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Abstract 

In this paper, a survey for Data Mining frame work has been done for proposing Data Mining methodologies to 
engineering materials design applications. An exhaustive literature survey made in this article has covered the modeling 
systems such as Analytical Model, Numerical Simulation Model and Computer Based Modeling Systems, which were 
developed and implemented for Polymer Composite processing from the year 1950 to till 2006.  Motivation for the 
present investigation is inspired by the Computer Based Models and is depicted as Mining Frame Work for determining 
optimal decision making strategies and performing intelligent computational operations associated to advanced 
Composite materials design applications.  Data Mining and Knowledge Discovery has made tremendous progress in 
Computer Science in the last 15 years. However, a large gap exists between the results of Data Mining and Knowledge 
Base system that can provide and support proper decision making. Though many Modeling and Simulation Systems 
have been designed and developed for improving the concurrent engineering materials design throughput, the 
application of Data Mining is still essential to extract previously unknown and potentially useful information and 
knowledge from the engineering materials database. The information and knowledge extracted by the Mining System is 
enormously useful for Composite materials design applications and for reducing the materials selection cost and time 
that is required to select the suitable constituent materials that maximize the performance of Composite materials under 
deferent environmental conditions.   

Keywords: Data Mining and Knowledge Discovery, Composite Materials Selection, Machine Learning, 
Neural Network Model. 

1. Introduction  

Many of the modern technologies require composite 
materials with unusual combinations of properties that 
can not be met by the conventional metal alloys, ceramic 
and polymeric materials properties [72]. This is 
especially true for materials that are required for 
aerospace, underwater, and transportation applications.  
Composite materials are the materials that consist of 

more than one class of materials and whose properties 
are better than its constituent materials.  It consists of two 
phases: one is called Matrix, which is continuous and 
surrounds the other phase, which is often called as 
reinforced or dispersed phase. A composite material may 
be designed by more than one class materials such as 
polymer, ceramic and metal.  A combination of a class of 
Polymer/Ceramic/Metal material with reinforced fiber 
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material yields, respectively, Polymer Matrix Composite 
(PMC), Ceramic Matrix Composite (CMC) and Metal 
Matrix Composite (MMC). Since polymeric materials are 
lightweight, having high stiffness and replaces 
conventional materials in many applications, a brief 
description of polymer and polymer matrix composite 
materials and their benefits are illustrated below.   

1.1. Polymers   

Polymers are a large class of materials consisting of 
many small molecules called monomers that can be 
linked together to form long repetitive chains. A typical 
polymer can include tens of thousands of monomers. A 
model of a very simplistic polymer is -A-A-A-A-A-A-A- 
where “A” is the monomer and each “A” is linked to 
another “A” making it many units together, a polymer[1]. 

Man has taken advantage of the versatility of 
polymers for centuries in the form of oils, tars, resins, and 
gums. However, it was not until the industrial revolution 
that the modern polymer industry began to develop. In the 
late 1830s, Charles Goodyear succeeded in producing a 
useful form of natural rubber through a process known as 
"vulcanization [1]. " Some 40 years later, Celluloid (a 
hard plastic formed from nitrocellulose) was successfully 
commercialized. Despite these advances, progress in 
polymer science and technology was slow until the 1930s 
[2], when materials such as Vinyl, Neoprene, Polystyrene, 
and Nylon were developed. The introduction of these 
revolutionary materials began an explosion in polymer 
research that is still going on today. 

Unmatched in the diversity of their properties, 
polymers such as Cotton, Wool, Rubber, Teflon(tm), and 
all plastics are used in nearly every industry. Synthetic or 
engineering polymers and their sub types thermosets and 
thermoplastics could be produced with a wide range of 
stiffness, strength, heat resistance, density, and even at 
low price. With continued research into the Material 
Science and Technology applications, the polymers and  
polymer matrix composites play an ever increasing role in 
modern society.  

1.2. Polymer Matrix Composites 

Polymer Matrix Composites are lightweight, strong, and 
energy-efficient materials that offer significant advantages 
to durable-goods manufacturers and to performance-

driven markets such as the aerospace industry [3][4]. 
Polymer composites consist of a reinforcing structural 
constituent and a protective polymer matrix. The 
properties of the combined material are significantly 
better than the sum of the properties of each component, 
giving materials with high strength-to-weight ratios. As a 
result, polymer composite parts are generally 20 to 30% 
lighter than the corresponding metal parts.  

Polymer Matrix Composite (PMC), also called fiber 
reinforced polymer composite(FRPC), is defined as a 
polymer (plastic) matrix, either thermosets or 
thermoplastic, that is reinforced (combined) with a fiber 
or other reinforcing material with a sufficient aspect ratio 
(length to thickness) to provide a discernable reinforcing 
function in one or more directions. PMCs are different 
from traditional construction materials such as steel or 
aluminum. PMCs are anisotropic (properties only 
apparent in the direction of the applied load) whereas 
steel or aluminum is isotropic (uniform properties in all 
directions, independent of applied load). Therefore, 
PMCs properties are directional, meaning that the best 
mechanical properties are in the direction of the fiber 
placement. Composites are similar to reinforced concrete 
where the fiber is embedded in an isotropic matrix called 
concrete.  

1.3. Composition 

Composites are composed of resins, reinforcements, 
fillers or/and additives. Each of these constituent 
materials or ingredients plays an important role in the 
processing and final performance of the end product. The 
resin or polymer is the “glue” that holds the composites 
together and influences the physical properties of the end 
product. The reinforcement provides the mechanical 
strength. The fillers and additives are used as process or 
performance aids to impart special properties to the end 
product. The mechanical properties and composition of 
PMCs can be tailored for their intended use. The type 
and quantity of materials selected in addition to the 
manufacturing process to fabricate the product will affect 
the mechanical properties and performance. Important 
considerations for the design of composite products 
include type of fiber reinforcement  , percentage of fiber 
or fiber volume , orientation of fiber (0o, 90o, +/- 45 o or a 
combination of these), type of resin , cost of product , 
volume of production (to help determine the best 
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manufacturing method), manufacturing process and 
service conditions.   

1.4. Benefits  

PMCs have many benefits in their selection and use in 
modern life. The selection of the materials depends on 
the performance and intended use of the product. The 
composite designer can tailor the performance of the end 
product with proper selection of materials. It is important 
for the end-user to understand the application 
environment, load performance and durability 
requirements of the product and convey this information 
to the composite industry professionals. A summary of 
composite material benefits include: light weight , high 
strength-to-weight ratio , directional strength , corrosion 
resistance, weather resistance , dimensional stability , 
low thermal conductivity ,low coefficient of thermal 
expansion, radar transparency , non-magnetic, high 
impact strength , high dielectric strength (insulator), low 
maintenance, long term durability, part consolidation, 
small to large part geometry possible and  tailored 
surface finish 

    The rest of this paper has been organized as follows: 
The second section emphasizes the detailed literature 
survey on models and expert systems designed and 
developed on polymer matrix composite materials design 
and its applications. The third section describes the scope 
of data mining frame work for materials design 
applications. The forth section describes the proposed 
Data Mining frame work models and the fifth section 
depicts the data evaluation and representation and the 
sixth section gives the conclusion and future scope of 
research.- 

2. Literature Survey 

2.1. Earlier Work 

The first serious efforts on modeling of polymer 
processing operations were carried out at DuPont, 
Delaware, U.S.A., and subsequently published in the early 
fifties. Also, Maillefer in Switzerland developed, 
independently from the DuPont team, some very 
important models for polymer extrusion at about the same 
time. The contributions of McKelvey, Gore and Squires of 
DuPont are well known. Bernhardt's book [3] summarized 
just about everything important on polymer process 

modeling until about 1958. McKelvey's book [4] was 
perhaps the first ever and very successful attempt to 
present a unified approach in the framework of the 
equations of conservation of mass, momentum and energy 
and the change of phase mechanisms. Klein and 
Marshall's book [5] was perhaps the first monograph ever 
exclusively devoted to computer modeling of polymer 
processing but it had very little impact, because the 
material was really outdated in the seventies. Tadmor and 
Klein's book [6] presented the first complete model for 
plasticating extrusion including transport of solids from 
the hopper forward, as the screw rotates, melting and melt 
pumping.  Package for plasticating extrusion called 
EXTRUD [7], which was based on the models described 
in Tadmor and Klein's book [4], became commercially 
available in the early seventies.  

In the seventies many investigators in universities and 
industry worked on various computer models for 
simulating extrusion [7], filling process [8][9], 
calendaring [18] and other polymer processes[25-34]. 
However, there was little impact of the computer models 
on process technology till 1978 when C. Austin produced 
the first MOLDFLOW package [8] for injection mold 
filling. In the early eighties the art of mold design started 
to become an engineering discipline heavily relying on 
computer predictions with the release of C-MOLD [9] and 
other software packages exclusively devoted to the 
injection molding process [10].  

In the eighties also, many rigorous investigations on 
various aspects of polymer flows through channels, dies 
and process equipment were carried out by various 
research groups in North America and Europe. Computer 
simulation packages for polymer flows such as FIDAP 
[11], POLYFLOW [12], NEKTON [13] and 
POLYCAD® [14] became commercially available.  

In the nineties there was more emphasis on process-
specific application of computer methods for such 
processes as twin-screw extrusion [24-26], 
thermoforming, compression molding [9], film blowing 
[28], reaction injection molding [15], and gas-assisted 
injection molding [15]. The greatest technological impact 
of computer models was in injection molding. The reason 
is the ability of the Hele-Shaw flow approximation [15] to 
describe reasonably well the mold filling process. The 
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commercially available packages [11-14] can handle the 
majority of problems for 1-D, 2-D and 3-D flows. The 
determination of free surfaces or interfaces is the subject 
of current research for 3-D flows. Karagiannis et al 
[16][17] have addressed some research issues relating to 
3-D flow computer simulation.  

The computer modeling and simulation packages [11-
14] [24-34] developed for polymer processing were 
certainly not limited to numerical analysis and graphical 
visualizations. The incorporation of Expert System and 
Knowledge Bases into modeling process, especially in 
interpretations of results obtained from modeling 
techniques [11-14][19-34] for polymer composite  
processing  lead to a new and exiting idea called the 
Knowledge-Based System(KBS) or Expert Decision 
Making System to find solutions to many applications for 
which the traditional computer modeling systems do not 
lend optimal solutions. Knowledge based and Artificial 
Intelligence techniques were proposed as powerful tools 
for modeling applications in computer aided polymer 
processing analysis and design [35][36].   

Over the last two decades, knowledge-based 
techniques [37][40][44][53-54] emerged as powerful 
decision support tools for modeling polymer composite 
process. More emphasis and efforts were made by the 
scientists working in Intelligent Systems Laboratory (ISL) 
at Michigan State University, U.S.A., towards developing 
Intelligent Decision Support Systems [41-50] that aid the 
solution of complex problems through precompiled 
domain knowledge and specific inferencing techniques. 
ISL developed domain based Intelligent Decision Support 
Systems such as COMADE [51] for specifying the 
combinations of polymer matrix materials, chemical 
agents (curing, reactive diluents), fiber materials and fiber 
lengths. The design of polymer composite material 
systems specifies nothing other than determining valid 
combinations of material system constituents. COMADE 
provided a focus for composite materials system design 
and also presented possibilities for families of composite 
material systems that may not be immediately obvious. It 
considered the performance requirements (e.g., tensile 
strength, flexural modulus) and the environmental 
conditions (e.g., chemical environment, use temperature), 
an assembly may face and generate multiple material 
system designs. COMADE can generate over one 
thousand material system designs, ranging from simple 

polyesters to exotic thermoplastic systems. COMADE 
does not consider fabrication issues, as that portion of the 
composites’ design process is handled in a separate 
system. 

COFATE [52] is the current system at ISL for the 
selection of polymer composite fabrication technologies 
such as filament winding, injection molding, lay-up, 
calendaring etc. Each of the fabricating processes has its 
own specific processing concerns and limitations. The 
expanse of knowledge required to consider even a fraction 
of the options available for processing a part is quite 
substantial. The selection of a fabrication process for a 
polymer composite assembly affords a prime opportunity 
to use intelligent decision support systems. The selection 
of a process in polymer composites is extremely 
knowledge intensive due to the myriad concerns within 
each of the various fabrication technologies.  

Besides the intelligent decision support systems 
developed at ISL, researchers have developed generating 
tools such as Part Designer (CPD) [53], the Composite 
Designer (COMDES) [54], and Expert Assisted Design of 
Composite Structures (EADOCS) [55]. These developed 
tools could share a conceptual design philosophy of expert 
systems designed by ISL.  ISL has taken  further 
knowledge-based steps to integrate the developed expert 
systems COMADE [51], COFATE [52] and other 
supporting tools [53-55] into a single polymer composite 
processing system for transforming the intellectual ideas 
on materials and their properties and the enhanced 
functional capabilities of polymer processing systems for 
advanced polymer matrix composite designs.  

The technical report [56]  submitted to the 1993 
American Society of Mechanical Engineers and 
cosponsored by the IGTI and ASME, Cincinnati, 
emphasized the potentials  of fuzzy sets and neural 
networks under  soft computing framework[57] for aiding 
in all aspects of manufacturing of advanced materials like 
metals, ceramics and polymers. This report briefly 
introduced the concepts of fuzzy sets and neural networks 
and showed how they could be used in the design of 
advanced materials and manufacturing processes. These 
two computational methods are alternatives to other 
methods such as the Taguchi method [14].  

In spite of several research attempts to design 
computer based expert systems for polymers and their 
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composite processing [1-56], there is no concise 
integrated expert systems for the systemic analysis and 
design of advanced composite materials. The detailed 
investigation on intelligence decision support systems has 
led to Data Mining frame work for advanced composite 
materials design and analysis. This has been depicted as 
challenging interdisciplinary research[58-73] in Data 
Mining and Knowledge Discovery Process from materials 
databases, which is a part and partial filed of Computer 
Science and Technology and  for merging triangular 
socio-economic-technical bridges between the Material 
Science and Technology (MST) and the Computer 
Science and Information Technology (CS&IT) fields.  

3. Data Mining Frame Work 

With recent developments in data transfer and 
network technologies, data collection technologies in 
many emerging scientific applications need for a 
paradigm shift from a traditional hypothesize-and test 
process to a partial automation of hypothesis generation, 
model construction and experimentation. To develop 
appropriate knowledge discovery models associated to 
advanced composite materials technologies such as  
fabrication technologies, Nano technology and composite 
materials curing technologies, various data mining models 
to be designed and integrated to automate the mining 
process and to obtain potentially useful and ultimately 
understandable patterns in domain database.  Data Mining 
or Knowledge Discovery is a young sub-discipline of 
computer science aiming at the automatic interpretation of 
large data sets. The classic definition of knowledge 
discovery is “the non-trivial process of identifying valid, 
novel, potentially useful and ultimately understandable 
patterns in data” [73]. Data Mining or Knowledge 
Discovery in Databases (KDD) is a multidisciplinary area 
that integrates techniques from several fields including 
machine learning, statistics and database technology  for 
analysis of large volume of data.  

Knowledge discovery process is an interactive and 
iterative procedure involving the following basic steps 
[73]. 

1. Understanding the domain knowledge: Understating of 
application domain and prior knowledge about the 

problem helps go ahead for relevant pattern in the data 
set. 

2. Data Preprocessing: It is a prerequisite operation to 
remove the unwanted data elements that decline the 
performance of the mining algorithms [71][ 73]. 

3. Data Collection and Integration: Data is gathered from 
different sources and is required to integrate as a data 
repository with common data retrieval format to search 
for the target data.  

4. Data reduction and projection: It reduces the size of the 
data set to represent useful patterns to represent the 
data and transformed into another form to improve the 
performance of the mining algorithms.  

5. Data Mining: It is the core task of knowledge 
discovery process.  Mining algorithm from different 
fields may model to extract trivial and useful patterns. 
The classes of Data Mining techniques are association 
rule analysis, Classification and prediction, Cluster 
analysis, Soft computing approaches and statistical, 
machine learning and artificial intelligence methods.  

6. Pattern Evaluation: It identifies truly interesting 
patterns representing knowledge based on 
interestingness measures. 

7. Knowledgebase: This is the domain knowledge that is 
used to guide the search or evaluate interestingness 
measure of resulting patterns. Such knowledge can 
include concept hierarchy, knowledge such as user 
beliefs, which can be used to access pattern’s 
interestingness based on its unexpectedness. 

8. Data Visualization:  Knowledge representation 
techniques are focused to represent the mined 
knowledge to the end user 

3.1. Proposed Data Mining Frame Work 

A typical data mining framework proposed for composite 
materials performance analysis is shown in figure 1. It 
employs all the basic steps of data mining and 
Knowledge discovery process with data mining 
algorithms from statistical, machine learning and 
artificial intelligence classes.  This accepts end user 
requirements from the graphical user interfaces and 
performs the following operations: 
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1. It classifies the input user requirements, usually 
properties of materials, { }nppppp ,...,,,, 4321  by 

assigning class label to each property, ji Cp ∈ . Then 

predicts the materials from the database that matches 
the maximum distributed properties in a class  

mjC ..1=  of the material class into which it belongs and 

then predicts a material that matches the user’s input 
requirements. 

2. It predicts a reinforcement fiber that maximizes 
composite performance, from the large fiber class, 
based on critical length of a fiber derived from matrix 
material property.  

3. It predicts the cost-effective polymer matrix and 
reinforcement fiber that maximize the composite 
materials performance and reduce the cost of 
materials selection. 

4. The mechanical performance of a composite material 
in which varying volume fraction and diameter of 
fibers uniformly placed at different orientations at 
different layers, is predicted to guide the composite 
design engineers in optimizing design strategies.  

 

 
Figure 1:  Data Mining Systems Architecture 

4 .Data Mining Models  

The proposed data mining system architecture has 
integrated with matrix and reinforced materials’ 
databases, materials classification and selection Model, 

and Composite stiffness analysis model. Detail 
description of each model is given in subsequent sections. 

4.1. Materials Data Representation Model 

An object-oriented data model is proposed to organize 
materials data sets using objects, classes, sub classes, 
class hierarchy, data encapsulation, data binding and other 
advanced features as specialization and generalization, 
aggregation, summarization and unions. An object-
oriented data model is a logical organization of the 
materials data sets as objects (entities), constraints and the 
cardinality relationships among objects. These objects are 
identified by unique ID is called object identifier. Similar 
objects are grouped together to form as a class. Every 
object has a state (the set of values for the attributes of the 
object) and a behavior (the set of methods - program code 
- which operate on the state of the object). The state and 
behavior encapsulated in an object are accessed or 
invoked from outside the object only through explicit 
message passing. Materials characterization and 
discrimination tasks are performed on the Materials 
database. Materials are classified into Polymer, Ceramic 
and Metal classes and the fibers may be classified into 
short, medium and long fiber based on the properties of 
both matrix and reinforcement fibers. A typical 
organization of the materials data set is shown below.  

 

Figure 2: Cardinality and Disjoint Constraints in specialization 
hierarchy 
4.2. Matrix Materials Classification Model 
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Classification is a data mining task for assigning a class 
label to a randomly selected data set from the materials 
data set.  Back Propagation Neural Network model is 
proposed  for classifying engineering materials into 
Polymer, Ceramic and Metal classes as it is performs well 
on on-linear data sets by minimizing classification error 
rate[76][77].  

 
Figure 3:  Typical MLPNN Architecture 

The neural network model is a three layer feed 
forward neural network [57][58]. Each layer is fully 
connected to all successive layers through the connection 
weights as shown in figure 3. For a neuron i, the 
normalized weighted inputs are fed and then summed up 
to the final input,ui.   

∑
=

=
m

j
jiji xwu

1
,                              (1)  

The inputs for neurons are propagated to outputs through 
the neurons in the hidden layers according to the 
following sigmoid activation function with bias θ . 

 
)(1

1)( θ+−+
=

iui e
uf                                                   (2) 

where  ui   is the input function and f(ui) is the output 
function. 
The training procedure is a search algorithm to minimize 
the error between the input and the output patterns by 
changing the weights. This process determines the 
weights of NN connections to map the relationships 
between input and output. The network must be trained 
with training data sets in such a way that for a given input 

vector, the output vector must be obtained to classify the 
patterns.   
 

When the back propagation learning method is used 
as training procedure, the objective function for an 
input/output pattern is the sum of the squared residual 
errors as follows. 

2

1
)(

2
1

k

m

k
k OTE −= ∑

=

                                              (3) 

where kk OandT  are the target and the actual 

computed outputs of  kth output unit respectively. To find 
a set of weights that minimizes the objective function, a 
gradient decent method is implemented. The weight 
change is proportional to the derivative of the error with 
respect to each weight. This can be expressed as 

  ∆
W
Ew

∂
∂

∝                      (4) 

The determination of weight change is a recursive process 
which starts with the output units. For a weight that is 
connected to a unit in the output layer, its change is based 
on the error of this output unit. It is given by 
∆ jkjkkkkjk OOOTOOw δ=−−∝ )()1(,             (5) 

∆ jkjk Ow δ=,                      (6)   

where kδ  is referred to as the error signal at the kth output 

unit. The output signals are back propagated to units in 
the hidden layer. The change of a weight in hidden layer 
is determined by     

∆ ∑−∝
k

ijkkjjij OwOOw ,, )1( δ ,                 (7)   

∆ ijij Ow δ=,           (8) 

In order to increase the speed of the training procedure 
without any oscillations, the adaptive learning rate and 
momentum are used during the training process. The 
equations (7) and (8) are then rewritten as follows 
∆wk,j(n) =  jk Oηδ  +α ∆wk,j(n-1)                                 (9)  

∆wj,i(n) =  ijOηδ  +α ∆wj,i(n-1)                 (10)  
where n is the training epoch number, η  is the learning 
rate and α  is the momentum. The momentum allows the 
previous weight change to have a continuing influence on 
the current weight change. 
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4.3. Decision Tree Classifier for Fiber Classification 

It is a divide and conquer approach to the problem of 
learning from a set of independent test entities. The 
decision tree induction [80] method is implemented on 
test data and sample data sets of reinforcements.  In the 
decision tree, each internal node represents a test on an 
attribute, each branch represents an outcome of the test, 
and leaf node represents classes or class distribution.  

 
  

Figure 4: Decision Tree Classifier 
 
The root node at level 1 defined with discrimination 
function C(D,F) on  decision class D =  
{d1,d2,d3,d4}containing decision rules and the 
reinforcement fiber data space Fn,m = {t1, t2, t3..tn}, 
containing  n tuples and each tuple contains m number of 
attributes. The discrimination function is linear function 

)( fϕ  classifies fiber data space into short(S), medium 
(M) and long (L) fiber classes. Further it discriminates 
long fiber class into desired (DF) and undesired fiber 
(UF) classes.  

 The discrimination function  )( fϕ  applied at level 1 
for yielding fiber classes L, M and S is defined with fiber 
length Lf and Modulus of Elasticity Ef   
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      Further at the level 2, DTC with function )( fϕ  on 
fiber class L discriminates into desired and undesired fiber 

classes labeled with DFC and UFC respectively. The leaf 
node DF contains the optimal reinforcement fibers whose 
length is greater than fifteen times of the critical length, 

c

f
c

d
l

τ
σ
2

= mm of fiber and Ef  is greater than  Ec of 

polymer composite. The desired fiber (DF) class is being 
classified by the following function.  

⎪
⎩

⎪
⎨

⎧
>

−
=

otherwiseUFC
E

Lf
ifDFC

f c

f 1
)(

)(ϕ        (12) 

where )( ff ELWf += ,W is selection quantitative 

parameter. 
 
 

4.4.Cost-Effective Materials Selection Model 

Matching the goals of Knowledge Discovery is the 
computational part of Data Mining technique. One such 
technique implemented here is Decision Tree Classifier 
(DTC) [59] [65][75]. The Decision Tree Classifier is used 
successfully in many diverse areas such signal processing, 
pattern recognition, remote sensing, medical diagnosis, 
expert systems and speech recognition. The most 
important feature of DTC is its capability to break down a 
complex decision making process into a collection of 
simpler decisions. Thus provides a solution which is often 
easier to interpret. 

4.4.1. Matrix Material Selection Model 

The design cost of composite materials depends on the 
cost of its constituents materials that meet the design 
requirements of composite materials. The design cost is 
minimized with the cost of their constituent materials 
measured using the units cost per density method. 

Therefore, a novel exponential similarity measure model 
[75] is proposed to measure the homogeneity of material 
performances on end user requirements. For any two 
attributes, x and y, the homogeneity between them is 
defined as bellow.  

yxe

yx
yxd

−−+

−
=

1
),(                  (13) 

It satisfies the following principles.  
;0),(.1 ≥yxd Distance is a non-negative number. 

Level 2 

Level 1 

Long 

DF 
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UF 
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;0),(.2 =xxd The distance of an attribute to itself is 
zero. 

;),(),(.3 xydyxd =  The distance is symmetric 
function 

;),(),(),(.4 yxdyzdzxd ≥+  It does not obey 
triangular inequality. 

In general, it can be applied in measuring similarity 
between two materials say xi and yi having p properties.  

 ∑
=

−−+

−
=

p

k
yx

kjki
ji

kjkie

yx
yxd

1

,,

,,1
),(                 (14) 

where  { }piiiiiii xxxxxxx ,5,4,3,2,1, ..........,,,,,=  and 

{ }piiiiiij yyyyyyx ,5,4,3,2,1, ..........,,,,,=  

4.4.2. Cost Computational Model 

It is a core task in KDS for computing appropriate 
parameters, which have relationship with the output of 
data mining algorithm [77], for researching for data 
patterns that constitute core knowledge. For the design 
requirements of cylindrical shaft given in the chapter 17 
of [72],  it is required to compute, longitudinal modulus of 
elasticity, Ec,, Volume ,Vc of composite having intra 
relationship with mid point deflection yΔ  and a moment 
of inertia I of cross sectional area with inner  and outer  
diameters  ind  and od  respectively. 
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4
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The longitudinal modulus of elasticity Ec of composite 
material with long fiber having deflectionθ , is derived 
with composite rule mixture formula [72]. 

)( ffmmc vEvECosE += θ   and  1=+ fm vv . 

The volume of composite Vc, is proportional to the relative 
volumes Vm and Vf of Matrix and Fiber respectively. The 
volumes and masses of these are being computed with 
composite rule mixture computation. 

  [ ] [ ]
⎭
⎬
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⎩
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=
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c
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V
vvVV                                         (17)              

The masses of polymer matrix and fiber vary 
proportionally with the product of their density and 
volume respectively. 
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The costs of the Polymer Matrix and fibers are computed 
with  

[ ] [ ]
⎭
⎬
⎫

⎩
⎨
⎧

=
m

f
mfmf C

C
MMCC 11                           (19) 

 The cost of composite material is sum of the cost of fiber 
and the polymer matrix. The algorithm for selecting the 
cost effective composite materials is described below:              

4.4.3. Algorithms for Fiber Classification and Cost 
Computation 

Algorithm 1: 

Input    :  Fiber reinforcement fiber data space F. 
Output:  A set of selected fibers class DF, each fiber 

length is greater 15lc 

Method:  

Step 1:  Create a node N. 

Step 2: if samples are all of the same class, C then return 
N as leaf node labeled with the class C; 

Step 3: If an attribute list is empty then return N as the 
leaf node labeled with class C. 

[Select a test attribute and determine its class.] 

Step 4: Select a test attribute, which is determined 
heuristically.  

Step 5: For each f in F satisfying discrimination function 
di, at the ith level create a child node for the 
parent node and labeled it 

Step 6:  Repeat through step 4 until conditional class = 0 
 
Algorithm 2: 

Inputs: Table ),,,( ffffmxn ECLF ρ contains, length 

which is greater 15lc, cost, density and tensile modulus of 
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fibers and elastic modulus of composite, Ec, fiber critical 

length lc .Polymer Matrix table ),,( mmmmxn ECP ρ . 
Output: Least cost fiber associated to the given candidate 
Polymer Matrix. 

Method 

Step 1: obtain the output of classifier, Fmxn(c,d,e) of 
fibers.  
Step 2: compute Volume of composite, Vc, 
Step 3: Compute for i=1..n do//  for a Polymer Matrix and 
all the fibers. 
Begin 

( ) ⎟
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f E
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   Compute    [ ]mf VV ,  [ ]mf MM , [ ]11

mf CC , 

  Compute 11
mfc CCC +=  

end 
Step 4:  Select 

))((
..1

iCMin c
ni =

 

Step 5: stop 

4.5. Composite Performance Analysis Model 

It tailors the knowledge discovered by the knowledge 
discovery models [79] and predicts the general 
characteristics of the structural composites. This model 
predicts the mean stiffness of composite laminate in 
which reinforcement fibers are placed at different 
orientations in different layers of composite laminate.   

4.5.1. Continuous and Aligned Fibers  

The properties of a composite having its fibers aligned are 
highly anisotropic, that is independent on the directions in 
which they are measured. The modulus of elasticity of a 
continuous and aligned fibrous with very good fiber–
matrix bond strength or shear yield strength, cτ , in the 

direction of alignment or longitudinal direction, is 
proportional to the sum of products of modulus of 
elasticity and volume of both polymer matrix and fibers 
reinforced in the polymer matrix composite, whose 
volume is equal to Area= Length * Breadth * Height 
composite geometry. A typical arrangement of continuous 
and aligned fibers along the direction of the applied load 
is shown in the figure 5. 

 fffmCLM VEVEE +−= )1( GPa                           (20) 

 
Figure 5: Composite structure having aligned fibers with 
orientation at 00 along the direction of the force applied. 
 
In a fibrous composite with the applied stress aligned 
perpendicular to the fibers, the stress is transferred to the 
fibers through the fiber matrix interface and both the fiber 
and the matrix experience the same stress. This 
longitudinal modulus of elasticity of composite sets up a 
vector relationship between modulus of elasticity and 
volume of both fiber and matrix phases, whose magnitude 
satisfies the relational boundary of cosine amplitude 
method [74]. A typical fiber arrangements perpendicular 
to the direction of force applied is shown in figure 6 and 
its transverse modulus of elasticity computed by 
   

  GPa                     (21)       
         
 

 
 
Figure 6: Composite structure having aligned fibers with 
orientation at 900 along the direction the force applied. 
 
When the fibers are placed at different angles from 00 -900 

, the continuous and aligned fibers’ modulus of elasticity 
decreases from the composite strength at 00 to the 
composite strength at 900. The longitudinal modulus of 
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fibers with orientation θ  along the direction of the 
applied is measured by  
 ))1((cos fffmc VEVEE +−= θ GPa                (22)           

Typical fiber arrangement at 450 orientations along the 
direction of force applied is shown is figure 7. 
 

 
Figure 7: Composite structure having aligned fibers with 
orientation at 450 along the direction of the force applied. 
 
The modulus of elasticity of continuous and oriented fiber 
composite loaded in the transverse direction of the force 
applied increases with the increase of volume fraction of 
fibers as the fibers’ orientation increases from 0 to 90 
degree. This value is computed by the following formula. 

fmff

mf
c VEEV

EE
SinE

+−
−=

)1(
)1( θ GPa                (23) 

In the composite volume ,mfc VVV += such that 

fcf vVV = and mcm vVV =  with 1=+ mf vv . 

If the fiber phase volume  fV  is distribute over N planes, 

{ }NPPP ,......, 2,1  respectively with fiber volume phases 

{ })(),........2(),( NVViV fff ,which are proportional to 

fiber volume fractions,{ })(),........4(),3(),2(),1( Nvvvvv . 

The volume of a single fiber having fiber length lf   at ith 

plane is   )(*)( ivfivsf l=      

Number of possible fibers at ith plane is   

)(
)(

)(
ivsf
iV

if f
n =         

The total volume of fiber phase at ith plane is 
)()(*)()( iVifivsfiCV fnf ==                 (24) 

The plane iP   having fiber phase  volume, )(iCV f  

volume fraction )(iv and if all the fibers , )(if n  , 

arranged at  θ  degree, the composite longitudinal 

modulus of elasticity(CLME) and composite transverse 
modulus of elasticity(CTME) of composite part are 
computed by the following equations. 

(25)  
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The mean of longitudinal modulus of all the 
planes{ }NPPP ,......, 2,1  in which fibers oriented at θ  

degree in a given composite laminate is 
[ ]∑

=
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i
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N
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The mean of transverse longitudinal modulus of all the   
planes { }NPPP ,......, 2,1  in which fibers oriented at 

degreeθ  is 
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In the case of composite consisting of N planes and each 
plane, fibers are arranged at θ (i) degree orientation, 
Mean LM and Mean TM are computed by 
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A composite consisting of different planes and in each 
plane fibers oriented at   θ  degree is shown in figure 8. 

 
Figure 8: Composite structure having aligned fibers at unique 
orientation in each plane of the composite. 

5. Data Evaluation And Representation 

Data evaluation and representation is a vital component of 
data mining and knowledge discovery processes to 
visualize the knowledge and validating the knowledge of 
interestingness. The materials in data sets are classified 
into different materials classes such as Metal, Ceramic 
and Polymer by the back propagation neural network 
classification model that consists of 25 inputs, 7 hidden 

B

L 

Transverse Modulus of 
Elasticity 

FiberF

MatrixF

B 

L 

Longitudinal Modulus 
of Elasticity 

Transverse Modulus of 
Elasticity 

FiberF

MatrixF
Force Applied 

[ ]GPaiVEiVVEPE fffcmNiCLME ))())(((cos),( ..1 +−== θθ

International Journal of Computational Intelligence Systems, Vol.1, No. 4 (December, 2008), 313-328

Published by Atlantis Press 
  Copyright: the authors 
               323



Doreswamy 

 

and 3 output neurons. The learning curves with varying 
learning rates with constant momentum are shown in the 
figure 9. The classification model is efficient in 
classifying 5000 matrix materials with mean classification 
accuracy 99.35 % and mean classification error accuracy 
0.00690%, less than 1%. 
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Figure 9: Network structure 25 X 7 X 3 with learning curves for 
varying learning rates and fixed momentum constant. 
 
Material selection model selects polymer matrix: 
polycarbonate material that match the input design 
requirements, from the polymer class. Classified long 
fiber class materials are considered for computing cost of 
composite materials. Cost of the polymer matrix 
composite {Polycarbonate + Aramid} that matches the 
end user requirements is computed with a set of long finer 
and is depicted in the figure 10. 
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Figure 10: Shows the volume fractions of both Polymer Matrix 
and Reinforcement fibers and the cost of polymer composites: 
polycarbonate with different reinforcement fibers. 

The knowledge extracted from both the polymer 
matrix and fiber reinforcement selection tools are tailored 
for the analysis of the fiber performance in composite 
using composite properties. The composite performance 
analaysis model analyzes the longitudinal modulus and 
transverse modulus of the composite material. Fibers 
phase with varying volume fraction and diameter are 
placed at different orientations in different planes. The 
longitudinal modules and the transverse modulus of the 
composite material having the geometrical features 
specified in the table 2 and having different volume 
fractions of the fibers placed in it at orientations 0, 15, 30, 
45, 60, 75, and 90 degree at different plans, respectively 
decreases gradually to zero and increases to one that is 
shown in the figure 11. 
 
Table 2: Physical and geometrical properties of a composite part 

1 Volume    V = 7 * 250 Cm 
2 Length   L  = 25 Cm 
3 Breadth B  = 10 Cm 
4 Height/Number of layers 

in composite 
N = 7 No. 
 

5 Size of each layer 25 * 10 cm2   
6 Orientation of fibers θ  degree 

 
Fibers  Stiffness at orienations 0,15,30,45,60,75,90  degree 

orientations
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Figure 11: Longitudinal and Transverse modulus of elasticity of 
composite with fibers orientations at 0, 15, 30, 45, 60, 75, and 90 
degrees. 
 
The mean stiffness of composite materials with varying 
fibers features can be maximized and can guide for a 
design engineer to make strategic decision making that 
satisfies the end user requirements. 
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6. Conclusion and Future Work 

In this paper an exhaustive literature survey for data 
mining frame work for engineering materials design 
applications has been made.  An object-Oriented data 
model is proposed to organize materials data using objects 
and classes and their enhanced features to simplify 
searching and retrieval operations.  Machine learning 
technique such as decision tree classifier and AI neural 
network classifier are proposed for materials 
classification, where as new similarity measuring 
technique is implemented for materials selection.  The 
proposed data mining frame work simulates the manual 
computational operations as done by a composite design 
engineer and performs the voluminous of computational 
steps required for maximizing the structural mechanical 
performance of composite material. Introduction of data 
mining system to engineering materials design 
applications improves computational accuracies and 
design throughput of new engineering materials.  This 
model can assist the design engineers in the selection 
process of cost effective materials and can guide the 
designer in maximizing the mechanical stiffness of a 
composite materials having fiber phases varying volume 
fractions at different orientations. Further a prototype data 
mining model is proposed to implement under Soft 
computing frame work to measure the mechanical 
performance of composite materials under different 
conditions.  
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