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The dynamic behaviour of magneto-mechanical sensors and actuators can be completely

described by Maxwell’s and Navier-Lamé’s partial differential equations (PDEs) with appro-

priate coupling terms reflecting the interactions of these fields and with the corresponding

initial, boundary and interface conditions. Neglecting the displacement currents, which can be

done for the classes of problems considered in this paper, and introducing the vector potential

for the magnetic field, we arrive at a system of degenerate parabolic PDEs for the vector

potential coupled with the hyperbolic PDEs for the displacements. Usually the computational

domain, the finite element discretization, the time integration, and the solver are different

for the magnetic and mechanical parts. For instance, the vector potential is approximated by

edge elements whereas the finite element discretization of the displacements is based on nodal

elements on different meshes. The most time consuming modules in the solution procedure

are the solvers for both, the magnetical and the mechanical finite element equations arising at

each step of the time integration procedure. We use geometrical multigrid solvers which are

different for both parts. These multigrid solvers enable us to solve quite efficiently not only

academic test problems, but also transient 3D technical magneto-mechanical systems of high

complexity such as solenoid valves and electro-magnetic-acoustic transducers. The results of

the computer simulation are in very good agreement with the experimental data.

1 Introduction

Magneto-mechanical sensors and actuators are used in various technical devices, for

instance as force-sensors and valve-actuators in automatization-engineering, in injection-

valves for diesel engines or as actuators in loudspeakers. Numerical simulation is an

important tool for designing and optimizing these sensors and actuators.

The basis for the numerical simulation is a mathematical model that describes the dy-

namic behaviour of magneto-mechanical sensors and actuators. Such magneto-mechanical

systems can be modelled by Maxwell’s and Navier-Lamé’s partial differential equations

(PDEs) describing the electromagnetic field and the mechanical field, respectively. The

interaction of these fields is taken into account by additional terms in the PDE systems.
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The mathematical model is completed by appropriate initial, boundary and interface

conditions. Neglecting the displacement currents, which can be done for a wide range

of sensor and actuators, and introducing the vector potential for the magnetic field, we

arrive at a system of degenerate parabolic PDEs for the vector potential coupled with the

hyperbolic PDEs for the displacements.

The line variational formulations (called sometimes also weak formulations) of the

PDE systems are the starting point for the finite element discretization. The mechanical

displacements, which are in H1, are approximated by nodal tedrahedrial finite elements,

whereas the vector potential, which is in H(curl), is discretized by edge tedrahedrial finite

elements. We notice that the edge finite element discretization ensures the continuity of the

tangential component of vector potential. We use different meshes for approximating the

mechanical displacements and the magnetic vector potential. These meshes are obtained

from different refinement strategies of a common coarse mesh that represents the geometry.

Special transfer operators manage the transfer of magnetic quantities from the magnetic

grids to the mechanical grids and vice versa. These transfers are needed in the coupling

terms.

This finite element discretization results in a large-scale second-order ordinary differ-

ential equation (ODE) system for the nodal values of the displacements that is strongly

coupled with a large-scale first-order ODE system for the edge degrees of freedoms

(dofs) determining the finite element approximation to the magnetic vector potential. The

second-order ODE system is numerically integrated by a Newmark scheme, whereas the

first-order ODE system is solved by generalized trapezoidal rule. The time integration

is connected with some coupling iteration taking into account the coupling of the ODE

systems in a weak way. Since the time integration schemes are implicit, we have to solve a

large-scale linear mechanical system and a large-scale nonlinear magnetic system at each

step. The nonlinearity in the magnetic system is due to the dependence of the permeability

on the induction in ferromagnetic materials. The nonlinear magnetic system is solved by

a fixed point iteration combined with some line-search algorithm. Finally, in both cases

the arising linear systems are solved by special designed multigrid methods. The multigrid

method for the mechanical system uses a block Gauss-Seidel smoother that takes into

account the strong coupling of nodal displacements belonging to one node, whereas the

multigrid method for the magnetic systems uses the special block smoothers proposed

in [1]. An alternative multigrid technique for Maxwell’s equations was proposed in [14].

The solution of these linear systems of finite element equations is certainly the most

time-consuming part of the whole numerical algorithms. Thanks to the efficiency of these

multigrid methods we can successfully solve not only academic test problems, but also

transient 3D technical magneto-mechanical systems of high complexity such as magnetic

valves and electro-magnetic-acoustic transducers.

To the best knowledge of the authors, there is neither a complete mathematical analysis

of the coupled magneto-mechanical model discussed in this paper nor a complete numer-

ical analysis of the complicated numerical algorithm presented in this paper. Therefore, to

verify the mathematical model and the accuracy of the numerical algorithm proposed, we

perform a lot of numerical simulations for real-life problem containing all the difficulties

which are characteristic for industrial applications and compare the numerical results with

the measurements made along with the numerical simulations. The first test example is a
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solenoid valve. We create a finite element model for the computer simulation and, at the

same time, we build the same solenoid valve for real experiments and measurements. Due

to the construction of the valve, a full 3-D simulation of the model must be performed.

Additionally, the used material is strongly nonlinear and the movement of the arma-

ture causes a displacement of the FE-mesh. Also the very low penetration-depth of the

magnetic-field is a challenge for the numerical simulation. An electro-magnetic-acoustic

transducer (EMAT) serves as a second example. The EMAT can be considered as a 3D

linear problem, because the used materials are linear and the mechanical displacements

are small. Nevertheless, the dimensions of the EMAT, which are very large in comparison

to the small penetration depth of the magnetic field, cause a very high number of 3D

finite elements. Therefore, only 2-D simulations of EMATs were performed in the past

[26].

The remaining part of the paper is organized as follows. In § 2, we present the PDEs

describing the transient behaviour of the mechanical and magnetical fields, together with

the appropriate initial, boundary, and interface conditions. Special emphasis is given to

the discussion of the influence of the coupling terms. Section 3 introduces the variational

line formulations of both field problems which are the starting point for the finite element

semidiscretization. The time integration, the iterative coupling, and the multigrid handling

are discussed in § 4. The coupling of the magnetic system to an electrical network with a

given voltage and its handling in our numerical scheme is also discussed in § 3 and § 4,

respectively. Section 5 deals with the computer simulation of two real-life applications

and their verification by experimental results. Finally, in the last section, we give some

concluding remarks.

2 PDEs for the magnetic and the mechanical fields

In this section, we briefly present the Navier-Lamé and the Maxwell PDE systems describ-

ing the dynamic mechanical behaviour and the transient electromagnetic behaviour of

magneto-mechanical sensors and actuators, respectively. The eddy current approximation

to Maxwell’s equations is appropriate for our class of problems. We put special emphasis

on the terms modeling the coupling of mechanical and magnetical fields. The describing

equations are completed by appropriate initial, boundary and, interface conditions.

2.1 The mechanical system

If geometrically linear elasticity and isotropic linear material are assumed, the dynamical

behaviour of mechanical systems can be modelled by the Navier-Lamé PDE system

ρ
∂

2�d

∂t2
+ c

∂�d

∂t
− E

2(1 + ν)

(

(∇ · ∇)�d +
1

1 − 2ν
∇(∇ ·�d)

)

= �fV , (2.1)

where �fV denotes the volume forces, E Young’s modulus, ν the Poisson ratio, ρ the specific

density and c a viscous damping of the material. On the boundary Γmech of the mechanical

computational domain Ωmech either the mechanical displacements �d (Dirichlet boundary)

or the mechanical normal stresses �σn (Neumann boundary) or a mechanical impedance

are given [38]. On interfaces, the continuity of the displacements and the normal stresses
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is required. The initial conditions prescribed for the displacements �d and the velocities

∂�d/∂t complete the mechanical equations.

2.2 The magnetic system and the coupling terms

The transient electromagnetic behaviour of magneto-mechanical sensors and actuators is

described by Maxwell’s equations [37]. Neglecting high frequency displacement currents,

which can be always done without restrictions for the class of problems considered, we

can rewrite Maxwell’s equations in the form

∇ × �H = �J (Ampère’s law), (2.2)

∇ × �Es = −∂�B

∂t
(Faraday’s law), (2.3)

∇ · �B = 0 . (2.4)

In equations (2.2)–(2.4) �H denotes the magnetic field strength, �J the electric current

density, �B the magnetic induction and �Es the solenoidal part of the electric field �E, which

can be written as

�E = �Ee + �Es (2.5)

with �Ee the irrotational part of �E. These equations must be completed by the constitutive

relations

�B = µ�H, (2.6)

�J = �Je + γ
(

�Es +�v × �B
)

, (2.7)

where �v is the velocity, γ the specific electrical conductivity and µ the permeability of

the material. �Je = γ�Ee denotes a given current density. We mention that in ferromagnetic

materials the permeability depends on the magnetic induction.

The physical quantities �H , �B and �J have to satisfy not only equations (2.2)–(2.7) but

also certain interface- and boundary-conditions. In Fig. 1 an eddy-current problem is

shown. The regions Ω1 and Ω2 consist of materials with the conductivities γ1 and γ2. In

Ω1 and Ω2 eddy currents can arise. The region Ω3 has no conductivity but possibly an

impressed current �Je. The boundary Γ = ∂Ω of the whole domain Ω = Ω1 ∪ Ω2 ∪ Ω3

usually consists of the parts ΓH and ΓB with the boundary conditions

�B ·�n = 0 on ΓB (2.8)

and

�H ×�n = �K on ΓH . (2.9)

In equations (2.8) and (2.9) �n denotes the outer normal unit vector to the boundary Γ . �K

is a given surface current-density. On the interface Γ12 between Ω1 and Ω2 the interface

conditions

�B1 ·�n1 + �B2 ·�n2 = 0 and �H1 ×�n1 + �H2 ×�n2 = 0 (2.10)
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eddy currents

no eddy currents

Figure 1. Model of an eddy-current problem.

must hold. The normal unit vectors are oriented in opposite directions which means that

�n2 = −�n1. (2.11)

Furthermore, since the the current �J is divergence-free, the condition

�J1 ·�n1 + �J2 ·�n2 = 0 (2.12)

must hold on Γ12, too. On the boundaries Γ13 and Γ23, analogous conditions must be

valid.

Introducing a magnetic vector potential �A

�B = ∇ × �A (2.13)

leads according to equation (2.3) to the relation

�Es = −∂�A

∂t
, (2.14)

so that we can transfer equations (2.2)–(2.7) to the form

γ
∂�A

∂t
+ ∇ ×

(

1

µ
∇ × �A

)

+ −γ�v × (∇ × �A) = �Je . (2.15)

For large Péclet-numbers

Pe =
µγvh

2
>> 1, (2.16)

the term γ�v× (∇ × �A) becomes dominant and causes instabilities in the numerical solution

process [24]. In (2.16), h denotes the discretization parameter in direction of the velocity

�v. However, if due to mechanical movements/deformations the overall magnetic field is

changed (e.g., movement of the armature in a magnetic valve), we have to consider the
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Figure 2. Movement of a considered point P.

formulation of the magnetic problem on the deformed geometry [24]. Observing some

point P in a fixed reference frame Γ (x, y, z) (see Fig. 2), we can express the spatial and

temporal variation of the magnetic vector potential �A at this point by the formula

∆�A

∆t
=

�A(�d + ∆�d, t + ∆t) − �A(�d, t)

∆t

=
�A(�d + ∆�d, t + ∆t) − �A(�d, t + ∆t)

∆t
+

�A(�d, t + ∆t) − �A(�d, t)

∆t
.

For ∆t → 0, the expression (2.17) leads to the relation

d�A

dt
=

∂�A

∂t
+ (�v · ∇)�A. (2.17)

On the other hand, the electromotive force can be rewritten as1

�v × (∇ × �A) = ∇�A(�v · �A) − (�v · ∇)�A. (2.18)

Using (2.17) and (2.18), we can transform the partial differential equation (2.15) into the

form

γ
d�A

dt
+ ∇ ×

(

1

µ
∇ × �A

)

− γ∇�A(�v · �A) =�Je . (2.19)

Equation (2.19) illustrates that the total differential d�A/dt takes the induced current

caused by the electromotive force implicitly into account, but in return the term γ∇�A(�v · �A)

must be considered additionally. If�v and �A are orthogonal, this term disappears, which is

the case for all 2D problems. Besides the electromotive force, magnetic forces also cause

a coupling between the magnetic and the mechanical field. The magnetic volume-force,

produced by the magnetic field, can be separated into two parts. The first effect is the

Lorentz force,

�fV ,L = �J × �B, (2.20)

1 ∇�A(�v · �A) means, that the gradient is used only for the terms of the magnetic vector potential �A.
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Material 1
Material 2

Figure 3. Interface between two materials with different permeabilities.

which occurs when a magnetic induction �B exists in a body with a current density �J .

Using the magnetic vector potential �A, (2.20) can be rewritten as

�fV ,L =

(

�Je − γ
d�A

dt
+ γ∇�A(�v · �A)

)

× (∇ × �A). (2.21)

In the case of non-constant permeability, especially in the presence of ferromagnetic

materials, an additional force

�fV ,µ = −1

2

∣

∣

∣

∣

1

µ
∇ ×�A

∣

∣

∣

∣

2

∇µ (2.22)

arises. At an interface between two materials with the permeabilities µ1 and µ2, the

volume-force formulation (2.22) can be transferred into Maxwell’s surface force-density

formulation [37]

�fΓ = (�n · �H)�B −�n
1

2
�B · �H. (2.23)

This formulation can also be written with the help of a tensor [T ], which allows the

calculation of the magnetic force and moment acting to a body by the equations (see [36,

pp. 154–155] and [18])

�f =

∮

�A

[T ] d�A (2.24)

and

�M =

∮

�A

�r × ([T ] d�A). (2.25)

We mention that (2.23) must not consider the jump of the magnetic permeability at the

interface of the ferromagnetic material. So it is sufficient to calculate (2.23) only at the

finite elements of the non-ferromagnetic domain which are connected to the interface.

For problems with permanent-magnetic materials the additional force term

�fV3 = −�H ∇ · �M (2.26)

must be considered. �M is the magnetization of the used permanent magnetic material.
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Lastly the magnetostriction coupling effect is described by

�fV4 =

H
∫

0

∇
(

|�H |2ρ∂µ

∂ρ

)

d�H, (2.27)

where ρ denotes the specific density. Magnetostrictive actuators are especially suited for

the generation of high forces, but this effect is not covered here.

3 Variational formulation and finite element discretization

This section provides the variational formulations of the mechanical and magnetic PDE

systems which are, of course, coupled. The coupled variational formulations are the

starting point for the finite element semi-discretization that results into a second-order

mechnical ODE system and a first-order magnetic ODE system which are again coupled.

Finally, we describe a magnetic system that is coupled to an electrical network with an

impressed voltage.

3.1 Mechanical system

By multiplying the mechanical differential equation (2.1) with a weighting function �w and

integrating over the domain Ωmech, the mechanical problem is transferred to the weak

form

∫

Ω

(

ρ
∂

2�d

∂t2
+ c

∂�d

∂t
− E

2(1 + ν)

(

(∇ · ∇)�d +
1

1 − 2ν
∇(∇ ·�d)

)

)

· �w dΩ =

∫

Ω

�fV · �w dΩ. (3.1)

Using Green’s first identity and the symmetry of the stress tensor, we obtain the variational

formulation or the so-called weak form [16]

∫

Ωmech

ρ
∂

2di

∂t2
widΩ +

∫

Ωmech

�ǫ(�d)TD�ǫ(�w)dΩ +

∫

Ωmech

c
∂di

∂t
widΩ =

∫

Ωmech

fiwidΩ +

∫

Γni

σniwidΓ (3.2)

of (2.1), where Einstein’s summation convention is used. In (3.2), i denotes the spatial

direction (x, y, or z),�ǫ the components of the mechanical strain tensor in Voigt notation,

D the tensor of the elastic coefficients, and Γni the boundary with given surface stress σni.

The mechanical domain is now discretized with the help of nodal finite elements.

Thereby, the mechanical displacements are approximated in the form

�d ≈
nn

∑

k=1

Nk
�dk , (3.3)

where Nk denotes the shape function of the k-th node, �dk the displacement at the k-th node

and nn the number of nodes. By using (3.3) in (3.2) and applying Galerkin’s technique,
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the system of second-order ordinary differential equations (ODE)

M

{

∂
2d

∂t2

}

+ C

{

∂d

∂t

}

+ K{d} = {F} (3.4)

is obtained, where the mass matrix M, the stiffness matrix K and the force vector {F}
have the following form:

• Mass matrix:

M = [Mab], with Mab = δij

∫

Ω

NaρNb dΩ, 1 � a, b � neq , 1 � i, j � nsd. (3.5)

• Stiffness matrix:

K = [Kab], with Kab =�eTi

∫

Ω

BT
a DBb dΩ�ej , 1 � a, b � neq , 1 � i, j � nsd. (3.6)

In the 3D case, we have

Ba =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂Na

∂x
0 0

0 ∂Na

∂y
0

0 0 ∂Na

∂z

0 ∂Na

∂z
∂Na

∂y

∂Na

∂z
0 ∂Na

∂x

∂Na

∂y
∂Na

∂x
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.7)

• Force vector:

{F} = {Fa}, with Fa =

∫

Ω

NafidΩ +

∫

Γni

NaσnidΓ . (3.8)

In (3.5)–(3.8) neq denotes the number of unknowns, �ei the unity vector in the spatial

direction i, δij Kronecker’s operator and nsd the spatial dimension of the mechanical field.

The damping matrix C is chosen as a linear combination of M and K [5], i.e.

C = αM + βK. (3.9)

The magnitudes of the Rayleigh coefficients α and β depend on the energy dissipation

characteristics of the modelled mechanical problem.

3.2 Magnetic system

By multiplying the magnetic system (2.19) with a weighting function �W , integrating over

the domain Ωmag(�d), which is deformed by the mechanical displacement �d, and applying

the first Green’s identity, the magnetic field can be expressed in a weak sense by the



242 M. Schinnerl et al.

x

y
z

interface Γ n

material 2 (µ2, γ2)

material 1 (µ1, γ1)

Figure 4. Interface between two materials.

variational formulation

∫

Ωmag

γ
d�A

dt
· �W dΩ +

∫

Ωmag

1

µ
(∇ × �A) · (∇ × �W ) dΩ −

∫

Ωmag

γ ∇�A(�v · �A) · �W dΩ

=

∫

Ωmag

�Je · �W dΩ +

∫

Γmag,H

(�H ×�n) · �W dΓ , (3.10)

where Γmag,H denotes a boundary with specified �H ×�n. To achieve an appropriate FE-

discretization of the magnetic system, the properties of the magnetic field at an interface

must be analyzed in a more detailed way. In Fig. 4 an interface between two materials with

the permeabilities µ1 and µ2 and the conductivities γ1 and γ2 is displayed. For simplicity

and without loss of generality, the interface lies in the x-y plane and the normal-vector �n

is exactly oriented in the z-direction. Using (2.13) and (2.10), the condition

Bn = Bz =
∂Ay1

∂x
− ∂Ax1

∂y
=

∂Ay2

∂x
− ∂Ax2

∂y
(3.11)

must be satisfied. Equation (3.11) can be enforced explicitly, if the tangential component of
�A is continuous at the interface. As mentioned in § 2.2 displacement currents are neglected,

which enables the reformulation of (2.12) on an interface between two eddy-current regions

as

�n · γ1
∂�A1

∂t
= �n · γ2

∂�A2

∂t
. (3.12)

Therefore, in the z direction, the equation

∂

∂t
[γ1Az1 − γ2Az2] = 0 (3.13)

must hold. Since the magnetic vector potential is not static, (3.13) requires a discontinuity

of Az if γ1 � γ2. For nodal finite elements one needs a splitting of the magnetic vector

potential in a new vector, which has to be divergence free, and a gradient of a scalar

potential (corresponds to a decomposition of the space H(curl)). In addition, a weighted

regularization according to [7] has to be applied. For a detailed discussion we refer to [19].

The “natural” choice of the spatial discretization are edge-finite-elements [28]. Thereby,

the degrees of freedom are not attached to the element nodes, but to the element edges. In

Fig. 5 a linear edge-tetrahedron-element is shown. Using the edge element discretization,
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4
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Figure 5. Linear edge tetrahedron.

the magnetic vector field �A is approximated by

�A ≈
nk

∑

k=1

�NkAk . (3.14)

In (3.14), �Nk denotes the vectorial shape function, which is associated with the k-th edge

ek , nk the number of edges in the magnetic FE mesh, and

Ak =

∫

ek

�A · d�s (3.15)

approximates the line integral over the projection of the magnetic vector potential �A to

the k-th edge ek . Inserting (3.14) into the weak formulation (3.10) leads to the first-order

ODE system

L

{

dA

d t

}

+ P{A} + P2(�v){A} = {Q}. (3.16)

The conductivity matrix L, the permeability matrix P, the second permeability matrix P2

and the source vector {Q} have the forms:

• Conductivity matrix:

L = [Lab], with Lab =

∫

Ωmag(�d)

�Na · γ�NbdΩ, 1 � a, b � nk . (3.17)

• Permeability matrix:

P = [Pab], with Pab =

∫

Ωmag(�d)

(

1

µ
∇ × �Na

)

· (∇ × �Nb) dΩ, 1 � a, b � nk . (3.18)

• Permeability matrix 2:

P2 = [P2ab], with P2ab = −
∫

Ωmag(�d)

γ∇�A(�v · �Na) · �Nb dΩ, 1 � a, b � nk . (3.19)
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U(t)

I(t)
Rcoil

FE-model of the

transient magneto-

mechanical problem

Figure 6. External electrical network.

• Source vector:

{Q} = {Qb}, with Qb =

∫

Ωmag(�d)

�Na · �Je dΩ, 1 � b � nk . (3.20)

Here, the boundary integral term in (3.10) is assumed to be zero. The solution of (3.16)

requires special care in order to obtain an optimal solver. We suggest adding a fictive

electric conductivity γ′ to regions with zero electric conductivity to obtain a variational

form, which is H(curl)-elliptic. Of course, this fictive conductivity γ′ has to be chosen

small as compared to the reluctivity of the material. The proof of convergence even in

the case of γ′ → 0 is given in [30, 3] for the magnetostatic case and for the eddy current

case, respectively.

3.3 Voltage loading

Frequently the magnetic system (2.19) is not excited by a given current density �Je, but is

coupled to an electrical network with a given voltage U. In Fig. 6, the simplest case of an

electrical network, consisting of the coil resistor Rcoil placed in series with the FE-model

is shown. Thereby, not only the magnetic vector potential �A, but also the current I is

unknown.

The network is described by

U = Rcoil I +
∂Ψ

∂t
, (3.21)

where the interlinkage flux is determined by

Ψ =
nc

Sc

∫

Ωj

�A ·�ns dν. (3.22)

In (3.22), nc denotes the number of turns of the coil in the FE model, Sc the cross-sectional

area of the coil, �ns the unit tangential vector along the direction of the exciting current

and Ωj the region of the coil. On the other hand, the current density �Je in the coil is

described by

�Je =
nc

Sc
I�ns. (3.23)

To solve the coupled magnetic system a technique presented in [33], § 5.3.3 is applied.

Using (3.22) in (3.21) and (3.23) in (3.16), the coupled system can be written in the discrete
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form as

L

{

dA

d t

}

+ P{A} + P2(�v){A} = uI, (3.24)

Rcoil I + uT
{

dA

d t

}

= U. (3.25)

Thereby, the coupling vector u has the form

u =
nc

Sc

∫

Ωj

�N i ·�ns dν ∈ IRNe , (3.26)

where Ne denotes the number of edges in the considered FE mesh.

4 Time integration, iterative coupling and solution

A mathematically strong coupling of the mechanical and the magnetic system in one

large equation system is hard to realize, because the electromotive force is a nonlinear

term, i.e., both fields contribute directly to this effect. Additionally, the Lorentz force

and the interface force, caused by variations of the magnetic permeability, are quadratic

functions of the magnetic vector potential �A. Therefore, an iterative coupling mechanism,

used for instance in [31, 20], is applied. Therewith, it is possible to consider variations of

the magnetic field, which are caused by the mechanical displacement �d, easily. In order to

achieve a good adaptation of the FE meshes to the mechanical and magnetic fields, two

different grids are used for both physical fields. Therefore, it is necessary to transfer data,

like the mechanical displacement �d or the magnetic volume-force �fV , between the edge

element discretization of the magnetic field and the nodal element discretization of the

mechanical field. The time discretization of the mechanical and the magnetic system is

achieved by implicit time stepping algorithms. The large-scale systems of mechanical FE

equations are solved by a geometrical multigrid method whereas the nonlinear system of

magnetic FE equations are solved by multigrid combined with a fixed point iteration.

4.1 Time discretization of the mechanical and the magnetic systems

The time discretization of the second-order mechanical ODE system (3.4) is performed

by using Newmark’s technique [16]. To shorten the notation, the velocity {∂�d/∂t} and

the acceleration {∂
2d/∂t2} at the nodes are abbreviated by {v} and {a}, respectively. In

addition to this, the curved brackets for the FE nodal and edge values are omitted. The

index n denotes the variable at the time moment n∆t, where ∆t denotes the used time

step. Applying Newmark’s technique gives the equations

Man+1 + Cvn+1 + Kdn+1 = Fn+1 (4.1)
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for defining

dn+1 = dn + ∆tvn +
∆t2

2
[(1 − 2β)an + 2βan+1], (4.2)

vn+1 = vn + ∆t[(1 − γ)an + γan+1], (4.3)

where β and γ denote Newmark’s parameters which control the stability and accuracy of

the method.

The first-order magnetic ODE system (3.16) is numerically integrated by the use of the

generalized trapezoidal rule, giving the equations

LRn+1 + PAn+1 + P2(vn+1)An+1 = Qn+1 (4.4)

for defining

An+1 = An + ∆tRn+α, (4.5)

Rn+α = (1 − α)Rn + αRn+1, (4.6)

where the abbreviation R is used for the time derivation ∂A/∂t of the edge dofs [16].

4.2 Iterative coupling of the mechanical and magnetic systems

The time discretization methods of the mechanical and magnetic systems are coupled

by an iterative technique handling the coupling of the mechanical and magnetic parts

(k denotes the iteration counter and n the time step counter):

• Step 1: Calculation of a first approximation to the mechanical displacement and velocity

on the mechanical mesh Mmech:

dkn+1 = dn + ∆tvn +
∆t2

2
an, (4.7)

vkn+1 = vn + ∆tan. (4.8)

• Step 2: Projection of dkn+1 and vkn+1 from Mmech to the magnetic mesh Mmag .

• Step 3: Distortion of the magnetic mesh Mmag by dkn+1. Reassembling of the conducti-

vity-matrix L and the permeability matrix P at the deformed geometry. According to

(2.17), the total differential of the magnetic vector potential is calculated by this updating

and, thereby, the electromotive force is implicitly taken into account. Additionally, the

variation of the magnetic field, caused by the mechanical displacement, is considered

by the updating process.

• Step 4: Calculation of the magnetic system:

◦ The matrix P2(v) is non-symmetric and depends on the velocity v, therefore, this term

is only approximated by a predictor value:

A
app
n+1 =

{

An + ∆tRn k = 1

Ak
n+1 otherwise

(4.9)
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P2(vn+1)An+1 := P2(vkn+1)A
app
n+1. (4.10)

◦ Solve the system

L∗Rk+1
n+1 = Qn+1 − PAn − (1 − α)∆tPRn − P2(vkn+1)A

app
n+1, (4.11)

with the system matrix

L∗ = L + α∆tP. (4.12)

◦ Correct the vector potential:

Ak+1
n+1 = An + (1 − α)∆tRn + α∆tRk+1

n+1 . (4.13)

• Step 5: Calculation of the magnetic induction �B and the magnetic forces �fV .

• Step 6: Projection of �fV to the mechanical FE mesh Mmech.

• Step 7: Calculation of the mechanical field:

◦ Predictor:

d̃n+1 = dn + ∆tvn +
∆t2

2
(1 − 2β)an, (4.14)

ṽn+1 = vn + (1 − γ)∆tan. (4.15)

◦ Solve the system

M∗ak+1
n+1 = Fn+1 − Cṽn+1 − Kd̃n+1 (4.16)

with the system matrix

M∗ = M + γ∆tC + β∆t2K. (4.17)

◦ Corrector:

dk+1
n+1 = d̃n+1 + β∆t2ak+1

n+1 (4.18)

vk+1
n+1 = ṽn+1 + γ∆tak+1

n+1 (4.19)

• Step 8: Convergence test:

||dk+1
n+1 − dkn+1||2 < ǫ ||dk+1

n+1||2 (ǫ ≈ 10−3) (4.20)

If no convergence is reached, return to step 2.

• Step 9: Proceed with the next time step.

We mention that for practical problems only a very low number of iterations per time

step is necessary. The time-integration parameters α, β and γ are chosen with 0.5, 0.25

and 0.5 .
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4.3 Calculation of the magnetic field in the presence of ferromagnetic materials

Ferromagnetic materials have a non-constant magnetic permeability µ. Thereby, the

nonlinear relation

�H =
1

µ(�B)
�B. (4.21)

holds. It is assumed, that the material is isotropic, i.e. that µ is equal in each direction,

and that no hysteresis effects arise. In the nonlinear case, system (4.11) has the form

L∗(A)Rn+1 = Qn+1 − P(A)An − (1 − α)∆tP(A)Rn − P2(vappn+1)A
app
n+1. (4.22)

In (4.22), the modified conductivity matrix L∗ and the permeability matrix P depend on

the edge degrees of freedom. The nonlinear magnetic field is calculated by a fixed-point

method [35], which is described by the following algorithm:

• Step 1: Calculation of an initial guess Ai
n+1 by using the variables of the time step n:

i = 0, (4.23)

Ai
n+1 = An + ∆tRn, (4.24)

Ri
n+1 = 0. (4.25)

• Step 2: Reassembling of the matrices L∗ and P.

• Step 3: Calculation of improved guesses Ri+1
n+1 and Ai+1

n+1:

L∗(Ai
n+1)R

i+1
n+1 = Qn+1 − P(Ai

n+1)An − (1 − α)∆tP(Ai
n+1)Rn

− P2(vAn+1)A
i
n+1, (4.26)

Ai+1
n+1 = An + (1 − α)∆tRn + α∆tRi+1

n+1. (4.27)

• Step 4: Convergence test:

◦ IF

‖Ri+1
n+1 − Ri

n+1‖ � ǫ‖Ri
n+1‖ (4.28)

◦ THEN i = i + 1 and return to Step 2

◦ ELSE proceed with the next time step.

In many cases this algorithm is oscillating or only slowly convergent. However, the method

can be stabilized by a line-search algorithm [35]. Thereby, Step 3 of the iteration must be

modified as follows:

• Step 3.1: Calculation of improved guesses Ri
n+1 and Ai

n+1.

• Step 3.2: Calculation of a search direction

δRn+1 = Ri+1
n+1 − Ri

n+1, (4.29)

δAn+1 = Ai+1
n+1 − Ai

n+1. (4.30)
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• Step 3.3: Choosing of a relaxation parameter τ and calculation of modified guesses

Rτ
n+1 = Ri

n+1 + τδRn+1, (4.31)

Aτ
n+1 = Ai

n+1 + τδAn+1. (4.32)

• Step 3.4: Reassembling of L∗ and P and calculation of the residual Ψ (τ) and the

projection of the residual to the search direction G(τ):

Ψ (τ) = L∗Rτ
n+1 − Qn+1 + PAτ

n+1 + P2(vappn+1)A
app
n+1, (4.33)

G(τ) = δRn+1 · Ψ (τ). (4.34)

Now, the relaxation parameter τ is chosen in such a way that the projection of the residual

to the search direction is a minimum. Since even for strong nonlinear materials G(τ) is

approximately a linear function of τ, it is sufficient to calculate G(τ) for two different

values of τ and to determine the optimal τ with linear interpolation. This method leads

to a fast convergent and very stable solution process with comparatively low numerical

effort in the case of applying a full multigrid method.

4.4 Modifications in the case of voltage loading

One possibility to take into account the external network is the coupling of (3.24) and

(3.25) in one coupled system [31]. Thereby, the structure of the arising system matrix

is destroyed, which may lead to a slower convergence of the used iterative MG solvers.

Therefore, in this paper an alternative strong coupling method of the magnetic field and

the network is chosen, which preserves the structure of the system matrix. By multiplying

(3.24) with the inverse modified mass matrix (L∗)−1, we obtain

Rn+1 = (L∗)−1uIn+1 − (L∗)−1
[

PAn − (1 − α)∆tPRn − P2(vkn+1)A
app
n+1

]

. (4.35)

Using the abbreviation

Ãn+1 = PAn − (1 − α)∆tPRn − P2(vappk )Aapp
n+1 (4.36)

and inserting (4.35) in the time discretized form of (3.25), we arrive at the relation

Un+1 = uT (L∗)−1uIn+1 + Rcoil In+1 − uT (L∗)−1Ãn+1, (4.37)

which can be rewritten in the form

In+1 =
Un+1 + uT (L∗)−1Ãn+1

uT (L∗)−1u + Rcoil
. (4.38)

Therefore, in the case of voltage loading, the calculation of the magnetic field at each

time step is modified as follows:

• Approximations:

A
app
n+1 =

{

An + ∆tRn k = 1

Ak
n+1 else

(4.39)
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P2(vn+1)An+1 = P2(vkn+1)A
app
n+1. (4.40)

• Equation:

Ãn+1 = PAn − (1 − α)∆tPRn − P2(vkn+1)A
app
n+1, (4.41)

In+1 =
Un+1 + uT (L∗)−1Ã

uT (L∗)−1u + Rcoil
, (4.42)

Rn+1 = (L∗)−1uIn+1 − (L∗)−1Ã. (4.43)

• Corrector:

An+1 = An + (1 − α)∆tRn + α∆tRn+1. (4.44)

The terms (L∗)−1u and (L∗)−1Ã of (4.43) are already known from (4.42) and, it is not

necessary to calculate them again. Additionally, in the linear case the term (L∗)−1u is

constant and must be calculated only for the first time step. Therefore, only the equation

system

L∗ξ = Ã (4.45)

has to be solved at each iteration step. We mention that in case of voltage loading and

nonlinear magnetic problems, the presented line-search algorithm is also applied to (4.42)

and (4.43).

4.5 Multigrid solvers for the linear mechanical and magnetic systems

In the iterative simulation technique presented above, the solution of the mechanical

system (4.11) and the magnetic system (4.16) are certainly the parts with the highest

computational effort. These equations are solved by multigrid methods which are known

to be assymptotically optimal with respect to computational costs. In [12] an excellent

introduction to these solution techniques is given. To apply multigrid solvers to (4.11) and

(4.16), the special properties of the magnetic and mechanical fields and their discretizations

must be taken into account. The mechanical problem is discretized by nodal elements with

three degrees of freedom at each node. Since a strong coupling effect between the degrees

of freedom of one node arises, a multigrid technique with block Gauss-Seidel smoothing

is used [2]. The magnetic field is discretized by means of edge elements. To achieve a fast

and robust multigrid solution process, for this problem a special multigrid technique with

overlapping block smoothers is applied [1].

4.6 Transformation of field variables between the mechanical and magnetic meshes

The iterative coupling technique between the mechanical and magnetic meshes requires the

transformation of mechanical quantities (mechanical displacement, velocity) and magnetic

quantities (magnetic force) between the grids. In Fig. 7, a possible structure of a grid-

hierarchy for an magneto-mechanical system is shown. The problem is first discretized

with a very coarse mesh M1. This mesh is then refined in several steps to a grid Mi.

The grid Mi is the basis for the mechanical and magnetic mesh which are obtained by

adaptive refinement of Mi. Thereby, the grids for the mechanical and magnetic problems
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Figure 7. Possible grid-hierarchy of a coupled magneto-mechanical problem.

can be adapted to the special properties of the fields. For instance the magnetic mesh can

be very fine in eddy-current regions whereas the mechanical mesh remains coarse there.

The transformation of the mechanical and magnetic quantities between the different grids

is now realized by multigrid transfer operators. These operators are described for instance

in [12, 17, 33].

5 Application examples

It is not possible to verify the presented simulation technique for coupled magneto-

mechanical problems by a mathematical proof. Therefore, the technique was tested and

verified by modelling and measuring of two challenging magneto-mechanical devices.

The dynamical behaviour of the two models (a solenoid valve and an electro-magnetic-

acoustic-transducer) was measured and compared to the simulated results. Additionally,

the properties of the presented simulation technique with respect to the simulation time

were analyzed.

5.1 Solenoid valve

Electro-magnetic actuators are widely used for industrial purposes. Examples are the

application in clutches, brakes, relays, loudspeakers, printers and as solenoid valves for

pneumatic and hydraulic systems. The reasons for the success of these actuators are

• large magnetic forces,

• large and adjustable strokes, and

• a very robust and stable design.

The disadvantages of electro-magnetic actuators are

• the nonlinear behaviour of the magnetic materials,

• strong variations of the magnetic force depending on the position of the armature and

• the magnetic force acts only in one direction.
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Figure 8. Cross section of the solenoid valve.

5.1.1 Design of the solenoid valve

In Fig. 8, the principal setup of a solenoid valve is illustrated. The main parts are an

armature and a pot-magnet which are made of soft-magnetic material. A prestressed

pressure-spring holds the armature in its upper position. If the coil is excited by an

electric current, a magnetic force between the pot-magnet and the armature is generated

which causes a movement of the armature. The valve-tappet transfers the movement to

the mechanical acting mechanism. The outer diameter of the structure is 90mm, the height

145mm and the diameter of the tappet is 10mm. The armature and the pot-magnet consist

of unalloyed steel. For both, the guiding-plate and the distance-bolt, alloyed nonmagnetic

steel is used and the plain-bearings are made of brass [6]. The coil has 200 turns of copper

wire with 1mm diameter. In Fig. 9, the fully assembled solenoid valve is illustrated.

5.1.2 Simulation model

In Fig. 10, the pot-magnet is displayed. In order to reduce the eddy currents in the material,

cuts are milled into the magnet [34]. These cuts destroy the axi-symmetry of the solenoid

valve. Therefore, a 3D analysis of the problem must be performed. In Fig. 11, the coarse

grid of the pot-magnet is displayed. The radial component of the magnetic induction is

zero at the cuts. Therefore, only one eighth of the problem must be considered. At the

interface between the pot-magnet and the coil, eddy currents with a very low penetration

depth occur. Assuming a maximum relative permeability µr = 1200, a specific conductivity

γ = 5 · 106 S/m and a maximum frequency of 2000Hz, we can estimate a penetration

depth of [18]

δ =
1√

πγµ0µrf
= 103 µm. (5.1)
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Figure 9. Solenoid valve with slotted pot-magnet and force sensor.

Figure 10. Pot-magnet with four slots which are situated in a relative angle of 90◦.

The penetration depth was discretized with the help of flat tetrahedron-elements (Fig. 11),

where 6 tetrahedron layers for δ were used at the finest discretization level. Therewith, a

magnetic edge element discretization with 75 · 103 degrees of freedom was necessary. The

mechanical mesh was much coarser and had 20 · 103 mechanical degrees of freedom.
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slot
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Figure 11. Coarse grid of the pot magnet.

5.1.3 Frequency response of the solenoid valve (clamped armature)

To guarantee the suitability of the used magnetic FE simulation model, the frequency

response of the voltage-current transfer function (impedance) is analyzed. The impedance

of the solenoid valve is strongly affected by the eddy currents in the pot-magnet and the

armature. Therefore, the determination of the simulated frequency response allows us an

evaluation of the used simulation model. Only if the model takes into account the small

penetration depths at the surfaces of the magnetic materials, the simulated impedance

agrees with the measured impedance.

Let us consider the case of the frequency response for small excitations. With the

help of an impedance-analyzer [13], the frequency response of the solenoid valve was

measured in the frequency range of 100–750 Hz. Since the measurement causes a very

small induction in the magnetic circuit, a linear behaviour of the magnetic material can

be assumed. To determine the frequency response of the valve, a transient simulation is

performed. Thereby, the input voltage u(t) is quadratically integrable. Using the Fourier

analysis for the input signal u(t) and the calculated current i(t), the frequency response

Z(ω) can be determined by

Z(ω) =
U(ω)

I(ω)
. (5.2)

U(ω) and I(ω) denote the input voltage and simulated current which are transferred

into the frequency domain. Figure 12 compares the measured and calculated impedance

of the solenoid valve. The air gap between armature and pot magnet is zero. Additionally,

the simulated impedance for the case of neglected eddy currents is depicted. In this case,

the impedance of the valve behaves like the impedance of an ideal inductance which

means that it increases linearly as a function of the frequency. The comparison of the
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Figure 12. Impedance of the magnetic valve.
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Figure 13. Mechanical equivalent circuit in the case of a clamped armature.

curves with and without consideration of the eddy current shows that the eddy currents

have a significant influence on the dynamical behaviour of the solenoid valve and must

definitely be taken into account.

5.1.4 Simulated and measured dynamical magnetic force (clamped armature)

To measure the magnetic force to the armature, the compression spring (Fig. 8) is replaced

by a compression tube which suppresses the movement of the armature. Therefore, the vis

inertiae can be neglected. Nonlinear vibrations at the contact areas between the guiding

plate, the compression tube and the armature are prevented by a prestressing of the

mechanical circuit with the force Fv . If the magnetic force Fmag becomes larger than the

prestressing force Fv , the mechanical circuit is described by an equivalent network which is

displayed in Fig. 13. The same force acts at each element of the serial equivalent network,

because the vis inertiae is neglected. Therefore, the used force sensor directly measures

the magnetic force Fmag .

To produce a high magnetic force, the coil with 200 turns is loaded by a current pulse.

The air gap δ between the armature and the magnetic pot is 2 mm. Since the magnetic

circuit is strongly excited by the current pulse, the consideration of the nonlinearity of
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Figure 14. Setup of the hysteresisgraph. Left: Power and measure electronic; right: Double
C-yoke with probe [4].
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Figure 15. Measured virgin magnetization-curve of the used material St37.

the used ferromagnetic material is necessary. To measure the magnetization curve, a

rod-shaped probe of the used material is measured with the help of a hysteresisgraph

(Fig. 14).

The used frequency is approximately 0.1 Hz. Because of this low frequency the influence

of the eddy currents can be neglected. The magnetic pot, the armature, and the probe

were annealed in a nitrogen atmosphere. The annealing process reduces the stresses in

the material. The magnetization curve of the used steel St37 is displayed in Fig. 15. The

low amount of carbon and other admixtures as well as the annealing process result in

a steel with a soft magnetic behaviour. Therefore, hysteresis effects can be neglected. In

Fig. 16, the simulated and measured magnetic force of the solenoid valve is displayed.
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Figure 16. Magnetic force Fz in the air gap (clamped armature).
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Figure 17. Measurement of the dynamical behaviour of the solenoid valve.

The inductance of the valve and the eddy currents in the magnetic circuit delay the rise

of the magnetic force. After a time of 4 ms, the maximum of the magnetic force (1200 N)

is reached. The maximum of the magnetic induction is 1.9 T. This value of the magnetic

induction causes a strong saturation of the material.

5.1.5 Simulated and measured movement of the armature

To measure the movement of the armature, the compression spring with a stiffness of

cSpring = 18.3 kN/m was loaded by a pre-stress force of F0 = 198 N.

Again, the current in the coil was produced by a capacitor discharge. The transient

current was measured with the help of a shunt and the movement of the armature
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Figure 18. Simulated and measured movement of the armature.

was measured with a Laser-Doppler-Vibrometer [29]. The advantages of the contactless

measurement with a vibrometer are the good and linear distance resolution, which is only

limited by noise, and a very good dynamic range.

In Fig. 18, the simulated and measured movement of the armature are compared.

During the first 1.2 ms after switching on the voltage the magnetic force is smaller than

the mechanical pre-stress which avoids a movement of the armature. After these first 1.2

ms the magnetic force is large enough to overpower the pre-stress and an acceleration of

the armature in the direction of the pot-magnet takes place. Due to the decreasing of the

gap between the armature and the pot-magnet the magnetic force is additionally increased.

To show the influence of the geometric variations, the magnetic force is simulated with

and without considering the geometrical effect of changing the magnetic computational

domain (see Fig. 19). At the beginning of the simulation the armature is in rest and

the magnetic force is the same for both simulations. After approximately 1.5 ms, the air

gap is decreased considerably, which causes a stronger raise of the magnetic force in the

geometrically nonlinear simulation. Therefore, it is necessary to consider the geometric

effect in the simulation of the solenoid valve.

5.1.6 Simulation times

Figure 18 shows, that the time between switching on the voltage and contact of the

armature and pot-magnet is 2.8 ms. The time step width for the simulation is chosen to

be 100 µs which means that 28 time steps are necessary to simulate the movement of the

armature. At each time step one nonlinear magnetic field problem must be solved. For

the solution of this nonlinear problem an average of 10 iterations was necessary. Each

iteration required the solution of the magnetic FE equation system (4.26). Therefore, the

solution of these systems is the most time-consuming part of the simulation process. The

considered simulation model with 75000 edge degrees of freedom could by solved with
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Figure 19. Simulated magnetic force Fz with and without considering the movement of the
armature.

the presented multigrid technique in 21 seconds. The total calculation time for the whole

dynamical 3D simulation was 3.05 hours on the SGI Origin with 300 MHz RS12000

processors.

5.2 Electro-Magnetic-Acoustic-Transducer (EMAT)

Inspecting materials by utilizing ultrasonic waves is a widely used industrial technique

[23]. A transducer generates a sound wave which propagates in the material under test.

With the help of the position and the shape of reflected and transmitted acoustic waves

it is possible to find defects (e.g. cracks) in the material. Piezoelectric transducers are

frequently used for the generation and detection of sound waves. For a good transmission

of the wave a contact medium must be used between the piezoelectric transducer and the

material. Alternative transducer types, which allows a contactless material test, are Electro-

Magnetic-Acoustic-Transducers (EMATs) [26]. These are considered in this section.

5.2.1 Generation of acoustic bulk waves with an EMAT

In Fig. 20, the principal setup of an EMAT is shown. It consists of a permanent magnet

(magnetized in z-direction) and a meander coil.

The test specimen is situated below the EMAT. The specimen is made of a conductive

material. If the meander coil is fed by a transient current Idyn(t), a transient magnetic field

and eddy currents �Jeddy(t) are induced in the specimen. Due to the Lorentz force

�fdyn = �Jeddy × (�Bdyn + �Bstat) (5.3)

a mechanical force is generated which leads to the transmission of a sound wave in the
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Figure 20. Setup of an EMAT.

Figure 21. Magnetic field of a conductor near a conductive plate.

specimen. It must be taken into account that the magnetic field �Bdyn and the force density
�fdyn decrease with the distance to the surface of the specimen. The region with an effective

generation of a mechanical wave can be determined by the penetration depth (see Fig. 21)

δ =
1√

πfγµ0µr
. (5.4)

In equation (5.4), f denotes the frequency of the excitation current Idyn, γ the conductivity,

µ0 the permeability in vacuum and µr the relative permeability of the used material.
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Figure 22. Phase velocity of existing modes in an aluminum-plate.

S0:

A0:

Figure 23. Lamb wave modes in a plate. Above: symmetrical plate wave with zero-order (S0),
Bottom: asymmetrical plate wave with zero-order (A0).

5.2.2 Using EMATs for the generation of Lamb waves

Let us assume that the specimen is a thin plate. That means that the thickness d of the

plate is small compared to the wavelength λ of the sound wave. If linear elasticity and a

plane strain situation is assumed, the existing plate waves can be described by a number

of nonlinear equations [22] which can be solved by numerical techniques. The results of

this calculation can be demonstrated by a mode dispersion diagram (see Fig. 22). On the

abscissa of Fig. 22, the product of excitation frequency and plate thickness, and on the

ordinate, the phase velocity are displayed. The abbreviations S0, A0, S1, A1, S2 and A2

refer to the different Lamb modes in the plate. The letter S is used for modes which are

symmetrically to the plane of symmetry of the plate, whereas A is used for modes which

are antisymmetric to the plane of symmetry. The used number describes the order of the

wave in the thickness of the plate. In Fig. 23, the S0 and A0 modes are displayed.
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Figure 24. Cross-section of the EMAT and the aluminum-plate in the x-z plane
(dimensions in mm).

To excite one of the plate waves with the help of an EMAT, the excitation-frequency

must be chosen in such a way that an additive superposition of the conductor forces

arise. The maximum excitation can be reached when the wave length of the chosen mode

is equal to two times the distance a between two conductors. Therewith, it is possible to

determine the optimal excitation frequency of the different plate modes by drawing the

straight line v = 2 a/d into the dispersion diagram (see Fig. 22).

5.2.3 Simulation model

In former publications, for instance, in [26, 9], a constant magnetic and mechanical

field in the y-dimension was assumed. In this case, only a 2D numerical simulation of

EMATs was considered. Since the length of the EMATs in y-direction is in the same

order of magnitude as the wave-length of the excited plate, diffraction effects occur. These

effects are not considered by the 2D models. In this work, a real 3D simulation of the

transmission behaviour of an EMAT is presented.

In Fig. 24, a cross-section of the EMAT and the specimen (aluminum-plate) in the x-z

plane is shown. The used material parameters of aluminum are the following [22]:

• Young’s modulus E = 7.0713 · 1010 N/m2,

• Poisson ratio ν = 0.3375,

• specific density ρ = 2.7 · 102 kg/m3, and

• specific electrical conductivity γ = 35.5 · 106 Sm.

The conductors of the meander coil are 1 mm thick and 0.1 mm high. The distance

between the permanent magnet and the meander coil is 0.3 mm. The static magnetic field

of 0.29 T in z-direction is produced by a Neodym-Iron permanent-magnet. By using the

phase velocity diagram (see Fig. 22), the optimal excitation frequency of the A0-mode is

fin = 650 kHz. This frequency results in a penetration depth into the plate which can be

approximated by δ = 104.7 µm.

This very small penetration depth requires a fine edge element discretization of the

aluminum plate under the EMAT. In Fig. 26, the coarse grid discretization of the meander

coil and the permanent magnet is shown. The model uses the symmetry of the problem
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Figure 25. EMAT and aluminum plate in the x-y plane (dimensions in mm).
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Figure 26. Coarse grid mesh of the meander coil and the permanent magnet.

in the y-z plane. Since the gradient of the magnetic field in x- and y-direction is weak,

flat tetrahedral elements with a length to hight ratio of 15 are used. The number of

necessary finite elements could be reduced considerably by these flat elements. The height

of the coarse-grid elements in the area of the penetration depth is 150 µm. To achieve a

sufficiently fine resolution of the penetration depth, these elements must be refined twice.

This results in elements with a maximal hight of 37.5 µm. The final magnetic edge element

mesh has the following properties:

• 391.500 edge-tetrahedron-elements,

• 342.625 edges (degrees of freedom).

The wave length λ of the excited A0-mode is 3 mm. To describe the propagation of this

mode for the maximal side-length emax of the mechanical elements

emax =
λ

k
(5.5)
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Figure 27. Excitation of a A0 Lamb wave by an current burst.

must hold. The so called locking-effect, which results in too stiff elements, is avoided

by the use of elements with quadratic basis functions [5]. For quadratic elements, it is

sufficient to choose k = 6 [21]. With this assumptions the final mechanical FE mesh has

the following properties:

• 191.000 quadratic tetrahedron-elements,

• 261.000 nodes,

• 783.000 degrees of freedom.

5.2.4 Simulation of the generation and the propagation of a Lamb wave

By loading the meander coil of the EMAT by a sine current burst, the A0-mode in the

plate is excited. The sine burst with a frequency of 650 kHz (see Fig. 27) is filtered by

a Kaiser-window which reduces the bandwidth of the burst considerably [25]. The time

step of the FE-simulation is chosen with 100 ns. In Fig. 28 and Fig. 29, the simulated

transversal components of the generated Lamb wave are shown for different time steps.

It can be seen that the main part of the wave propagates in normal direction to the

conductors. Nevertheless, also radiations in other spatial directions occur. After 4 µs

waves in positive and negative y-direction can be detected. These waves are reflected after

approximately 6 µs on the upper and lower boundary of the plate. The shape of the

reflected waves can be seen clearly after 8.5 µs. The main wave is reflected on the right

plate boundary after approximately 11 µs. The reflected wave can be seen after 15 µs.

The shape of the wave for a single point can be seen in Fig. 30. In this case the current

excitation burst had five sinus-periods. In Fig. 30, the shape of the radiated wave front

with its maximum after 11 µs can be seen clearly. The wave is reflected on the right

boundary and reaches the considered point after 21 µs again.
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Figure 28. z-component (transversal component) of the Lamb wave at the surface of the
aluminum plate.

5.2.5 Measurement and simulation of the radiation pattern of the EMAT

To measure the radiation pattern of the EMAT, the experimental setup which is shown

in Fig. 31 is used. To excite the EMAT with sine burst of a frequency of 650 kHz, a

RITEC System is used [32]. This system allows the generation of pulses with very high

currents. In Fig. 32, the whole measurement setup is displayed. By use of the RITEC

system a current pulse in the meander coil is generated. The produced mechanical wave is

detected with the help of a laser-doppler vibrometer. The output signal of the vibrometer

is filtered by the RITEC system and is then displayed on an oscilloscope. By measuring
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Figure 29. Transversal component of the Lamb wave at the surface of the aluminum plate.
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Figure 30. z-component of the surface velocity in a point with the coordinates x = 20 mm
and y = 0 mm.
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Figure 31. Setup of the EMAT and the integrated amplifier circuit [15].
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Figure 32. Setup to measure the radiation pattern of a Lamb wave EMAT.

the maximum amplitude of the wave for different angles ϕ and constant distance r of the

vibrometer measurement point, the radiation characteristic can be obtained (see Fig. 33).

To avoid to big errors of the measurement, the distance r must be out of the nearfield of

the EMAT. The size of the nearfield can be estimated by the Fresnel distance [27]

rf = w2 k

10 π
= 26.6mm, (5.6)

where w denotes the length of the meander coil in y-direction and k = 2 π/λ the wave



268 M. Schinnerl et al.

Figure 33. Measurement of the radiation pattern of the EMAT with the help of a
laser-doppler vibrometer.
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Figure 34. Simulated and measured radiation pattern of a plate-wave EMAT (excitation
frequency 0.65 MHz).

number. In the simulation, the amplitude of the radiated wave for different angles ϕ and

the distance r was also used to determine the radiation pattern (see Fig. 33).

In Fig. 34, the measured and simulated radiation patterns are displayed. It can be seen

that the main radiation direction of the EMAT is in an angle of zero grad (y-direction), but

there is also a radiation in other directions. These components can only be calculated by

a full 3D simulation of the problem. The reason for the slight distortion of the symmetry

of the radiation pattern with respect to the x-axis is the asymmetry of the meander coil.
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5.2.6 Computation times

The dynamical simulation of the Lamb wave in the plate needs an observation time of

15 µs. 150 time-steps are necessary, because the time-step width of the simulation was

chosen to be 100 ns. At each time step, the linear FE equation systems for the magnetic

(342.000 degrees of freedom) and the mechanical (783.000 degrees of freedom) problems

must be solved. This results in the following calculation times (SGI ORIGIN 300 MHz):

• Magnetic system: 6 MG-CG iterations, 90 s,

• Mechanical system: 16 MG-CG iterations, 380 s,

• Calculation of the magnetic induction, projection of the magnetic and mechanical

quantities between the both grids, assembling of the right-hand-side etc. : 190 s.

In summary, one time-step needed 660 s. The simulation time for the complete transient

analysis was 27.5 hours on the above-mentioned computer.

6 Conclusions

In this paper we proposed and tested advanced numerical algorithms for solving transient

magneto-mechanical problems. Thereby we used different discretization techniques for

the mechanical and magnetic fields. This concerns both the discretization in space and

the implicit numerical time integration. In particular, the space discretization can be well

adapted to the different behaviour of the mechanical and magnetic fields. In order to avoid

the solution of large systems of coupled mechanical and magnetic finite element equations

at each time integration step, we used a coupling iteration procedure that successively

requires the solution of mechanical and magnetic systems of finite element equations. The

solution of these systems of finite element equations is certainly the most expensive part

of the whole numerical algorithms. Whereas no efficient (i.e. linear complexity) solvers are

known for the coupled system of mechanical and magnetic finite element equations, such

solvers are individually available for the mechanical system as well as for the magnetic

system, namely multigrid solvers.

In the second part of the paper we applied our discretization and solution procedure

to real-life magneto-mechanical problems and compared the results of our computer

simulation with measurements obtained from the real counterpart of our virtual computer

model. On the basis of both examples the applicability of the presented simulation-

technique to real-life magneto-mechanical problems was demonstrated. The measured and

simulated results showed a good agreement. Also the simulation times were comparatively

moderate.

Finally, we can summarize that the numerical algorithm proposed in this paper yields

a software tool that allows us to simulate quite complex magneto-mechanical sensor and

actuator systems in a reasonable time. Therefore, the engineer can use this simulation

software very well in the design process. The parallelization of the algorithm, that mainly

means the parallelization of the multigrid solvers (see [10, 11, 8]), will considerably

accelerate the simulation on an appropriate parallel computer. Then the simulation can

be coupled with an optimization procedure.
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