensive research in reconstruction algorithm of FCT. This
section reviews the mainly employed reconstruction algorithm:
analytical and iterative types. Finally, the emerging artificial
intelligence-based reconstruction algorithm of FCT is depicted
as well.

Analytical Reconstruction Algorithm
Analytical reconstruction algorithm is separated into Abel
Inverse Transform, Radon Inverse Transform and Filtered
Back Projection (FBP) method. Abel Inverse Transform is
commonly utilized to tackle axisymmetric reconstruction
fields. For instance, Y. K. Jeong et al. investigated the
combustion structure of axisymmetric methane flame relied on
Abel Inverse Transform (Jeong et al., 2006). The traditional 2D
Radon Inverse Transform is usually divided into three steps:
partial differentiation, Hilbert Transform and inverse projection.
On the basis of Radon Inverse Transform, S. Cha and C. M. Vest
reconstructed the asymmetric refractive index fields (Vest, 1974;
Cha and Vest, 1979). Meanwhile, it was proven that the
reconstruction process of Abel Inverse Transform and Radon
Inverse Transform are equivalent on the condition of
axisymmetric field.

In contrast to the Radon Inverse Transform, the FBP
method is more representative of analytical reconstruction
algorithm. The FBP method introduces Fourier Transform
in Radon Inverse Transform to reduce this blurring in the
reconstruction by filtering each perspective before the back
projection step. Eq. 1 describes how a point (x, y) in the back
projection reconstruction fa(x, y) is given by the

accumulation of the integral values of projections I that
intersect with that point. This accumulation is performed
over all view angle θ. Z is the propagation length of light. Î
is the filtered version of I. The FBP method was utilized by R.
N. Bracewell and A. C. Riddle in the study of radio astronomy
(Bracewell and Riddle, 1967). Moreover, G. N. Ramachandran
et al. applied the FBP method for medical X-ray CT issue
(Ramachandran and Lakshminarayanan, 1971; Shepp and
Logan, 1974). G. W. Fairs et al. employed the FBP method
for deflection tomography successfully (Faris and Byer, 1988).
Furthermore, the application of the FBP reconstruction
method in moire deflection tomography has been
investigated in detail by Song et al. (2016).

f a(x, y) � ∫π

0
Î(Z, θ)dθ. (1)

The analytical reconstruction algorithm generally requires
numerous low noise views for successful reconstruction. In
consequence, it is utilized extensively in applications where
static subjects and good access are available, which means
many measurements can be taken and is generally less favored
in the incomplete data reconstruction problem. In contrast, the
iterative class reconstruction algorithm is more robust to the
effect of noise in the reconstructed data and is therefore more
favored by scholars in the field of CT reconstruction. In contrast,
the iterative reconstruction algorithm is more robust to the effect
of noise in data and is therefore more commonly utilized in FCT
reconstruction.

Iterative Reconstruction Algorithm
The fundamental of iterative reconstruction algorithm is
discrete reconstruction domain F as well as the projection
data I. According to the weight matrix W, the connection
between the reconstruction domain and projection data could

FIGURE 7 | (A) Diagram of the relationship between camera pixel and the blur circle. (B) Demonstration of the equal area and the sub-pixel calculation model of
weight factor. (C) Schematic diagram of clear imaging, out-of-focus imaging, and deconvolution imaging projection models. Adapted with permission from Wang et al.
(2017) © The Optical Society.

Frontiers in Photonics | www.frontiersin.org March 2022 | Volume 3 | Article 8459719

Jin and Situ Survey for Flame Chemiluminescence Tomography

https://www.frontiersin.org/journals/photonics
www.frontiersin.org
https://www.frontiersin.org/journals/photonics#articles


be established in Eq. 2. F is divided into N discrete voxels in the
reconstruction domain. The voxel indices are represented by
the single index i, j is defined as the index of projection
direction of q views and p pixels of each view. Ij. is
regarded as the projection of the direction j, and fi refers to
the intensity of the voxel i. Weight factor wij can be considered
as the contribution coefficient of the voxel i to the direction j
(Jin et al., 2016b), as follows:

Ij � ∑Ni

i�1 wj,if i. (2)
Equation 2 can recast the reconstruction problem as a system of
linear equations as indicated in the matrix form in Eq. 3. It is
worth noting that the weight matrix W has as many rows as the
projection number and as many columns as the reconstructed
voxel numbers.

I � WF. (3)
In accordance with the solution method of the system of
equations, iterative reconstruction algorithms are divided
into direct algebraic and algebraic iterative methods.
Meanwhile, the direct algebraic methods consist of inverse
and decomposition methods. The inverse method refers to
reconstructing the field by computing the inverse of the weight
matrix (Hartley, 1994), while the decomposition method
decomposes the weight matrix into several specific matrices
and recovers the reconstruction field in view of the properties
of these specific matrices, such as singular value
decomposition (SVD) (Selivanov and Lecomte, 2001) and
QR decomposition (Iborra et al., 2015). Considering that
the dimension of the weight matrix W is determined by
both the number of voxels in the reconstruction domain
and the number of projection data, which is too large to
apply direct algebraic methods, it is more practical to use
an algebraic iterative method to find an approximate solution
for system of equations.

The most widely used iterative algorithm is called the algebraic
reconstruction technique (ART). The original ART algorithms
were proposed by Gordon and Herman (1971), and it was found
to be a special case of the well-known Kaczmarz algorithm of
integral equation (Guenther et al., 1974). In concept of ART, Ij is
treated as a hyperplane in the solution space of the system of

equations. Therefore, the number of projections determines the
number of hyperplanes. If the system of linear equations is
noiseless and compatible, the unique solution could be
accessed when all hyperplanes intersect at a point. As seen in
Figure 8A, the three projection rays, L1, L2, and L3, represent
three equations. The intersection point of three rays is the
solution of the system of equations. An arbitrary initial value
x0 is given and projected onto L1 in the light of Eq. 2 to obtain an
update value x1 in the iteration process. Next, x1 is projected onto
L2 in the same way and the updated value x2 is determined.
Eventually, the iterative process converges to the solution of the
system of equations. However, the noise influence is inevitable in
a practical experiment, as a consequence the system of equations
is incompatible and the solution of equations cannot converge to
a point. As illustrated in Figure 8B, the iteration process of
incompatible equations converges to a small region of solution
space. In this case, iteration continues until some convergence
criteria is achieved.

Figure 9 indicates the working principle of the ART algorithm
on a simple 2 × 2 tomographic problem with four perspectives.
FCT problem is demonstrated in upper left panel, where the
numbers represent the measured projections and the values of
object domain are calculated according to the measured
projections. In step 1, the initialization of object domain is
completed and the values are designed as 0; next, the
differences between the initial and measured projections are
defined as e and calculated for each view; in step 3, e is
distributed evenly along the perspective to update the value of
object domain; the calculation and distribution of e are repeated
in step 4 and step 5 until the termination criterion is met.
Generally, the update of object domain can stop when the
difference e is smaller than the designed error, while the ART
algorithm can be considered as convergence.

The iteration process of ART is shown in Eq. 4. f(0) represents
the initial value. Projection error is defined as the difference
between the measured projection Ij and equivalent projection
estimated by f of current iteration. This error is following
normalized and back projected into the reconstruction
domain via wij, and then the next projection is addressed.
The next iteration begins once all projections have been
considered. In general, the higher accuracy is available with
more iterations.

FIGURE 8 | (A) Diagram of compatible equations. (B) Diagram of incompatible equations.
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f (0,0) � f (0)

f (k,j+1)i � f (k,j)i + ε
Ij−∑N

i
wj,if

(k,j)
i

∑N

i
(wj,i)2

f (k+1,0) � f (k,p×q)

wj,i, (4)

where ε refers to the laxation factor. The choice of relaxation
factor affects the convergence speed and iteration accuracy during
the iterative process. The small relaxation factor leads to a low
convergence speed with high iteration accuracy; on the contrary,
the relaxation factor is large and its convergence speed is fast, but
the iteration accuracy is low. Generally, ε ∈ (0,2) (Herman et al.,
1978).

Furthermore, the pseudo-code for the ART algorithm is
provided to illustrate the work process.

As a variation of ART, multiplicative algebraic reconstruction
technique (MART) not only changes the correction method of
the initial value, which means the iterative results can be updated

multiplicatively during the iteration process, but also maximizes
the entropy of reconstruction domain. It is worth noting that the
entropy mentioned here is in the context of information theory
not thermodynamic entropy (Floyd, 2009). MART shows better
performance on improving iteration speed. Especially for
reconstruction fields with high gradient, MART is capable of
giving superior reconstruction quality (Verhoeven, 1993). Eq. 5
shows the expression of MART given by Verhoeven (1993), as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f (0,0) � f (0)

f (k,j+1)i � f (k,j)i × ⎛⎝1 − εwj,i∑N

i
(wj,i)2 (1 −

Ij

∑N

i
wj,if

(k,j)
i

)⎞⎠
f (k+1,0) � f (k,p×q)

. (5)

It is worth mentioning that the multiplicative correction of
MART causes the values of the voxels with zero in the
reconstructed domain to remain unchanged. Therefore, the
widely used initial estimate of zero in ART is not appropriate
and the mean value of projections is suggested to be more suitable
for MART (Floyd, 2009).

Additionally, another kind of ART algorithm called
simultaneous algebraic reconstruction technique (SART) is
proposed by A. H. Aderson. Compared with standard ART
algorithm, SART tackles all the error from a single projection
simultaneously, instead of view-by-view. This operation
averagely reduces the error oscillation when two adjacent
projections consecutive correct the same pixel and shows
better noise immunity (Andersen and Kak, 1984). As seen in

FIGURE 9 | Working principle of the ART algorithm on a simple 2 × 2 tomographic problem.

Frontiers in Photonics | www.frontiersin.org March 2022 | Volume 3 | Article 84597111

Jin and Situ Survey for Flame Chemiluminescence Tomography

https://www.frontiersin.org/journals/photonics
www.frontiersin.org
https://www.frontiersin.org/journals/photonics#articles


Eq. 6, SART can be achieved by correcting standard ART of one
view q, as follows:

f (k+1)i � f (k)i + 1∑N
i wj,i

∑p
1

wj,i
Ij − wj,if

(k)
i∑N

i wj,i

. (6)

The ART algorithm has been extensively used in reconstruction
problem of FCT. Numerous scholars (L. Ma, Y. Ishino, G. Lu, M.
M. Hossain, W. Cai, to name a few) have conducted
comprehensive research in the feasibility and reliability of
ART via numerical simulation as well as practical experiments
(Wang et al., 2016b; Lei, 2016; Ma et al., 2016). For instance, T. Yu
investigated multiple kinds of series expansion reconstruction
algorithm on the basis of previous study of ART (Liu et al.,
2017b). S. M. Wiseman and J. Zhuan employed MART as well as
SART separately to inspect the 3D combustion structure
(Wiseman et al., 2017; Wan and Zhuang, 2018).

Although the ART algorithm has become the conventional
method for FCT reconstruction, but the limited optical
accessibility of practical applications results in the inversion
problem of FCT is ill-posed mathematically. As a
consequence, the inevitable line artifacts introduced by ART
will certainly affect the further reconstruction quality. It is
worth mention that novel reconstruction algorithms have been
developed in terms of the utilization of the additional information
on the reconstruction field, which can be treated as the a priori
information incorporating into the iteration algorithm to
mitigate the ill-posed problem (Ma and Cai, 2008). For
instance, profited by Tikhonov’s regularization, Zhou et al.
measured the 3D temperature distribution of a large-scale
furnace numerically and experimentally (Zhou et al., 2005).
Similarly, Daun et al. applied Tikhonov’s regularization to
reconstruct the axisymmetric flame properties (Daun et al.,
2006). Häber et al. retrieved the tomographic multispecies
visualization of laminar and turbulent methane/air diffusion
flames based on a kind of variation Tikhonov’s regularization
(Häber et al., 2020a; Häber et al., 2020b). As another type of priori
information of temperature field, Total Variance (TV) indicates
the sparseness of field (Cai et al., 2013b; Yu and Cai, 2017; Dai
et al., 2018). Compared with Tikhonov’s regularization, TV
regularization shows better performance in preserving sharp
discontinuities between distinct regions of reconstruction
domain, which is capable for providing representative features
of combustion such as the flame front (Rudin et al., 1992; Strong
and Chan, 2003). TV regularization was utilized for practical FCT
applications and its ability of significantly reducing the typical
line artifacts was proved numerically and experimentally (Jin
et al., 2021). Furthermore, the regularization minimizing p-norm
(0 < p < 1) was applied to enhance the spatial resolution in
photoacoustic (PA) tomography (Okawa et al., 2020). A weighted
Schatten p-norm minimization was proposed by Xu et al. for
reconstruction issue of sparse-view cone beam computed
tomography (CBCT) (Xu et al., 2020a). A compression
sensing-based algorithm was employed by G. -J. Yoon et al. to
achieve simplification of amount of data in reconstruction
process. On the condition of limit-view, they proved the
feasibility of this method experimentally (Yoon et al., 2019).

Analogous method was mentioned and validated in single-
pixel laminar flames reconstruction (Zhang et al., 2019).
Moreover, Bayesian optimization is also proficient in
integrating the measurement data with prior information by a
statistically robust method (Jin et al., 2021). In light of Bayesian
framework, S. Grauer et al. recovered the instantaneous refractive
index distribution of a turbulent flame (Grauer et al., 2018).

In addition, A. Unterberger et al. developed an evolutionary
reconstruction technique (ERT), which integrated a genetic
algorithm (GA) with a ray-tracing software. Evaluations were
carried on the reconstruction results of three different kinds of
flames, and the reconstruction ability of ERT was proved to be
consonant with ART (Unterberger et al., 2019). Besides, several
types of reconstruction algorithm have also been reported in CT
problem, for instance, Landweber algorithm (Rossberg and
Funke, 2010), maximum entropy algorithm (Denisova, 2004),
maximum likelihood estimation algorithm (Busa et al., 2014) and
maximum expectation algorithm (Dey and King, 2009), to name
a few. Meanwhile, some research focused on the comparisons of
various algorithms have been reported, such as (Yu and Cai,
2017) and (Shui et al., 2021).

Although iterative reconstruction algorithms (such as ART)
are extensively used in FCT problem, it is still important to note
that the major drawback of iteration algorithm is semi-
convergence, which means the true solution may be figured
out at an early stage while diverges away as the iteration steps
increase. As a consequence, the iteration number and termination
criterion play essential part in FCT. However, the iteration
number as well as termination criterion of iterative
reconstruction algorithms are usually determined by
experience, which will influence the accuracy of reconstruction
results evidently. Moreover, on account of the time consuming
and high data throughput of conventional iteration methods, it
causes the FCT technique hard to be utilized for online
combustion monitor and diagnostics in practical environment.
As a result, the 3D reconstructions in FCT are generally
conducted off-line.

Artificial Intelligence-Based Reconstruction
Algorithm
In the last few years, with the rapid development of the artificial
intelligence-based technique, deep learning method has aroused
extensive attention in academia and industry, which leads to
excellent performance on sorts of problems, such as image
classification (Colburn et al., 2019), object detection (Ren
et al., 2017), face recognition (Yu and Tao, 2019) and natural
language processing (Agrawal et al., 2019), to name a few.
Especially in the field of computational optical imaging, the
artificial intelligence-based technique has been effectively
applied in ghost imaging (Lyu et al., 2017), digital holography
(Ren et al., 2018; Wang et al., 2018) and phase retrieve (Wu et al.,
2018). Meanwhile, a variety of neural network frameworks have
developed, for example, LeNet-5 (LeCun et al., 1998), AlexNet
(Krizhevsky et al., 2017), VGG (Simonyan and Zisserman, 2014)
and GoogLeNet (Szegedy et al., 2015). In addition, deep learning
methods are induced to handle CT reconstruction inmedical field
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(Wang, 2016). A new noise reduction method and residual
encoder-decoder convolutional neural network were presented
by Wang et al. to tackle low-dose CT imaging problem with high
computed speed (Chen et al., 2017). Besides, DD-Net (Zhang
et al., 2018), Generative Adversarial Network (GAN) (Yang et al.,
2018), wavelet-based network (Kang et al., 20182018) and 3D
U-Net (Kim et al., 2020) were proved to realize noise immunity
and edge enhancement in medical reconstruction problems.

The superiority of artificial intelligence-based algorithm in
medical CT problem has attracted the attention of scholars
related to FCT field, which make it becomes a promising

tactic to deal with the time consuming limitation of prevailing
iteration method. Artificial intelligence-based reconstruction
method can be considered as a “black-box”. Taking one of the
popular deep neural networks as example, the architecture of
convolutional neural network (CNN) usually contains an input
layer, multiple hidden layers as well as an output layer. As
illustrated in Figure 10 the hidden layer generally includes the
convolutional layer, batch normalization (BN) layer, activation
layer, pooling layer and fully connected layer. The FCT
reconstruction procedures via artificial intelligence-based tactic
are composed of training stage and testing stage. In training stage,

FIGURE 10 | Demonstration of convolutional natural networks (CNN). Adapted with permission from Jin et al. (2017) © The Optical Society.

FIGURE 11 | (A) ELM-based neural network for CT inversion. (B)Diagram of CNN architecture for FCT. Adapted with permission from Jin et al. (2019) © The Optical
Society. (C) Two parts of VT-Net in Huang’s study.
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the projections as well as the distributions of reconstruction field
which refer to the corresponding ground-truth constitute the data
pairs and are fed into CNN model together. The training stage
contains forward propagation process and back propagation
process. During the forward propagation process, the salient
features of input projections are extracted by convolution
operations as well as down sampled via pooling operations to
generate the feature column vector, which is multiplied by the
coefficient and added with the biases to obtain the output results.
The error between the output and ground-truth are calculated by
loss function during back propagation process. Based on the
gradient descent method, the parameters of neural network are
adjusted gradually. Once the training stage is completed, the
projections of test data are feeding into the system and the
reconstruction results can be predicted rapidly.

As depicted in Figure 11A, the extreme learning machine
(ELM) is adopted by T. Yu et al. to extract useful information
from the previous reconstructions of 3,600 training samples. 50
samples were generated as the test data to validate the feasibility
and high computing speed of ELM-based reconstruction
algorithm via phantom study (Yu et al., 2018c). For the sake
of investigating the performance of deep learning method in
practical flame measurement, a rapid FCT reconstruction system
based on convolutional neural networks (CNN) model was
established in Y. Jin et al. shown in Figure 11B. The
reconstruction capability of the proposed model was
qualitatively and quantitatively verified by numerical
simulation as well as experimental measurement with various
field distributions. Additionally, the determination of the
architecture of CNN framework was analyzed in detail.
Compared with ART, MART, and TV method, their CNN
model provides prominent advantage in term of
computational efficiency (Jin et al., 2019). It is worth
mentioning that the output data as well as input data are the
horizontal slice of the 3D field and the corresponding projections,
which mean the 3D reconstruction result were derived from the
overlay method. Afterward, as illustrated in Figure 11C, J. Huang
et al. investigated the capability of two kinds of CNN framework
with distinct connections between layers for volumetric
tomography of turbulent flames. The proof-of-concept and a
series of comparative experiments were conducted to prove the
noise immunity of proposed method with different classes of
noise (Huang et al., 2020). Compared to the reconstruction
network in (Jin et al., 2019), the CNN framework of Huang’s
research achieve the 3D reconstruction of FCT directly, which
further decrease the time consuming of recovering.

Furthermore, in order to handle sparse view tomography
problem, a 4D tomographic reconstruction framework, called
TomoFluid, was presented by G. Zhang. A morphing-based view
interpolation method of projection was considered as a novel
regularization to equalize the missing projections neighboring
perspectives. Meanwhile, the re-projection consistency constraint
was employed as the optimization term to improve
reconstruction quality (Zang et al., 2020). Although the
practicability of TomoFluid was validated in their study, a
thorough physical interpretation of the proposed view
interpolation method still needs to investigate in further. Deep

learning strategy has been proved to improve reconstruction
spatial resolution in FCT. In general, it is a contradictory
demand of the size of the reconstruction domain and spatial
resolution. W. Xu reported a data-driven 3D super-resolution
approach in light of the GAN framework and the architecture of
3D-SR-GAN, which is composed of a generator and a
discriminator network to figure out the topographic
information. Based on the given low-resolution counterpart,
the high-resolution 3D structure of turbulent flame can be
recovered by two times via proposed method (Xu et al.,
2020b). Deep learning-based algorithm can be adopted not
only to handle 3D reconstruction, but also to enable
monitoring and prediction the combustion states. A
combination of convolutional auto-encoder, principal
component analysis, and the hidden Markov model was
developed to generate an unsupervised classification
framework by T. Qiu. By means of the projections collected
from the furnace flame, the identification of combustion
condition changing as the coal feed rate falls was achieved via
their model (Qiu et al., 2019). J. Huang developed a hybrid
CNN–long short-term memory (LSTM) network, which
combined the FCT technique with DL algorithms, to predict
the evolution of 3D flame structures on the basis of its history 2D
projections via the data-driven approach. The CNN part was
trained to extract flame features from projections, while the
LSTM part was trained to model the temporal sequence in
view of features (Huang et al., 2019b). The successful
application of CNN-LSTM model is in light of the similarity
of the training dataset and the testing dataset. As a consequence,
the enhancement of generalization of the proposed model will be
a tough challenge.

Artificial intelligence-based reconstruction algorithm has
become another kind of critical algorithms of FCT. Although
it shows significant superiority in terms of computational
efficiency, the physical explanation of how deep learning
methods work is still being explored. For the commonly used
a data-driven approach of deep learning methods, a large number
of pre-acquired data pairs are not only directly related to the
quality of the reconstruction results, but also affects the
generalization ability of reconstruction algorithm. As a result,
it is not an appropriate tactic for practical reconstruction
situation without sufficient ground-truth (e.g., real distribution
of practical flame). Furthermore, the increase in reconstruction
scene complexity as well as the number of data samples acquired
makes deep learning methods suffer from the bottleneck of
computing power.

SUMMARY AND OUTLOOK

To summarize, this study has reviewed the application
demonstrations of FCT for practical 3D tomography
experiments, and the definition, imaging acquirement and
calibration, projection models, and reconstruction algorithms.
The tomographic chemiluminescence spectroscopy method is
complementary to point or planer detection tactics and has
been successfully illustrated in laboratory as well as industrial
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scenarios. Recent progress is going to extend the applicability of
FCT to more complicated combustion environment, such as
deflagration phenomenon monitoring, and, consequently, there
still remain several issues to be addressed. One of the toughest
challenge is that due to the presence of large amounts of
combustion particle (e.g., soot), the frequently employed linear
imaging models that ignore the effects of scattering and
absorption of particle would be not appropriate to indicate the
imaging process of FCT. As a consequence, a non-linear imaging
model considers the scattering, and absorption is required for
accurate 3D reconstruction in practical combustion diagnostics.
Meanwhile, the severe vibration of combustion phenomenon
becomes a risk to the stability of the system and the accuracy
of the camera calibration. Additionally, although artificial
intelligence-based reconstruction algorithm shows significant
superiority in terms of computational efficiency, its data-
driven method cannot be ideally adopted to practical situation
without sufficient ground-truth (e.g. real distribution of practical
flame), further resulting in limited generalization ability. A more
systematic and theoretical analysis is required for designing a new
paradigm by combining the physical imaging model of FCT and
the neural model to overcome the limitations of the sample
number and generalization issue. Transfer learning would
enable a potential way for combining physical priors with
sample data. Furthermore, with the increasing complexity of
reconstruction scene and the bottleneck of computing power,
the lightweight of the reconstruction algorithm framework (e.g.,
the decrease of neural model parameter number) is also
imminent for in-line combustion monitoring and
measurements. Finally, combined with other optical detection

tactics, for instance, PIV and moiré deflection, FCT can
potentially achieve simultaneous multidimensional information
reconstruction of physical fields, such as spatiality, temporality,
and hyper spectrum and provide the temperature, components,
and velocity distribution of the combustion field. In brief, FCT
technology faces challenges in building accurate imaging models,
developing fast as well as lightweight reconstruction algorithms
and accommodating multidimensional parameter experimental
measurements. The FCT technique holds a significant promise
for future; we hope that this review will serve as a reference for the
development directions of FCT in the field. Last but not least, the
theory of FCT is a kind of mathematical approach for 3D
imaging, which can potentially be applied to other
tomographic areas, such as electrical capacitance tomography,
interferometric tomography, and medical tomography.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

The authors gratefully acknowledge financial support from the
National Natural Science Foundation of China (61991452); Key
Research Program of Frontier Sciences of the Chinese Academy
of Sciences (QYZDB-SSW-JSC002); and Chinesisch-Deutsche
Zentrum für Wissenschaftsförderung (GZ1391).

REFERENCES

Agrawal, A., Jain, A., and Kumar, B. S. (2019). Deep Learning Based Classification
for Assessment of Emotion Recognition in Speech [Conference Presentation].
Jaipur-India: SUSCOM, Amity University Rajasthan. February https://papers.
ssrn.com/sol3/papers.cfm?abstract_id=3356238.

Alviso, D., Mendieta, M., Molina, J., and Rolón, J. C. (2017). Flame Imaging
Reconstruction Method Using High Resolution Spectral Data of OH *, CH *
and C 2 * Radicals. Int. J. Therm. Sci. 121, 228–236. doi:10.1016/j.ijthermalsci.
2017.07.019

Andersen, A. H., and Kak, A. C. (1984). Simultaneous Algebraic Reconstruction
Technique (SART): a Superior Implementation of the ART Algorithm.
Ultrason. Imaging 6 (1), 81–94. doi:10.1016/0161-7346(84)90008-710.1177/
016173468400600107

Anikin, N., Suntz, R., and Bockhorn, H. (2010). Tomographic Reconstruction of
the OH*-chemiluminescence Distribution in Premixed and Diffusion Flames.
Appl. Phys. B 100 (3), 675–694. doi:10.1007/s00340-010-4051-5

Ax, H., and Meier, W. (2016). Experimental Investigation of the Response of
Laminar Premixed Flames to Equivalence Ratio Oscillations. Combustion and
Flame 167, 172–183. doi:10.1016/j.combustflame.2016.02.014

Beister, M., Kolditz, D., and Kalender, W. A. (2012). Iterative Reconstruction
Methods in X-ray CT. Physica Med. 28 (2), 94–108. doi:10.1016/j.ejmp.2012.
01.003

Bheemul, H. C., Lu, G., and Yan, Y. (2002). Three-Dimensional Visualization and
Quantitative Characterization of Gaseous Flames. Meas. Sci. Technol. 13 (10),
1643–1650. doi:10.1088/0957-0233/13/10/318

Bracewell, R. N., and Riddle, A. C. (1967). Inversion of Fan-Beam Scans in Radio
Astronomy. ApJ 150, 427. doi:10.1086/149346

Brisley, P. M., Lu, G., Yan, Y., and Cornwell, S. (2004). Three Dimensional
Temperature Measurement of Combustion Flames Using a Single
Monochromatic CCD Camera. [Conference presentation].I2MTC 2004,
Como, Italy. https://ieeexplore.ieee.org/xpl/conhome/9320/proceeding.

Brisley, P. M., Lu, G., Yan, Y., and Cornwell, S. (2005). Three-Dimensional
Temperature Measurement of Combustion Flames Using a Single
Monochromatic CCD Camera. IEEE Trans. Instrum. Meas. 54 (4),
1417–1421. doi:10.1109/TIM.2005.851074

Busa, K. M., McDaniel, J. C., Brown, M. S., and Diskin, G. S. (2014).
“Implementation of Maximum-Likelihood Expectation-Maximization
Algorithm for Tomographic Reconstruction of TDLAT Measurements,” in
[Conference Presentation]. 52nd Aerospace Sciences Meeting. Maryland:
National Harbor. https://arc.aiaa.org/doi/book/10.2514/masm14.

Cai, H., Song, Y., Shi, Y., Cao, Z., Guo, Z., Li, Z., et al. (2020). Flexible Multicamera
Calibration Method with a Rotating Calibration Plate. Opt. Express 28 (21),
31397–31413. doi:10.1364/OE.402761

Cai, W., Li, X., Li, F., and Ma, L. (2013). Numerical and Experimental Validation of
a Three-Dimensional Combustion Diagnostic Based on Tomographic
Chemiluminescence. Opt. Express 21 (6), 7050–7064. doi:10.1364/OE.21.
007050

Cai, W., Li, X., and Ma, L. (2013). Practical Aspects of Implementing Three-
Dimensional Tomography Inversion for Volumetric Flame Imaging. Appl. Opt.
52 (33), 8106–8116. doi:10.1364/AO.52.008106

Cha, S., and Vest, C. M. (1979). Interferometry and Reconstruction of Strongly
Refracting Asymmetric-Refractive-Index Fields. Opt. Lett. 4 (10), 311–313.
doi:10.1364/OL.4.000311

Chen, H., Zhang, Y., Kalra, M. K., Lin, F., Chen, Y., Liao, P., et al. (2017). Low-Dose
CT with a Residual Encoder-Decoder Convolutional Neural Network. IEEE
Trans. Med. Imaging 36 (12), 2524–2535. doi:10.1109/TMI.2017.2715284

Frontiers in Photonics | www.frontiersin.org March 2022 | Volume 3 | Article 84597115

Jin and Situ Survey for Flame Chemiluminescence Tomography

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3356238
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3356238
https://doi.org/10.1016/j.ijthermalsci.2017.07.019
https://doi.org/10.1016/j.ijthermalsci.2017.07.019
https://doi.org/10.1016/0161-7346(84)90008-710.1177/016173468400600107
https://doi.org/10.1016/0161-7346(84)90008-710.1177/016173468400600107
https://doi.org/10.1007/s00340-010-4051-5
https://doi.org/10.1016/j.combustflame.2016.02.014
https://doi.org/10.1016/j.ejmp.2012.01.003
https://doi.org/10.1016/j.ejmp.2012.01.003
https://doi.org/10.1088/0957-0233/13/10/318
https://doi.org/10.1086/149346
https://ieeexplore.ieee.org/xpl/conhome/9320/proceeding
https://doi.org/10.1109/TIM.2005.851074
https://arc.aiaa.org/doi/book/10.2514/masm14
https://doi.org/10.1364/OE.402761
https://doi.org/10.1364/OE.21.007050
https://doi.org/10.1364/OE.21.007050
https://doi.org/10.1364/AO.52.008106
https://doi.org/10.1364/OL.4.000311
https://doi.org/10.1109/TMI.2017.2715284
https://www.frontiersin.org/journals/photonics
www.frontiersin.org
https://www.frontiersin.org/journals/photonics#articles


Chi, Y., Lei, Q., Song, E., Fan, W., and Sha, Y. (2021). Development and Validation
of Evaluation Methods for 3D Flame Propagation Speed of Turbulent Non-
premixed Edge Flames via Tomographic Chemiluminescence. Flow Turbulence
Combust 108, 539–557. doi:10.1007/s10494-021-00285-8

Colburn, S., Chu, Y., Shilzerman, E., and Majumdar, A. (2019). Optical Frontend
for a Convolutional Neural Network. Appl. Opt. 58 (12), 3179–3186. doi:10.
1364/AO.58.003179

Dai, J., Yu, T., Xu, L., and Cai, W. (2018). On the Regularization for Nonlinear
Tomographic Absorption Spectroscopy. J. Quantitative Spectrosc. Radiative
Transfer 206, 233–241. doi:10.1016/j.jqsrt.2017.11.016

Daniele, S., Mantzaras, J., Jansohn, P., Denisov, A., and Boulouchos, K. (2013).
Flame Front/Turbulence Interaction for Syngas Fuels in the Thin Reaction
Zones Regime: Turbulent and Stretched Laminar Flame Speeds at Elevated
Pressures and Temperatures. J. Fluid Mech. 724, 36–68. doi:10.1017/jfm.
2013.141

Daun, K. J., Thomson, K. A., Liu, F., and Smallwood, G. J. (2006). Deconvolution of
Axisymmetric Flame Properties Using Tikhonov Regularization. Appl. Opt. 45
(19), 4638–4646. doi:10.1364/AO.45.004638

Denisova, N. (2004). A Maximuma Posteriorireconstruction Method for Plasma
Tomography. Plasma Sourc. Sci. Technol. 13 (3), 531–536. doi:10.1088/0963-
0252/13/3/020

Denisova, N., Tretyakov, P., and Tupikin, A. (2013). Emission Tomography in
Flame Diagnostics. Combustion and Flame 160 (3), 577–588. doi:10.1016/j.
combustflame.2012.11.005

Deutsch, C. (1990). A FORTRAN 77 Subroutine for Determining the Fractional
Area of Rectangular Grid Blocks within a Polygon. Comput. Geosciences 16 (3),
379–384. doi:10.1016/0098-3004(90)90071-Z

Dey, J., and King, M. A. (2009). “Theoretical and Numerical Study of MLEM and
OSEM Reconstruction Algorithms for Motion Correction in Emission
Tomography [Conference Presentation],” in IEEE Nuclear Science
Symposium Conference Record, Dresden, Germany. https://ieeexplore.ieee.
org/xpl/tocresult.jsp?isnumber=5280479.

Dong, R., Lei, Q., Chi, Y., Song, E., and Fan, W. (2021). Analysis of Global and
Local Hydrodynamic Instabilities on a High-Speed Jet Diffusion Flame via
Time-Resolved 3D Measurements. Flow Turbulence Combust 107, 759–780.
doi:10.1007/s10494-021-00251-4

Dong, R., Lei, Q., Zhang, Q., and Fan, W. (2021). Dynamics of Ignition Kernel in a
Liquid-Fueled Gas Turbine Model Combustor Studied via Time-Resolved 3D
Measurements. Combustion and Flame 232, 111566. doi:10.1016/j.
combustflame.2021.111566

Falkhytten, T. (2018). Computed Tomography of Chemiluminescence in Interacting
Reacting Flows. [Master’s thesis]. [Trondheim]: NTNU.

Faris, G. W., and Byer, R. L. (1988). Three-Dimensional Beam-Deflection Optical
Tomography of a Supersonic Jet. Appl. Opt. 27 (24), 5202–5212. doi:10.1364/
AO.27.005202

Floyd, J. (2009). Computed Tomography of Chemiluminescence: A 3D Time
Resolved Sensor for Turbulent Combustion. [London]: Imperial College
London. [PHD dissertation].

Floyd, J., Geipel, P., and Kempf, A. M. (20112011). Computed Tomography of
Chemiluminescence (CTC): Instantaneous 3D Measurements and Phantom
Studies of a Turbulent Opposed Jet Flame. Combustion and Flame 158 (8),
376–391. doi:10.1016/j.combustflame.2010.09.006

Floyd, J., Heyes, A. L., and Kempf, A. M. (2009). Computed Tomography of
Chemiluminescence (CTC): Instantaneous Measurements of a Matrix Burner
[Conference Presentation]. Vienna, Austria. ECM 2009. https://www.
communicationmonitor.eu/2009/06/01/ecm-european-communication-
monitor-2009-measurement-evaluation-strategy-trends-social-media-social-
networks/.

Floyd, J., and Kempf, A. M. (2011). Computed Tomography of
Chemiluminescence (CTC): High Resolution and Instantaneous 3-D
Measurements of a Matrix Burner. Proc. Combustion Inst. 33 (1), 751–758.
doi:10.1016/j.proci.2010.06.015

Gao, Y., Yu, Q., Jiang, W., and Wan, X. (2010). Reconstruction of Three-
Dimensional Arc-Plasma Temperature Fields by Orthographic and Double-
Wave Spectral Tomography. Opt. Laser Tech. 42 (1), 61–69. doi:10.1016/j.
optlastec.2009.04.020

Gaydon, A. G., and Wolfhard, H. G. (1953). Flames. Their Structure, Radiation,
and Temperature. London: Chapman & Hall.

GilabertLuYan, G. G. Y., Lu, G., and Yan, Y. (2007). Three-Dimensional
Tomographic Reconstruction of the Luminosity Distribution of a
Combustion Flame. IEEE Trans. Instrum. Meas. 56 (4), 1300–1306. doi:10.
1109/TIM.2007.900161

Gordon, R., and Herman, G. T. (1971). Reconstruction of Pictures from Their
Projections. Commun. ACM 14 (12), 759–768. doi:10.1145/362919.362925

Grauer, S. J., Unterberger, A., Rittler, A., Daun, K. J., Kempf, A. M., and Mohri, K.
(2018). Instantaneous 3D Flame Imaging by Background-Oriented Schlieren
Tomography. Combustion and Flame 196, 284–299. doi:10.1016/j.
combustflame.2018.06.022

Griffiths, J. F. J., and Barnard, A. (1995). Flame and Combustion. Glasgow: CRC.
Guenther, R. B., Kerber, C.W., Killian, E. K., Smith, K. T., andWagner, S. L. (1974).

Reconstruction of Objects from Radiographs and the Location of Brain
Tumors. Proc. Natl. Acad. Sci. 71 (12), 4884–4886. doi:10.1073/pnas.71.12.4884

Gupta, A. K., Bolz, S., and Hasegawa, T. (1999). Effect of Air Preheat Temperature
and Oxygen Concentration on Flame Structure and Emission. J. Energ. Resour-
asme. 121, 209–216. doi:10.1115/1.2795984

Häber, T., Bockhorn, H., and Suntz, R. (2020). Two-Dimensional Tomographic
Simultaneous Multi-Species Visualization-Part I: Experimental Methodology
and Application to Laminar and Turbulent Flames. Energies 13 (9), 2335.
doi:10.3390/en13092335

Häber, T., Suntz, R., and Bockhorn, H. (2020). Two-Dimensional Tomographic
Simultaneous Multispecies Visualization-Part II: Reconstruction Accuracy.
Energies 13 (9), 2368. doi:10.3390/en13092368

Hartley, R. I. (1994). An Algorithm for Self Calibration from Several Views
[Conference Presentation]. Seattle, WA, United States: CVPR. https://dblp.
org/db/conf/cvpr/cvpr1994.html.

Herman, G. T., Lent, A., and Lutz, P. H. (1978). Relaxation Methods for Image
Reconstruction. Commun. ACM 21 (2), 152–158. doi:10.1145/359340.359351

Hertz, H. M., and Faris, G. W. (1988). Emission Tomography of Flame Radicals.
Opt. Lett. 13 (5), 351–353. doi:10.1364/OL.13.000351

Hossain, A., and Nakamura, Y. (2014). A Numerical Study on the Ability to Predict
the Heat Release Rate Using CH* Chemiluminescence in Non-sooting
Counterflow Diffusion Flames. Combustion and Flame 161 (1), 162–172.
doi:10.1016/j.combustflame.2013.08.021

Hossain, M. M., Lu, G., Sun, D., and Yan, Y. (2013). Three-Dimensional
Reconstruction of Flame Temperature and Emissivity Distribution Using
Optical Tomographic and Two-Colour Pyrometric Techniques. Meas. Sci.
Technol. 24 (7), 074010. doi:10.1088/0957-0233/24/7/074010

Hossain, M. M., Lu, G., and Yan, Y. (2011). Three-Dimensional Reconstruction of
Combustion Flame through Optical Fibre Sensing and CCD Imaging
[Conference Presentation]. I2MTC 2011. Hangzhou, China. http://imtc2011.
ieee-ims.org/.

Huang, J., Liu, H., and Cai, W. (2019). Online In Situ Prediction of 3-D Flame
Evolution from its History 2-D Projections via Deep Learning. J. Fluid Mech.
875. doi:10.1017/jfm.2019.545

Huang, J., Liu, H., Wang, Q., and Cai, W. (2020). Limited-Projection Volumetric
Tomography for Time-Resolved Turbulent Combustion Diagnostics via Deep
Learning. Aerospace Sci. Tech. 106, 106123. doi:10.1016/j.ast.2020.106123

Huang, L., Da, F., and Gai, S. (2019). Research on Multi-Camera Calibration and
Point Cloud Correction Method Based on Three-Dimensional Calibration
Object. Opt. Lasers Eng. 115, 32–41. doi:10.1016/j.optlaseng.2018.11.005

Hwang, C. H., Wang, W. C., and Chen, Y. H. (2013). Camera Calibration and 3D
Surface Reconstruction for Multi-Camera Semi-circular DIC System [Conference
Presentation]. icOPEN2013, Singapore, Singapore. http://www.icopen.com.sg/.

Iborra, A., Rodriguez-Alvarez, M. J., Soriano, A., Sanchez, F., Bellido, P., Conde, P.,
et al. (2015). Noise Analysis in Computed Tomography (CT) Image
Reconstruction Using QR-Decomposition Algorithm. IEEE Trans. Nucl. Sci.
62 (3), 869–875. doi:10.1109/TNS.2015.2422213

Ishino, Y., Hirano, T., Hirano, M., and Ohiwa, N. (2007). Non-scanning 3D-CT
Visualizations of Premixed Flames with a 40-Lens Camera. [Conference
presentation]. PSFVIP6, Hawaii, United States https://www.researchgate.net/
publication/313707915_Non-scanning_3d-ct_visualizations_of_premixed_
flames_with_a_40-lens_camera.

Ishino, Y., Inagawa, O., and Nakamura, T. (2005). Instantaneous Volume Imaging
of Fuel Combustion Rate Distribution of a Turbulent Propane-Air Fuel-Rich
Premixed Flame by Three-Dimensional Scanless Computerized Tomographic
Reconstruction Method with a Multi-Lens-Camera. Conference

Frontiers in Photonics | www.frontiersin.org March 2022 | Volume 3 | Article 84597116

Jin and Situ Survey for Flame Chemiluminescence Tomography

https://doi.org/10.1007/s10494-021-00285-8
https://doi.org/10.1364/AO.58.003179
https://doi.org/10.1364/AO.58.003179
https://doi.org/10.1016/j.jqsrt.2017.11.016
https://doi.org/10.1017/jfm.2013.141
https://doi.org/10.1017/jfm.2013.141
https://doi.org/10.1364/AO.45.004638
https://doi.org/10.1088/0963-0252/13/3/020
https://doi.org/10.1088/0963-0252/13/3/020
https://doi.org/10.1016/j.combustflame.2012.11.005
https://doi.org/10.1016/j.combustflame.2012.11.005
https://doi.org/10.1016/0098-3004(90)90071-Z
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5280479
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5280479
https://doi.org/10.1007/s10494-021-00251-4
https://doi.org/10.1016/j.combustflame.2021.111566
https://doi.org/10.1016/j.combustflame.2021.111566
https://doi.org/10.1364/AO.27.005202
https://doi.org/10.1364/AO.27.005202
https://doi.org/10.1016/j.combustflame.2010.09.006
https://www.communicationmonitor.eu/2009/06/01/ecm-european-communication-monitor-2009-measurement-evaluation-strategy-trends-social-media-social-networks/
https://www.communicationmonitor.eu/2009/06/01/ecm-european-communication-monitor-2009-measurement-evaluation-strategy-trends-social-media-social-networks/
https://www.communicationmonitor.eu/2009/06/01/ecm-european-communication-monitor-2009-measurement-evaluation-strategy-trends-social-media-social-networks/
https://www.communicationmonitor.eu/2009/06/01/ecm-european-communication-monitor-2009-measurement-evaluation-strategy-trends-social-media-social-networks/
https://doi.org/10.1016/j.proci.2010.06.015
https://doi.org/10.1016/j.optlastec.2009.04.020
https://doi.org/10.1016/j.optlastec.2009.04.020
https://doi.org/10.1109/TIM.2007.900161
https://doi.org/10.1109/TIM.2007.900161
https://doi.org/10.1145/362919.362925
https://doi.org/10.1016/j.combustflame.2018.06.022
https://doi.org/10.1016/j.combustflame.2018.06.022
https://doi.org/10.1073/pnas.71.12.4884
https://doi.org/10.1115/1.2795984
https://doi.org/10.3390/en13092335
https://doi.org/10.3390/en13092368
https://dblp.org/db/conf/cvpr/cvpr1994.html
https://dblp.org/db/conf/cvpr/cvpr1994.html
https://doi.org/10.1145/359340.359351
https://doi.org/10.1364/OL.13.000351
https://doi.org/10.1016/j.combustflame.2013.08.021
https://doi.org/10.1088/0957-0233/24/7/074010
http://imtc2011.ieee-ims.org/
http://imtc2011.ieee-ims.org/
https://doi.org/10.1017/jfm.2019.545
https://doi.org/10.1016/j.ast.2020.106123
https://doi.org/10.1016/j.optlaseng.2018.11.005
http://www.icopen.com.sg/
https://doi.org/10.1109/TNS.2015.2422213
https://www.researchgate.net/publication/313707915_Non-scanning_3d-ct_visualizations_of_premixed_flames_with_a_40-lens_camera
https://www.researchgate.net/publication/313707915_Non-scanning_3d-ct_visualizations_of_premixed_flames_with_a_40-lens_camera
https://www.researchgate.net/publication/313707915_Non-scanning_3d-ct_visualizations_of_premixed_flames_with_a_40-lens_camera
https://www.frontiersin.org/journals/photonics
www.frontiersin.org
https://www.frontiersin.org/journals/photonics#articles


presentation].TSFP4,Williamsburg, United States. http://www.tsfp-conference.
org/proceedings/26-proceedings-of-tsfp-4-2005-williamsburg.html.

Ishino, Y., and Ohiwa, N. (2005). Three-Dimensional Computerized Tomographic
Reconstruction of Instantaneous Distribution of Chemiluminescence of a
Turbulent Premixed Flame. JSME International Journal. Ser. B, Fluids
Thermal Engineering 48 (1), 34–40. doi:10.1299/jsmeb.48.34

Ishino, Y., Saiki, Y., Tomida, Y., and Okita, Y. (2011). 3D Visualization of Unsteady
Flames by the Combined Technique of Multi-Directional Simultaneous
Photography and 3D-Computed Tomography. Kashika Joho Gakkaishi 31
(120), 9. doi:10.3154/jvs.31.9

Ishino, Y., Takeuchi, K., Shiga, S., and Ohiwa, N. (2009). Measurement of
Instantaneous 3D-Distribution of Local Burning Velocity on a Turbulent
Premixed Flame by Non-scanning 3D-CT Reconstruction [Conference
Presentation]. Birmingham, UK. ECM 2009. https://www.sciencedirect.com/
journal/applied-thermal-engineering/vol/25/issue/16.

Iwama, N., Yoshida, H., Takimoto, H., Shen, Y., Takamura, S., and Tsukishima, T.
(1989). Phillips-tikhonov Regularization of Plasma Image Reconstruction with
the Generalized Cross Validation. Appl. Phys. Lett. 54 (6), 502–504. doi:10.
1063/1.100912

Jeong, Y. K., Jeon, C. H., and Chang, Y. J. (2006). Evaluation of the Equivalence
Ratio of the Reacting Mixture Using Intensity Ratio of Chemiluminescence in
Laminar Partially Premixed CH4-Air Flames. Exp. Therm. Fluid Sci. 30 (7),
663–673. doi:10.1016/j.expthermflusci.2006.01.005

Jin, Y., Guo, Z., Song, Y., Li, Z., He, A., and Situ, G. (2021). Sparse Regularization-
Based Reconstruction for 3D Flame Chemiluminescence Tomography. Appl.
Opt. 60 (3), 513–525. doi:10.1364/AO.412637

Jin, Y., Song, Y., Qu, X., Li, Z., Ji, Y., and He, A. (2016). Hybrid Algorithm for
Three-Dimensional Flame Chemiluminescence Tomography Based on
Imaging Overexposure Compensation. Appl. Opt. 55 (22), 5917–5923.
doi:10.1364/AO.55.005917

Jin, Y., Song, Y., Qu, X., Li, Z., Ji, Y., and He, A. (2017). Three-Dimensional
Dynamic Measurements of CH* and C2* Concentrations in Flame Using
Simultaneous Chemiluminescence Tomography. Opt. Express 25 (5),
4640–4654. doi:10.1364/OE.25.004640

Jin, Y., Song, Y., Wang, W., Ji, Y., Li, Z., and He, A. (2016). An Improved
Calculation Model of Weight Coefficient for Three-Dimensional Flame
Chemiluminescence Tomography Based on Lens Imaging Theory [Conference
Presentation]. Beijing, China. OTA 2016. https://www.spiedigitallibrary.org/
conference-proceedings-of-spie/10155.toc.

Jin, Y., Zhang, W., Song, Y., Qu, X., Li, Z., Ji, Y., et al. (2019). Three-Dimensional
Rapid Flame Chemiluminescence Tomography via Deep Learning. Opt. Express
27 (19), 27308–27334. doi:10.1364/OE.27.027308

Kaminski, C. F., and Kaminski, C. F. (2014). A Tomographic Technique for the
Simultaneous Imaging of Temperature, Chemical Species, and Pressure in
Reactive Flows Using Absorption Spectroscopy with Frequency-Agile Lasers.
Appl. Phys. Lett. 104 (3), 034101. doi:10.1063/1.4862754

Kang, E., Chang, W., Yoo, J., and Ye, J. C. (2018). Deep Convolutional Framelet
Denosing for Low-Dose CT via Wavelet Residual Network. IEEE Trans. Med.
Imaging 37 (6), 1358–1369. doi:10.1109/TMI.2018.2823756

Kang, M., Wu, Y., and Ma, L. (2014). Fiber-Based Endoscopes for 3D Combustion
Measurements: View Registration and Spatial Resolution. Combustion and
Flame 161 (12), 3063–3072. doi:10.1016/j.combustflame.2014.06.002

Kathrotia, T., Riedel, U., Seipel, A., Moshammer, K., and Brockhinke, A. (2012).
Experimental and Numerical Study of Chemiluminescent Species in Low-
Pressure Flames. Appl. Phys. B 107 (3), 571–584. doi:10.1007/s00340-012-
5002-0

Kim, T., Lee, K., Ham, S., Park, B., Lee, S., Hong, D., et al. (2020). Active Learning
for Accuracy Enhancement of Semantic Segmentation with CNN-Corrected
Label Curations: Evaluation on Kidney Segmentation in Abdominal CT. Sci.
Rep. 10 (1), 1–7. doi:10.1038/s41598-019-57242-9

Kojima, J., Ikeda, Y., and Nakajima, T. (2005). Basic Aspects of OH(A), CH(A), and
C2(d) Chemiluminescence in the Reaction Zone of Laminar Methane-Air
Premixed Flames. Combustion and Flame 140 (1-2), 34–45. doi:10.1016/j.
combustflame.2004.10.002

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet Classification
with Deep Convolutional Neural Networks. Commun. ACM 60 (6), 84–90.
doi:10.1145/3065386

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-Based Learning
Applied to Document Recognition. Proc. IEEE 86 (11), 2278–2324. doi:10.1109/
5.726791

Lee, M. C., Yoon, J., Joo, S., Kim, J., Hwang, J., and Yoon, Y. (2015).
Investigation into the Cause of High Multi-Mode Combustion
Instability of H2/CO/CH4 Syngas in a Partially Premixed Gas Turbine
Model Combustor. Proc. Combustion Inst. 35 (3), 3263–3271. doi:10.1016/j.
proci.2014.07.013

Lei, Q. (2016). Development and Validation of Reconstruction Algorithms for 3D
Tomography Diagnostics. Virginia Polytechnic Institute and State University.
[Doctoral dissertation]. [Virginia (Blacksburg)].

Li, X., and Ma, L. (2015). Capabilities and Limitations of 3D Flame Measurements
Based on Computed Tomography of Chemiluminescence. Combustion and
Flame 162 (3), 642–651. doi:10.1016/j.combustflame.2014.08.020

Li, X., and Ma, L. (2014). Volumetric Imaging of Turbulent Reactive Flows at kHz
Based on Computed Tomography.Opt. Express 22 (4), 4768–4778. doi:10.1364/
OE.22.004768

Ling, C., Chen, H., and Wu, Y. (2020). Development and Validation of a
Reconstruction Approach for Three-Dimensional Confined-Space
Tomography Problems. Appl. Opt. 59 (34), 10786–10800. doi:10.1364/AO.
404458

Liu, H., Paolillo, G., Astarita, T., Shui, C., and Cai, W. (2019). Computed
Tomography of Chemiluminescence for the Measurements of Flames
Confined within a Cylindrical Glass. Opt. Lett. 44 (19), 4793–4796. doi:10.
1364/OL.44.004793

Liu, H., Sun, B., and Cai, W. (2019). kHz-Rate Volumetric Flame Imaging Using a
Single Camera. Opt. Commun. 437, 33–43. doi:10.1016/j.optcom.2018.12.036

Liu, H., Wang, Q., Peng, F., Qin, Z., and Cai, W. (2021). Flame Emission
Tomography Based on Finite Element Basis and Adjustable Mask. Opt.
Express 29 (25), 40841–40853. doi:10.1364/OE.443643

Liu, H., Yang, Z., and Cai, W. (2021). Application of Three-Dimensional
Diagnostics on the Direct-Current Electric-Field Assisted Combustion.
Aerospace Sci. Tech. 112, 106657. doi:10.1007/s10494-021-00294-710.1016/j.
ast.2021.106657

Liu, H., Yu, T., Zhang, M., and Cai, W. (2017). Demonstration of 3D Computed
Tomography of Chemiluminescence with a Restricted Field of View. Appl. Opt.
56 (25), 7107–7115. doi:10.1364/AO.56.007107

Liu, H., Zhao, J., Shui, C., and Cai, W. (2019). Reconstruction and Analysis of Non-
premixed Turbulent Swirl Flames Based on kHz-Rate Multi-Angular
Endoscopic Volumetric Tomography. Aerospace Sci. Tech. 91, 422–433.
doi:10.1016/j.ast.2019.05.025

Liu, N., andMa, L. (2020). Regularized Tomographic PIV for Incompressible Flows
Based on Conservation of Mass. Appl. Opt. 59 (6), 1667–1677. doi:10.1364/AO.
380720

Liu, N., Wu, Y., and Ma, L. (2018). Quantification of Tomographic PIV
Uncertainty Using Controlled Experimental Measurements. Appl. Opt. 57
(3), 420–427. doi:10.1364/AO.57.000420

Liu, Y., Hossain, M., Sun, J., Xu, C., Zhang, B., andWang, S. (2017). Design a Cage-
Typed Light Field Camera System for Flame MeasurementIEEE SENSORS 2017.
Glasgow, Scotland, United Kingdom. [Conference Presentation]. https://ieee-
sensors.org/event/ieee-sensors-2017/.

Liu, Y., Tan, J., Wan, M., and Yao, X. (2020). OH* and CH* Chemiluminescence
Characteristics in Low Swirl Methane-Air Flames. AIP Adv. 10 (5), 055318.
doi:10.1063/5.0002660

Liu, Y., Zhu, M., Wang, T., Lei, G., Hossain, M. M., Zhang, B., et al. (2021). Spatial
Resolution of Light Field Sectioning Pyrometry for Flame Temperature
Measurement. Opt. Lasers Eng. 140, 106545. doi:10.1016/j.optlaseng.2021.
106545

Lyu, M., Wang, W., Wang, H., Wang, H., Li, G., Chen, N., et al. (2017). Deep-
Learning-Based Ghost Imaging. Sci. Rep. 7 (1), 1–6. doi:10.1038/s41598-017-
18171-7

Ma, L., and Cai, W. (2008). Determination of the Optimal Regularization
Parameters in Hyperspectral Tomography. Appl. Opt. 47 (23), 4186–4192.
doi:10.1364/AO.47.004186

Ma, L.,Wu, Y., Lei, Q., Xu,W., and Carter, C. D. (2016). 3D Flame Topography and
Curvature Measurements at 5 kHz on a Premixed Turbulent Bunsen Flame.
Combustion and Flame 166, 66–75. doi:10.1016/j.combustflame.2015.12.031

Frontiers in Photonics | www.frontiersin.org March 2022 | Volume 3 | Article 84597117

Jin and Situ Survey for Flame Chemiluminescence Tomography

http://www.tsfp-conference.org/proceedings/26-proceedings-of-tsfp-4-2005-williamsburg.html
http://www.tsfp-conference.org/proceedings/26-proceedings-of-tsfp-4-2005-williamsburg.html
https://doi.org/10.1299/jsmeb.48.34
https://doi.org/10.3154/jvs.31.9
https://www.sciencedirect.com/journal/applied-thermal-engineering/vol/25/issue/16
https://www.sciencedirect.com/journal/applied-thermal-engineering/vol/25/issue/16
https://doi.org/10.1063/1.100912
https://doi.org/10.1063/1.100912
https://doi.org/10.1016/j.expthermflusci.2006.01.005
https://doi.org/10.1364/AO.412637
https://doi.org/10.1364/AO.55.005917
https://doi.org/10.1364/OE.25.004640
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10155.toc
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10155.toc
https://doi.org/10.1364/OE.27.027308
https://doi.org/10.1063/1.4862754
https://doi.org/10.1109/TMI.2018.2823756
https://doi.org/10.1016/j.combustflame.2014.06.002
https://doi.org/10.1007/s00340-012-5002-0
https://doi.org/10.1007/s00340-012-5002-0
https://doi.org/10.1038/s41598-019-57242-9
https://doi.org/10.1016/j.combustflame.2004.10.002
https://doi.org/10.1016/j.combustflame.2004.10.002
https://doi.org/10.1145/3065386
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/j.proci.2014.07.013
https://doi.org/10.1016/j.proci.2014.07.013
https://doi.org/10.1016/j.combustflame.2014.08.020
https://doi.org/10.1364/OE.22.004768
https://doi.org/10.1364/OE.22.004768
https://doi.org/10.1364/AO.404458
https://doi.org/10.1364/AO.404458
https://doi.org/10.1364/OL.44.004793
https://doi.org/10.1364/OL.44.004793
https://doi.org/10.1016/j.optcom.2018.12.036
https://doi.org/10.1364/OE.443643
https://doi.org/10.1007/s10494-021-00294-710.1016/j.ast.2021.106657
https://doi.org/10.1007/s10494-021-00294-710.1016/j.ast.2021.106657
https://doi.org/10.1364/AO.56.007107
https://doi.org/10.1016/j.ast.2019.05.025
https://doi.org/10.1364/AO.380720
https://doi.org/10.1364/AO.380720
https://doi.org/10.1364/AO.57.000420
https://ieee-sensors.org/event/ieee-sensors-2017/
https://ieee-sensors.org/event/ieee-sensors-2017/
https://doi.org/10.1063/5.0002660
https://doi.org/10.1016/j.optlaseng.2021.106545
https://doi.org/10.1016/j.optlaseng.2021.106545
https://doi.org/10.1038/s41598-017-18171-7
https://doi.org/10.1038/s41598-017-18171-7
https://doi.org/10.1364/AO.47.004186
https://doi.org/10.1016/j.combustflame.2015.12.031
https://www.frontiersin.org/journals/photonics
www.frontiersin.org
https://www.frontiersin.org/journals/photonics#articles


Melnikova, T. S., and Pickalov, V. V. (1984). Tomographic Measurements of
Temperature Fields in Non-stationary Arc Plasma. Beitr. Plasmaphys. 24 (5),
431–445. doi:10.1002/ctpp.19840240502

Mohri, K., Görs, S., Schöler, J., Rittler, A., Dreier, T., Schulz, C., et al. (2017).
Instantaneous 3D Imaging of Highly Turbulent Flames Using Computed
Tomography of Chemiluminescence. Appl. Opt. 56 (26), 7385–7395. doi:10.
1364/AO.56.007385

Moinul Hossain, M. M., Lu, G., and Yan, Y. (2012). Optical Fiber Imaging Based
Tomographic Reconstruction of Burner Flames. IEEE Trans. Instrum. Meas. 61
(5), 1417–1425. doi:10.1109/TIM.2012.2186477

Navakas, R., Saliamonas, A., Striūgas, N., Džiugys, A., Paulauskas, R., and
Zakarauskas, K. (2018). Effect of Producer Gas Addition and Air Excess
Ratio on Natural Gas Flame Luminescence. Fuel 217, 478–489. doi:10.1016/
j.fuel.2017.12.094

Niu, Z., Qi, H., Shi, J., Zhang, J., and Ren, Y. (2021). Temperature Field
Reconstruction of 3D Luminous Flames Based on Light Field Tomography
Theory. Sci. China Technol. Sci. 64, 223–236. doi:10.1007/s11431-019-1573-y

Nori, V., and Seitzman, J. (2008). “Evaluation of Chemiluminescence as A
Combustion Diagnostic under Varying Operating Conditions [Conference
Presentation],” in 46th AIAA Aerospace Sciences Meeting and Exhibit (Reno,
Nevada, United States. https://arc.aiaa.org/doi/book/10.2514/MASM08#pane-
d5521a22-9898-435a-9faa-de90b3bee0b01.

Okawa, S., Hirasawa, T., Kushibiki, T., Fujita, M., and Ishihara, M. (2020).
Photoacoustic Tomography Reconstructing Absorption Coefficient and Effect
of Regularization Minimizing P-Norm [Conference Presentation]. Photons Plus
Ultrasound: Imaging and Sensing 2020. San Francisco, California, USA. https://
spie.org/Publications/Proceedings/Volume/11240?SSO=1.

Orain, M., and Hardalupas, Y. (2010). Effect of Fuel Type on Equivalence Ratio
Measurements Using Chemiluminescence in Premixed Flames. Comptes
Rendus Mécanique 338 (5), 241–254. doi:10.1016/j.crme.2010.05.002

Paolillo, G., and Astarita, T. (2019). A Novel Camera Model for Calibrating Optical
Systems Including Cylindrical Windows [Conference Presentation]AIAA Scitech
2019 Forum. San Diego, California, United States. https://arc.aiaa.org/doi/pdf/
10.2514/6.2019-0273.

Qi, H., Shi, J.-W., Su, Y.-X., Gao, B.-H., and Ren, Y.-T. (2021). Soot Temperature
Measurement within 3D Flame by Light-Field Imaging Based on Wave Optics
Theory. Opt. Lasers Eng. 138, 106419. doi:10.1016/j.optlaseng.2020.106419

Qi, Q., Hossain, M. M., Li, J.-J., Zhang, B., Li, J., and Xu, C.-L. (2021). Approach to
Reduce Light Field Sampling Redundancy for Flame Temperature
Reconstruction. Opt. Express 29 (9), 13094–13114. doi:10.1364/OE.424112

Qiu, T., Liu, M., Zhou, G., Wang, L., and Gao, K. (2019). An Unsupervised
Classification Method for Flame Image of Pulverized Coal Combustion Based
on Convolutional Auto-Encoder and Hidden Markov Model. Energies 12 (13),
2585. doi:10.3390/en12132585

Ramachandran, G. N., and Lakshminarayanan, A. V. (1971). Three-Dimensional
Reconstruction from Radiographs and Electron Micrographs: Application of
Convolutions Instead of Fourier Transforms. Pnas 68 (9), 2236–2240. doi:10.
1073/pnas.68.9.2236

Remondino, F., and Fraser, C. (2006). “Digital Camera Calibration Methods:
Considerations and Comparisons,” in International Archives of the
Photogrammetry [Conference presentation], Dresden, Germany (ISRPS).
https://www.isprs.org/proceedings/XXXVI/part5/.

Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-Cnn: Towards Real-Time
Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal.
Mach. Intell. 39 (6), 1137–1149. doi:10.1109/TPAMI.2016.2577031

Ren, Z., Xu, Z., and Lam, E. Y. (2018). Learning-Based Nonparametric
Autofocusing for Digital Holography. Optica 5 (4), 337–344. doi:10.1364/
OPTICA.5.000337

Rising, C., Reyes, J., Knaus, D., Micka, D., Davis, B., Belovich, V., et al. (2021).
Single-Sensor Filter-Intensified Fiber Optic 4D Tomographic CH*
Chemiluminesence Flame Measurements. Appl. Opt. 60 (22), 6337–6341.
doi:10.1364/AO.425887

Rossberg, A., and Funke, H. (2010). Determining the Radial Pair Distribution
Function from X-ray Absorption Spectra by Use of the Landweber Iteration
Method. J. Synchrotron Radiat. 17 (2), 280–288. doi:10.1107/
S0909049509052200

Ruan, C., Yu, T., Chen, F., Wang, S., Cai, W., and Lu, X. (2019). Experimental
Characterization of the Spatiotemporal Dynamics of a Turbulent Flame in a

Gas Turbine Model Combustor Using Computed Tomography of
Chemiluminescence. Energy 170, 744–751. doi:10.1016/j.energy.2018.12.215

Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear Total Variation Based
Noise Removal Algorithms. Physica. D. 60 (1-4), 259–268. doi:10.1016/0167-
2789(92)90242-F

Sebald, N. (1980). Measurement of the Temperature and Flow Fields of the
Magnetically Stabilized Cross-Flow N2 Arc. Appl. Phys. 21 (3), 221–236.
doi:10.1007/BF00886172

Selivanov, V. V., and Lecomte, R. (2001). Fast PET Image Reconstruction Based on
SVD Decomposition of the System Matrix. IEEE Trans. Nucl. Sci. 48 (3),
761–767. doi:10.1109/23.940160

Sellan, D., and Balusamy, S. (2021). Experimental Study of Swirl-Stabilized
Turbulent Premixed and Stratified LPG/air Flames Using Optical
Diagnostics. Exp. Therm. Fluid Sci. 121, 110281. doi:10.1016/j.
expthermflusci.2020.110281

Shepp, L. A., and Logan, B. F. (1974). The Fourier Reconstruction of a Head
Section. IEEE Trans. Nucl. Sci. 21 (3), 21–43. doi:10.1109/TNS.1974.6499235

Shi, J., Qi, H., Yu, Z., An, X., Ren, Y., and Tan, H. (2022). Three-Dimensional
Temperature Reconstruction of Diffusion Flame from the Light-Field
Convolution Imaging by the Focused Plenoptic Camera. Sci. China Technol.
Sci. 65, 302–323. doi:10.1007/s11431-020-1761-2

Shui, C., Liu, H., and Cai, W. (2021). Benchmark Evaluation of Tomographic
Algorithms for Simultaneous Reconstruction of Temperature and Volume
Fraction Fields of Soot and Metal-Oxide Nanoparticles in Non-uniform
Flames. Sci. China Technol. Sci. 64 (2), 237–250. doi:10.1007/s11431-019-
1507-6

Simonyan, K., and Zisserman, A. (2014). Very Deep Convolutional Networks for
Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556.

Song, Y., Wang, J., Jin, Y., Guo, Z., Ji, Y., He, A., et al. (2016). Implementation of
Multidirectional Moiré Computerized Tomography: Multidirectional Affine
Calibration. J. Opt. Soc. Am. A. 33 (12), 2385–2395. doi:10.1364/JOSAA.33.
002385

Strong, D., and Chan, T. (2003). Edge-Preserving and Scale-dependent Properties
of Total Variation Regularization. Inverse Probl. 19 (6), S165–S187. doi:10.
1088/0266-5611/19/6/059

Sun, D., Lu, G., Zhou, H., Yan, Y., and Liu, S. (2015). Quantitative Assessment of
Flame Stability through Image Processing and Spectral Analysis. IEEE Trans.
Instrum. Meas. 64 (12), 3323–3333. doi:10.1109/TIM.2015.2444262

Szegedy, C., Wei Liu, W., Yangqing Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
et al. (2015). Going Deeper with Convolutions. IEEE. C. S.. doi:10.1109/CVPR.
2015.7298594

Unterberger, A., Kempf, A., andMohri, K. (2019). 3D Evolutionary Reconstruction
of Scalar Fields in the Gas-phase. Energies 12 (11), 2075. doi:10.3390/
en12112075

Upton, T. D., Verhoeven, D. D., and Hudgins, D. E. (2011). High-Resolution
Computed Tomography of a Turbulent Reacting Flow. Exp. Fluids 50 (1),
125–134. doi:10.1007/s00348-010-0900-6

Verhoeven, D. (1993). Limited-Data Computed Tomography Algorithms for the
Physical Sciences. Appl. Opt. 32 (20), 3736–3754. doi:10.1364/AO.32.003736

Vest, C. M. (1974). Formation of Images from Projections: Radon and Abel
Transforms*. J. Opt. Soc. Am. 64 (9), 1215–1218. doi:10.1364/JOSA.64.001215

Walsh, K. T., Fielding, J., and Long, M. B. (2000). Effect of Light-Collection
Geometry on Reconstruction Errors in Abel Inversions. Opt. Lett. 25 (7),
457–459. doi:10.1364/OL.25.000457

Wan, M., Xie, H., Zhuang, J., and Xu, K. (2015). Three-Dimensional
Reconstruction Method for Flame Chemiluminescence Distribution with
Complicated Structure. Appl. Opt. 54 (31), 9071–9081. doi:10.1364/AO.54.
009071

Wan, M., and Zhuang, J. (2018). Projection Model for Flame Chemiluminescence
Tomography Based on Lens Imaging.Opt. Eng. 57 (4), 1. doi:10.1117/1.OE.57.4.
043106

Wan, X., Xiong, W., Zhang, Z., and Chang, F. (2009). An Online Emission Spectral
Tomography System with Digital Signal Processor. Opt. Express 17 (7),
5279–5286. doi:10.1364/OE.17.005279

Wan, X., Zhang, Z., and Chen, Q. (2013). Three-Dimensional Radiation
Thermometer Combining Near-Infrared Passband Thermometry with
Optical Fiber Bundle Tomography. Epl 103 (7), 50005. doi:10.1209/0295-
5075/103/50005

Frontiers in Photonics | www.frontiersin.org March 2022 | Volume 3 | Article 84597118

Jin and Situ Survey for Flame Chemiluminescence Tomography

https://doi.org/10.1002/ctpp.19840240502
https://doi.org/10.1364/AO.56.007385
https://doi.org/10.1364/AO.56.007385
https://doi.org/10.1109/TIM.2012.2186477
https://doi.org/10.1016/j.fuel.2017.12.094
https://doi.org/10.1016/j.fuel.2017.12.094
https://doi.org/10.1007/s11431-019-1573-y
https://arc.aiaa.org/doi/book/10.2514/MASM08#pane-d5521a22-9898-435a-9faa-de90b3bee0b01
https://arc.aiaa.org/doi/book/10.2514/MASM08#pane-d5521a22-9898-435a-9faa-de90b3bee0b01
https://spie.org/Publications/Proceedings/Volume/11240?SSO=1
https://spie.org/Publications/Proceedings/Volume/11240?SSO=1
https://doi.org/10.1016/j.crme.2010.05.002
https://arc.aiaa.org/doi/pdf/10.2514/6.2019-0273
https://arc.aiaa.org/doi/pdf/10.2514/6.2019-0273
https://doi.org/10.1016/j.optlaseng.2020.106419
https://doi.org/10.1364/OE.424112
https://doi.org/10.3390/en12132585
https://doi.org/10.1073/pnas.68.9.2236
https://doi.org/10.1073/pnas.68.9.2236
https://www.isprs.org/proceedings/XXXVI/part5/
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1364/OPTICA.5.000337
https://doi.org/10.1364/OPTICA.5.000337
https://doi.org/10.1364/AO.425887
https://doi.org/10.1107/S0909049509052200
https://doi.org/10.1107/S0909049509052200
https://doi.org/10.1016/j.energy.2018.12.215
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1007/BF00886172
https://doi.org/10.1109/23.940160
https://doi.org/10.1016/j.expthermflusci.2020.110281
https://doi.org/10.1016/j.expthermflusci.2020.110281
https://doi.org/10.1109/TNS.1974.6499235
https://doi.org/10.1007/s11431-020-1761-2
https://doi.org/10.1007/s11431-019-1507-6
https://doi.org/10.1007/s11431-019-1507-6
https://doi.org/10.1364/JOSAA.33.002385
https://doi.org/10.1364/JOSAA.33.002385
https://doi.org/10.1088/0266-5611/19/6/059
https://doi.org/10.1088/0266-5611/19/6/059
https://doi.org/10.1109/TIM.2015.2444262
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.3390/en12112075
https://doi.org/10.3390/en12112075
https://doi.org/10.1007/s00348-010-0900-6
https://doi.org/10.1364/AO.32.003736
https://doi.org/10.1364/JOSA.64.001215
https://doi.org/10.1364/OL.25.000457
https://doi.org/10.1364/AO.54.009071
https://doi.org/10.1364/AO.54.009071
https://doi.org/10.1117/1.OE.57.4.043106
https://doi.org/10.1117/1.OE.57.4.043106
https://doi.org/10.1364/OE.17.005279
https://doi.org/10.1209/0295-5075/103/50005
https://doi.org/10.1209/0295-5075/103/50005
https://www.frontiersin.org/journals/photonics
www.frontiersin.org
https://www.frontiersin.org/journals/photonics#articles


Wang, G. (2016). A Perspective on Deep Imaging. IEEE. Access. 4, 8914–8924.
doi:10.1109/ACCESS.2016.2624938

Wang, H., Lyu, M., and Situ, G. (2018). eHoloNet: a Learning-Based End-To-End
Approach for In-Line Digital Holographic Reconstruction.Opt. Express 26 (18),
22603–22614. doi:10.1364/OE.26.022603

Wang, J., Song, Y., Li, Z.-h., Kempf, A., and He, A.-z. (2015). Multi-Directional 3D
Flame Chemiluminescence Tomography Based on Lens Imaging. Opt. Lett. 40
(7), 1231–1234. doi:10.1364/OL.40.001231

Wang, J., Zhang, W., Zhang, Y., and Yu, X. (2016). Camera Calibration for
Multidirectional Flame Chemiluminescence Tomography. Opt. Eng. 56 (4),
041307. doi:10.1117/1.OE.56.4.041307

Wang, K., Li, F., Zeng, H., and Yu, X. (2017). Three-Dimensional Flame
Measurements with Large Field Angle. Opt. Express 25 (18), 21008–21018.
doi:10.1364/OE.25.021008

Wang, K., Li, F., Zeng, H., Zhang, S., and Yu, X. (2016). Computed Tomography
Measurement of 3D Combustion Chemiluminescence Using Single Camera
[Conference Presentation]. Beijing, China. OTA 2016. https://www.
spiedigitallibrary.org/conference-proceedings-of-spie/10155.toc.

Weinkauff, J., Michaelis, D., Dreizler, A., and Böhm, B. (2013). Tomographic PIV
Measurements in a Turbulent Lifted Jet Flame. Exp. Fluids 54 (12), 1624–1628.
doi:10.1007/s00348-013-1624-1

Wellander, R., Richter, M., and Aldén, M. (2014). Time-resolved (kHz) 3D Imaging
of OH PLIF in a Flame. Exp. Fluids 55 (6), 1764. doi:10.1007/s00348-014-
1764-y

Windle, C. I., Anderson, J., Boyd, J., Homan, B., Korivi, V., and Ma, L. (2021). In
Situ Imaging of 4D Fire Events in a Ground Vehicle Testbed Using Customized
Fiber-Based Endoscopes. Combustion and Flame 224, 225–232. doi:10.1016/j.
combustflame.2020.11.022

Wiseman, S. M., Brear, M. J., Gordon, R. L., and Marusic, I. (2017). Measurements
from Flame Chemiluminescence Tomography of Forced Laminar Premixed
Propane Flames. Combustion and Flame 183, 1–14. doi:10.1016/j.
combustflame.2017.05.003

Worth, N. A., and Dawson, J. R. (2012). Tomographic Reconstruction of OH*
Chemiluminescence in Two Interacting Turbulent Flames. Meas. Sci. Technol.
24 (2), 024013. doi:10.1088/0957-0233/24/2/024013

Wu, Y., Rivenson, Y., Zhang, Y., Wei, Z., Günaydin, H., Lin, X., et al. (2018).
Extended Depth-Of-Field in Holographic Imaging Using Deep-Learning-Based
Autofocusing and Phase Recovery. Optica 5 (6), 704–710. doi:10.1364/
OPTICA.5.000704

Xu, C., Yang, B., Guo, F., Zheng, W., and Poignet, P. (2020). Sparse-View CBCT
Reconstruction via Weighted Schatten P-Norm Minimization. Opt. Express 28
(24), 35469–35482. doi:10.1364/OE.404471

Xu, W., Luo, W., Wang, Y., and You, Y. (2020). Data-Driven Three-Dimensional
Super-resolution Imaging of a Turbulent Jet Flame Using a Generative
Adversarial Network. Appl. Opt. 59 (19), 5729–5736. doi:10.1364/AO.392803

Yang, Q., Yan, P., Zhang, Y., Yu, H., Shi, Y., Mou, X., et al. (2018). Low-dose CT
Image Denoising Using a Generative Adversarial Network with Wasserstein
Distance and Perceptual Loss. IEEE Trans. Med. Imaging 37 (6), 1348–1357.
doi:10.1109/TMI.2018.2827462

Yoon, G.-J., Cho, H., Won, Y.-Y., and Yoon, S. M. (2019). Three-Dimensional
Density Estimation of Flame Captured from Multiple Cameras. IEEE. Access 7,
8876–8884. doi:10.1109/ACCESS.2018.2890717

Yu, B., and Tao, D. (2019). Anchor Cascade for Efficient Face Detection. IEEE
Trans. Image Process. 28 (5), 2490–2501. doi:10.1109/TIP.2018.2886790

Yu, T., Bauer, F. J., Huber, F. J., Will, S., and Cai, W. (2021). 4D Temperature
Measurements Using Tomographic Two-Color Pyrometry. Opt. Express 29 (4),
5304–5315. doi:10.1364/OE.412821

Yu, T., and Cai, W. (2017). Benchmark Evaluation of Inversion Algorithms for
Tomographic Absorption Spectroscopy. Appl. Opt. 56 (8), 2183–2194. doi:10.
1364/AO.56.002183

Yu, T., Cai, W., and Liu, Y. (2018). Rapid Tomographic Reconstruction Based on
Machine Learning for Time-Resolved Combustion Diagnostics. Rev. Scientific
Instr. 89 (4), 043101. doi:10.1063/1.5016403

Yu, T., Li, Z., Ruan, C., Chen, F., Lu, X., and Cai, W. (2019). Development of an
Absorption-Corrected Method for 3D Computed Tomography of
Chemiluminescence. Meas. Sci. Technol. 30 (4), 045403. doi:10.1088/1361-
6501/ab01c1

Yu, T., Liu, H., and Cai, W. (2017). On the Quantification of Spatial Resolution for
Three-Dimensional Computed Tomography of Chemiluminescence. Opt.
Express 25 (20), 24093–24108. doi:10.1364/OE.25.024093

Yu, T., Liu, H., Zhang, J., Cai, W., and Qi, F. (2018). Toward Real-Time Volumetric
Tomography for Combustion Diagnostics via Dimension Reduction. Opt. Lett.
43 (5), 1107–1110. doi:10.1364/OL.43.001107

Yu, T., Ruan, C., Chen, F., Wang, Q., Cai, W., and Lu, X. (2019). Measurement of
the 3D Rayleigh Index Field via Time-Resolved CH* Computed Tomography.
Aerospace Sci. Tech. 95, 105487. doi:10.1016/j.ast.2019.105487

Yu, T., Ruan, C., Liu, H., Cai, W., and Lu, X. (2018). Time-resolved Measurements
of a Swirl Flame at 4 kHz via Computed Tomography of Chemiluminescence.
Appl. Opt. 57 (21), 5962–5969. doi:10.1364/AO.57.005962

Zang, G., Idoughi, R., Wang, C., Bennett, A., Du, J., Skeen, S., et al. (2020).
TomoFluid: Reconstructing Dynamic Fluid from Sparse View Videos. Seattle,
WA, USA: CVPR 2020. https://cvpr2020.thecvf.com/.

Zhang, J., Wang, Q., Dai, J., and Cai, W. (2019). Demonstration of a Cost-Effective
Single-Pixel UV Camera for Flame Chemiluminescence Imaging. Appl. Opt. 58
(19), 5248–5256. doi:10.1364/AO.58.005248

Zhang, Z. (2000). A Flexible New Technique for Camera Calibration. IEEE Trans.
Pattern Anal. Machine Intell. 22 (11), 1330–1334. doi:10.1109/34.888718

Zhang, Z. (1999). Flexible Camera Calibration by Viewing a Plane from Unknown
Orientations [Conference Presentation]. Fort Collins, CO, United States: IEEE
CS 1999. https://ieeexplore.ieee.org/xpl/conhome/6370/proceeding.

Zhang, Z., Liang, X., Dong, X., Xie, Y., and Cao, G. (2018). A Sparse-View CT
Reconstruction Method Based on Combination of DenseNet and
Deconvolution. IEEE Trans. Med. Imaging 37 (6), 1407–1417. doi:10.1109/
TMI.2018.2823338

Zhao, W., Zhang, B., Xu, C., Duan, L., and Wang, S. (2018). Optical Sectioning
Tomographic Reconstruction of Three-Dimensional Flame Temperature
Distribution Using Single Light Field Camera. IEEE Sensors J. 18 (2),
528–539. doi:10.1109/JSEN.2017.2772899

Zhou, H.-C., Lou, C., Cheng, Q., Jiang, Z., He, J., Huang, B., et al. (2005).
Experimental Investigations on Visualization of Three-Dimensional
Temperature Distributions in a Large-Scale Pulverized-Coal-Fired Boiler
Furnace. Proc. Combustion Inst. 30 (1), 1699–1706. doi:10.1016/j.proci.2004.
08.090

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Jin and Situ. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Photonics | www.frontiersin.org March 2022 | Volume 3 | Article 84597119

Jin and Situ Survey for Flame Chemiluminescence Tomography

https://doi.org/10.1109/ACCESS.2016.2624938
https://doi.org/10.1364/OE.26.022603
https://doi.org/10.1364/OL.40.001231
https://doi.org/10.1117/1.OE.56.4.041307
https://doi.org/10.1364/OE.25.021008
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10155.toc
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10155.toc
https://doi.org/10.1007/s00348-013-1624-1
https://doi.org/10.1007/s00348-014-1764-y
https://doi.org/10.1007/s00348-014-1764-y
https://doi.org/10.1016/j.combustflame.2020.11.022
https://doi.org/10.1016/j.combustflame.2020.11.022
https://doi.org/10.1016/j.combustflame.2017.05.003
https://doi.org/10.1016/j.combustflame.2017.05.003
https://doi.org/10.1088/0957-0233/24/2/024013
https://doi.org/10.1364/OPTICA.5.000704
https://doi.org/10.1364/OPTICA.5.000704
https://doi.org/10.1364/OE.404471
https://doi.org/10.1364/AO.392803
https://doi.org/10.1109/TMI.2018.2827462
https://doi.org/10.1109/ACCESS.2018.2890717
https://doi.org/10.1109/TIP.2018.2886790
https://doi.org/10.1364/OE.412821
https://doi.org/10.1364/AO.56.002183
https://doi.org/10.1364/AO.56.002183
https://doi.org/10.1063/1.5016403
https://doi.org/10.1088/1361-6501/ab01c1
https://doi.org/10.1088/1361-6501/ab01c1
https://doi.org/10.1364/OE.25.024093
https://doi.org/10.1364/OL.43.001107
https://doi.org/10.1016/j.ast.2019.105487
https://doi.org/10.1364/AO.57.005962
https://cvpr2020.thecvf.com/
https://doi.org/10.1364/AO.58.005248
https://doi.org/10.1109/34.888718
https://ieeexplore.ieee.org/xpl/conhome/6370/proceeding
https://doi.org/10.1109/TMI.2018.2823338
https://doi.org/10.1109/TMI.2018.2823338
https://doi.org/10.1109/JSEN.2017.2772899
https://doi.org/10.1016/j.proci.2004.08.090
https://doi.org/10.1016/j.proci.2004.08.090
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/photonics
www.frontiersin.org
https://www.frontiersin.org/journals/photonics#articles

	A Survey for 3D Flame Chemiluminescence Tomography: Theory, Algorithms, and Applications
	Introduction
	Application of FCT
	Combustion Status
	Temperature Measurement
	Geometric Measurement
	Flame Propagation Speed Measurement

	Background Information
	Acquirement of Projections
	Calibration of Multi-Camera
	Projection Model of FCT

	Reconstruction Algorithm
	Analytical Reconstruction Algorithm
	Iterative Reconstruction Algorithm
	Artificial Intelligence-Based Reconstruction Algorithm

	Summary and Outlook
	Author Contributions
	Funding
	References


