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Abstract 

In the last few decades, we have witnessed a large-scale deployment of biometric systems 
in different life applications replacing the traditional recognition methods such as 
passwords and tokens. We approached a time where we use biometric systems in our daily 
life. On a personal scale, the authentication to our electronic devices (smartphones, tablets, 
laptops, etc.) utilizes biometric characteristics to provide access permission. Moreover, we 
access our bank accounts, perform various types of payments and transactions using the 
biometric sensors integrated into our devices. On the other hand, different organizations, 
companies, and institutions use biometric-based solutions for access control. On the 
national scale, police authorities and border control measures use biometric recognition 
devices for individual identification and verification purposes. 

Therefore, biometric systems are relied upon to provide a secured recognition where only 
the genuine user can be recognized as being himself. Moreover, the biometric system 
should ensure that an individual cannot be identified as someone else. In the literature, 
there are a surprising number of experiments that show the possibility of stealing 
someone’s biometric characteristics and use it to create an artificial biometric trait that can 
be used by an attacker to claim the identity of the genuine user. There were also real cases 
of people who successfully fooled the biometric recognition system in airports and 
smartphones [1]–[3]. That urges the necessity to investigate the potential threats and 
propose countermeasures that ensure high levels of security and user convenience. 

Consequently, performing security evaluations is vital to identify: (1) the security flaws in 
biometric systems, (2) the possible threats that may target the defined flaws, and (3) 
measurements that describe the technical competence of the biometric system security. 
Identifying the system vulnerabilities leads to proposing adequate security solutions that 
assist in achieving higher integrity. 

This thesis aims to investigate the vulnerability of fingerprint modality to presentation 
attacks in unsupervised environments, then implement mechanisms to detect those attacks 
and avoid the misuse of the system. To achieve these objectives, the thesis is carried out in 
the following three phases. 

In the first phase, the generic biometric system scheme is studied by analyzing the 
vulnerable points with special attention to the vulnerability to presentation attacks. The 
study reviews the literature in presentation attack and the corresponding solutions, i.e. 
presentation attack detection mechanisms, for six biometric modalities: fingerprint, face, 
iris, vascular, handwritten signature, and voice. Moreover, it provides a new taxonomy for 
presentation attack detection mechanisms. The proposed taxonomy helps to comprehend 
the issue of presentation attacks and how the literature tried to address it. The taxonomy 
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represents a starting point to initialize new investigations that propose novel presentation 
attack detection mechanisms. 

In the second phase, an evaluation methodology is developed from two sources: (1) the 
ISO/IEC 30107 standard, and (2) the Common Evaluation Methodology by the Common 
Criteria. The developed methodology characterizes two main aspects of the presentation 
attack detection mechanism: (1) the resistance of the mechanism to presentation attacks, 
and (2) the corresponding threat of the studied attack. The first part is conducted by 
showing the mechanism's technical capabilities and how it influences the security and ease-
of-use of the biometric system. The second part is done by performing a vulnerability 
assessment considering all the factors that affect the attack potential. Finally, a data 
collection is carried out, including 7128 fingerprint videos of bona fide and attack 
presentation. The data is collected using two sensing technologies, two presentation 
scenarios, and considering seven attack species. The database is used to develop dynamic 
presentation attack detection mechanisms that exploit the fingerprint spatio-temporal 
features. 

In the final phase, a set of novel presentation attack detection mechanisms is developed 
exploiting the dynamic features caused by the natural fingerprint phenomena such as 
perspiration and elasticity. The evaluation results show an efficient capability to detect 
attacks where, in some configurations, the mechanisms are capable of eliminating some 
attack species and mitigating the rest of the species while keeping the user convenience at 
a high level.  



X 

 

Resumen 

En las últimas décadas, hemos asistido a un despliegue a gran escala de los sistemas 
biométricos en diferentes aplicaciones de la vida cotidiana, sustituyendo a los métodos de 
reconocimiento tradicionales, como las contraseñas y los tokens. Actualmente los sistemas 
biométricos ya forman parte de nuestra vida cotidiana: es habitual emplear estos sistemas 
para que nos proporcionen acceso a nuestros dispositivos electrónicos (teléfonos 
inteligentes, tabletas, ordenadores portátiles, etc.) usando nuestras características 
biométricas. Además, accedemos a nuestras cuentas bancarias, realizamos diversos tipos 
de pagos y transacciones utilizando los sensores biométricos integrados en nuestros 
dispositivos. Por otra parte, diferentes organizaciones, empresas e instituciones utilizan 
soluciones basadas en la biometría para el control de acceso. A escala nacional, las 
autoridades policiales y de control fronterizo utilizan dispositivos de reconocimiento 
biométrico con fines de identificación y verificación individual. 

Por lo tanto, en todas estas aplicaciones se confía en que los sistemas biométricos 
proporcionen un reconocimiento seguro en el que solo el usuario genuino pueda ser 
reconocido como tal. Además, el sistema biométrico debe garantizar que un individuo no 
pueda ser identificado como otra persona. En el estado del arte, hay un número 
sorprendente de experimentos que muestran la posibilidad de robar las características 
biométricas de alguien, y utilizarlas para crear un rasgo biométrico artificial que puede ser 
utilizado por un atacante con el fin de reclamar la identidad del usuario genuino. También 
se han dado casos reales de personas que lograron engañar al sistema de reconocimiento 
biométrico en aeropuertos y teléfonos inteligentes [1]–[3]. Esto hace que sea necesario 
investigar estas posibles amenazas y proponer contramedidas que garanticen altos niveles 
de seguridad y comodidad para el usuario. 

En consecuencia, es vital la realización de evaluaciones de seguridad para identificar (1) 
los fallos de seguridad de los sistemas biométricos, (2) las posibles amenazas que pueden 
explotar estos fallos, y (3) las medidas que aumentan la seguridad del sistema biométrico 
reduciendo estas amenazas. La identificación de las vulnerabilidades del sistema lleva a 
proponer soluciones de seguridad adecuadas que ayuden a conseguir una mayor integridad. 

Esta tesis tiene como objetivo investigar la vulnerabilidad en los sistemas de modalidad de 
huella dactilar a los ataques de presentación en entornos no supervisados, para luego 
implementar mecanismos que permitan detectar dichos ataques y evitar el mal uso del 
sistema. Para lograr estos objetivos, la tesis se desarrolla en las siguientes tres fases. 

En la primera fase, se estudia el esquema del sistema biométrico genérico analizando sus 
puntos vulnerables con especial atención a los ataques de presentación. El estudio revisa la 
literatura sobre ataques de presentación y las soluciones correspondientes, es decir, los 
mecanismos de detección de ataques de presentación, para seis modalidades biométricas: 
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huella dactilar, rostro, iris, vascular, firma manuscrita y voz. Además, se proporciona una 
nueva taxonomía para los mecanismos de detección de ataques de presentación. La 
taxonomía propuesta ayuda a comprender el problema de los ataques de presentación y la 
forma en que la literatura ha tratado de abordarlo. Esta taxonomía presenta un punto de 
partida para iniciar nuevas investigaciones que propongan novedosos mecanismos de 
detección de ataques de presentación. 

En la segunda fase, se desarrolla una metodología de evaluación a partir de dos fuentes: (1) 
la norma ISO/IEC 30107, y (2) Common Evaluation Methodology por el Common Criteria. 
La metodología desarrollada considera dos aspectos importantes del mecanismo de 
detección de ataques de presentación (1) la resistencia del mecanismo a los ataques de 
presentación, y (2) la correspondiente amenaza del ataque estudiado. Para el primer punto, 
se han de señalar las capacidades técnicas del mecanismo y cómo influyen en la seguridad 
y la facilidad de uso del sistema biométrico. Para el segundo aspecto se debe llevar a cabo 
una evaluación de la vulnerabilidad, teniendo en cuenta todos los factores que afectan al 
potencial de ataque. Por último, siguiendo esta metodología, se lleva a cabo una recogida 
de datos que incluye 7128 vídeos de huellas dactilares genuinas y de presentación de 
ataques. Los datos se recogen utilizando dos tecnologías de sensor, dos escenarios de 
presentación y considerando siete tipos de instrumentos de ataque. La base de datos se 
utiliza para desarrollar y evaluar mecanismos dinámicos de detección de ataques de 
presentación que explotan las características espacio-temporales de las huellas dactilares. 

En la fase final, se desarrolla un conjunto de mecanismos novedosos de detección de 
ataques de presentación que explotan las características dinámicas causadas por los 
fenómenos naturales de las huellas dactilares, como la transpiración y la elasticidad. Los 
resultados de la evaluación muestran una capacidad eficiente de detección de ataques en la 
que, en algunas configuraciones, los mecanismos son capaces de eliminar completamente 
algunos tipos de instrumentos de ataque y mitigar el resto de los tipos manteniendo la 
comodidad del usuario en un nivel alto. 
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Chapter 1.  Introduction 

The rapid technological development has influenced our daily life allowing us to perform 
personal, administrative, and job-related tasks electronically. Nonetheless, the electronic 
services (e.g. governmental, banking, data storage) require a high level of security to ensure 
that the person who performs the e-operation is authorized to do so. For that reason, 
biometric systems have been replacing the conventional recognition solutions such as 
passwords and tokens, achieving high acceptability and overcoming some disadvantages 
such as forgetting passwords and stealing cards [4], [5].  

Theoretically, biometric solutions provide sustained and secured recognition since 
biometric traits are assumed to be unique, collectible, convenient, long term, universal, and 
acceptable [6]. Despite all these attractive features, it has been proved that most of the 
human biometric characteristics can be captured by an attacker and used to create a 
duplicate (e.g. facial mask, silicon fingerprint, face image) with the objective of claiming 
someone’s identity [7]. 

The threat of biometric identity theft has been gaining much attention since a large 
proportion of the biometric solutions is utilized in unsupervised devices; e.g. smartphones, 
laptops, smart-cards, etc. The level of human supervision is a crucial element when 
speaking about biometric security. For example, biometric data acquisition at police 
stations is typically carried out with the supervision of a human operator, which diminishes 
the opportunities of attack. Contrarily, the attacker in unsupervised environments would 
exploit the absence of human supervision so that he can perform different types of attacks 
without restrictions. 

Consequently, the biometric system should determine two questions: (1) does the presented 
biometric characteristic match with the one that belongs to the claimed identity? (2) is the 
presented biometric characteristic a bona fide, i.e. genuine, or an attack? In other words, in 
addition to the biometric recognition functionality, which already answers the first 
question, there should be automatic countermeasures within the biometric system that 
provide an explicit decision about the nature of the presented biometric trait so that the 
second question is determined.  

Attacking biometric systems using manipulated biometric characteristics belongs to the 
group of physical attacks that take place at the biometric sensor. These attacks are 
standardized as Presentation Attacks (PAs) [8]. On the other hand, the automatic 
mechanisms that verify the authenticity of the presented trait to the biometric sensor are 
standardized as Presentation Attack Detection (PAD) mechanisms.  

Despite the intensive research in the field of biometric security, the problem of PAs is still 
open to researchers seeking to achieve a deeper understanding of the issue and to propose 



2 

 

efficient solutions that detect those attacks. Accordingly, this thesis investigates the 
vulnerability of biometric systems to PAs in different modalities and picks up the 
fingerprint modality aiming to propose a set of software solutions that mitigate the risk of 
PAs. Moreover, the thesis associates the proposed solutions with the corresponding level 
of threat through an evaluation methodology that puts together the vulnerability assessment 
and the performance of presentation attack detection mechanisms. First, the vulnerability 
assessment is carried out following the Common Evaluation Methodology (CEM) [9], by 
the Common Criteria, determining the existence of exploitable vulnerabilities in the system 
and defining the threat of attacks by analyzing the different factors that influence the attack 
potential. Secondly, the performance of the proposed PAD mechanisms is evaluated 
following the standards ISO/IEC 30107 1-3 [8], [10], [11]. The combination of these two 
parts provides a clear representation of the resistance of PAD to a certain level of threat. 

This chapter seeks to provide a comprehensive overview of the biometric systems' security 
and the potential vulnerabilities in the biometric recognition scheme. The issue of PA is 
discussed by analyzing basic definitions and expounding why biometric systems are 
vulnerable to PAs. Finally, the organization of the document is presented providing the 
main contributions in the thesis. 

 BACKGROUND ON PRESENTATION ATTACKS 

In 2011, a young Asian man had successfully deceived the border control authorities in 
Hong Kong-China. He boarded a flight heading to Vancouver-Canada using a silicone face 
and neck mask that gave him the appearance of an old man [2], shown in Figure 1.1. The 
airlines' security staff noticed that the old man appeared to have young-looking hands. 
Then, during the flight, the man went to the toilet to remove the mask and returned to his 
place causing more suspicions. The cabin crew directly reported the case to the Canada 
Border Services Agency (CBSA) where the traveler was escorted off the plane by Border 
Services Officers on landing. In 2013, the biometrics hacking team of the Chaos Computer 
Club had successfully bypassed the fingerprint security of iPhone 5s using every day means 
[12]. The group demonstrated that a photograph of the user’s fingerprint, taken from a glass 
surface is enough to create an artificial fingerprint that is capable of unlocking the mobile 
device. More recently, in 2017, a group of researchers from Bkav demonstrated that the 
facial recognition of the iPhone X can be fooled using a 3-D printed mask for a cost of 
150$ [3]. These observations indicate that biometric recognition systems have security 
shortcomings. That raises the alarm on the usage and deployment of biometric based 
solutions and imposes the necessity of considering security flaws such as the vulnerability 
to presentation attacks. 
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Figure 1.1. The plane traveler boarded up with a silicone face and neck veil that gave him the look of 

an elderly person [2]. 

Based on those real cases, the following question arises: “why biometric systems are 
vulnerable to presentation attacks when they are claimed to be more secured than 
conventional recognition techniques?”. A simple way to answer this question may start 
from the following definitions, given in the standard ISO/IEC 2382-37:2017 Information 
technology – Vocabulary [11]:  

• biometric characteristics: biological and behavioural characteristics of an 
individual from which distinguishing, repeatable biometric features can be 
extracted for the purpose of biometric recognition. 

• biometric recognition: automated recognition of individuals based on their 
biometric characteristics. 

From these definitions, we conclude that biometric systems require only distinguishing and 
repeatable human characteristics to perform the recognition process. If those characteristics 
were captured and used to create a duplicate artefact, and then the artefact was presented 
at the biometric sensor, there would be a chance that the biometric system will recognize 
the artefact as the genuine biometric characteristic, thus the system’s security is 
compromised. The success potential of this type of attack depends on several physical and 
logical factors, subsequently, the attack potential must be analyzed and calculated to show 
the resistance of biometric systems to PAs; further details about vulnerability analysis are 
provided in Chapter 3. 

 WHAT IS PRESENTATION ATTACK DETECTION? 

We can define PAD as the process of determining the authenticity of biometric 
presentations by extracting discriminative features, i.e PAD features, from the acquired 
biometric data. The initial matters that need to be considered are “what are these features?” 
and “why are they expected to distinguish malicious presentations?”. As soon as the PAD 
features are defined, the PAD mechanism is implemented in a fashion that examines the 
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captured biometric presentation using the defined features, then determines whether it is a 
bona fide or attack presentation. 

The attributes from both bona fide and attack presentations can be exploited to define the 
PAD features. Genuine biometric characteristics have natural physical and behavioural 
attributes which can be captured and analyzed for the purpose of attack detection, for 
example, the human face has its 3-D geometry, skin characteristics, and voluntary and 
involuntary reactions. On the other hand, analyzing known attacks leads to define attributes 
that assess the determination of PAs, for example, photo attacks on face recognition 
systems have a 2-D geometry and might contain distortion due to the image/video encoding 
in the printing or display device. 

The objective of PAD mechanisms is to explicitly declare a decision to accept or reject the 
performed presentations, moreover, PAD mechanisms should satisfy the following 
requirements during its operation [13]: 

1) Accuracy: the PAD mechanism should demonstrate high accuracy of detecting 
malicious presentations. It is equally important that the PAD mechanism 
demonstrates a low false rejection rate of bona fide subjects. 

2) Non-invasive: the detection procedure should not involve any harmful or excessive 
contact with the user. 

3) User friendly: users should not be hesitant to collaborate to perform the process. 
4) Fast: current biometric authentication processes require a real-time operation, and 

the use of the PAD mechanism should not interfere with the intended authentication 
process. 

5) Low cost: the cost is an essential factor in deploying PAD solutions. High-cost 
solutions might not be adopted by technology manufacturers. 

 THE OBJECTIVE OF THE THESIS 

This thesis is devoted to providing an overview of the PA and PAD in different biometric 
modalities and take the research further to study the fingerprint modality providing various 
PAD mechanisms that mitigate the risk of fingerprint PAs considering different sensing 
technologies. The ultimate goal is to achieve high accuracy for the proposed PAD 
mechanisms keeping the user-convenience at a high level. 

Fingerprint modality was selected because it is one of the most deployed technologies in 
the biometric market. The fingerprint sensor market size is projected to grow from USD 
3.5 billion in 2019 to USD 7.1 billion by 2024 [14]. The modality had demonstrated 
efficient performance and high user acceptance, for that reason, it has been integrated into 
many supervised and unsupervised recognition solutions. On the other hand, fingerprints 
are known to leave traces at touched surfaces providing a potential ground for attackers to 
exploit the biometric system’s vulnerability to PAs and initiate an attack. 
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To achieve these objectives, the thesis conducts the following phases: 

Reviewing and analysing the recent investigation in the domain of PA and PAD and revisit 
the existing taxonomies providing suggestions and necessary modifications, keeping in 
mind the current investigations and directions of development. 

Combining the vulnerability assessment and the PAD performance evaluation in one 
evaluation methodology that has the capacity to demonstrate the technical capabilities of 
the proposed PAD mechanisms and provides vulnerability analysis of the corresponding 
threat. 

Planning, implementing, and conducting dynamic data collection with the objective of 
acquiring fingerprint videos from (i) bona fide users, and (2) attacks using different attack 
species. 

Implementation, development, and evaluation of PAD mechanisms. 

 THESIS ORGANIZATION 

This dissertation is divided into seven chapters. The first chapter has provided an overview 
of the thesis topic, the importance of the study, and the intended research direction. The 
rest of the dissertation is presented as follows (Figure 1.2): 

Chapter 2: In this chapter, a brief overview of biometric security is given. The 
vulnerabilities of biometric systems are explained by showing the different points of 
attacks on the generic biometric scheme. The chapter tightens the focus on the vulnerability 
of presentation attacks. Then, the state of the art of presentation attack and presentation 
attack detection is provided for six biometric modalities, specifically: fingerprint, face, iris, 
vascular, handwritten signature, and voice. A new taxonomy of presentation attack and 
presentation attack detection is proposed to categorize the prospect attacks and proposed 
PAD mechanisms. 

Chapter 3: This chapter provides the evaluation methodology that had been followed 
during the experimental part of this thesis. The methodology includes techniques and 
measures that characterize valid and comparable evaluations for the proposed PAD 
mechanisms. Moreover, the evaluation methodology details the data collection and 
analyzes the attack potential for the collected attacks.     

Chapter 4: The first PAD mechanism is proposed in this chapter. In this experiment, the 
fingerprint video is investigated as a sequence of dependent frames. It was noticed that the 
visual appearance of the videos shows differences in the development of global features 
such as intensity, contrast, randomness, etc. Consequently, the method extracts eight global 
features from each frame and concatenates the features of all the frames in the video, and 
uses them as the PAD features to classify the presentation to “attack” or “bona fide”. 



6 

 

Chapter 5: As the previous mechanism concatenates 2-D features from the video frames, 
this experiment investigates the fingerprint presentation (i.e. fingerprint video) as a 3-D 
signal. In this chapter, various video descriptors are utilized to extract the spatio-temporal 
features and utilize them as PAD features. The proposed features show significant 
improvement over the results obtained in Chapter 4. Moreover, the obtained accuracy 
shows improvement to the State-of-the-Art dynamic mechanisms.  

Chapter 6: The last experiment focuses on analyzing the influence of fingerprint pressure 
on the dynamic features that had been studied in chapters 4 and 5. The study shows that 
once the capture-subject adds pressure during the fingerprint presentation, the dynamic 
features provide more accurate and stable performance. 

Chapter 7: Finally, this last chapter draws the main conclusions of this thesis and provides 
future directions of development in this domain. 
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Figure 1.2. The main contributions of the thesis and the corresponding organization in this document. 
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Chapter 2.  A Survey in Presentation Attack 
and Presentation Attack Detection  

Despite the accuracy of biometric systems, there exist many vulnerabilities that can be exploited 
by attackers seeking to manipulate the final decision of the biometric recognition process [15]. The 
existence of those vulnerabilities hampers the system’s security, therefore, performing a 
vulnerability analysis that shows the system’s resistance to prospective attacks is indispensable. 
Studying the known vulnerabilities specifies approximate guidance for the system security 
considering certain scale/s of threat. 

Given that the focus of this thesis is on presentation attack and presentation attack detection, this 
chapter seeks to review the vulnerable points in the biometric system, then to conduct a literature 
review on presentation attack and presentation attack detection considering different biometric 
modalities. To achieve these objectives, this chapter is organized as follows: Section 1 Introduces 
the security of biometric systems and explains the points of attack on the generic biometric system. 
Section 2 proposes taxonomies for presentation attacks and presentation attack detection 
mechanisms. Section 3 and Section 4 provide a literature study on PA and PAD considering six 
biometric modalities. Finally, Section 5 concludes the key findings of this chapter. 

 INTRODUCTION TO BIOMETRIC SECURITY 

There are two main categories of attacks that endeavor to reverse the biometric recognition 
decision: (1) the presentation of manipulated biometric characteristics to the biometric sensor, i.e. 
presentation attack, also known as direct or spoofing attack; and (2) manipulating the electronic 
and/or digital process in the biometric system, i.e. indirect attacks. The second category can be 
further analyzed by showing the internal components of the biometric system and points of attacks, 
as shown in Figure 2.1; the figure is illustrated in the operational environment whereas the system 
can be used either in identification or verification mode.  
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Figure 2.1. The generic biometric scheme in the subsystem level and the points of attacks [8]. 

 Presentation Attack 

Attack presentations are performed at the physical level of the recognition environment, from 
Figure 2.1 (attack point 1), by two types of attackers: biometric concealer, where the attacker 
purposes to avoid being recognized as a known capture subject to the system, or biometric 
imposter, where the attacker intends to claim someone’s else identity using a Presentation Attack 
Instrument (PAI) [8].  

The biometric concealer endeavors to conceal his/her biometric characteristics rather than 
demonstrating the characteristics of a known capture subject, examples include utilizing artefact, 
through camouflage, or modification of the genuine biometric characteristics. 

On the other hand, there are two fashions to perform imposter attacks. First, the imposter selects 
the targeted capture subject, creates duplicate biometric characteristics, and claims the targeted 
individual’s identity. Second, the imposter uses a manipulated biometric characteristics intending 
to be recognized as any person enrolled in the system.  

 Indirect Attacks 

As follows from Figure 2.1, it’s observed that indirect attacks target either the communication 
channels between the biometric subsystems or the internal components of those subsystems. 
Nonetheless, the attacker needs access to the internal processes in order to carry out attacks at 
points 2-8. This subsection discusses indirect attacks with the corresponding vulnerability points. 

Communication Channels 

The different subsystems within the biometric system are connected through multiple 
communication channels, points 2, 4, 6, and 8, which transmit the signal/s from one subsystem to 
the next. In this group of attacks, the attacker seeks to modify the transmitted signal with the 
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objective of manipulating the recognition decision. Thus, biometric systems are designed in a 
fashion that secures the data during transmission to avoid potential attacks. 

Biometric Subsystems 

The biometric system includes a sequence of subsystems that perform the different tasks of 
biometric recognition (Figure 2.1). These subsystems can be targeted by the attacker seeking to 
manipulate the recognition process as follows: 

a) Data Capture Subsystem: Besides the presentation attack, the biometric sensor, point 1, 
is subject to indirect attacks. The acquisition device can be replaced by another one that 
transmits a duplicate biometric sample such as a replay attack. Therefore, the biometric 
system is expected to include countermeasures that identify any attempt to interfere with 
the physical sensor.  

b) Signal Processing Subsystem: The captured biometric sampled is handled at the first level 
at this subsystem, point 3. The executed processes depend on the implementation of the 
biometric system and may include: quality check, segmentation, noise removal, signal 
enhancement, and feature extraction. The attacker attempts to exploit this vulnerability by 
modifying the digital process seeking to bypass the system’s security. For instance, the 
feature extractor might be replaced to perform a hell climbing attack. 

c) Comparison Subsystem: The matching process compares the captured sample with a 
stored template in the database. If the attacker was able to compromise the matching 
process such that the matching score is modified, he can be recognized by the system as 
being the claimed identity. 

d) Database Subsystem: the database contains the data of all enrolled individuals. Once the 
database is compromised, the attacker can add, modify, and remove data and then perform 
several types of attacks. 

e) Administrative Management The administration of biometric systems is a vital element 
that ensures biometric security. The integrity of the authorized administrator/s on 
controlling: the decision thresholds, the quality check criteria, and the enrollment process, 
reflects the integrity of the overall system. 

 PRESENTATION ATTACK AND PRESENTATION 
ATTACK DETECTION TAXONOMIES 

Each biometric system utilizes a specific physiological and/or behavioral characteristic for the 
recognition process. Additionally, each biometric modality has different types of sensors that vary 
with other technologies in terms of data acquisition methods. This variety inquires the attacker to 
perform the presentation attack using a specific Presentation Attack Instrument (PAI) species that 
is adjusted to the target biometric system. The different PAI species may come from different 
sources and provide distinct capabilities even for the same biometric modality. For instance, image 
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and video attacks on face recognition systems show different dynamic characteristics when 
presented to the same sensor.  

On the other hand, the research on presentation attack detection has been quite extensive in recent 
years. There had been hundreds of proposals for automatic countermeasures that reduce the risk 
of attack presentations. Some of these proposals were based on modifying the design of the 
biometric sensor while others focus on modifying the recognition process by additional 
examination for the acquired biometric sample. 

In order to organize the investigations in this line of research, different taxonomies had been 
proposed in the literature to classify the different categories of presentation attack and presentation 
attack detection mechanisms. First, hardware/software classification [16] sorts the PAD 
mechanisms by implying the necessity of modifying the hardware design of the biometric sensor, 
(b) dynamic/static classification [17] clarifies whether the temporal biometric information is 
needed for a PAD mechanism.  

The next subsections propose general taxonomies for presentation attack and presentation attack 
detection. 

 Presentation attack taxonomy 

In general, capturing biometric traits is categorized based on the cooperation of the bone fide 
subject [11] (Figure 2.2). Cooperative PAs are carried out with full cooperation of the bona fide 
subject regardless of the intention of the attack, while non-cooperative PAs are performed 
assuming that the target bona fide is unaware of the attack or the attack is performed against his/her 
well. Non-cooperative attacks are often rather sophisticated because of the need for special 
expertise and adequate hardware/software tools, moreover, the targeted biometric modality plays 
an important role to determine the ease of the process. For instance, latent fingerprints, which are 
left on surfaces due to the fingerprint moistness, can be developed and captured by an expert using 
specific tools then used to create an artificial fingerprint. On the contrary, the vascular pattern 
needs to be captured directly from the bona fide subject using an infrared imaging capture device, 
as the pattern is not exposed either leaves traces. 
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Figure 2.2. Types of PAs based on the cooperation of the bona fide user. 

On the other hand, perceiving the intended meaning of performing a presentation is critical in 
analyzing presentation attacks. Two main classes are established for presentation attack based on 
the user intention. Each class consists of different subclasses of attacks, taking into account the 
attack type (see Figure 2.3).  

 

 
Figure 2.3. Presentation attack taxonomy (inspired by [8]). 

2.2.1.1 Attacks with non-subversive intent 

In this case, the subject performs a biometric presentation that may interfere with the final decision 
of the recognition system. Basically, no malicious intent is considered from the subject’s 
standpoint. For example, using artificial products for cosmetic purposes, such as cosmetic contact 
lenses, may lead to suspicious detection. Furthermore, the genuine biometric trait might be altered 
because of accidental changes like burns or scars. Unlimited to these cases, non-conformant 
presentations (e.g. non-attentive, poorly trained, and careless users) are considered non-
subversive; no malicious goal is assumed. 
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2.2.1.2 Attacks with subversive intent 

This category assumes that malicious purpose is intended by the attacker. The presented instrument 
could be synthesized or human-based, and yet it could be created with the cooperation of the 
genuine user. The proposed taxonomy details subversive attacks into subclasses based on the 
attack type.  

1) Synthetic PAI: Synthesizing a PAI might be simple such as wearing sunglasses or sophisticated 
like producing a 3D facial mask. Generally speaking, PAI can be organized from two different 
perspectives:  

First, does PAI contain full or partial biometric information? Depending on attack type we may 
define the following types: 

• Fully synthesized (complete) artefacts are created such that PAIs have identical features as real 
biometric traits. For instance, 3D masks and artificial eyes provide a 3D presentation that could 
bypass the system’s countermeasures; 

• partial samples are those samples that contain partial discriminative features and used later by 
a claim or evade an identity. For example, textured contact lens attack is a potential attack due 
to the fact that it has a 3D shape of the eye when it’s being used by the attacker, furthermore, 
the correspondent eye behaves naturally. 

Second, can PAI provide the dynamic information of real biometrics? The artefact may have 
dynamic changes or not, the attacker makes a decision based on the attack type and ToE: 

• Static artefact provides information of time instant for a biometric trait. Image attack on face 
or iris systems is a static attack; 

• Dynamic artefact provides dynamic temporal information during the presentation. For 
instance, a video attack provides dynamic information that may succeed in the attack. 

Previous classes result in four generic types of PAIs: (1) static complete instrument, (2) static 
partial instrument, (3) dynamic partial instrument, and (4) dynamic complete instrument. 
Examples of these classes are provided in Table 2.1. 

2) Human-based PAI: instead of synthesizing a PAI, attackers may present live, dead, altered, or 
imitated samples. One way to present a live sample occurs when coercing the genuine user to 
present his biometric sample to the sensor. Similarly, dead body parts (i.e. cadaver or severed 
parts) could be employed to overcome the biometric system, dead fingers are studied in [18]. 
Moreover, alterations on the attacker biometric trait are considered as a potential change that brings 
out different characteristics that result in a suspicious presentation (e.g. damaged on purpose, 
burns, plastic surgeries).  

Behavioral biometrics are also attainable, whereas attackers collect as much information as 
possible about the trait and try to imitate it at the biometric sensor. The dynamic handwritten 
signature is a significant example where the attacker aims to forge the graphical form of the 
signature while applying similar features such as speed, pressure, and orientation [19]–[21]. 
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Table 2.1. Presentation attack instruments. 

PAI source PAI Type Examples 
H

um
an

-b
as

ed
 

Live sample Zero-effort attempt, (under coercion, drugged, unconscious) genuine. 
Dead body part Pulled eye, severed hand or finger, cadaver part. 
Altered Body part amputation, plastic surgeries, fingerprints switching. 
Behavioral Forging handwritten signature, mimicking voice, gait imitation. 

Sy
nt

he
tic

 static complete  
Printed image, display image, full head casting, artificial eye, static handwritten 
signature. 

static partial  Glasses, scarf, partial face image. 

dynamic partial  Cosmetic makeup, textured eye lenses, facial hair, dirty fingerprints. 

dynamic complete  
Video attack, voice record, wearable 3D masks, forging a dynamic handwritten 
signature. 

Consequently, we can conclude that biometric vulnerability to attack presentations is interpreted 
by stating that biometric systems are not yet as perfect as they should be. In addition to the 
distinguishable and time-invariant features, biometric systems should inspect additional 
discriminative features that confirm that the presented biometric characteristic at the data capture 
subsystem belongs to the bona fide user. 

 Presentation attack detection taxonomy 

Due to the vast amount of literature on PAD, different taxonomies have been proposed to organize 
the conducted investigations by identifying useful and meaningful classes [13], [17], [22], as 
shown in Figure 2.4. Those taxonomies facilitate research and discovery in the field of PAD 
driving improved detection mechanisms and novel methods, moreover, manifest the potential 
directions to develop robust and accurate PAD mechanisms. It is noticed that those classifications 
focus on the required tools to develop the mechanism, i.e. hardware and software tools, and at a 
secondary level discuss the proposed features/methods that are necessary for the implementation 
of the PAD scheme. In other words, the taxonomy in Figure 2.4 can be interpreted as the following 
three steps: 

1. Defining the required PAD features. 
2. Inspecting whether the defined features can be acquired by the SoA sensors or need a 

modification/addition on the hardware modules. 
3. Determining the specifications of the acquisition and/or processing in order to carry out the 

PAD examination. 
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Figure 2.4. State of the art taxonomy of PAD mechanisms [13]. 

State of the art classifications categorize PAD methods into three main classes based on the 
necessary tools to detect the attacks [13]: (1) Hardware methods, where extra hardware 
components are embedded in the biometric sensor. (2) Software methods, where additional 
processes take place in order to analyze the acquired data, which support the decision process to 
mitigate presentation attacks. (3) Score level methods, mainly, the process is performed in the 
matcher to analyze the information that comes from biometric sensors, PAD mechanisms or a 
combination of both. 

It is noticed from the classification in Figure 2.4 that the PAD categories describe the used tools 
and acquisition methods to classify the PAD mechanisms. However, it does not provide 
information about the exploited PAD features which are the basis of the final decision to accept or 
reject a presentation. For that reason, we propose a PAD taxonomy that classifies the PAD 
mechanisms based on the investigated PAD attributes which are assumed to bring out 
discriminative features and lead to rejecting attack presentations (Figure 2.5). 

 
Figure 2.5. Presentation attack detection Taxonomy. 
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The following subsections expose these two categories with examples for each.  

2.2.2.1 Within sample phenomena 

In addition to the unique discriminative pattern of a natural biometric trait, manifest and latent 
spatio-temporal information can be extracted. Case in point, the human face has a unique 3D 
geometry that has specific characteristics and capable of responding to environmental conditions; 
unconscious responses like eye blinking. This definition of face extends the meaning for face 
biometric trait. Therefore, a PAD mechanism can be implemented based on that unique 3-D 
geometry to detect 2-D attacks (images and videos). Furthermore, vein pattern is recognized by 
blood flow in the vein network, in this case, the dynamic acquisition might be utilized to prove the 
trait liveness. 

In this class, the PAD features are caused by the genuine biometric trait and they can be captured 
through modifying the acquisition and processing methods or by utilizing additional hardware. 

2.2.2.2 Collateral means 

This group focuses on the acquired biometric sample to be a source of extra information, which 
could be exploited to classify bona fide and attack presentations. Collateral information is not 
necessarily provided in natural presentations, other types of collateral means might be included in 
voluntary challenge response and multimode composition. 

• Embedded features: in this class, the PAD features are caused by elements other than the 
biometric trait; e.g. caused by the PAI or the behaviour of the attacker. Thus, the acquired 
presentations are expected to contain additional means that assess the process of detecting 
attacks. For instance, distortion analysis, texture analysis, and quality measures are popular 
and widely investigated tools in this type of PAD mechanism.  

• Voluntary challenge response: Humans are capable to respond to voluntary requests like mouth 
and eye movement [23], where the PAD mechanism analysis the response to eliminate 
potential attacks. 

• Multimodal biometrics: different combinations of biometric modalities are proposed in the 
literature, proposing enhancement in the overall security of the biometric system [24]–[26]. 
The system acquires different traits and combines mechanism results to take a decision that 
verifies or rejects the presentation. 

Literature exposes more research on software solutions compared to those studies on hardware 
solutions. Software solutions are proposed on testing datasets of biometric sensors without any 
need to modify the original design of the sensor, which means no additional cost on the overall 
system. Moreover, software solutions assist the deployed commercial devices that use biometric 
recognition systems. 

The next two sections explore presentation attacks and correspondent solutions that aim to 
eliminate or mitigate those attacks. 



18 

 

 STATE OF THE ART IN PRESENTATION ATTACK 

The vulnerability of biometric systems to presentation attacks has gained outstanding interest from 
the researchers as shown in the abundant and various explorations in this research scope. This 
section reviews the literature of presentation attacks on six biometric modalities (iris, fingerprint, 
face, vascular, handwritten signature, and voice) and connects the defined attacks with the 
taxonomy in Section 2. 

 Iris recognition 

Iris recognition system may use visible-light [27]–[29] or near-infrared (NIR) illumination to 
acquire the iris sample. Systems that operate on visible light illumination had shown a major 
obstacle to localizing the pupil [30], especially, for eyes with a high concentration of melanin. This 
is explained by the significant capability of melanin to absorb light. Currently, because of the high 
accuracy of NIR systems, all commercial sensors work on NIR illumination [31], [32].  

Identifying the sensing technology directs the attacker to choose a PAI that may succeed in the 
intended PA. Two comprehensive surveys [32], [33]  have been proposed to cover potential attacks 
on the iris recognition system. Table 2.2 summarizes known attacks and connect them with the 
proposed taxonomy in Figure 2.3: 

Table 2.2. Presentation attack on iris recognition systems. 

PAI type PAI REFERENCES 

Sy
nt

he
tic

 Static complete 
Printed image  [34]–[36] 
Prosthetic Eye [33], [37]–[41] 
Display image 

[42]–[52]  Dynamic Complete 
Display video 
Textured contact lens (imposter) 

Dynamic Partial Textured contact lens (cosmetic) [53], [54] (concealer) 

H
um

an
-

ba
se

d 

Non-Conformant 
Use 

Eye movement and rotation [55] 
Actual eye affected by drugs [56], [57] 

Cadavers Cadaver eye  [58]–[60] 
Coercion Presentation under coercion - 

 Fingerprint recognition 

In the literature, there are many studies that have been carried out to prove the feasibility of creating 
an artificial fingerprint from latent fingermarks [34], [61]–[64]. Recent investigation has 
demonstrated an imaging technique that revealed fingermarks on difficult substrates, an 
exceptional level of detail has been obtained after over 26 days of deposition [65]. 

Biometric society is aware of this threat, and currently, many researchers are conducting 
presentation attack experiments to estimate the risk of such attacks. Often, those studies are 
performed with the cooperation of subjects, where a mold of fingermarks is taken directly from 
the real finger [61]–[64], [66]–[72]. 
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Various reviews of the literature on fingerprint presentation attacks have been carried out in [17], 
[73], [74], to investigate the system’s vulnerabilities and classify corresponding threats and 
countermeasures. Table 2.3 lists the investigated attack types, and it is followed by key 
observations. 

Table 2.3. Presentation attack on fingerprint. 

PAI type PAI 
Sy

nt
he

tic
 Static complete Printed image  

Fingerprint reactivation  

Dynamic Complete 
Artefacts 

Latent fingerprint  
Dynamic Partial 

H
um

an
-b

as
ed

 

Non-Conformant Use  Side of a finger, presenting different 
finger (e.g. index instead of thumb) 

Cadavers dead fingerprint  
Altered Altered fingerprint 
Coercion Bona fide presentation under coercion 

 Face recognition 

Face recognition encounters diverse presentation attacks designed to manipulate the biometric 
system’s decision. Similar to previous modalities, attacking face recognition starts with identifying 
the target sensor, i.e. 2D or 3D acquisition system. In fact, the human face has a unique 3D 
geometry and capable of performing physical movements and emotional expressions. Moreover, 
a man has unconscious facial responses for external events such as eye blinking. 

Face recognition security occupies high attention since it has been deployed in many areas such as 
passport check and video surveillance. Surveys [16], [75], and book chapters [73] have been 
published to update the threats and solutions for face recognition systems. Table 2.4 classifies 
potential attacks based on Figure 2.3. 

Table 2.4. Presentation attack on face recognition systems. 

PAI type PAI REFERENCES 

Sy
nt

he
tic

 

Static partial Facial accessories  [76], [77], [78] 

Static complete 
full head casting, static mask  

Printed image   

Display image 
[79]–[82] 

Dynamic Complete 
Display video 
Wearable mask  [83]–[85] 

Dynamic Partial Artificial and natural facial hair [78], [86] 

H
um

an
-

ba
se

d 

Non-Conformant Use facial expressions [87] 
Altered Plastic surgery, facial makeup [88], [89], [90], [91] 
Live Identical twin  [92], [93] 
Coercion Presentation under coercion - 
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 Vascular recognition 

In the 9th GBDe Summit, a study about the security of the embedded black-box system was 
demonstrated [94], vein biometric systems were investigated, and the possibility of creating 
artificial traits was discussed as well. This work pointed out the need for further studies and 
evaluations to understand the deficiencies of vascular biometric systems. 

Investigations have started with cooperative attacks, where researchers started performing PAs 
with the genuine user’s cooperation. That is to test the system vulnerability against PAIs. As far 
as proposed in the literature, the only presentation attack performed on vascular biometric sensors 
is photo attack [95]–[97].  

 Handwritten signature forgery 

Handwritten signature forgery is a behavioral attack that is performed by a forger (i.e. human 
based), aiming to produce an identical graphical signature and temporal features like speed and 
pressure. Forging handwritten signatures is influenced by two main factors: the complexity of the 
signature [98] and proficiency of the imposter [99]. 

A difficulty index has been proposed in [100] to evaluate a genuine signature vulnerability to 
imposter’s attacks. In fact, the proposed “difficulty index” is completely independent of the quality 
of the forged sample which is produced by an imposter, and it contributes to measuring the 
challenge of imitating the genuine signature. 

Imposters are classified in literature, depending on their knowledge and ability to forge a signature, 
into three main types [101]: (a) Random (Simple) forgery: imposter uses the victim name in order 
to generate a signature without any knowledge about the genuine signature; (b) causal forgery: the 
forger in this class has observed the genuine signature for a while then an imitation is performed 
based on the graphical memories of the imposter; (c) skilled forgery: imitating the signature is 
performed by a professional who has prior knowledge about the genuine sample, and typically 
trains many times before performing the attack. 

 Automatic speaker recognition 

Speech is generally influenced by complex biological, social, and regional factors. Aging, stress, 
colds, etc. are typical causes of voice variation which bring out more challenges for Automatic 
Speaker Verification (ASV) algorithms [102], [103]. In case of considering those cases as attacks, 
they would fit under alternated presentations with no malicious intent.  

Literature exposes presentation attacks on ASV as shown in Table 2.5. These attacks are supposed 
to be performed with malicious intent; i.e. according to Figure 2.5, they are considered as 
subversive attacks with dynamic PAIs. 
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Table 2.5. Presentation attack on speaker recognition systems. 

PAI type PAI REFERENCES 

Sy
nt

he
tic

 

Dynamic Complete 

Replay attack [105]–[110] 

Speech synthesis [111]–[115] 

Voice conversion [116]–[123] 

H
um

an
 

Alternations  Voice changes [102], [103] 

Behavioural Impersonation [124]–[127] 

 STATE OF THE ART IN PRESENTATION ATTACK 
DETECTION 

As stated in the previous section, many investigations are being undertaken in order to study 
presentation attacks seeking to propose detection mechanisms to eliminate or mitigate those 
attacks. There is a vast amount of literature on presentation attack and presentation attack detection 
evaluations, which we introduce in this section and link those investigations to the proposed 
taxonomy. 

The following subsections present a literature review about the proposed PAD mechanisms and 
link them to the proposed taxonomy in Figure 2.5. 

 Mechanisms based on natural biometric phenomena 

The PAD mechanisms in this class are basically developed to investigate the influence of the 
natural biometric phenomena on the acquired presentation. In other words, the PAD mechanism 
defines additional distinguishing characteristics in the genuine biometric traits seeking to 
determine whether the presentation is consistent or not with the human characteristics, 
consequently, reject malicious presentations. For example, the perspiration of fingerprint provides 
unique dynamic patterns when analyzing the presentation as a sequence of successive frames, 
deeper details, and analysis for the fingerprint modality are provided in the next chapters. 

Table 2.6 lists the proposed PAD mechanisms that consider natural phenomena as distinguishing 
basis to address the issue of PA. 
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Table 2.6. PAD mechanisms based on natural characteristics. 

Modality Method Reference Hardware\Software 

Iris 
Dynamic eye response  [36], [39], [107]–[114] Both 
3D geometry analysis  [36], [107], [115], [116],  HW 

Fingerprint 
Perspiration analysis  [119]–[123]  SW 

Pores detection  [120]  SW 
Fingerprint coarseness  [121]  SW 

Face 
Behavioral analysis  [114]–[119]  SW 
3D geometry analysis  [129]–[131]  HW 

Vascular 
Blood features  [125] [126]  SW 

Motion magnification  [127]  SW 
Handwritten 
signature Dynamic signature analysis  [20], [21], [128]–[130]  HW 

 Mechanisms based on collateral means 

As stated in Section 2, this category includes the mechanisms that exploit secondary information 
that distinguishes genuine presentations from attacks. The next subsections explain the three sub-
classes of this category.  

2.4.2.1 Embedded features 

This type of feature refers to the secondary attributes that can be exploited in the biometric 
presentation to distinguish attacks. For example, the quality analysis focuses on the quality of the 
acquired biometric sample and it assumes that attack instruments provide a different quality than 
that provided by genuine presentations. Moreover, when texture analysis is used as the PAD 
features, the algorithms assume in the first place that the texture of attacks differs from the texture 
of genuine traits then using a data-driven model the algorithm classifies the input presentation as 
a bona fide or attack presentation. 

Table 2.7 shows the different methods which have been investigated in the literature for the 
different modalities. 
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Table 2.7. PAD mechanisms based on collateral means. 

Modality Method Reference Hardware\Software 

Iris 

Quality measures  [131] SW 

Texture analysis 
 [132], [133] [134]–[138] [107], [139]–

[141] [53], [54], [140], [142], [143]  [55]  [144]  SW 

Light reflection  [145] SW 

Multi-spectral analysis   [146]–[151]  HW 

Fingerprint 

Distortion analysis  [152]–[154] SW 

Quality measures   [155]–[158] [159]–[167] SW 

Statistical approaches   [168] [169]  SW 

Power spectrum analysis   [170], [171] SW 

Local phase quantization   [172]–[174] SW 

Optical coherence tomography   [175], [176] HW 

Face 

Facial texture analysis  [177]–[180] SW 

Quality measures  [139], [181]–[183] SW 

Context base analysis  [184], [185] SW 

Statistical approaches   [79], [186], [187] SW 

Spectral approaches   [124], [188]–[192] SW 

Light polarization   [193]  HW 

Vascular Texture analysis  [194], [195] SW 
Voice Voice analysis  [196] [197] [198] [199] [200] [201]–[205] [206] SW 

2.4.2.2 Voluntary challenge response 

The biometric system’s user is capable of performing simple actions while performing a biometric 
presentation. Eye and mouth movements, face rotation, or any other conscious response will be 
classified under this subclass [23], [113], [207], [208]. 

2.4.2.3 Multimodal systems 

Independent biometric modalities might be combined in one biometric system such that different 
acquisition subsystems are employed to capture the user biometric data [209]. Theoretically, 
multimodal systems are supposed to provide a high level of security[24]–[26], but nevertheless, 
various investigations show that a multimodal system is vulnerable to presentation attack [210]–
[212].  

 CONCLUSIONS 

Many factors impact the generation of efficient artefacts that can defeat the recognition system. 
The general taxonomy of presentation attacks is proposed in a way that helps to recognize any 
potential attack. Firstly, the intention of the user (genuine or attacker) is essential. Subversive 
intents mean to defeat and end up with a successful imposter or concealer try. On the other hand, 
non-subversive intents are still considered as suspicious presentations, while users are behaving 
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normally by wearing commercial products for cosmetic purposes, facing accidents which cause 
problems in engaging with a system, or need more knowledge about the use of these systems. 

Considering two major types of modalities: physiological and behavioral modalities, generating 
artefacts can take different directions. Presentation attacks are performed by creating a spoofing 
trait that contains static or dynamic information, depending on the recognition system topology, 
such that the PAI provides an identical pattern to the genuine sample. Additionally, the attacker 
here focuses on the biometric sensor specifications, the required hardware and software tools, and 
PAIs creation methodology. 

At the same time, behavioral modalities demand the attacker has particular experience for each 
sample, this involves training on each target sample to get a high-quality spoof. Moreover, the 
dynamic information should be considered while applying the attack. 

As presented in section 3, all modalities have been defeated by presentation attacks. Consequently, 
the reliability of biometrics as recognition systems is lower. Statistically speaking, evaluation 
measures of biometric systems security are degraded while considering presentation attacks. 
Therefore, countermeasures have been developed and embedded in the system to boost the 
resistance of the system against spoofing attacks. 

Literature exposes massive research on PAD mechanisms which have been reclassified in this 
paper. A novel PAD taxonomy is proposed in Section 2 to categorize the state of the art anti-
spoofing methods. The base criteria we adopted to establish the taxonomy is the type of 
information used in the PAD mechanism. The first class consists of the methods which analyze 
the natural features of the trait; i.e. features produced because of natural phenomena or any 
information from within the sample. The second class covers the rest of the solutions which detect 
collateral information adding extra hardware or software to the system. 

PAD hardware based methods require modifications on the sensor in the biometric system, 
meaning that cooperation from the manufacturers is expected to deploy this type of solution. 
Meanwhile, the rest of the solutions are proposed following testing of datasets on a biometric 
sensor without any need to modify the original design of the sensor, which means no additional 
cost on the overall system. This explains the relatively low quantity of hardware-based solutions 
compared to software-based solutions. 
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Chapter 3.  Presentation Attack Detection: 
Evaluation Methodology 

Performance evaluation of a PAD mechanism is essential to characterize its technical capabilities 
such as security and ease-of-use. Although all PAD mechanisms have the same objective, different 
configuration methods can be implemented to integrate the PAD subsystem in the biometric 
system. Hence, adequate evaluation methodologies are vital to achieving valid and comparable 
PAD evaluations. For that reason, different methodologies, such as the standard ISO/IEC 30107 
Information technology - Biometric presentation attack detection [8], [10], [11], [213] and 
Common Methodology for Information Technology Security Evaluation (CEM) [9] by the 
Common Criteria, were proposed in the literature providing frameworks and techniques that can 
be used to assess the performance of PAD mechanisms. 

Essentially, PAD evaluation determines the technical competence of a PAD mechanism 
considering specific attack potential. Therefore, the evaluation should provide enough details and 
analysis about the assumed attack potential, showing that the obtained technical competence 
corresponds to the supposed level of threat. In this chapter, we adopt the vulnerability analysis 
method and the calculation of attack potential following the recommendations of the CEM [9]. On 
the other hand, the evaluation of PAD technical competence is performed based on the standard 
ISO/IEC 30107-Part 3: Testing and reporting [11]. Figure 3.1 illustrates the corresponding 
reference at each part of the proposed methodology. 

 
Figure 3.1. The use of existing standards in the proposed methodology. 

Most of the current public PAD datasets, such as LivDet databases [214], do not characterize PAs 
considering the factors influencing the attack potential. For instance, the level of knowledge and 
expertise of an attacker/s is expected to affect the result from the PAD mechanism [215]. Having 
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this factor undescribed questions the confidence of the proposed solutions when considering 
different datasets with significant differences in the attack characteristics.  

In this thesis, the evaluation of the proposed PAD mechanisms is not carried out immediately after 
the data acquisition but offline at a later time. This chapter provides the required framework to 
perform the evaluations, details the data collection process, and provides a vulnerability 
assessment for the Target of Evaluation (ToE). 

This chapter is primarily concerned with PAD evaluations for fingerprint modality following the 
directions of the aforementioned methodologies with the following objectives: 

• Define the main technical terms; 
• explain the PAD evaluation levels; 
• performing a vulnerability assessment to determine the existence and exploitability of 

weaknesses or flaws in the fingerprint recognition system; 
• assessing the security of the PAD mechanism by examining its capability to correctly 

identify presentation attacks;  
• evaluating the influence of the PAD mechanism on the biometric system’s ease-of-use 

through analysing the prospect of rejecting bona fide presentations; 
• determining the testing plan; and, 
• describe the data collection. 

The rest of this chapter is organized into two main sections. The first section introduces the 
theoretical framework for the evaluation by explaining the levels of evaluation, the vulnerability 
assessment method, and the details of PAD performance evaluation. The second section presents 
the test plan and the data collection, then performs a vulnerability assessment on the introduced 
database following the provided framework in Section 1. 

 THEORETICAL FRAMEWORK OF EVALUATION 

 Terminology 

The standard ISO/IEC 30107 defines a set of terms to describe the evaluation of PAD mechanisms. 
In the experiments of this thesis, these terms are used to report the results. The related and most 
used terms are defined as follows: 

• Biometric representation: a presentation of biometric sample or biometric feature set to the 
biometric sensor. It could be a bona fide or attack presentation. 

• Bona fide: analogous to normal or routine, when referring to a bona fide presentation. 
• Presentation Attack Instrument (PAI): class of presentation attack instruments created using a 

common production method. Many studies use the term ‘‘spoof’’, which informally refers to 
PAI. 

• PAI species: class of presentation attack instruments created using a standard production 
method and based on different biometric characteristics. 

• Attack type: element and characteristic of a presentation attack.  
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• Item Under Test IUT: an implementation that is the object of a test assertion or test case. The 
equivalent term in the Common Criteria is Target of Evaluation (ToE). 

• Attack potential: a measure of the capability to attack a TOE given the attacker’s knowledge, 
proficiency, resources, and motivation. 

• Attack Presentation Classification Error Rate (APCER): the proportion of attack presentations 
incorrectly classified as bona fide presentations; 

• Bona Fide Presentation Classification Error Rate (BPCER): the proportion of bona fide 
presentations incorrectly classified as presentation attacks; 

• Correct Classification Rate (CCR): The percentage of presentations Correctly Classified; (not 
defined in the standards, but used in previous studies as a measure of classifier’s accuracy) 

• Spoofing and anti-spoofing: informal vocabularies which are used in literature instead of 
presentation attack, and presentation attack detection. 

 Levels of Evaluation 

The biometric system is a combination of multiple subsystems that work jointly to provide the 
final recognition score/decision including the PAD result. Thus, PAD evaluations shall completely 
describe the ToE, i.e. system or subsystem that is the subject of evaluation, including the details 
of PAD implementation and the evaluator’s attributes.  
The standard ISO/IEC 30107-3 categorizes the ToE into the following classes:  

I. PAD subsystem is the hardware or/and software implementation of a PAD mechanism 
that provides a score/decision which determines whether a presentation is bona fide or 
attack. 

II. Data capture subsystem is the hardware or/and software segment where all presentations 
take place. The capture process may include quality and PAD checks before acquiring or 
rejecting a presentation. The evaluator would have access to the capture decision and might 
obtain further details depending on the acquisition tool provided by the manufacturer. This 
category of ToE can be evaluated individually to assess the resistance of the biometric 
system to acquire certain PAI species or by combining it with the PAD subsystem 
evaluations. 

III.   Full biometric system comprises the complete recognition process starting with data 
acquisition and ending with the final recognition score/decision. This class of evaluation 
includes the bias of data capture, matching, and PAD subsystems and should provide 
statistical measures for the complete system’s performance. 

All the experiments in this thesis are evaluated considering the PAD subsystem evaluation to keep 
the focus of evaluation on the proposed mechanisms.  

 Vulnerability Assessment Method 

Vulnerability assessment refers to the process of determining exploitable vulnerabilities 
introduced in the development or operation of ToE [216]. This determination depends on 
investigating the evaluation evidence and exploring publicly available tools by the evaluator and 
is assisted by evaluator infiltration testing [9].  In addition to the vulnerability analysis, 
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vulnerability assessment analyzes the attack potential by exploring different factors that affect the 
potential of attacks.  

3.1.3.1 Vulnerability analysis 

The objective of vulnerability analysis is to determine the exploitability of development and 
operational vulnerabilities of the ToE. In the context of presentation attacks, development 
vulnerabilities refer to the ToE flaws that were introduced during its development, e.g. unknown 
presentation attacks. Operational vulnerabilities refer to the flaws and weaknesses of a PAD 
mechanism. 

Vulnerability analysis is conducted through three steps: (1) identifying potential vulnerability, (2) 
identifying potential attacks, and (3) penetrating testing to demonstrate if the identified potential 
vulnerabilities are exploitable in the ToE. Note that penetrating testing might lead to identifying 
new vulnerabilities and/or attacks. Thus, these steps are performed as one vulnerability analysis 
task. 

During the vulnerability analysis of fingerprint sensors, the evaluator seeks to define various PAI 
species that can be detected and captured by the sensors, this process is defined as the identification 
phase. Then, the evaluator achieves the attack on another instance using the techniques and 
analysis defined in the identification phase. Figure 3.2 illustrates the process of analyzing the 
determined vulnerability as one task. 

 
Figure 3.2. Steps of data capture vulnerability analysis. 

3.1.3.2 Attack potential  

Attack potential is defined as a function of motivation, expertise, and resources. Accordingly, the 
attack potential corresponds to the required effort to exploit a vulnerability in the ToE through 
creating an attack and prove that it allows the attacker to violate the security functional 
requirements. 

Attack potential is carried out as a sub-activity during the vulnerability assessment in order to 
ascertain if the ToE is impervious to attacks under a given attack potential of an attacker. Once a 
potential vulnerability is reported to be exploitable in a ToE, the evaluator should confirm that it 
is exploitable taking into account all of the environmental aspects, including the undertaken attack 
potential. To determine specific attack potential, the following factors should be taken into 
account: 
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1. Elapsed time 
Refers to the required time to identify a potential vulnerability, develop an attack, and to 
sustain the required effort to apply the attack at the TOE. In order to calculate the consumed 
time in identifying or exploiting a vulnerability the following measures are used: a day = 8 
hours; a week = 40 hours; and a month =180 hours. 

2. Specialist expertise 
Refers to the level of conventional knowledge on the basic principles, sensor type or attack 
techniques. There are four levels of attacker expertise: 
a) Layman is unknowledgeable compared to proficient or expert attackers, with no 

specific expertise; 
b) Proficient is familiar with the security conduct of the biometric system; 
c) Expert is familiar with the biometric algorithms, protocols, sensors, structure, 

principles and concepts of biometric security, PAD methods, conventional attack types, 
tack methods, etc. 

d) Multiple-experts level is considered when more than one expert are involved to carry 
out the attack. 

3. Knowledge of the ToE. 
Refers to specific expertise in relation to the biometric PAD solutions. The knowledge is 
classified in four categories: public information, restricted information, sensitive 
information, and critical information. 

4. The window of opportunity. 
This factor highly depends on the level of supervision over the operation of biometric 
recognition. In unsupervised environments, the attacker has unlimited access to the ToE 
and has the opportunity to apply attacks without restrictions. 

5. Required hardware and/or software tools. 
Refers to the equipment that is needed to identify and exploit an attack. The following 
classification is to be used: 
a) Standard equipment is equipment that is available to the attacker and can be obtained 

from local or online stores. 
b) Specialized equipment isn't promptly accessible to the attacker, however could be 

procured without excessive effort. 
c) Bespoke equipment isn't promptly accessible to the public as it may need to be specially 

created, or on the grounds that the equipment is particular to such an extent that its 
distribution is controlled, potentially even restricted. Instead, the equipment might be 
very pricey. 

d) Multiple Bespoke level corresponds to the attacks that require different types of 
bespoke at distinct steps of an attack. 

Considering these factors, the attack potential can be calculated by summing the values of all 
factors as shown in Table 3.1. 
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Table 3.1. Attack potential calculation [216]. 

Factor   Value  Factor   Value 

Elapsed Time  Knowledge of TOE 

<= one day  0  Public  0 

<= one week  1  Restricted  3 

<= two weeks  2  Sensitive  7 

<= one month  4  Critical  11 

<= two months  7  Window of Opportunity 

<= three months  10  Unnecessary / unlimited access  0 

<= four months  13  Easy  1 

<= five months  15  Moderate  4 

<= six months  17  Difficult  10 

> six months  19  None    

Expertise  Equipment 

Layman  0  Standard  0 

Proficient  3  Specialized  4 

Expert  6  Bespoke  7 

Multiple experts  8  Multiple bespoke  9 

Finally, the obtained attack potential value is used to define the resistance of the ToE to the 
identified attacks. Figure 3.3 and Table 3.2 shows the steps of the process. 

 
Figure 3.3. Determining the resistance of a ToE to an identified attack. 

Table 3.2. Rating of vulnerabilities and TOE resistance. 

Values Attack potential required to 
exploit scenario: 

TOE resistant to attackers with 
attack potential of: 

0-9 Basic No rating 
10-13 Enhanced-basic Basic 
14-19 Moderate Enhanced-basic 
20-24 High Moderate 
=>25  Beyond high High 

  PAD Technical Competence 

As provided in the standard ISO/IEC 30107 part 3: Testing and reporting, the goal of PAD 
subsystem evaluations is to determine the PAD mechanism’s ability to correctly classify attacks 
and bona fide presentations. Nonetheless, PAD subsystems are subject to classification errors, i.e. 
false positive and false negative. The conducted evaluation should report sufficient description 
which characterizes the influence of those error rates on the security and ease-of-use attributes of 
the biometric systems.  
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3.1.4.1 Security 

The security of PAD subsystem is impaired by the false negatives where attack presentations are 
misclassified as bona fide presentations. Thus, the security of a PAD subsystem is characterized 
by the metric APCER (Attack Presentation Classification Error Rate) which represents the 
proportion of misclassified attack as bona fide presentations.  

APCER can be analyzed in two manners: 

I. Total APCER (APCERTotal) is used to measure the PAD subsystem security when different 
PAI species are used to evaluate the system. In this case, all attacks are labelled as an attack. 
This metric does not demonstrate the strengths and weaknesses of the different PAI species. 
APCERTotal is calculated by: 

𝐴𝑃𝐶𝐸𝑅𝑇𝑜𝑡𝑎𝑙 =  
1

𝑁
 ∑ 𝑅𝑒𝑠𝑖

𝑁

𝑖=1

  3.1 

where, 𝑁 is the total number of attack presentations and 𝑅𝑒𝑠𝑖 is 1 if the attack ith 
presentation is classified as bona fide and 0 otherwise. 

 
II. APCER for a given PAI (APCERPAI) is used to analyze the strength of a certain PAI species 

and is calculated by: 

𝐴𝑃𝐶𝐸𝑅𝑃𝐴𝐼 =  
1

𝑁𝑃𝐴𝐼
 ∑ 𝑅𝑒𝑠𝑖

𝑁𝑃𝐴𝐼

𝑖=1

 3.2 

where, 𝑁𝑃𝐴𝐼 is the total number of attack presentations for the given PAI, and 𝑅𝑒𝑠𝑖 is 1 if 
the attack ith presentation is classified as bona fide and 0 otherwise. 

Along with the APCER measures, the evaluator should report the following details: 

• the number of independent capture subjects who participated in the experiment by allowing 
the attacker to use their biometric characteristics to perform PAs; 

• the number of biometric sources given by each capture subject stating the number of taken 
biometric characteristics; 

• the required level of cooperation from the capture subject to collect the biometric source; 
• the used PAI species; 
• the total number of attack presentations; 
• the total number of attack presentations for each PAI species; and, 
• the number of attack attempts per each PAI. 
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3.1.4.2 Ease-of-Use 

The PAD subsystem evaluation should report approximate guidance to illustrate the influence of 
PAD mechanism on the system’s ease-of-use. False-positive errors caused by the PAD subsystem 
have a negative effect on the user experience where bona fide presentations are incorrectly 
classified as attacks. The proportion of those misclassified bona fide presentation, i.e. BPCER 
(Bona fide Presentation Classification Error Rate) is calculated by: 

𝐵𝑃𝐶𝐸𝑅 =  
∑ 𝑅𝑒𝑠𝑖

𝑁𝐵𝐹
𝑖=1

𝑁𝐵𝐹
 3.3 

where 𝑁𝐵𝐹 is the total number of bona fide presentations and 𝑅𝑒𝑠𝑖 is 1 if the ith presentation is 
classified as attack and 0 otherwise. 
In a similar manner with APCER reporting, the BPCER testing should refer to: 

• the number of independent capture subjects who donated their biometric characteristics; 
• the corresponding biometric traits for each capture subject; 
• the total number of bona fide presentations; and 
• if more than one visit was needed, the evaluation should specify the duration between the 

visits and report any differences in the acquisition environment. 

3.1.4.3 PAD Subsystem Accuracy: Security vs. Ease-of-Use 

There are a wide variety of techniques to report the PAD subsystem accuracy. The choice of 
reporting PAD accuracy is crucial to provide comparable results that would help to contrast one 
mechanism with another or to make a comparison with the SoA investigations. The following 
subsections explain the used techniques in the context of this thesis. 

3.1.4.3.1 Reporting BPCER at Fixed APCER Value 
The PAD subsystem accuracy can be determined in a single figure as BPCER at a fixed APCER. 
This allows determining the ease-of-use measures at certain levels of security making the 
comparison between different mechanisms more evident and accurate. For example, BPCER can 
be computed when APCER=5% and then reported as BPCER20. The opposite is also valid where 
APCER can be calculated at fixed levels of BPCER. 

3.1.4.3.2 Detection Error Tradeoff (DET) Curve 
The DET curve [217] is a graphical representation for APCER versus BPCER. This representation 
describes the trade-off between security and ease-of-use, and helps to define a decision threshold 
that suits the security/ease-of-use requirements. 

3.1.4.3.3 Tradeoff Equal Error Rate (TEER) 
The conventional EER measure has been used in the evaluations of biometric systems 
performance. However, early investigations in PAD were conducted before proposing the PAD 
evaluation methodologies, and for that reason, many works in the literature reported the PAD 
subsystem accuracy in terms of EER. To dismiss the confusion between biometric performance 
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and PAD performance, we define the measure TEER as the point where APCER and BPCER 
equalize. 

The usage of TEER is not recommended since it reports the accuracy of different mechanisms at 
different levels of security/ ease-of-use. The motivation to report the TEER in this study is to 
compare the accuracy of the proposed mechanisms with the SoA investigations.  

 THE DATABASE 

As stated in Chapter 1, this thesis was undertaken in order to investigate the dynamic fingerprint 
characteristics as the PAD features. These dynamic characteristics are caused by the behavioural 
placement of the fingertip on the sensor surface, and the natural characteristics of the presented 
fingerprint or PAI during a short period of time. However, studying those characteristics requires 
a database of fingerprint videos. 

This section introduces the details of collecting the dynamic fingerprint database that is used to 
validate the proposed PAD mechanisms in this thesis. The data collection was carried out by 
modifying the sensors' acquisition mode so that the sensors capture a sequence of frames for the 
fingerprint presentation instead of capturing a single image. 

The following subsections detail the test plan, data collection, and the corresponding vulnerability 
assessment. 

 Test Plan 

For the initiation of PAD testing process, the primary step is to define the test target including the 
biometric modality, sensing technology, operational scenarios, and the ToE. Afterward, the 
required data to perform the testing should be determined. With the completion of these steps, the 
required resources (e.g. participants, hardware, software) are characterized. 

3.2.1.1 Test Targets 

This thesis investigates the vulnerability of fingerprint modality to direct attacks. The investigation 
seeks to analyze the biometric system vulnerability at two levels: data capture subsystem and PAD 
subsystem levels. The data capture subsystem is assumed to be compromised once the evaluator 
define the successful attack species (Figure 3.2), then the captured data is studied at a later stage 
to determine the PAD accuracy. The data collection is carried out using optical and thermal sensing 
technologies seeking to define the influence of each technology on the performance of different 
PAD mechanisms. The differences between the sensing technologies are presented later within the 
database characteristics. 

As the data collection is carried out prior to the development of the PAD mechanisms, an 
evaluation of offline PAD mechanisms is performed. The evaluation of PAD mechanisms is 
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conducted on the level of PAD subsystem, that is to characterize the mechanisms’ capabilities and 
weaknesses against different attack species. 

3.2.1.2 What Data Needs to be Collected 

A major observation on recent investigations is the focus on developing static PAD algorithms 
using benchmarks. However, less effort is invested in developing evaluations that are intended to 
investigate natural fingerprint phenomena. In our opinion, developing PAD mechanisms relies 
equally on (i) the characteristics of used datasets, and (ii) the detection algorithm. Thus, focusing 
on both components leads to a more coherent and interpretable evaluation. 

Consequently, a dynamic database of bona fide and attack presentations is a necessity. At the time 
of performing this thesis, there is no publicly available database with the requirements stated 
above. Therefore, dynamic data collection is conducted covering bona fide presentations and 
cooperative attacks using different PAI species. The selection of PAI species covers different 
physical characteristics such as flexibility. Furthermore, the data is collected in two different 
operational scenarios: (1) performing ordinary fingerprint presentations, (2) performing fingerprint 
presentations with pressure. The database is characterized in detail in the following section. 

 Data Collection 

In this section, we introduce a dynamic database that is intended to extend the SoA investigations 
on dynamic fingerprint features, also to study the fingerprint’s dynamic-reaction to pressure. The 
database (Table 3.3) is composed of 7128 fingerprint videos, corresponds to bona fide and attack 
presentations, collected from 66 statistically independent fingerprints of eleven separate capture 
subjects. The database is divided into two subsets. The first subset consists of dynamic 
presentations that represent ordinary presentations. In contrast, the second subset is collected with 
an instructed acquisition, whereas the capture subjects were demanded to apply pressure during 
the fingerprint presentation. 

Table 3.3. Generic description of the database. 

Participants 11 capture subjects 

Number of fingerprints 66 fingerprints 

acquisition scenarios 1. Ordinary presentations 
2. Presentations with pressure 

Presentation types 1. Bona fide 
2. cooperative attacks 

Total acquired videos 7128 

3.2.2.1 Required Resources 

This section defines the required resources as follows: 
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• Optical and thermal fingerprint sensors. Those sensors were chosen due to the significant 
differences in the characteristics of acquired data, which will lead to identifying the 
influence of sensing technology on the PAD mechanisms; 

• developing a GUI to interact with the sensors keeping in mind fingerprint video acquisition 
as a requirement; 

• participants to perform bona fide presentations and to provide molds of their fingerprints; 
• an attacker to use the collected molds to create PAIs and perform attacks; and, 
• materials to create different PAI species. 

3.2.2.2 The Database 

The proposed dynamic database contains uncompressed fingerprint videos of bona fide and attack 
presentations. Data acquisition, storage, and management were carried out through a systematic 
study following the General Data Protection Regulation (GDPR) directive. The experiment was 
approved by the ethics advisor of AMBER project and the data protection officer at UC3M. Next, 
an invitation to participate was sent to a group of university students and staff members. Eleven 
participants volunteered to donate their biometric characteristics and gave written informed 
consent. 

Data were collected from genuine fingerprints and seven PAI species using two commercial 
fingerprint sensors. Since the sensors do not support a video acquisition mode, a customized 
acquisition tool, Figure 3.4, is developed using the sensors’ SDKs in order to capture the sequence 
of frames (Video) instead of acquiring a single image. The acquisition tool is implemented to 
attach the following information to the acquired videos: bona fide tag, attacker tag, presentation 
type, visit/session, PAI species, finger tag, and attempt. As per the GDPR principles, the labels on 
the biometric data do not include any biographical data or any part of it. 
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Figure 3.4. GUI implementation to capture fingerprint videos. 
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The database is illustrated in Figure 3.5 and explained in detail as follow: 

Participants 

Eleven capture subjects, four females and seven males, have participated in the data collection. 
Each subject donated his/her biometric samples from 6 fingers: thumb, index, and middle of both 
hands. With this in mind, we ended up with a total of 66 statistically independent fingerprints. 

Scenarios 

Initially, the participants were given a brief overview of the typical use cases of fingerprint sensors. 
They then were asked to present their fingerprints to the sensors, knowing that each sensor acquires 
the complete placement over its surface as a video. The presentations were collected assuming two 
different operational scenarios: (1) ordinary presentations and (2) presentations with additional 
pressure on the sensor’s surface. 

Sensors 

Two sensing technologies with different capabilities are utilized to collect the data. The sensors 
produce different characteristics for the captured videos due to their distinctions in Table 3.4. 

Table 3.4. Comparison of the used sensors in the data collection. 

Sensing 
technology Resolution Surface size Image size Gray levels Scan time Presentation length 

Optical 500 ppi 900 x 900 
pixels 

900 x 900 
pixels 256 0.05 

second/image 

from the moment of 
detection until finger 

removal  

Thermal 385 ppi 180 x 256 
pixels 

90 x 128 
pixels 256 0.7 

second/image 7 frames/presentation 

 

Bona fide visits 

Capture subjects were required to fulfill two visits, at least two weeks apart, to donate their 
fingerprint characteristics. The visits are conducted as illustrated in Table 3.5. 

Table 3.5. Summary of the bona fide visits. 

Visit Scenario Sensor Fingers Attempts 
per finger Total bona fide presentations 

Visit 1 
Ordinary Optical 
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3 
3 attempts × 6 fingers × 2 sensors × 2 

scenarios × 2 visits ×11 subjects =  
1584 

Thermal 

Pressure Optical 
Thermal 

Visit 2 
Ordinary Optical 

Thermal 

Pressure Optical 
Thermal 
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Figure 3.5. Database characteristics. 
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Attacker 

The task of performing PAs is assigned to one attacker. The attacker has extensive knowledge 
about fingerprint sensors, fingerprint security, and presentation attacks. The attacker has 
participated in an experiment to attack fingerprint sensors in mobile devices [218]. The details of 
the experiment are provided in Annex 1. Moreover, the attacker had tested different PAI species 
on the thermal and optical sensors as training before conducting the formal investigation.  

Based on those bases, following the discussion on Section 3.1.3.2, the attacker is classified as an 
expert. 

Attacks 

The attacks are conducted in cooperation with the subjects. 3-D silicon molds were collected from 
the selected 66 fingerprints. Only one mold was collected from each fingerprint. Accordingly, the 
attacker performed attack presentations using seven PAI species, specifically: Play-Doh, white 
glue, spray rubber, nail polish, nail hardener, gelatin, and latex. Table 3.6 lists the details of the 
attacks following the recommendations of ISO/IEC 30107-3. 

Table 3.6. Summary of attack sessions. 

Molds 66 
PAI species 7 

Attempts per PAI species 3 

PAI series 

-  For all materials except Play-Doh: 1 PAI per source. 
Total = 66 PAI × 7 species = 462. 
- Play-Doh: 1 PAI per attack. 
Total = 3 attempts × 66 molds × 2 sensors × 2 scenarios  = 792. 

Total attacks per (scenario, 
sensor, and species) 198 

Total attacks 3 attempts × 6 fingers × 2 sensors × 2 scenarios × 7 species ×11 subjects = 5544 

3.2.2.3 Vulnerability Assessment: Fixed Attack Potential 

As explained in Chapter 1, the biometric system is proven to be vulnerable to presentation attacks 
at the sensor level. The evaluator seeks to exploit the vulnerability by defining various PAI species 
that can be detected and captured by the fingerprint sensors.  

Vulnerability Analysis 

Following the steps in Section 3.1.3.1, the evaluator defined the vulnerability at the surface of the 
fingerprint sensor. Then, the potential attacks were defined following two steps: creating testing 
PAIs from different materials and select the species that can be detected by the sensors. 

The process of analyzing the defined vulnerability is illustrated in Figure 3.2. 

  



40 

 

Attack Potential 

The assumed attack potential is characterized in Table 3.7. Following the rating of vulnerabilities 
and ToE resistance provided by the CC, the required attack potential to exploit the data capture 
subsystem's vulnerability for the investigated sensors is basic. 

Table 3.7. Calculation of attack potential. 

Factor Description Value 
Elapsed Time Less than one week 1 
Expertise Expert 6 
Knowledge of ToE Public 0 
Window of opportunity Unlimited access 0 
Equipment Standard 0 

Total 7 

The elapsed time is calculated considering the seven PAI species; defined in Figure 3.5. The 
evaluator reported the effectiveness of all the species to perform successful attacks within seven 
days. The evaluator gained expertise in previous experiments to attack fingerprint sensors 
embedded in smartphones [219]. At the moment of performing the attacks, the evaluator had only 
access to the public information about the ToE. Since the environment is assumed to be 
unsupervised, the evaluator obtained unlimited access to perform the attacks. Finally, All the used 
equipment in this experiment were purchased from online shops, local shops, and supermarkets; 
thus, the equipment is reported as standard. 

The following chapters conduct several experiments proposing fingerprint PAD mechanisms. The 
mechanisms are assessed using the proposed database and evaluation methodology in this chapter. 
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Chapter 4.  Dynamic Fingerprint Statistics: 
Application in Presentation Attack Detection 

Fingerprint is typically perceived as the static pattern of the fingertip’s impression. Basically, 
fingerprint recognition algorithms process the acquired fingerprint image by extracting distinctive 
features, such as minutia, and compare them to the stored template. In this context, the attacker 
tries to create a PAI that can make a clear fingerprint impression on the sensor’s surface, hence, 
achieving high similarity score that allows him to access the system. As explained in Chapter 2, 
different studies attempt to provide static PAD mechanisms based on the extracted features from 
a single image. Although some of those studies achieved high accuracy, the risk of attack 
presentations remains high when considering expert attackers who can produce attacks of high 
quality fingerprint impressions [215]. 

In addition to the distinct pattern of ridges and valleys, i.e. the static pattern, genuine fingerprints 
comprise natural phenomena like elasticity, perspiration, temperature, etc. These phenomena 
influence the dynamic signal, i.e. fingerprint video, which is captured during the fingerprint 
presentation. Therefore, real presentations are expected to differ from attacks when an appropriate 
set of dynamic features is defined and extracted. The proposed PAD mechanism extracts the 
variation of first order statistics in the video, i.e. images sequence, of a fingerprint presentation. 
Different machine learning classifiers are used for the purpose of declaring the presentation type. 

The rest of this chapter is organized as follows. Section 1 details the adopted method by explaining 
the feature extraction and classification processes. Section 2 explains the used data, data 
preparation, and the evaluation protocol. The experimental results are provided in Section 3. 
Finally, conclusions are drawn in section 4. 

 RELATED WORK 

Existing dynamic PAD mechanisms can be categorized into two main classes: perspiration based 
and ridge distortion based mechanisms. Perspiration based mechanisms rely on the fact that 
genuine fingerprints naturally produce moisture from the pores, this moisture diffuses during the 
interaction with the sensor surface resulting in a darker image as time goes by. On the other hand, 
ridge distortion mechanisms base on the claim that bona fide and attack presentations produce 
significantly different distortions under certain presentation circumstances such as pressure [6]. 
Table 4.1 conducts a PAD performance analysis for literature researches on both categories and 
shows the used sensors and attack species. 
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 Table 4.1. Performance of state of the art dynamic PAD mechanisms. 

 

  DISTORTION’S DYNAMIC ANALYSIS 

Preliminary work in fingerprint plastic distortion was carried out in the early 2000s to cope with 
non-linear deformations of dynamic fingerprint acquisitions [220]. Then, a systematic study on 
skin distortion was conducted demonstrating that genuine fingerprints produce higher distortion 
when compared to fake fingerprints [221]. The used dataset was collected using an optical sensor 
(high frame rate), with user instructions on how to present the fingerprint with rotation and 
pressure. For each presentation, the method computes the optical flow, Distortion map and 
distortion code consecutively, afterward compares the distortion codes to detect attacks. 

In [154] the authors analyzed the fingerprint deformation and modeled the distortion of genuine 
fingerprints and attacks using a thin plate spline (TPS). The tested dataset was collected as 
following: fingerprint presentation is performed by presenting the finger to the sensor then pressure 
should be applied in different directions. The authors underline that attack instruments are more 
rigid when compared to the genuine fingerprint’s elasticity, thus the deformation of attacks is lower 
when the same presentation conditions apply. Under those circumstances, the minutia movement 
represents the global distortion, and a sequence of paired minutia before and after distortion is used 
to calculate the parameters of the TPS model. The bending energy vector of the TLS model is 
utilized to distinguish bona fide and attack presentations.    

PAD mechanism Dynamic 
Analysis 

Technique PAI species Sensor Error rates 

Antonelli [152] Distortion Optical Flow 
Gelatin, RTV silicon, 

white glue, latex 
Optical EER = 11.24% 

Zhang [154] Distortion 
Thin-Plate 

Spline 
Silicon Optical EER = 4.5% 

Jia [153] Distortion Statistics Gelatin Capacitive EER = 4.78% 
Derakhshani [222] Persperation Fourier Play-Doh, Cadaver Capacitive EER = 11.11% 

Parthasaradhi [223] Persperation 
Statistics; 
Fourier 

Play-Doh, Cadaver 

Capacitive 
APCER= 5% - 20%, 
BPCER= 6.77% - 20% 

Optical 
APCER= 4.6%-14.3, 
BPCER= 0% - 26.9% 

Electro-
Optical 

APCER= 0%-19%, 
BPCER= 6.9% - 38.5% 

Abhyankar [119] Persperation Wavelet 
Play-Doh, Cadaver, 

gummy 

Optical,  
electro-
optical, 

 capasitive 

EER = 13.85% 

Plesh [224] Persperation Color analysis 

Play-Doh, ecoflex, 
gelatin, dragonskin, 

ModelMagic, SillyPutty, 
wood glue, latex, printed 
paper, transparent film 

Optical 
APCER= 0.2%,  
BPCER= 13.8% - 18.35% 
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Skin elasticity was analyzed under the assumption that the sequence of genuine fingerprint 
contains an increasing size of the fingerprint pattern and a higher intensity [153]. The evaluation 
was reported using a dynamic dataset that was collected by a high frame rate capacitive sensor, 
while only a gelatin attack was performed. Based on those specifications, the mechanism extracts 
(a) the correlation coefficient of the fingerprint area and the signal intensity, and (b) the standard 
deviation of the fingerprint area extension in x and y axes. Finally, Fisher linear discriminant 
analysis is used to classify bona fide and attack presentations. 

 PERSPIRATION’S DYNAMIC ANALYSIS 

Perspiration is a natural distinctive phenomenon in human skin that is affected by physical, 
psychological and environmental factors. When a fingerprint contacts any surface, the finger’s 
sweat glands start releasing moisture that diffuses along the ridges in time. Therefore, it had been 
suggested that a fingerprint dynamic acquisition is capable of detecting the consequence of 
perspiration, by analyzing the sequence of fingerprint images. 

Initial work was undertaken to study the perspiration pattern in genuine fingerprints [222]. A 
dataset of genuine, cadaver and artificial fingerprints was collected via a capacitive scanner to 
evaluate the proposed algorithm. Two successive images, five seconds apart, were used to extract: 
(a) four dynamic features that describe the general swing, i.e. local maximum minus local 
minimum, and (b) a static feature that represent the energy for the first image. It was observed that 
the swing is generally higher in genuine fingerprints when compared to the attacks, furthermore, 
the energy of the first image is significantly high in genuine fingerprints in comparison with the 
attacks. Finally, classification is done using a back propagation neural network. The experiment 
was extended to cover electro-optical and optical sensors, furthermore, to address the extreme 
cases of dry and moisturized fingerprints [223]. 

Another proposition was to isolate the changing energy of the perspiration pattern and use the 
energy distribution of changing coefficients to classify bona fide presentations from attacks [119]. 
A dataset of genuine, cadaver and artificial fingerprints were collected by capacitive, electro-
optical and optical sensors. At each presentation two images, two seconds apart, were captured. 
The authors reported the contributions of this work over their previous work in [222], to be: Using 
a larger dataset, the algorithm requires only 2 seconds between the two successive frames instead 
of 5 seconds, and the algorithm is integrated with the verifinger SDK [225]. 

A more recent mechanism has proposed to utilize a color dynamic acquisition in order to analyze 
the dynamics of bona fide and attack presentations; ten different materials used for producing PAIs 
[224]. The algorithm analyzes two images, 0.625 second apart, by extracting five dynamic and 2 
static features sets. The dynamic features were defined to represent intensity variation, 
displacement, perspiration, foreground and background analysis. Finally, a deep neural network is 
used to classify the presentation. 
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 FINGERPRINT DYNAMIC STATISTICS 

This section focuses on analyzing the complete interaction between the fingerprint and the sensor 
surface rather than analyzing a single fingerprint image. The study is performed by analyzing the 
fingerprint presentation as a sequence of frames, wherein each frame is characterized by its global 
features. The fingerprint presentation is then described by the variation of the global features in its 
frames. Finally, the obtained description is prepared and utilized to train and test different machine 
learning classification models, as shown in Figure 4.1. The obtained models are examined in the 
results section showing the technical capabilities of the proposed PAD mechanism. 

 
Figure 4.1. The proposed PAD scheme. 

 FEATURE EXTRACTOR 

The selected features in the PAD feature extractor are the dynamic mean, entropy, standard 
deviation, median, energy, skewness, kurtosis, and coefficient of variation. The following formula 
is used to extract the features from each presentation (Figure 4.2): 

(𝐹𝑛)𝑛=1
𝐿 , 𝐹𝑛 = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑛), 𝑛 ∈ [1,2, … , 𝐿] 4.1 

 Where, (Fn)n=1
L  is the features vector which describes L successive frames, n is the image number 

in the sequence, and L presents the last image. “features” is a vector of 8 elements, whereas each 
element corresponds to one of the measures in equations (2-9). 

• Mean 

𝜇 =
1

𝑁
∑ 𝐻(𝑛)

𝑁−1

𝑛=0

 4.2 

• Entropy 

Figure 4.2. Dynamic video statistics. 
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𝐸 =  − ∑ 𝐻(𝑛) 𝑙𝑜𝑔 𝐻(𝑛)

𝑁−1

𝑛=0

 4.3 

• Standard deviation  

𝜎 = ∑(𝑛 − 𝜇)2 𝐻(𝑛) 

𝑁

𝑛=0

 4.4 

  

• Median 

𝑀 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑎

∑ 𝐻(𝑛) |𝑛 − 𝑎|

𝑛

 4.5 

• Energy 

𝑒 = ∑ 𝐻(𝑛)2

𝑁−1

𝑛=0

          4.6 

• Skewness 

𝛾1  =
1

𝜎3
∑(𝑛 − 𝜇)3 𝐻(𝑛) 

𝑁

𝑛=0

 4.7 

• Kurtosis 

𝛾2  =
1

𝜎4
∑(𝑛 − 𝜇)4 𝐻(𝑛)         

𝑁

𝑛=0

 4.8 

• Coefficient of variation 

𝑐𝑣 =  
𝜎

𝜇
 4.9 

Where H(n) is the frame’s histogram and N is the number of histogram bins. 

 CLASSIFICATION 

Choosing the machine learning algorithm for the classification model is not straight forward and 
depends on many factors such as type of data, accuracy, classification algorithm complexity, etc. 
As a result, different classification algorithms are tested to determine the method with the best 
generalizability. The following classifiers are investigated in this chapter: (a) Linear Discriminant 
Analysis, (b) Support Vector Machine (second degree polynomial kernel SVM), and (c) Ensemble 
Learning method (RUSBoosted trees). These classifiers were selected after examining seven 
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machine learning algorithms with different configuration modes, as shown in Table 4.2. The 
selection process was basically conducted based on the algorithms’ performance. The table shows 
the classification performance based on the optimal threshold that was obtained by each algorithm 
considering 50% partitioning for training and testing. The PAD subsystems evaluation is 
determined in the results section showing the DET curves and different partitioning sizes for a 
wider comparison. 

Table 4.2. Classification accuracy of different machine learning methods. 

Machine learning algorithm Configuration Accuracy 
Optical Thermal 

Tree 
Fine tree 80.0% 84.9% 
Medium tree 83.5% 84.5% 
Coarse tree 83.3% 82.9% 

Discriminant Analysis Linear discriminant 84.0% 89.5% 
Quadratic discriminant 77.8% 88.2% 

Logistic regression Logistic regression 79.3% 88.8% 

Naive bayes Gaussian naive bayes 56.3% 77.3% 
Kernel naive bayes 78.2% 81.2% 

SVM 

Linear SVM 87.5% 88.0% 
Quadratic SVM 91.5% 91.1% 
Fine gaussian SVM 79.0% 88.2% 
Medium gaussian SVM 90.6% 87.1% 
Coarse gaussian SVM 77.9% 78.3% 

KNN 

Fine KNN 80.8% 87.8% 
Medium KNN 85.4% 87.1% 
Coarse KNN 80.1% 82.2% 
Cosine KNN 85.9% 87.0% 
Cubic KNN 85.2% 86.2% 
Weighted KNN 86.9% 89.0% 

Ensemble RUSBoosted trees 83.8% 85.6% 

 EXPERIMENT SETUP 

To evaluate the proposed PAD mechanism, the portion of ordinary presentations in the introduced 
database (Chapter 3) is used. This portion includes bona and attack presentations that were 
acquired by different sensing technologies allowing us to analyze the impact of attack species and 

Figure 4.3. Presentation attack detection subsystem. 
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technologies on the PAD subsystem accuracy. Figure 4.3 demonstrates the scheme of attack 
detection subsystem. 

 SENSORS  

Within the framework of this experiment, this subsection summarizes the differences between the 
data acquired by each sensor. The frame rate difference, caused by scanning time, results in two 
different acquisition methods. Fixed-length videos were captured by the thermal sensor (7 frames 
per presentation), while in the case of the optical sensor, the dynamic acquisition starts when the 
finger contacts the sensor and stops when the finger is removed, which results in different lengths 
of interaction between subjects and the sensor. 

 DATA BASE  

In order to validate the proposed mechanism, the first scenario, i.e. ordinary dynamic 
presentations, from Chapter 3 is used. 

 FINGERPRINT DETECTION AND VIDEO SEGMENTATION 

Fingerprint detection is carried out in the software acquisition tool using the SDKs 
implementations for both sensors. Therefore, empty frames before or after the fingerprint 
placement are taken away. 

Segmentation is executed differently in each sensor subset due to the different sensor sizes. (a) 
Thermal sensor data is segmented during the acquisition such that only the central area (90×128 
pixels) is captured. Partial capture has been performed as per the sensor instructions to reduce the 
frame acquisition time from 1 second to 0.7 second. (b) Optical sensor data segmentation is 
implemented to consider the sensor’s surface area where the fingerprint interaction had taken 
place. Figure 4.4 and Figure 4.5 demonstrate samples from both sensors for bona fide and attack 
presentations. 
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Figure 4.4. Optical sensor captures. For reasons of space, this figure shows partial examples of bona fide and 

attack presentations (The average number of frames/presentation is 25). 

 
Figure 4.5. Thermal sensor captures. (Each row shows a presentation type in successive frames of a video). 
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 FEATURE EXTRACTION AND CONCATENATION 

As demonstrated in the previous section, feature extraction is performed on the segmented dataset, 
consequently, 8× L feature dimensions represent each fingerprint presentation. Since L is fixed to 
7 frames for the thermal sensor subset, then the corresponding dimensionality is fixed to 56 for all 
presentations. Contrariwise, presentations in the optical sensor subset differ in length (i.e. L differ 
in the various presentations), resulting in 8× L feature dimension per presentation. 

Standard machine learning algorithms do not cope with the variation of dimensionality in different 
samples; thus, it is necessary to transform the dimensionality of the features for all presentations 
so that they fit into the learning model. The following steps are followed to transform features into 
a fixed dimensionality size trying to preserve the behavior of the feature using linear 
interpolation\decimation: 

First, feature extraction is executed for every presentation. Second, the number of frames per 
presentation is averaged across all presentations and it is found to be roughly 25 frames. Third, 
presentations that have less, or more than 25 frames were subject to interpolate, decimate the 
dimensionality of the features into 8×25points. Linear interpolation/ decimation is performed as 
demonstrated in Figure 4.6 and Figure 4.7. Finally, all features are concatenated such as each 
presentation is presented by 200 dimensions. 

 

 
Figure 4.6. Decimating normalized entropy of a 37 frames bona fide presentation (the presentation’s length 

is approximately 2 seconds). 
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Figure 4.7. Interpolating normalized entropy of a 14 frames bona fide presentation (the presentation’s 

length is approximately 1 second). 

 PAD EVALUATION PROTOCOL 

In order to evaluate the proposed mechanism on the collected dataset, each sensor’s data is studied 
apart. We believe that for each commercial fingerprint sensor there must be an independent trained 
PAD model, given that each sensor captures different images’ signal type, noise\s, and resolution. 
Equally important, for preserving all the details of the captured videos, the preprocessing before 
extracting PAD features has not been taken into account. For example, noise removal, contrast 
enhancement, and image filtering algorithms of the original image, which represent the interaction 
between a fingerprint\PAI and the sensor, may result in a loss of discriminative features. 

In the context of this chapter, the PAD subsystem evaluation measures the ability of a PAD model 
to correctly determine whether a fingerprint video comes from a genuine user or an attack. The 
evaluation is conducted following the provided framework in Chapter 3. 

The evaluator has defined the non-response as no appearance of a fingerprint in successive frames 
of a bona fide or attack presentation. Despite that, all presentations were successfully captured by 
the sensors and, consequently, non-response error rates are reported to be 0. 

 PAD EVALUATION RESULTS 

The proposed PAD subsystem evaluation is characterized by positive and negative error rates, 
APCERtotal and BPCER, as defined in Chapter 3. Both metrics have been calculated for three 
classification algorithms, each sensor apart. For reliable results, only testing data is used to conduct 
the evaluation, i.e. training data is merely used to train the models. For more robust accuracy 
estimation, k-fold cross validation is performed using 2, 3, 5 and 10 folds by the classification 
algorithms as demonstrated in Figure 4.8 and Figure 4.9. Moreover, Table 4.3 and Table 4.4 report 
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BPCER values at a fixed APCERtotal =0.05 and when the equal error occurs i.e. when APCERtotal 
=BPCER. 
The figures are revealing in several ways. First, classification methods show a difference in the 
performances. Linear discriminant analysis and SVM methods show high contrast between a low 
APCERtotal and a relatively high BPCER, while in the ensemble learning method the contrast 
between APCERtotal and BPCER is less notable. Secondly, the number of folds does not influence 
the methods’ performance significantly. For instance, 2 and 10 folds (consecutively 50% and 10% 
of the dataset) represent different sizes of the testing set, but surprisingly, the error rates are nearly 
the same. This might be caused by the small size of the dataset. Thirdly, the PAD mechanism 
shows a resemblance between the performances when considering different sensing technologies. 

From Figure 4.8-a and Figure 4.9-a, we observe that at the tradeoff equal error rate, our method 
achieves 89% accuracy for the thermal sensor and 88.3% for the optical sensors. These results 
validate our underlying supposition about the statistical differences between attacks and genuine 
fingerprints in the dynamic scenario. 

(a) (b) 

(c) (d) 

Figure 4.8. DET Curves for PAD subsystem performance under different classification methods and 
partitioning (Thermal sensor). 



52 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.9. DET Curves for PAD subsystem performance under different classification methods and 
partitioning (Optical sensor). 

Table 4.3. Classification Performance: BPCER at fixed APCER (Thermal sensor). 

Classifier Number of folds BPCER% 
@APCER=5% (APCER=BPCER)% 

LI 

2 41 13.46 
3 33.8 14.5 
5 20.8 11.1 

10 50 19.3 

EN 

2 33.5 11.87 
3 29.7 13.1 
5 29.1 12.3 

10 47.3 19.3 

SVM 

2 22 11 
3 18.1 9.5 
5 15.2 11.1 

10 23.6 10.5 
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Table 4.4. Classification Performance: BPCER at fixed APCER (Optical sensor). 

Classifier Number of folds BPCER% 
@APCER=5% 

Equal error rate 
(APCER=BPCER)% 

LI 

2 57.9 18.9 
3 43.9 21.1 
5 48.5 22 

10 43.4 17.4 

EN 

2 35.9 14.3 
3 31.7 16.2 
5 19.1 13.2 

10 30.4 21.7 

SVM 

2 26.6 11.7 
3 19.5 13 
5 14.7 8.8 

10 17.3 13 

The next section analyzes and interprets the obtained results where attack potential is studied for 
each PAI specie individually. Further analysis has been performed in section 4. 4. 2 aiming to 
enhance the PAD subsystem performance through dimensionality reduction using sequential 
feature selection. 

 ATTACKS STRENGTH 

Different attack types are expected to have different attack potentials, a PAD mechanism may not 
succeed to distinguish specific attack types, while performs more successfully with other types 
[11]. As an illustration, Figure 4.10 and Figure 4.11 analyzes the misclassified predictions of the 
three classification methods in the case of 2-folds cross-validation, considering seven PAI species 
and multi-class classification scheme. 
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Figure 4.10. PAD subsystem performance considering APCERPAIS, BPCERPAIS, and 50% training and testing 

cross validation (Thermal sensor). 

 
Figure 4.11. PAD subsystem performance considering APCERPAIS, BPCERPAIS, and 50% training and testing 

cross validation (Optical sensor). 

Broadly speaking, we found values for APCER and BPCER of the thermal subset to be lower than 
5% for all attack types excluding Play-Doh and White Glue attacks. This lends support to the fact 
that different attack types have different potentials. On the contrary, the PAD mechanism shows a 



55 

 

form of consistency for the different attacks when considering the optical sensor subset, APCER 
and BPCER are 5% ± 3 for all attacks in the SVM model. 

Since all attacks are performed by the same attacker, fingerprint sources (i.e. 3D molds), and attack 
methodology, we suggest that the attack potential of the different species varies due to the 
characteristics of each PAI species; nonetheless, introducing another attacker might produce 
different results. 

 SEQUENTIAL FEATURE SELECTION 

Sequential feature selection method is used to eliminate the features that increase the prediction 
error. The algorithm starts by choosing one feature and calculate the corresponding prediction 
error. Then the rest of features are tested one by one, and only those features which reduce the 
error are added to the model. 

Contrary to expectations, the overall performance of the tested models is decreased compared to 
classification results without dimensionality reduction. Figure 4.12 and Figure 4.13 demonstrate 
the PAD subsystem performance using 2, 3, 5, 10 folds cross validation, while Figure 4.14 and 
Figure 4.15 compare DET curves of feature selection for each classifier considering 2 folds cross 
validation.  

 

 

Figure 4.12. PAD subsystem performance after applying sequential feature selection (Thermal sensor). 
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Figure 4.13. PAD subsystem performance after applying sequential feature selection (Thermal sensor). 

 
Figure 4.14. PAD subsystem performance with and without Feature Selection (Thermal sensor). 

 
Figure 4.15. PAD subsystem performance with and without Feature Selection (Optical sensor). 
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Table 4.5 and Table 4.6 report the PAD performance after feature selection by showing BPCER 
at fixed APCER and the equal error rate. 

Table 4.5. Classification performance: BPCER at fixed APCER (thermal sensor). 

Classifier 
BPCER% 

@APCER=5% 

Equal error rate 

(APCER=BPCER)% 

LI 95.6 32.4 

EN 57.9 16.3 

SVM 52.1 16.6 

Table 4.6. Classification performance: BPCER at fixed APCER (optical sensor). 

Classifier BPCER% 
@APCER=5% 

Equal error rate 

(APCER=BPCER)% 

LI 73.1 32.9 

EN 47.6 19.8 

SVM 65.5 22.17 

Even though feature selection reduces the computational cost of the overall PAD system, it 
decreases the PAD performance, thus feature selection is not considered in our method. 

 COMPARISON WITH SoA METHODS 

Comparing our method with the state-of-the-art methods is not as straightforward as comparing 
the two sensors in our experiment. We recommend considering the following factors before 
comparing those results with the PAD mechanisms in Table 4.7: (i) experiment's protocol, (ii) 
database characteristics, and (iii) evaluation methodology. 

Table 4.7. Comparison of the SoA mechanisms. 

PAD mechanism Sensor APCER BPCER TEER 
Antonelli 2006  
[152] Optical NA NA 11.24% 

Zhang 2007 [154] Optical NA NA 4.5% 
Jia 2007 [153] Capacitive NA NA 4.78% 
Derakhshani 2003 
[222] Capacitive NA NA 11.11% 

Parthasaradhi 2005 
[223] 

Capacitive 5% - 20% 6.77% - 20% NA 
Optical 4.6%-14.3 0% - 26.9% NA 

Electro-Optical 0%-19% 6.9% - 38.5% NA 

Abhyankar 2009 
[119] 

Optical, 
NA 

 
NA 

 
13.85% electro-optical, 

 and capacitive 

Plesh 2019 [224] Optical 0.2% 13.8% - 
18.35% 

NA 

Proposed Optical 5%  26.6% 11.7% 
Thermal 5%  11% 22% 
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 CONCLUSION 

Our work has led us to the conclusion that genuine fingerprint is a rich source of information, 
rather than only a graphical static pattern. Having an accurate and deep understanding of 
fingerprint phenomena, e.g. skin elasticity, temperature, perspiration, etc. is a key for PAD 
solutions’ development. The findings of the studies on dynamic fingerprint features support the 
fact that genuine fingerprints produce unique dynamic patterns. 

The proposed PAD method explores the variation of eight global measures e.g. intensity (mean), 
contrast (std), randomness (entropy), during fingerprint presentations. Those features are 
concatenated to form a description of the fingerprint pattern’s formation. To verify whether the 
description is sufficiently discriminative, different classification algorithms are tested; SVM, 
LDA, and ensemble learning. The evaluation is conducted using a dynamic dataset that was 
collected using thermal and optical sensors, 66 genuine fingerprints, and 7 PAI species. 

Considering SVM classification and 50% partitioning for training and testing, we note comparable 
PAD performance for both sensors. Error rates are APCERtotal = BPCER= 11% for the thermal 
subset and APCERtotal = BPCER= 11.7% for the optical subset. Even though error rates show a 
resemblance for both sensors, we have shown that each PAI species has a certain attack potential. 
To put it differently, dominant attacks that increase error rates in the thermal subset are Play-Doh 
and white glue attacks, while different attack species have roughly homogeneous error rates in the 
optical subset.  

Dimensionality reduction method has been tested seeking to enhance the PAD subsystem 
performance, but results were unsatisfactory compared to the original results. 

The most important limitation of this investigation is the small size of the dataset, which consists 
of 11 independent subjects 6 fingers each. Moreover, the proposed mechanism has a limitation in 
distinguishing specific materials for the thermal sensor. Nevertheless, we believe our methodology 
could be a starting point for developing more sophisticated mechanisms. 

To further our research, we intend to acquire data from new subjects, as well as investigating more 
sophisticated features in order to enhance the performance of the PAD subsystem. 
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Chapter 5.  Fingerprint Presentation Attack 
Detection Utilizing Spatio-Temporal Features 

In the previous chapter, the experiment was conducted by analyzing the fingerprint as a sequence 
of dependent frames. The dynamic features were extracted from the video frames in the spatial 
domain, then the variation of those spatial features was used to describe each fingerprint video. 
The results of the experiment had shown that concatenating features from the spatial domain 
provides a certain level of accuracy as provided by the PAD mechanism’s error rates.  

In order to improve the PAD accuracy, this chapter proposes to investigate the fingerprint videos 
as 3-D signals. That is to say, instead of concatenating 2-D features from the video frames, the 
proposed algorithm analyzes the 3-D patterns in the fingerprint video by consolidating the spatial 
and temporal information. For that reason, five state-of-the-art dynamic texture descriptors (spatio-
temporal feature extractors) are used for the PAD feature extraction and then evaluated after an 
SVM classification. The spatio-temporal features provide significant improvement compared to 
the obtained results in the previous section and the SoA works in the dynamic fingerprint PAD. 

The rest of this chapter is structured as follows. Section 1 presents a brief overview of the dynamic 
texture applications in the biometrics discipline. In the second section, we describe the framework 
of the proposed PAD subsystem. The experiment is characterized in Section 3. Section 4 reports 
and discusses the experimental results. Finally, we the conclusions are drawn in section 5. 

 DYNAMIC TEXTURE: APPLICATIONS IN BIOMETRICS  

Dynamic textures are textures with motion [226]. Ideally, a dynamic texture descriptor 
consolidates 2-D textures in a scene with temporal variations, meaning that information of space 
and time are obtained simultaneously. There is a vast amount of literature on dynamic texture 
recognition with application to biometric recognition and analysis, this section highlights the most 
related works in this domain. 

In their seminal paper of 2007 [227], Zhao and Pietikäinen proposed a simple approach to extract 
dynamic textures using Volume Local Binary Patterns (VLBP) and Local Binary Patterns from 
Three Orthogonal Planes (LBP-TOP). The method had been proposed with application to facial 
expression recognition and reported over 95% accuracy. Moreover, a recent study on spontaneous 
facial micro-expression recognition suggested a deep learning model based on spatial and temporal 
streams and reported 63.53%-74.05% accuracy [228]. 

In 2018, an experiment had been carried out on the applications of the VLBP in face PAD [229]. 
The authors had evaluated their PAD mechanism considering printed and replay attacks (video 
attacks). The PAD mechanism had successfully eliminated all printed attacks with 100% accuracy 
and mitigated replay attacks with 97.38% accuracy. 
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Additionally, various dynamic descriptors were suggested to categorize human actions. Solmaz et 
al.  [230] extended the GIST descriptor into GIST3D and evaluated the method on different 
datasets, the authors obtained 92% accuracy for classifying 6 action categories. Further, the authors 
in [231] suggested utilizing the binarized statistical image feature (BSIF) to extract the dynamic 
features from 3-D salient patches and reported 93.43% accuracy for classifying low-quality videos. 

 PROPOSED PRESENTATION ATTACK DETECTION 
SUBSYSTEM 

The proposed PAD subsystem is designed in a fashion that leverages the dynamic information 
provided during the fingerprint presentation (Figure 5.1). Thus, the proposed feature extraction 
approach suggests exploiting the spatio-temporal features to achieve a robust description that 
characterizes the complete interaction between the fingerprint and the sensor’s surface. Toward 
this end, we propose three modes to investigate fingerprint dynamics in frequency and time 
domains. Five feature extractors are therefore selected to achieve a description that discriminates 
genuine from attack presentations. By feeding the extracted features into a pre-trained classifier, 
the PAD subsystem finally decides whether the input video is a bona fide or attack presentation. 
The following subsections expound the processing modes, feature extractors, and classification 
method. 

 
Figure 5.1. Dynamic PAD Subsystem Scheme. 

 FEATURE EXTRACTION MODES 

In order to investigate different aspects of fingerprint dynamics, three feature extraction modes are 
elaborated in this subsection. The first mode investigates dynamic fingerprint features in the 
frequency domain whereas a 3-D filter bank is utilized to extract spectral features in a diverse 
range of scales and orientations. As the video's frequency components effectively represent the 
static fingerprint pattern and the temporal variations, it is expected that the differences between 
natural skin and attack species produce frequency components in different planes. Hence, this 
mode captures the spatio-temporal information by filtering the video frequency spectrum in 
different orientations and center frequencies.  

The second mode samples the fingerprint video on space-time domain into small 3-D patches, 
extracts the spatio-temporal features from those samples, and provides the description as the 
frequency distribution of the extracted features. This mode has two main interesting features, 
primarily, it has the capacity to define local features in a stack of XY patches so that any anomalous 
formation in the fingerprint video is detected. Secondly, it provides the possibility of processing 
the 3-D patches in space-time and/or frequency domains. 
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The third mode resembles the second mode, a small brick is added after the sampling to decompose 
the 3-D patches into the Three Orthogonal Planes (TOP) XY, XT, and YT planes. Over the 
advantages of the second mode, the third mode had proved significantly reduced complexity for 
the adopted feature extractor while preserving a high accuracy [227]. 

Figure 5.2 illustrates these modes and Figure 5.3 shows an example of a fingerprint video and its 
sampling into 3-D patches and TOPs. 

 

(a) Spectral feature extraction using a 3-D filter bank. 

 

(b) Feature extraction from 3-D Patches. 

  

(c) Feature extraction from 3-D Patches decomposed into three orthogonal planes. 

Figure 5.2. Proposed PAD scheme in different modes. 

 

(a) 
 

(b) 
 

(c) 

Figure 5.3. Illustration of 3-D sampling and decomposition: (a) fingerprint video (b) 3-D patches sized (5x5x3)  
(c) patches in b decomposed into XY, XT, and YT planes.           

 FEATURE EXTRACTORS 

The feature extractors were selected in order to be in accordance with the proposed modes, 
moreover, to analyze the features in spatio-temporal and spectral domains. Table 5.1 summarizes 
the proposed scenarios with the corresponding dynamic feature extractors and the following 
subsections reviews these algorithms. 
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Table 5.1. The used feature extraction (FE) algorithms. 

FE algorithm FE Mode Domain of FE Source of features Reference 

GIST 3-D Mode 1 spatio-temporal frequency 
domain 

Sub-volumes in the 
frequency domain 

[230] 

Volume Local Binary Patterns Mode 2 spatio-temporal domain 3-D Patches [229] 
Local Binay Patterns from Three 
Orthogonal Planes Mode 3 spatio-temporal domain Patches of TOPs [229] 

Volume Local Phase Quantization Mode 2 spatio-temporal frequency 
domain 3-D Patches [232] 

Local Phase Quantization from Three 
Orthogonal Planes Mode 3 spatio-temporal frequency 

domain Patches of TOPs [232] 

5.2.2.1 GIST 3-D Descriptor 

GIST 3-D is a global spatio-temporal descriptor that had been proposed for video classification 
problems. The method integrates the motion information and the scene structure in one feature 
vector without applying background subtraction or salient point detection at the input video, 
achieving performance better than SoA dynamic descriptors. 

In our experiment, the GIST3-D works as follows: first, the frequency spectrum of the complete 
fingerprint video is achieved by applying 3-D Discrete Fourier Transform; as computed by 
equation 5.1.  

𝐹(𝑓𝑥, 𝑓𝑦 , 𝑓𝑡) =  
1

𝑀𝑁𝑇
 ∑ ∑ ∑ 𝑓(𝑥, 𝑦, 𝑡)

𝑇−1

𝑡=0

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 𝑒−𝑗2𝜋(
𝑥𝑓𝑥
𝑀

+
𝑦𝑓𝑦

𝑁
+

𝑡𝑓𝑡
𝑇

) 5.1 

Then, a bank of narrow band 3-D Gabor filters G(fr, θ, ϕ) is generated and each 3-D filter Gi(fx, fy, 
ft) is applied to the frequency spectrum as given by equation 5.2. The filter bank is composed by 
3-D filters with different orientations and scales, which allows capturing the components at various 
intervals of the video’s frequency spectrum.  

𝛤𝑖(𝑓𝑥, 𝑓𝑦, 𝑓𝑡) = 𝐹(𝑓𝑥, 𝑓𝑦, 𝑓𝑡)[𝐺𝑖(𝑓𝑥, 𝑓𝑦 , 𝑓𝑡)] 5.2 

After taking the inverse 3-D DFT as in equation 5.3 for each filter in the bank, the output volume 
is quantized in fixed sub-volumes and the sum of each sub-volume is taken, thus, a feature vector 
is obtained to represent the video description. 

𝐻𝑖(𝑥, 𝑦, 𝑡) = ∑ ∑ ∑ 𝛤𝑖(𝑓𝑥 , 𝑓𝑦, 𝑓𝑡) 𝑒𝑗2𝜋(
𝑥𝑓𝑥
𝑀

+
𝑦𝑓𝑦

𝑁
+

𝑡𝑓𝑡
𝑇

) 

𝑇−1

𝑓𝑡=0

𝑁−1

𝑓𝑦=0

𝑀−1

𝑓𝑥=0

 5.3 

5.2.2.2 Volume Local Binary Patterns 

The basic Local Binary Patterns method was extended to VLBP in order to describe the dynamic 
texture in a sequence of successive images [227]. The algorithm starts by sampling the gray level 
volume input into small 3D samples considering a certain number of local neighbors (P), time 
interval (L), and radius (R) in x-y plane, then every neighbor pixel in the 3D sample is given a 
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binary value based on a comparison with the center pixel of the sample. Finally, each binary value 
is multiplied by a corresponding weight and all results are summed to form the sample’s VLBPL,P,R 
code; equation 5.4. The distribution of the codes is used to compose the dynamic texture feature 
vector. 

𝑉𝐿𝐵𝑃𝐿,𝑃,𝑅 = ∑

3𝑃+1

𝑝=0

𝑠(𝑔𝑝 − 𝑔𝑐)  2𝑝 5.4 

 where 𝑔𝑝 and 𝑔𝑐 correspond to the gray values of the central pixel and neighbors in the 3-D 
sample. 

The authors in [227] proposed two additional modes for the method: (1) rotation-invariant VLBP 
mode (𝑉𝐿𝐵𝑃𝐿,𝑃,𝑅

𝑟𝑖 ) which is based on the assumption that volume data rotates only around t-axis, 
(2) uniform VLBP mode (𝑉𝐿𝐵𝑃𝐿,𝑃,𝑅

𝑢2 ), where the VLBP histogram consists of uniform patterns (i.e. 
patterns contain at most 2 bitwise transitions between 0 and1) and sums up all non-uniform patterns 
in 1 bin.  

5.2.2.3 Volume Local Phase Quantizer  

The VLPQ method [232] is an extension to the local phase quantization which was originally 
proposed as an image descriptor [173]. VLPQ essentially encodes local Fourier transform’s phase 
information at low-frequency points. The method consists of three steps: (1) local Fourier 
transform is applied, using Short Term Fourier Transform (STFT), over MxMxN neighborhood 
Nx centered at each pixel position x using 1-D convolutions for each dimension, (2) the 
dimensionality of the achieved data is reduced using Principal Component  Analysis (PCA), and 
(3) a scalar quantization is applied to produce an integer value. The histogram of the binary 
codewords is computed to form the VLPQM,N feature vector. 

5.2.2.4 Local Binary Patterns from Three Orthogonal Planes 

Although VLBP method is interesting, it suffers from two major issues. First, initializing the 
algorithm with a large number of neighbors P results in a very large number of patterns in the 
VLBP feature vector, limiting the method’s applicability. Second, choosing a time radius L larger 
than 1 excludes the frames with a time variance less than L. 

To address these issues, VLBP-TOPL,P,R method had been proposed in [227] to concatenate the 
local binary patterns on the three orthogonal planes: XY-LBP, XT-LBP, and YT-LBP. With this 
approach, spatial patterns are obtained from XY plane and space-time transitions information is 
attained from XT and YT planes. As a result, the number of patterns on the feature vector is 
significantly reduced from 23P+2 to 3·2P which allows considering a large number of neighbors 
with reduced computational cost, moreover, including neighbor pixels from frames with a time 
variance less than L, when L is larger than 1. 
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5.2.2.5 Local Phase Quantizer from Three Orthogonal Planes 

LPQ-TOPRx,Ry,Rz is implemented by calculating LPQ histograms from three orthogonal planes 
similar to LBP-TOP. The histograms are normalized and concatenated to form the LPQ-TOP 
descriptor [232]. 

 PAD Classification 

Through our experiment, we have tested different classification algorithms, specifically: 
Classification Trees, Discriminant Analysis, Naive Bayes, Nearest Neighbors, SVM 
Classification, and Classification Ensembles. SVM classification has been chosen due to its 
highest accuracy as shown in Table 5.2, while the other classification methods are not considered 
in this Chapter. Moreover, we have examined the impact of changing the SVM kernel whereas a 
second polynomial kernel demonstrated the best accuracy. A binary classification scheme has been 
utilized to evaluate the PAD subsystem performance and to assess the influence of specific PAI 
species on system security and usability. 

The results in Table 5.2 are produced using one feature extractor, i.e. VLPQ, for showing the 
machine learning methods accuracy and to justify the selection of the quadratic SVM algorithm. 
the results for the other feature extractors provide the same result which is the selection of the 
SVM model. 

Table 5.2. PAD classification accuracy for the dynamic features. The VLPQ features were used to produce 
these results considering 50% training and 50% testing partitioning. 

Machine learning algorithm Configuration 
Accuracy 

Optical Thermal 

Tree 
Fine tree 88.8% 83.3% 
Medium tree 88.9% 84.0% 
Coarse tree 82.7% 82.6% 

Discriminant Analysis Linear discriminant 84.8% 78.6% 
Logistic regression Logistic regression 84.3% 77.4% 

Naive bayes Gaussian naive bayes 69.8% 74.1% 
Kernel naive bayes 76.4% 81.4% 

SVM 

Linear SVM 96.0% 92.1% 
Quadratic SVM 97.6% 95.5% 
Fine gaussian SVM 77.6% 77.8% 
Medium gaussian SVM 96.5% 92.5% 
Coarse gaussian SVM 85.6% 83.8% 

KNN 

Fine KNN 96.0% 89.8% 
Medium KNN 91.1% 87.4% 
Coarse KNN 78.7% 80.8% 
Cosine KNN 91.2% 87.8% 
Cubic KNN 90.9% 86.4% 
Weighted KNN 93.8% 88.9% 

Ensemble RUSBoosted trees 92.9% 89.6% 

https://nl.mathworks.com/help/stats/classification-trees.html
https://nl.mathworks.com/help/stats/classification-discriminant-analysis.html
https://nl.mathworks.com/help/stats/classification-naive-bayes.html
https://nl.mathworks.com/help/stats/classification-nearest-neighbors.html
https://nl.mathworks.com/help/stats/support-vector-machine-classification.html
https://nl.mathworks.com/help/stats/support-vector-machine-classification.html
https://nl.mathworks.com/help/stats/classification-ensembles.html
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 EXPERIMENT 

To evaluate the performance of the proposed PAD subsystem, we use the dynamic dataset 
presented in [233]. In the initial stage of the experiment, a volume segmentation is applied to the 
database. This sets the input fingerprint videos to the feature extraction step. At this point, we 
utilize the scheme in Figure 5.2 to extract the features and train the SVM model. As soon as these 
steps have been carried out, the testing process is performed, and the PAD subsystem accuracy is 
assessed.  

 DATABASE 

In this chapter, the first portion of the database, which represent ordinary dynamic presentation, is 
used. The same portion was used in the experiment of Chapter 4. 

 VOLUME SEGMENTATION 

To neglect the influence of empty background on the extracted features, we apply 3-D 
segmentation to the dataset so that the features are extracted only from the part of the sensor’s 
surface where the presentation was applied. 

1) Segmentation of thermal subset 

The thermal sensor’s SDK provides a capturing mode that acquires only the central region of the 
sensor sized 90×128 pixels. Thus, the acquired sequence is already segmented as a stack of 7 
frames sized 90×128 Figure 5.4. 

 
Figure 5.4. Segmented fingerprint video. 

2) Segmentation of optical subset 

Since our study analyzes the formation of fingerprints, we have implemented a simple volume 
segmentation tool that creates the boundaries of the entire Interaction between a fingerprint and 
the sensor. Then, we have applied the segmentation to the entire subset of the optical sensor before 
feature extraction; an example is shown in Figure 5.5 (a) and (b). 
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(a) 

 

 

(b) 

Figure 5.5. Demonstration of a volume segmentation for a presentation of 29 images, before and after 
segmentation sized 375x400 and 234x145 respectively. The figures do not reflect the real scale of the 

fingerprint. 

 EXPERIMENTAL PROTOCOL 

Each sensor subset is evaluated independently due to the differences in the sensors’ technology, 
image size, resolution, noise, and capturing rate which produce different video characteristics. For 
a robust accuracy estimation, we have set a holdout validation scheme where the database is 
divided into training (55%) and testing (45%) sets. The database division into training/testing is 
randomized by independent subjects, meaning that presentations of each independent subject is 
either used for training or testing. 

The PAD evaluation is carried out following the proposed methodology in Chapter 3. The results 
are discussed in the next section. 

 RESULTS AND DISCUSSION 

In this section, we assess the accuracy of the proposed PAD scheme and analyze the influence of 
selecting the feature extractor on the PAD subsystem efficiency. 

 Impact of PAD Subsystem Mode and Feature Extraction Method  

The first set of analyses examined the impact of (i) the size of 3-D samples used in the processing 
mode, and (ii) selecting rotation invariant or uniform features, on the feature extractor 
performance. Figure 5.6 and Figure 5.7 show DET curves for VLBP, LBP-TOP, VLPQ, and LPQ-
TOP with the corresponding sampling parameters. The figures confirm that 3-D spectral features 
(i.e. VLPQ and LPQ-TOP) performs better at smaller sampling size, and the accuracy degrades 
considerably when comparing the smallest and largest sampling size. An exception is noticed for 
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the LPQ-TOP when executed on the optical sensor. On the other hand, 3-D spatio-temporal 
features (i.e. VLBP and LBP-TOP) have not revealed a general correlation between sampling size 
and accuracy. However, it is evident that rotation invariant and uniform features do not necessarily 
improve the accuracy in most of the cases, but nonetheless no significant degradation has taken 
place after considering those features. 

  



68 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.6. DET curves comparison of the proposed feature extraction algorithms using different parameters 
(optical sensor). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.7. DET curves comparison of the proposed feature extraction algorithms using different parameters 
(thermal sensor). 
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Table 5.3 and Table 5.4 detail the results categorized by the feature extraction method. We have 
selected multiple thresholds: (i) TEER, (ii) APCER= 5%, and (iii) APCER= 2.5% to evaluate the 
methods at different security levels. The tables reveal the total number of the misclassified bona 
fide/attack presentations at each threshold. It is worthwhile noting that testing data, which 
corresponds to 5 independent subjects, consists of 630 attack and 180 bona fide presentations. 

Table 5.3. PAD performance of optical sensor. 

Descriptor 

TEER at APCER = 5% at APCER = 2.5% 

TEER Successful 
attacks 

Rejected 
B-F BPCER20 Successful 

attacks 
Rejected 

B-F BPCER Successful 
attacks 

Rejected 
B-F 

VLPQ3,3 5.56% 35 10 5.56% 

31 

10 8.89% 

16 

16 

VLPQ5,5 6.11% 39 11 6.67% 12 11.11% 20 

VLPQ 7,7 9.21% 58 17 15.00% 27 29.44% 53 

VLPQ 9,9 9.44% 60 17 12.22% 22 25.00% 45 
          

LPQ-TOP3,3,3 5.08% 32 9 5.56% 

31 

10 9.44% 

16 

17 

LPQ-TOP 5,5,5 3.89% 25 7 3.89% 7 7.22% 13 

LPQ-TOP 7,7,7 6.11% 39 11 6.67% 12 7.78% 14 

LPQ-TOP 9,9,9 5.56% 35 10 6.11% 11 11.11% 20 
   

 
      

 GIST 3-D 5.56% 35 10 6.67% 31 12 9.44% 16 17 
          

VLBP1,4,1 3.65% 23 7 1.67% 

31 

3 7.22% 

16 

13 

VLBP1,4,3 4.76% 30 9 4.44% 8 11.67% 21 

VLBP2,4,1 2.78% 18 5 1.67% 3 5.00% 9 

VLBP2,4,3 3.65% 23 7 2.22% 4 5.56% 10 

VLBPri1,4,1 5.00% 32 9 5.00% 

31 

9 8.89% 

16 

16 

VLBPri1,4,3 6.67% 42 12 8.33% 15 13.33% 24 

VLBPri2,4,1 3.89% 25 7 3.33% 6 5.00% 9 

VLBPri2,4,3 4.92% 31 9 4.44% 8 8.89% 16 
          

LBP-TOP1,8,1 4.44% 28 8 3.89% 

31 

7 5.00% 

16 

9 

LBP-TOP1,8,3 3.97% 25 7 2.22% 4 5.56% 10 

LBP-TOP2,8,1 3.65% 23 7 2.78% 5 3.89% 7 

LBP-TOP2,8,3 3.89% 25 7 2.78% 5 3.89% 7 

LBP-TOP u21,8,1 4.76% 30 9 4.44% 

31 

8 7.22% 

16 

13 

LBP-TOP u21,8,3 2.22% 14 4 1.11% 2 2.22% 4 

LBP-TOP u22,8,1 5.56% 35 10 5.56% 10 7.22% 13 

LBP-TOPu22,8,3 3.49% 22 6 2.22% 4 6.11% 11 
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Table 5.4. PAD performance of thermal sensor. 

Descriptor 

at TEER at APCER = 5% at APCER =2.5% 

TEER Successful 
attacks 

Rejected 
B-F BPCER20 Successful 

attacks 
Rejected 

B-F BPCER Successful 
attacks 

Rejected 
B-F 

VLPQ3,3 8.10% 51 15 13.89% 

31 

25 27.78% 

16 

50 

VLPQ5,5 13.02% 82 23 31.67% 57 46.11% 83 

VLPQ 7,7 17.94% 113 32 46.67% 84 65.00% 117 
          

LPQ-TOP3,3,3 4.92% 31 9 3.89% 

31 

7 14.44% 

16 

26 

LPQ-TOP 5,5,5 7.30% 46 13 9.44% 17 17.78% 32 

LPQ-TOP 7,7,7 6.67% 42 12 8.89% 16 22.78% 41 
          

 GIST 3-D 12.22% 77 22 28.89% 31 52 46.67% 16 84 
          

VLBP1,4,1 12.86% 81 23 30.00% 

31 

54 51.67% 

16 

93 

VLBP1,4,3 16.19% 102 29 27.22% 49 48.33% 87 

VLBP2,4,1 16.03% 101 29 37.22% 67 61.11% 110 

VLBP2,4,3 19.44% 123 35 43.89% 79 57.78% 104 

VLBPri1,4,1 12.78% 81 23 23.89% 

31 

43 41.11% 

16 

74 

VLBPri1,4,3 12.70% 80 23 37.22% 67 72.22% 130 

VLBPri2,4,1 16.19% 102 29 33.33% 60 53.89% 97 

VLBPri2,4,3 13.33% 84 24 35.56% 64 56.67% 102 
          

LBP-TOP1,8,1 7.78% 49 14 10.56% 

31 

19 23.33% 

16 

42 

LBP-TOP1,8,3 8.33% 53 15 16.67% 30 24.44% 44 

LBP-TOP2,8,1 7.46% 47 13 10.00% 18 20.00% 36 

LBP-TOP2,8,3 7.22% 46 13 15.00% 27 36.11% 65 

LBP-TOP u21,8,1 7.78% 49 14 14.44% 

31 

26 28.33% 

16 

51 

LBP-TOP u21,8,3 8.33% 53 15 13.33% 24 28.33% 51 

LBP-TOP u22,8,1 8.33% 53 15 12.78% 23 29.44% 53 

LBP-TOPu22,8,3 8.25% 52 15 15.00% 27 37.22% 67 

We then carry out a performance comparison between the five dynamic feature extraction methods 
(Figure 5.8) by selecting the methods’ best parameters from Table 5.3 and Table 5.4. Note that 
those parameters had been chosen empirically, thus they might not be optimal for the suggested 
feature extractors in the context of our experiment. 

The most striking result to emerge from Figure 5.8 is the achievement of significantly low TEERs, 
where the system security remains high (low APCER) with low bona fide rejects (low BPCER), 
that is to say, these results offer powerful evidence for the fact that a genuine fingerprint provides 
sufficiently discriminative dynamic information that distinguishes it from attacks. 
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 (a) Optical sensor 

 
(b) Thermal sensor 

Figure 5.8. DET curves comparison of the proposed PAD subsystem using five feature extractors. 

 Impact of Sensing Technology 

We next investigate the robustness of the proposed PAD subsystem when different fingerprint 
sensing technologies are used, explicitly, we compare the PAD accuracy for the thermal and optical 
sensors (Figure 5.8) in terms of TEER. We observe from Table 5.5 that the accuracy of the PAD 
subsystem for the optical sensor has best results over the thermal sensor. The distinction appears 
to be well substantiated by the higher frame rate, image size, and resolution in the optical sensor 
which allows to precisely capture the fingerprint/PAI formation; i.e. spatio-temporal information. 
Moreover, each presentation in the thermal sensor is captured over roughly 5 seconds while in the 
optical sensor, a presentation can be captured in 0.5 second including 10 successive frames. 

Table 5.5. BPCER20 comparison between the optical and thermal sensors. 

Sensor\FE VLPQ LPQ-TOP GIST 3-D VLBP LBP-TOP 
Optical VLPQ3x3 5.5% LPQ-TOP5x5x5 3.8% 6.6% VLBP2x4x1 1.6% LBP-TOPu21x8x3 2.2% 
Thermal VLPQ3x3 13.8% LPQ-TOP3x3x3 3.8% 28.8% VLBP1x4x1 30.0% LBP-TOP2x8x3 15.0% 
Difference 8.3% 0.00% 22.2% 28.33% 12.78% 

 Impact of Attack species 

This section expounds the results from Section 5. 4. 1 seeking to point out the attack potential for 
each PAI species. The classification results are shown considering the SVM classification decision 
in Table 5.6 and Table 5.7.  
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Table 5.6. Attacks strength considering different PAI species (optical sensor). 

  

SVM error rates  APCER_PAI 

APCER BPCER Play-
Doh 

White 
glue 

Spray 
rubber 

Polish 
nail 

Nails 
hardener Gelatin Latex 

VLBP2,4,1 1.75% 7.78% 0.00% 1.11% 1.11% 0.00% 8.89% 0.00% 1.11% 
LBP-
TOPu21,8,3 

1.59% 6.67% 3.33% 1.11% 0.00% 1.11% 1.11% 2.22% 2.22% 

VLPQ3,3 3.33% 6.67% 5.56% 0.00% 3.33% 1.11% 8.89% 4.44% 0.00% 
LPQ-
TOP5,5,5 

2.38% 11.67% 3.33% 3.33% 0.00% 0.00% 3.33% 4.44% 2.22% 

GIST 3D 1.43% 10.56% 4.44% 1.11% 2.22% 1.11% 0.00% 1.11% 0.00% 

Table 5.7. Attacks strength considering different PAI species (thermal sensor). 

  

SVM error rates  APCER_PAI 

APCER BPCER Play-Doh White 
glue 

Spray 
rubber 

Polish 
nail 

Nails 
hardener Gelatin Latex 

VLBP1,4,1 1.59% 56.11% 0.00% 10.00% 1.11% 0.00% 0.00% 0.00% 0.00% 
LBP-
TOP2,8,3 

4.44% 16.67% 1.11% 21.11% 6.67% 2.22% 0.00% 0.00% 0.00% 

VLPQ3,3 3.33% 18.33% 2.22% 15.56% 1.11% 1.11% 0.00% 3.33% 0.00% 
LPQ-
TOP3,3,3 

2.70% 11.11% 0.00% 8.89% 4.44% 2.22% 0.00% 3.33% 0.00% 

GIST 3D 4.76% 29.44% 8.89% 24.44% 0.00% 0.00% 0.00% 0.00% 0.00% 

As expected, the tables prove that different attack species have different attack potential 
considering a target sensor/PAD method. The PAD subsystem has been capable of eliminating 
some of the attack species and mitigate the rest of the species. Even though the overall performance 
for the optical sensor has been proven to be higher than the thermal sensor, a comparison between 
Table 5.6 and Table 5.7 demonstrates that the thermal sensor is notably vulnerable to white glue 
attacks but resistant to the rest of the attack species. On the other hand, the optical sensor shows 
either relatively low or 0% APCER for all attack species. 

 Accuracy Comparison with SoA mechanisms 

To conduct a comparison between different PAD mechanisms, we emphasize the importance of 
considering the differences between experimental protocols, used databases, and evaluation 
methodologies. These factors refer to a certain attack potential to specific database/technology and 
evaluated using defined metrics. 

In Chapter 3, these factors were characterized to a considerable extent in order to allow the reader 
to compare our proposed PAD mechanism with SoA mechanisms. Table 5.8 compares the 
performance of the proposed mechanism in this chapter with the related works that were explained 
in Chapter 4. We note that our results for both sensing technologies demonstrate significant 
improvement to the SoA methods. 
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Table 5.8. Comparison with SoA mechanisms. 

PAD mechanism Sensor APCER BPCER TEER 
Antonelli 2006  [152] Optical NA NA 11.24% 
Zhang 2007 [154] Optical NA NA 4.50% 
Jia 2007 [153] Capacitive NA NA 4.78% 
Derakhshani 2003 
[222] Capacitive NA NA 11.11% 

Parthasaradhi 2005 
[223] 

Capacitive 5% - 20% 6.77% - 20% NA 
Optical 4.6%-14.3 0% - 26.9% NA 

Electro-Optical 0%-19% 6.9% - 38.5% NA 

Abhyankar 2009 [119] 
Optical, 

NA NA 13.85% electro-optical, 
 and capacitive 

Plesh 2019 [224] Optical 0.20% 13.8% - 
18.35% NA 

Dynamic statistics 
(Chapter 4) 

Optical 5% 26.60% 11.70% 
Thermal 5% 11% 22% 

Dynamic Texture Optical 5% 1.11% 2.22% 
Thermal 5% 3.89% 4.92% 

 

 Time Performance 

Finally, we assess the computational cost of the selected feature extractors. The evaluation is 
conducted using the MATLAB source codes provided by the authors of the dynamic descriptors 
and the Statistics and Machine Learning Toolbox – MATLAB [234]. The used machine is a Dell 
XPS/15/9560 at 2.80 GHz CPU, 16 GB RAM, and Windows 10 Pro 64-bit operating system. The 
codes had not been optimized for our use case and executed to verify the PAD mechanism 
efficiency rather than the computational complexity, nevertheless, the analyses in this section give 
an insight into our experimental work. 

We separately evaluate the feature extraction time for optical and thermal sensors in Table 5.9 and 
Figure 5.9. 

Table 5.9. Average FE time for the thermal sensor. 

FE method GIST3D VLBP LBPTOP VLPQ LPQTOP 
bins of FE histogram 34816 16384 768 1024 768 
FE time (in seconds) 0.995 0.406 0.590 0.124 0.267 
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Figure 5.9. Average FE time for the optical sensor. 

From Table 5.9 and Figure 5.9, we observe that computation time in 3-D frequency domain is 
significantly lower than that in 3-D spatial domain. Moreover, Figure 5.9 shows the influence of 
the presentation length, i.e. the number of frames per presentation, on computation time. 

 CONCLUSIONS 

In this chapter, we present a novel fingerprint PAD approach in the dynamic scenario. We propose 
three modes to investigate the spatio-temporal and spectral features in fingerprint videos. We 
utilize five dynamic feature extractors to leverage the fingerprint features in space and time, then 
a binary SVM is used for classifying bona fide and attack presentations. 

The significance of the proposed approach is integrating the effect of natural fingerprint 
phenomena from the acquired video using dynamic descriptors, for instance, the intensity variation 
caused by the perspiration and pressure, and the ridge/valley pattern's formation caused by the 3-
D form and elasticity of genuine fingerprints. Moreover, the approach has the capacity to detect 
anomalous patterns caused by the various PAI species, consequently, enhance the PAD 
subsystem's accuracy. 

The local spatio-temporal features were extracted using VLBP and LBP-TOP. On the other hand, 
spectral features were explored locally using VLPQ and LPQ-TOP, and globally using GIST 3-D. 
These feature extractors are evaluated for thermal and optical sensors showing an advantage for 
the latter due to its acquisition characteristics. 

The experiment points out the importance of studying each sensing technology apart by comparing 
(i) the accuracy of the different feature extractors, and (ii) the potential of the attack species on the 
two sensors. The best accuracy is obtained by LBP-TOP for the optical sensor with 1.11 
BPCER20, and by LPQ-TOP for the thermal sensor with 3.89 BPCER20.  
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These results would seem to suggest that our approach has an excellent capability of 
eliminating/mitigating PAs in different sensing technologies. Further, a comparison with SoA 
mechanisms shows that our method provides competitive error rates. However, given the small 
number of participants in the database, caution must be taken. 

Finally, it is noticed that feature extraction time is high when processing longer videos. However, 
these results were obtained in testing environment where the used software was implemented to 
validate the algorithms regardless the processing time. The processing time can be enhanced by 
utilizing adequate environment with optimized codes. 
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Chapter 6.  The Impact of Pressure on Dynamic 
Fingerprint Features 

 INTRODUCTION 

As explained in earlier chapters, the fundamental research question in the development of novel 
PAD mechanisms concerns the distinct features that segregate genuine from malicious biometric 
traits.  In other words, a robust PAD mechanism contributes to defining discriminative features 
from genuine and malicious traits for the purpose of eliminating those malicious attacks. 
Additional to answering “What are the distinct features?”, the defined features are relied upon to 
reveal reliable interpretability which answers “Why those features are considered as 
distinguishing?”.  

In order to define the PAD features, let us revisit the elements (i.e. physical, behavioural, and 
logical) of the biometric presentation in the typical use case. The biometric presentation is 
performed by a subject who interacts voluntarily or involuntarily with a biometric system under a 
certain level of supervision and instructions. Any of these elements can be exploited for the 
purpose of collecting and analyzing additional information (i.e. PAD features) other than what is 
intended to be collected for biometric recognition.  

Most of the current investigations in fingerprint PAD solutions focus on the differences between 
different types of presentations, i.e. bona fide and attacks, through static images. On the other hand, 
a few studies had been conducted to investigate the presentation itself considering different 
presentation scenarios. In this chapter, we propose a fingerprint PAD subsystem that exploits two 
of the presentation’s elements: (1) presentation instruction, and (2) a software implementation that 
investigate the presented fingerprint/attack considering the provided instruction; as illustrated in 
Figure 6.1. 

 
Figure 6.1. Elements of the fingerprint presentation in the typical use scenario. 
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I. Presentation instruction: 

Presentation instructions, which might be referred to as challenge-response in the context of PAD, 
are used to trigger the biometric trait aiming to obtain a unique reaction pattern/s that, ideally, 
cannot be achieved by attacks. In this chapter, we investigate the influence of pressure on the 
fingerprint ridge/valley pattern by instructing the subjects to perform additional pressure during 
the fingerprint placement on the sensor’s surface. The acquired presentation corresponds to the 
complete interaction between the finger and the sensor and is eventually captured as an 
uncompressed video. With this intention, different PAI species are selected to investigate their 
dynamic features under the defined instructions. Different attack species have been chosen to show 
different physical characteristics such as elasticity. The selected species includes very elastic 
material (e.g. gelatin and Play-Doh) and very rigid materials (e.g. white glue and nail polish) so 
that the dynamic variation and distortion are analyzed in both cases. 

II. Software PAD subsystem: 

After introducing additional information to the acquired fingerprint videos, a software PAD 
subsystem is required to extract decisive and interpretable features that validate the experiment’s 
assumption and succeed in the task of attack detection. The proposed PAD algorithms in this 
chapter explore (a) the development of ridge/valley pattern in the captured video through 
examining the pattern's statistical variations in the consequent frames, (b) the dynamic texture in 
fingerprint videos so that the spatial fingerprint pattern is consolidated with the temporal changes, 
as shown in our previous work in fingerprint dynamics (Chapter 5). By exploiting these features, 
the PAD subsystem presents a countermeasure with certain efficiency as reported in the results. 

The remaining of this chapter is organized as follows. Section 2 puts together the state-of-the-art 
investigations about dynamic fingerprint distortion and its application in PA. In Section 3, the 
proposed PAD subsystem is presented. Section 4 outlines the experimental protocols and report 
the experimental results. Finally, conclusions are drawn in Section 5.  

 RELATED WORK 

The clarity of a fingerprint image has a significant influence on the fingerprint matcher's 
performance. According to the  NIST report on fingerprint image quality [235], fingerprint images 
that have clear and distinct ridges and valleys can positively affect the performance of an automatic 
fingerprint recognition system. However, multiple behavioural and/or physical factors, such as 
inadequate fingerprint presentation and skin conditions, may cause the acquired image to be less 
likely clear and distinct. In [236] the author discussed six attributes that characterize a good ridge 
quality, namely (1) sufficiently wide dynamic range, (2) even density distribution, (3) linearity, 
(4) no black or white saturation, (5) no significant blur or smudge, and (6) sufficient separation 
between ridges and valleys. 
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As stated above, an inadequate presentation may affect one or more of the six attributes, resulting 
in a challenge for the matching subsystem. This effect could be interpreted as a result of a 
fingerprint’s inherent phenomenon. For instance, considering the internal bone position and skin 
elasticity, applying additional pressure during the fingerprint placement often cause linear and 
nonlinear distortions in the resulting ridge and valley pattern [237]. That can be perceived in the 
acquired image by thicker ridges, ridge flow distortion, black saturation, and less clarity. 
Additional examples of inadequate presentation include but are not limited to lack of usage 
knowledge/experience and intentional malicious behavior for the purpose of evading recognition. 

Different attempts were conducted aiming to improve the robustness of fingerprint matching 
techniques considering inadequate presentations. Initial investigations such as [238] rely on the 
assumption that elastic distortion is a local issue, consequently, measuring local similarity between 
a distorted image and a fingerprint template would lead to better matching accuracy compared to 
measuring global similarity. The authors of [238] derived class by class matching networks using 
a neural classification network and the peak, width, and area components of the local Fourier 
transform achieving 90.9% matching accuracy.  

In [239], the authors suggest that controlling the applied force during fingerprint placement at the 
sensor’s surface leads to avoid distortion in the first place. The proposed method required: (1) an 
additional sensor that measures the force being applied at the sensor, and (2) adjusting the pressure 
level by examining cooperative and good quality images.  

As mentioned by Cappelli [220], those aforementioned investigations tended to relax the definition 
of similarity aiming to consider small elastic deformations, but they had not attempted to model 
fingerprint distortion. For that reason, Cappelli et al. had carried out their experiment to cope with 
non-linear deformations of dynamic fingerprint acquisitions and proposed a fingerprint distortion 
function that is suitable for developing distortion-tolerant fingerprint matching algorithms. 

A more recent investigation [240] proposes a fingerprint rectification system that estimates the 
center and the direction of the fingerprint, then it detects the distorted fingerprint, discovers the 
distorted pattern, and applies image transformation. Although this method proved a significant 
enhancement in the speed, the authors revealed some limitations related to the accuracy of pose 
estimation. 

Initial studies in fingerprint PAD using the dynamic distortion followed the conclusions of [220]. 
A systematic study on skin distortion was conducted to analyze the distortion caused by the 
elasticity of human skin [221]. Based on the research observations, the experiment initially 
suggests that genuine fingerprints and PAIs cause different distortions since artificial fingerprints 
are more rigid, consequently cause lower distortion compared to genuine fingerprints. In their 
paper, the authors argue that even when a high elastic PAI specie is used to attack the system, it is 
very difficult to precisely emulate the distortion of genuine fingerprints since the behavior is 
identified with the manner in which the outside skin is anchored to the underlying derma and 
impacted by the position and state of the finger bone. In order to validate those assumptions, a 
dynamic dataset was collected using an optical sensor (high frame rate), with user instructions on 
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presenting the fingerprint with rotation and pressure. The evaluation included presentations from 
bona fide capture subjects and five PAI species (Table 6.1). For each presentation, the method 
computes the optical flow, Distortion map, and distortion code consecutively afterward compares 
the distortion codes to detect attacks. 

Different from the latter technique, Zhang et al. used a Thin-Plate Spline (TSP) model to globally 
characterize fingerprint distortion and utilize this model to detect malicious presentations 
performed by PAI species [154]. The experiment relied on the same assumptions in [220] which 
state that genuine fingerprints produce a unique distortion pattern that is very difficult to be 
emulated by attack presentations. A different database was collected to assess the method 
including genuine fingerprint and silicon attack presentations. The database was collected under 
controlled presentation instructions where the fingerprint/PAI is placed on the sensor’s surface, 
then pressure is applied in different directions. Under those conditions, the minutia movement 
represents the global distortion, and a sequence of paired minutia before and after distortion is used 
to calculate the parameters of the TPS model. The bending energy vector of the TPS model is 
utilized to distinguish bona fide from attack presentations. 

Further analysis of fingerprint elasticity was performed by Jia et al. [153], analyzing the variations 
in the fingerprint area, intensity, and standard deviation. The variations in area and intensity were 
justified by the applied pressure and skin’s moistness. The experiment had shown that genuine 
fingerprints have an increased size and intensity in the sequence while artifacts demonstrate a 
random fluctuation in intensity with increasing size for the area. On the other hand, the standard 
deviation feature characterizes the skin extension in x and y directions within the deformation 
process of the fingerprint pattern. The evaluation was reported using a dynamic dataset that was 
collected by a high frame rate capacitive sensor, while only a gelatin attack was performed. Fisher 
linear discriminant analysis is used to classify bona fide and attack presentations. 

Table 6.1 shows a PAD comparison for the aforementioned methods by highlighting the methods’ 
accuracy, sensing technologies, and used PAI species. 

Table 6.1. Dynamic PAD mechanisms based on fingerprint deformation analysis. 

Author Technique PAI species Sensing 
technology TEER (%) 

Antonelli et al. [152] Optical Flow Gelatin, RTV silicon, 
white glue, and latex Optical 11.24 

Zhang et al. [154] Thin-Plate Spline Silicon Optical 4.5 

Jia et al. [153] First Order Statistics Gelatin Capacitive 4.78 

There is still considerable ambiguity with regard to the generalizability of some of the previous 
conclusions. First, dynamic fingerprint patterns comprise all of the natural phenomena of genuine 
fingerprints and not only an individual characteristic such as elasticity. Second, Experiments in 
[153], [154] were conducted using one PAI species, so conclusions are limited to those attacks and 
might not apply for other PAI species. Finally, even though the different PAI species have 
demonstrated different behaviors, other factors such as attacking tools and attacker’s level of 
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expertise must be taken into account to completely characterize the interaction over the sensor’s 
surface. 

 PROPOSED METHOD 

In this section, we demonstrate a fingerprint PAD mechanism that is particularly designed to 
investigate the dynamic distortion of fingerprint patterns under additional pressure during the 
presentation. The method relies on the fact that adding extra pressure during a genuine fingerprint 
presentation produces certain distortion which differs from that produced by various attack species. 

In this scenario, where the solution is driven by the acquired data, the PAD solution is segmented 
into two folds (i) instructed data acquisition: the participants are given sufficient information about 
the style of performing a presentation by adding pressure while placing the fingertip at the sensor’s 
surface, (ii) software algorithm/s used in the PAD subsystem to extract sufficiently discriminative 
features that classify bona fide and attack presentations. 

The details of data acquisition were explained earlier in Section 3. 2, however, the next subsection 
demonstrates the software portion of the proposed PAD subsystem. 

 PAD SUBSYSTEM 

In the context of this experiment, we investigate two feature extraction schemes, the first concerns 
the global variations in the fingerprint pattern while the second utilizes spatio-temporal descriptors 
to extract local and global features from space-time and spectral domains. After that, different 
machine learning algorithms are tested to select the classification algorithm with the highest 
accuracy. The PAD subsystem accuracy is characterized by the classifier’s capability of correctly 
classifying bona fide and attack presentations. Although the subsystem may provide a significant 
capability of detecting some attack species, it may provide a medium or high portion of 
misclassified attacks from other species. Thus, a detailed analysis of the impact of different attack 
species on the PAD subsystem performance is shown in the results section. 

6.3.1.1 FEATURE EXTRACTION APROACHES 

6.3.1.1.1 DISTORTION-BASED FEATURES  
This feature extractor analyzes the impact of pressure on the fingerprint ridge/valley dynamic-
pattern considering both bona fide and attack presentations. Initially, several trials had been 
performed to visualize the development of the fingerprint/attack pattern and how additional 
pressure impact the pattern dynamics.  

Consequently, assuming that each fingerprint presentation is a sequence of n frames (𝐹𝑖)𝑖=1
𝑛 , i.e. 

{F1, F2,…,Fn}, the following observations are perceived: 

• In bona fide presentations, the image intensity is consistently increased as i increases. 
Specifically, once the pressure is performed the image intensity starts to increase very 
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rapidly resulting in a darker pattern, Figure 6.2 (a). Although pressure causes the rapid 
increment in the image intensity, it is equally important considering the other 
fingerprint’s phenomena such as perspiration and elasticity; 

• each PAI species shows a specific behavior during the PAI placement at the sensor. 
Therefore, each specie demonstrates a different reaction to the pressure depending on 
the PAI characteristics which are implied by the preparation recipe and used material/s 
Figure 6.2 (b-h); 

• a slight shift takes place in the central region of the fingerprint pattern of genuine users 
after pressure, Figure 6.3 (a). Considering elastic and rigid PAI species, Figure 6.3 (b-
c) demonstrate how the ridges/valley shift might be extreme in the gelatin presentation 
whilst excessively unnoticed in the polish nail attack; 

• as successive frames in the fingerprint presentation represent the development of 
ridge/valley pattern, it is subjectively noticed that the similarity between the successive 
frames of bona fide presentations slightly varies when pressure is performed. On the 
contrary, using elastic materials such as Play-Doh and gelatin, the fingerprint pattern 
vanishes or degrades after applying pressure Figure 6.2 (b-g). On the other hand, rigid 
material such as white glue and polish nails, are likely to demonstrate consistent pattern 
while i increases, and contrary to bona fide and elastic materials, pressure may enhance 
the visual pattern in those attacks Figure 6.2 (c-e); 

• despite the fact that attacks may imitate the fingerprint pattern at later frames in the 
presentation, it is noticed that the early frames show an anomalous development in the 
ridges/valley pattern Figure 6.2 (c-d,g-h); and, 

• contrary to the latter observation, the size, ridges continuity, and contour’s shape of 
bona fide presentations are developed homogeneously Figure 6.2 (a).   
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Play-Doh 

     
(c) 

White glue 
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Spray rubber 

     
(e) 

Polish nail 

     
(f) 

Nails 
hardener 

     
(g) 

Gelatin 

     

(h) 

Latex 

     Figure 6.2. The influence of pressure in genuine and attack presentations. Frames are taken to demonstrate 
the variations at the beginning, mid, end of the presentation (left to right). 
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(a) Bona fide 

 
(b) Gelatin 

 
(c) Nail polish 

Figure 6.3. The impact of pressure on the pattern shape. Each sub-image demonstrates two frames taken 
from a video and matched. Colors are: initial frame in green, later frame in magenta, and matching pattern 

in black. 

Based on the hybrid subjective-objective observations and analysis, we propose an analysis 
scheme which investigates the development of fingerprint pattern during the placement on the 
sensor’s surface.  

Assume that fingerprint presentation is a sequence (𝐹𝑖)𝑖=1
𝑛  , of n frames. The following steps are 

carried out (illustrated in Figure 6.4): 

a. Select a reference frame Fr from the premier captured frames such that it includes the 
fingerprint pattern before applying pressure and provides an adequate extent for the 
comparison with the other frames in the sequence. To address these requirements, the 
image dimensions are experimentally determined to be above 75×75 pixels. 

b. Segment the fingerprint pattern in all of the frames by isolating the background. 
c. In a loop from i= 1:n, find the mutual area between Fi and Fr, and conduct a global 

comparison between the two frames in the mutual area. For instance, considering the 
structural similarity index SSIM as a comparison function, the feature vector that 
represents the sequence is (𝑆𝑆𝐼𝑀𝑚)𝑚=1

𝑛−1 . Figure 6.5 demonstrates the structural similarity 
feature vector for each presentation class. The SSIM values are computed based on the 
previous steps. 

d. Extract the dynamic first order statistics from the input video to boost the video 
description. This step is carried out as shown in Chapter 4. 

e. If required, apply interpolation and/or decimation to prepare the features to the machine 
learning model, shown in Chapter 4.  

f. Create the output feature vector by concatenating the extracted features in the previous 
steps. 
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Figure 6.4. Objective analysis scheme for dynamic fingerprint distortion. 

This scheme is inspired by the works in image distortion analysis where different methods had 
been proposed in the image processing literature to measure the statistical differences between a 
reference image and a distorted image [241], [242]. The proposed objective analysis is designed 
to represent the statistical variation in the dynamic fingerprint pattern as follows:  

Let X be a reference image (i.e. Fr) and Y be an image from the same fingerprint presentation (i.e. 
Fi), then 

1. Peak Signal to Noise Ratio (𝑃𝑆𝑁𝑅) measures the peak error between two images. 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
𝑅2

𝑀𝑆𝐸
) , 6.1 

where 𝑅 is the maximum fluctuation in the input image data type and 𝑀𝑆𝐸 is 
calculated by: 
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𝑀𝑆𝐸 =
∑ [𝑋(𝑚, 𝑛) −  𝑌(𝑚, 𝑛)]2

𝑀,𝑁

𝑀 × 𝑁
 6.2 

2. Correlation coefficient (𝑟) is a statistical measure that represents the relationship between 
two images. 

𝑟 =
∑ ∑ (𝑋𝑚𝑛 −  𝑋)(𝑌𝑚𝑛 −  𝑌)𝑛𝑚

√(∑ ∑ (𝑋𝑚𝑛 −  𝑋)2
𝑛𝑚 )(∑ ∑ (𝑌𝑚𝑛 −  𝑌)2

𝑛𝑚 )

 

6.3 

3. Structural Similarity Index (𝑆𝑆𝐼𝑀) is a full reference perceptual metric that quantifies 
quality degradation between a reference and processed image. In the fingerprint sequence, 
image degradation is caused by the applied pressure during a presentation.  
SSIM between images 𝑋 and 𝑌 is calculated as follow: 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) =  [𝑙(𝑋, 𝑌)]𝛼  ∙  [𝑐(𝑋, 𝑌)]𝛽  ∙  [𝑠(𝑋, 𝑌)]𝛾 6.4 

where, 

𝑙(𝑋, 𝑌) =  
2𝜇𝑋𝜇𝑌 + 𝐶1

𝜇𝑋
2 + 𝜇𝑌

2 + 𝐶1

 , 6.5 

𝑐(𝑋, 𝑌) =  
2𝜎𝑋𝜎𝑌 + 𝐶2

𝜎𝑋
2 + 𝜎𝑌

2 + 𝐶2

 , 6.6 

𝑠(𝑋, 𝑌) =  
𝜎𝑋𝑌 + 𝐶3

𝜎𝑋𝜎𝑌 + 𝐶3
  6.7 

where 𝜇𝑋 , 𝜇𝑌 are local means, 𝜎𝑋 , 𝜎𝑌 are standard deviation, and 𝜎𝑋𝑌 is the cross-covariance 
for the images.  

4. Mutual Information is a measure of mutual dependence between two Images 𝑋; 𝑌 equation 
6.8. Explicitly, it quantifies the information obtained about one Image by observing another 
Image.  

𝐼(𝑋; 𝑌) =  ∑ ∑ 𝑃(𝑥, 𝑦) log
𝑃𝑋𝑌(𝑥, 𝑦)

𝑃𝑋(𝑥) 𝑃𝑌(𝑦)
𝑥∈𝒳𝑦∈𝒴

 
6.8 

Where 𝑃𝑋𝑌(𝑥, 𝑦) is the joint probability distribution, and 𝑃𝑋(𝑥),𝑃𝑌(𝑦) are the marginal 
distributions. 

Finally, the defined four features (i.e. PSNR, r, SSIM, and I) in addition to the eight statistics 
introduced in [233], are combined to form the final PAD features. This mechanism is evaluated 
later to examine PAD classification performance. 



87 

 

 
Figure 6.5. Illustration of (𝑺𝑺𝑰𝑴𝒎)𝒎=𝟏

𝒏−𝟏  for a bona fide and 7 attack presentations. The presentations are 
acquired using the optical sensor. 

6.3.1.1.2 SPATIO-TEMPORAL FEATURES 
In our previous work (Chapter 5), dynamic texture has shown a high capacity to provide 
discriminative descriptions for dynamic fingerprint presentations. This section revisits the used 
feature extraction methods, namely: VLBP, LBP-TOP, VLPQ, LPQ-TOP, and GIST 3-D, and 
utilizes them as PAD feature extractors considering the database which includes the pressure 
scenario.  

The previous conclusions state that those methods are capable of detecting the dynamic features 
of genuine fingerprints and the abnormal variations of attacks when fingerprint videos are 
investigated. Therefore, the dynamic pattern’s variation caused by pressure is expected to provide 
additional discriminative features that improve the overall accuracy of the PAD subsystem. 

6.3.1.2 CLASSIFICATION 

Different classification methods were examined in a pre-experiment step to define the most 
efficient classifier. Specifically, we tested the following machine learning techniques (as explained 
in the Chapters 4 and 5): Classification Trees, Naive Bayes, Discriminant Analysis, SVM 
Classification, Nearest Neighbors, and Classification Ensembles. SVM classification has been 
chosen for our experiments due to its highest accuracy, while the other classifiers are not 
considered in the results part. Moreover, the impact of changing the SVM kernel was examined 
whereas the second-degree polynomial kernel demonstrated the best accuracy. A binary 
classification scheme is used to evaluate the PAD subsystem performance and to assess the 
influence of specific PAI species on system security and ease of use. 
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 EXPERIMENTAL RESULTS 

This section aims to verify the validity of the proposed PAD mechanisms, knowing that the only 
difference between the proposed techniques is the feature extraction approach, as shown in Section 
3.1.1. In the following subsections, the distortion-based and spatio-temporal features are analyzed 
through a set of experiments that illustrate the effectiveness of each approach. Accordingly, 
Section 4.1 explains the experimental protocols and highlights the used database/s at each 
experiment. Subsequently, the following five experiments were carried out to examine and assess 
the PAD mechanisms: 

• Experiment I studies the fingerprint distortion-based features according to the defined 
method in section 6.3.1.1.1, taking into account the portion of the database with pressure; 

• Experiment II investigates the spatio-temporal features as explained in section 6.3.1.1.2,  
considering the same database used in Experiment I; 

• Experiment III carries out a PAD subsystem comparison when considering ordinary 
presentations and presentations with additional pressure; 

• Experiment IV highlights the influence of sensing technology on the PAD mechanism; and, 
• Experiment V demonstrates a comparison to the related works. 

 Experimental Protocols 

In order to carry out the proposed experiments, the following protocols are provided to ensure 
obtaining reliable and comparable results. 

1) Protocol I 

The purpose of this protocol is to evaluate the proposed PAD mechanisms in section 6.3.1.1 by 
conducting Experiments I and II. We thus utilize the database in Section 3. 2, which was collected 
to investigate the influence of pressure on bona fide and attack presentations, to validate the 
proposed PAD mechanisms. In all of the corresponding experiments, each sensor’s data is studied 
individually because of the differences between the acquired data, i.e frame rate, image size, 
resolution, noise, etc. Then sensors’ data are divided into 55% training set and 45% testing set, as 
shown in Figure 6.6. The division is performed by randomizing capture subjects such that all the 
presentations (bona fide and attacks) of an independent capture subject are either in the training or 
testing data. The randomization of partitioning is performed to ensure that the machine learning 
model has never seen presentations that correspond to the tested capture subjects in the training 
phase. Finally, the PAD subsystem is evaluated through performing the PAD feature extraction, 
training/testing the PAD classifier, and assessing the obtained results following the evaluation 
methodology. 

2) Protocol II 

The aim of the second protocol is to compare the PAD performance of the proposed mechanisms 
in the scenarios of ordinary presentations and presentations with pressure. The comparison is 
performed in two phases:  
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(i) Accuracy comparison: we apply the steps of protocol I to the database in Section 3. 2 which 
includes ordinary fingerprint presentations, then we compare the results to those obtained in 
Experiments I-II  

(ii) Generalizability comparison: in order to test the mechanisms’ generalizability, we perform 
‘leave-one-out’ cross-validation to the machine learning model. The cross-validation is performed 
for each sensor individually for the reason mentioned in protocol I. Then each sensor’s data is split 
into k folds, where k represents the number of individual capture subjects. The learning algorithm 
is performed k times by taking one capture subject as a testing set and all other capture subjects as 
a training set, Figure 6.7. At each testing phase, the PAD subsystem is evaluated, and results are 
reported. Once the cross-validation is done, results are demonstrated. 

Table 6.2 summarizes the proposed experiments, the corresponding protocol and database, and the 
experiment objective. The results of the first two experiments show a higher accuracy for the 
spatio-temporal feature extractors, thus the rest of the experiments are conducted considering those 
features. Additionally, experiments IV-V are conducted by exploiting the results from experiments 
I-III and previous results in Chapter 5. 

Table 6.2. Summary of the proposed experiments. 

Experiment  
Feature 

extraction 
technique/s 

Protocol Database Validation 
strategy Objective 

I Distortion-based 
features Protocol I Pressure Hold-out 

validation Examine the PAD scheme in Figure 6.4 

II 

VLBP, LBP-
TOP, VLPQ, 

LPQ-TOP, and 
GIST 3-D 

Protocol I Pressure Hold-out 
validation 

Examine the PAD accuracy using Spatio-
temporal feature extractors 

III Protocol II Ordinary 
+ Pressure Cross-validation Compare the PAD accuracy considering 

pressure and ordinary scenarios 

IV Protocol I Pressure Hold-out 
validation Examine the impact of sensors 

V Protocol I Pressure Hold-out 
validation Comparison with SoA 

 

 

 

(a) Training set 

 

(b) Testing set 

Figure 6.6. Data partitioning in Protocol I. 
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 Experiment I: Dynamic Fingerprint Pattern Analysis  

In this subsection, we apply the pressure database to the scheme in Figure 6.4 in order to extract 
the distortion-based PAD features. After that, we carry out Protocol I for the extracted features and 
utilize a binary SVM model to classify presentations. The results are reported based on the 
evaluation methodology in Section 3. 1. 

The PAD subsystem performance is illustrated in Figure 6.8 as a comparison between the obtained 
DET curves for the optical and thermal sensors. Moreover, Table 6.3 assesses the PAD subsystem 
performance as a measure of BPCER at different values of APCER. Since binary classification is 
applied, APCER in Figure 6.8 and Table 6.3 implicitly refers to the proportion of all attack species 
which were misclassified as bone fide presentations. Further analysis is performed to the obtained 
results to demonstrate the influence of PAI species on the PAD performance (Table 6.4). 

Although the PAD accuracy for the optical sensor is significantly higher than the thermal sensor 
at low APCER values. The DET curves converge and equalize at TEER = 11%, after that, the 
mechanism’s accuracy shows a slight advantage for the thermal sensor. Additionally, Table 6.4 
breaks down the total APCER demonstrating the mechanism’s capability of detecting attacks 
considering the different technologies; the results are reported at fixed APCERTotal = 5%. Although 
the mechanism generally performs better for the optical sensor, all attack species succeeded with 
the least APCERPAI = 2.22% for white glue and gelatin attacks. On the other hand, attacks with 
spray rubber, nails hardener, and latex were rejected by the PAD mechanism for the thermal sensor 
reporting APCERPAI = 0% for these species. Nevertheless, white glue species has achieved 
APCER 25.56% for the thermal sensor and 2.22% for the optical sensor. 

 

(a) Training set 

 

(b) Testing set 

Figure 6.7. Data partitioning in leave-one-out cross-validation. 
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Figure 6.8. PAD subsystem DET curves using the distortion features. 

Table 6.3. PAD subsystem accuracy as BPCER at different APCER values. 

Sensor BPCER% @ 
APCER = 5% APCER = 2.5% TEER 

Optical 12.22% 16.67% 8.57% 
Thermal 22.22% 46.11% 9.21% 

Table 6.4. Analyzing 5% APCERtotal into APCERPAI. 

Sensor APCERPAI  (%) 
Play-Doh White glue Spray rubber  Polish nail Nails hardener Gelatin Latex 

Optical  3.33% 2.22% 7.78% 3.33% 7.78% 2.22% 6.67% 
Thermal 5.56% 25.56% 0.00% 1.11% 0.00% 2.22% 0.00% 

These results are obtained through a data partitioning protocol that differs from the experimental 
protocol used in Chapter 4. In this experiment, the partitioning is randomized by the capture 
subjects while in Chapter 4 it was k-folds cross-validation, therefore, a direct comparison will not 
be coherent. In order to compare the presented algorithm with that proposed in Chapter 4, we apply 
cross-validation data partitioning to the pressure dataset then we train an SVM model in the same 
fashion presented in Chapter 4; results are shown in Figure 6.9. 

Two main observations are perceived from Figure 6.9. First, the proposed algorithm in this chapter 
provides a significant accuracy improvement compared to the results of the dynamic statistics 
using ordinary presentations; illustrated by the DET curves. Secondly, it is noticed that the same 
algorithm and the same data provide different results when applying different partitioning 
protocols. It is evident that partitioning the database considering each fingerprint video as an 
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independent observation (Figure 6.9) provides higher accuracy than considering the partitioning 
by randomizing the capture subjects (shown in Figure 6.8). 

 
(a) Optical sensor 

 
(b) Thermal sensor 

Figure 6.9. DET curves comparison between the proposed algorithm (presentation with pressure) and the 
dynamic statistics (ordinary presentation). 

 Experiment II: Fingerprint Dynamic Texture 

This experiment aims to investigate the dynamic fingerprint texture, specifically caused by 
pressure, as PAD features. The experiment is conducted through the following steps: 

• Apply protocol I to manage the data division;  
• utilize the dynamic texture methods which were explored in Chapter 5 as the PAD feature 

extractors; 
• utilize a binary SVM classification model with a second-degree polynomial kernel, as the 

PAD classifier; 
• perform PAD subsystem evaluation, as demonstrated in Chapter 3, considering all PAD 

feature extraction methods. 

The classification accuracy of the proposed PAD mechanism, using all feature extractors and 
different parameters, is reported as BPCER at APCER=5% and APCER = 2.5%  in Figure 6.10. 
Moreover, The PAD testing scores are expressed as functions of the decision threshold, i.e. DET 
curves, considering all feature extraction algorithms in Figure 6.11 and Figure 6.12. 

The most desirable result to emerge from the figures is achieving low values for the pair 
(APCER|BPCER). For instance, at 5% APCER, BPCER values are 0% for the optical sensor using 
LBP-TOP1,8,1, and 1.66% for the thermal sensor using GIST 3-D. While at 2.5% APCER, BPCER 
values are: 1.11% for the optical sensor using LBP-TOP2,8,1 and 2.22% for the thermal sensor using 
GIST 3-D. 

In order to examine the PAD subsystem capability of detecting different PAI species, APCERPAI 
for the seven attack species is reported at APCERtotal = 5% in Table 6.5 and Table 6.6. In other 
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words, the tables list the distribution of 5% APCERtotal on the seven PAI species. It is interesting 
to note that despite the similarity in DET curves, the APCERPAI distribution might differ notably. 
For example, considering the optical sensor, the spray rubber species has an APCER = 2.22% 
when VLPQ3x3 is utilized, however, APCER raises to 18.89% using VLPQ9x9. 

The APCERPAI distribution confirms a significant difference in the PAD subsystem vulnerability 
to the different attack species. Meaning that the PAD subsystem, at a certain threshold, might have 
the capacity of eliminating some PAI species as shown in Table 6.5 and Table 6.6, nevertheless, 
the results demonstrate its vulnerability to other species. 

These results significantly vary from the previous results reported in Experiment I. For both 
sensing technologies, PAD using spatio-temporal features had been able to obtain BPCER values 
lower than 2.5% at APCER = 2.5%. This implies that both security and ease of use aspects have 
been achieved without the need to compromise one over the other, as the case in the distortion 
based features. These differences can be accounted for by the fact that spatio-temporal feature 
extractors utilize local features from 3-D samples, whereas distortion based features are designed 
in a fashion that extracts global image features. Consequently, the following experiments further 
investigate the effectiveness and generalizability of spatio-temporal features. 

 

 
(a) 

 
(b) 

Figure 6.10. BPCER (%) results for the five feature extractors. The scale of y- axis is adjusted for each figure 
for better visualization to the obtained error rates. 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) Figure 6.11. DET curves for the five feature extractors (optical sensor). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) Figure 6.12. DET curves for the five feature extractors (thermal sensor). 
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Table 6.5. APCERPAI for the optical sensor. 

Feature 
extractor 

APCERPAI  (%) 
Play-
Doh 

White 
glue 

Spray 
rubber 

Polish 
nail 

Nails 
hardener Gelatin Latex 

VLPQ3x3 1.11 5.56 2.22 2.22 3.33 5.56 13.33 
VLPQ5x5 3.33 6.67 5.56 2.22 3.33 4.44 7.78 
VLPQ7x7 3.33 3.33 12.22 1.11 0.00 3.33 10.00 
VLPQ9x9 2.22 0.00 18.89 0.00 0.00 4.44 7.78         
LPQ-TOP3x3x3 2.22 7.78 3.33 2.22 2.22 5.56 10.00 
LPQ-TOP5x5x5 2.22 5.56 6.67 1.11 6.67 3.33 7.78 
LPQ-TOP7x7x7 2.22 7.78 6.67 1.11 3.33 4.44 7.78 
LPQ-TOP9x9x9 2.22 10.00 5.56 0.00 1.11 4.44 10.00          
GIST 3-D 3.33 5.56 6.67 1.11 0.00 4.44 12.22         
VLBP1,4,1 3.33 5.56 5.56 3.33 10.00 6.67 0.00 
VLBP1,4,3 0.00 4.44 2.22 4.44 20.00 2.22 0.00 
VLBP2,4,1 6.67 2.22 2.22 2.22 7.78 8.89 3.33 
VLBP2,4,3 1.11 4.44 2.22 1.11 13.33 10.00 1.11 
VLBPri1,4,1 2.22 6.67 5.56 4.44 12.22 1.11 1.11 
VLBPri1,4,3 0.00 6.67 3.33 3.33 15.56 3.33 1.11 
VLBPri2,4,1 4.44 4.44 4.44 3.33 8.89 3.33 4.44 
VLBPri2,4,3 2.22 4.44 3.33 3.33 12.22 6.67 2.22         
LBP-TOP1,8,1 6.67 4.44 3.33 2.22 4.44 10.00 2.22 
LBP-TOP1,8,3 4.44 7.78 8.89 2.22 5.56 3.33 1.11 
LBP-TOP2,8,1 4.44 5.56 4.44 1.11 4.44 8.89 4.44 
LBP-TOP2,8,3 5.56 7.78 2.22 4.44 6.67 3.33 3.33 
LBP-TOPu21,8,1 5.56 4.44 4.44 2.22 4.44 6.67 6.67 
LBP-TOPu21,8,3 6.67 5.56 4.44 4.44 6.67 3.33 2.22 
LBP-TOPu22,8,1 5.56 4.44 2.22 2.22 5.56 7.78 5.56 
LBP-TOPu22,8,3 3.33 6.67 2.22 6.67 7.78 6.67 0.00 

Table 6.6. APCERPAI for the thermal sensor. 

Feature 
extractor 

APCERPAI  (%) 

PlayDoh White 
glue 

Spray 
rubber 

Polish 
nail 

Nails 
hardener Gelatin Latex 

VLPQ3x3 1.11 32.22 0.00 1.11 0.00 0.00 0.00 
VLPQ5x5 2.22 26.67 0.00 1.11 0.00 2.22 1.11 
VLPQ7x7 4.44 7.78 1.11 2.22 3.33 3.33 12.22         
LPQ-TOP3x3x3 1.11 28.89 4.44 0.00 0.00 0.00 0.00 
LPQ-TOP5x5x5 2.22 25.56 2.22 0.00 0.00 0.00 3.33 
LPQ-TOP7x7x7 2.22 20.00 2.22 2.22 0.00 0.00 7.78         
GIST 3-D 3.33 5.56 6.67 1.11 0.00 4.44 12.22         
VLBP1,4,1 5.56 27.78 0.00 0.00 0.00 0.00 1.11 
VLBP1,4,3 1.11 28.89 2.22 1.11 0.00 0.00 1.11 
VLBP2,4,1 3.33 30.00 0.00 0.00 0.00 1.11 0.00 
VLBP2,4,3 1.11 25.56 4.44 1.11 1.11 0.00 1.11 
VLBPri1,4,1 3.33 26.67 3.33 0.00 0.00 0.00 1.11 
VLBPri1,4,3 1.11 22.22 10.00 0.00 0.00 0.00 1.11 
VLBPri2,4,1 3.33 28.89 2.22 0.00 0.00 0.00 0.00 
VLBPri2,4,3 1.11 21.11 8.89 1.11 0.00 0.00 2.22         
LBP-TOP1,8,1 2.22 28.89 2.22 0.00 0.00 0.00 0.00 
LBP-TOP1,8,3 1.11 30.00 2.22 0.00 0.00 0.00 1.11 
LBP-TOP2,8,1 3.33 26.67 2.22 0.00 0.00 0.00 1.11 
LBP-TOP2,8,3 1.11 26.67 4.44 0.00 0.00 0.00 1.11 
LBP-TOPu21,8,1 1.11 31.11 1.11 0.00 1.11 0.00 0.00 
LBP-TOPu21,8,3 2.22 27.78 1.11 0.00 1.11 0.00 2.22 
LBP-TOPu22,8,1 2.22 31.11 0.00 0.00 1.11 0.00 0.00 
LBP-TOPu22,8,3 3.33 24.44 1.11 2.22 0.00 1.11 2.22 
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 Experiment III: The Influence of Pressure on the PAD Subsystem 
Accuracy  

1) PAD Subsystem Accuracy: Pressure Versus Ordinary Presentations 

In order to identify the influence of pressure on the PAD subsystem accuracy, BPCER20 is used 
to compare the PAD subsystem accuracy considering the scenarios of ordinary presentations and 
presentations with pressure. The error rates, reported in Chapter 5 for ordinary presentation and in 
the previous experiment for presentations with pressure, are shown in Figure 6.13 to compare the 
PAD subsystem accuracy for both scenarios. 

 
(a) 

 
(b) 

Figure 6.13. Scenario comparison for the proposed PAD subsystem considering the 5 feature extractors. 

Figure 6.14 illustrates the relative BPCER20 percentage of pressure and ordinary scenarios taking 
into account the sensing technology and feature extraction method. 

 
(a) 

 
(b) 

Figure 6.14. Relative comparison for the proposed PAD subsystem considering the 5 feature extractors. 

The majority of tests in Figure 6.13 and Figure 6.14 reveal that additional finger pressure during 
the presentation results in a reduction in BPCER20. This reduction could be significantly large as 
noticed when examining the PAD subsystem using GIST 3-D descriptor, where the BPCER was 
reduced over 80% for both sensors. On the other hand, a few tests in the figure show an advantage 
for ordinary presentations. Those scenarios are further investigated in the next subsection. 
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The most intriguing observation to emerge from Figure 6.13 and Figure 6.14 is the significant 
accuracy enhancement when using VLPQ7×7 for the optical sensor and GIST 3-D for the thermal 
sensor. Thus, Figure 6.15 and Figure 6.16 demonstrate the score distributions for bona fide and 
attack presentations considering both cases. The influence of pressure can be simply noticed by 
comparing the median values for attacks, and the median values for bona fide. Considering the 
optical sensor, the median of attacks dropped from -1.34 to -2.28 and the median of bona fide 
increased from 0.21 to 0.30. On the other hand, the thermal sensor does not show a noticeable 
change in the median of attacks but the median of bona fide increased from 0.21 to 0.37. Another 
interpretation can be seen by the decreased misclassified presentations when pressure is 
considered. 

 
(a) Ordinary presentations database 

 
(b) Pressure presentations database 

Figure 6.15. : PAD scores distribution for the optical sensor using VLPQ7×7  features. 

 
(a) Ordinary presentations database 

 
(b) Pressure presentations database 

Figure 6.16. PAD scores distribution for the thermal sensor using GIST 3-D features. 
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2) PAD Subsystem Generalizability: Pressure Versus Ordinary Presentations 

To assess the PAD subsystem generalizability, the second part of Protocol II is applied. 
Accordingly, leave-one-out cross-validation model is applied for each scenario considering all 
feature extractors. considering the data division in Figure 6.7, each combination between a 
scenario and feature extraction method is evaluated 11 times; once for each fold. To describe each 
cross-validation model from 11 testing sets, let us assume that (𝐵𝑃𝐶𝐸𝑅20𝑖)𝑖=1

11  is the sequence of 
error rates, where i is the fold number. The vector 𝐵𝑃𝐶𝐸𝑅20𝑖 is analyzed by showing: (i) 
minimum, (ii) maximum, (iii) mean, (iv) median, and (v) standard deviation values.  

Figure 6.17 highlights the differences between those statistics by showing BPCER20 for the best 
(i.e. min. BPCER20) and worst (i.e. max. BPCER20) testing folds, and how the BPCER20 is 
distributed with respect to the average value using the median value. Moreover, the stability of a 
model is implied by the standard deviation values. In other words, a low average with low disparity 
confirms higher generalizability for the tested model. 

 
(a) 

 
(b) 

Figure 6.17. The influence of pressure on the PAD subsystem efficiency. Unshown bars refer to the value 0. 

As can be seen from Figure 6.17, the differences between the max BPCER20 values are remarkable 
when comparing the pressure and ordinary scenarios. The best improvement is achieved 
considering VLPQ for the optical sensor, where BPCER20 is reduced from 50% to approximately 
5%, i.e. BPCER20 is 10 times less for the pressure scenario. In addition, the average, median, and 
standard deviation values are reduced for all feature extractors for the pressure scenario. This 
implies a lower range of disparity at a lower average value for BPCER20. 

The findings of this experiment emphasize the validity of the proposed model when it is compared 
to ordinary dynamic presentations. Primarily, significant enhancement in the PAD subsystem 
accuracy was obtained using the same sensors, feature extractors, and evaluation methodology. 
Furthermore, the proposed model illustrated lower error rate variance when each independent 
captured subject was tested individually, demonstrated in Figure 6.17.  

The observed enhancement in the accuracy, shown in Figure 6.15 and Figure 6.16, is in line with 
the initial assumption which claims that fingerprint pressure produces more distinctive dynamic 
features that allow differentiating bona fide from attack presentations. On the other hand, the 
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stability of the PAD model, which was confirmed by the leave-one-out cross validation, could be 
interpreted as being a result of obtaining more generic features that are less dependent on certain 
differences between capture subjects. 

 Experiment IV: The Influence of Sensing Technology  

This experiment points out the influence of the tested sensing technologies on the proposed PAD 
subsystem efficiency. The comparison focuses on two main aspects:  

I. The overall PAD mechanism accuracy is determined using BPCER at fixed APCER values. 
Hence, the most effective feature extractors are selected, then the sensors are compared 
using BPCER20, Figure 6.18, and Figure 6.19. 

II. The mechanism’s capability of eliminating specific PAI species. The comparison is carried 
out by determining the number of eliminated PAI species considering the different sensors 
and feature extractors, Figure 6.20. 

The comparison here is not as straightforward as it seems. Even though the optical sensor is 
demonstrating a higher accuracy in part of the DET curves, the PAD mechanism has shown the 
vulnerability to all attack species, and in its best case, the PAD mechanism rejected two species. 
On the other hand, utilizing the PAD mechanism at the thermal sensor had proven a higher 
capability to reject more attack species, where four PAI species were rejected using VLBP, LBP-
TOP, VLPQ, and LPQ-TOP features. 

 
Figure 6.18. PAD accuracy for the two sensors in terms of BPCER20. 
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Figure 6.19. Relative comparison between the PAD accuracy using optical and thermal technologies in terms 

of BPCER20. 

 
Figure 6.20. PAD mechanisms capability of eliminating PAI species. 

 Experiment V: Comparison with SoA Mechanisms  

Literature studies had aimed to evidence the assumption that under certain presentation instruction, 
genuine fingerprints produce unique variation and/or distortion patterns that assist the process of 
detecting attacks. The aforementioned assumption counts on the natural structure of the human 
finger and its phenomena such as elasticity, internal bone position, etc. Moreover, previous studies 
had attempted to define some characteristics of different PAI species. For instance, Antonelli et. 
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al [221] had studied five PAI species and concluded that artificial artefacts are more rigid than 
genuine fingerprints. Thus, the produced distortion while rotating and pressuring the finger during 
a presentation is higher for genuine users. 

This experiment compares the proposed PAD subsystem with those mechanisms discussed in 
Section 6. 2. All related works had been reported using TEER, thus the results are compared in 
Table 6.7 using TEER. These results are discussed in the next section.  

Table 6.7. Comparison with SoA mechanisms. 

Method Sensing technology TEER (%) PAI species 

Antonelli et al. Optical 11.24 Gelatin, RTV silicon, white glue, and 
latex 

Zhang et al. Optical 4.5 Silicon 
Jia et al. Capacitive 4.78 Gelatin 

Proposed 
Optical 1.67 Play-Doh, white glue, spray rubber, 

polish nail, nails hardener, gelatin, 
latex Thermal 2.38 

We find that the obtained results are significantly improved compared to the SoA results, even 
though a wider set of attack species were used in our experiments. Due to the limited data provided 
in the SoA studies, further details cannot be reported. 

 CONCLUSIONS 

In this chapter, we examined the influence of pressure in fingerprint presentations and utilized this 
influence for the purpose of PAD. We studied the dynamic characteristics of genuine and attack 
presentations through a subjective and objective analysis. Based on those analyses on genuine 
fingerprints and seven PAI species, we concluded that the reaction to pressure in fingerprint 
patterns depends on the characteristics of the presented trait, genuine or attack. Bona fide 
presentations had shown a consistent variation in the pattern which is highlighted by a 
homogeneous degradation in the structural similarity in the consequent frames. On the other hand, 
elastic species (e.g. Play-Doh and gelatin) had shown an extreme variation in the pattern, 
sometimes the pattern vanishes and a dark region is obtained after pressure. Differently, rigid 
species (e.g. polish nail and white glue) had shown that pressure might improve the fingerprint 
pattern and result in high contrast between the ridges and valleys. 

Fingerprint dynamic features were investigated using different dynamic texture descriptors. The 
utilized feature extractors had demonstrated a significant capability to detect presentation attacks 
and low false reject rates at the same time. Statistically speaking, when the PAD subsystem is 
evaluated at 2.5% APCER, i.e. 16 successful attacks out of 630 attacks, BPCER values are 1.11% 
for the optical sensor, i.e. 2 rejected bona fide presentations out of 180 total, and 2.22% for the 
thermal sensor, i.e. 4 rejected bona fide presentations out of 180 total. 

The obtained results were compared to the ordinary dynamic presentations. The analysis confirms 
that additional pressure significantly improves the PAD performance in terms of accuracy and 



103 

 

generalizability. Moreover, the proposed method has illustrated high accuracy for the different 
sensing technologies and our results had discussed the pros and cons of each sensor.  

This study contributes to the SoA investigation with a deeper understanding of the fingerprint 
dynamic features and the dynamic characteristics of different attack species. 

Future work should concentrate on studying larger datasets that include a larger number of 
independent capture subjects. Moreover, the selection of participant/PAI species should include a 
wide spectrum of skin/materials categories, that is to include very dry skin to very sweaty skin for 
bona fide and different features for PAIs. From another perspective, the attacker's expertise should 
be taken into account for conducting a larger-scale evaluation. Meaning that multiple attackers 
with different capabilities should participate to produce PAs. Finally, we suggest studying 
fingerprint-specific dynamic features such as contours development and region of interest 
variations. 
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Chapter 7.  Conclusions and Future Work 

 SUMMARY AND CONCLUSIONS 

Over the past few decades, the biometric community has been investigating the security of 
biometric recognition technologies by identifying the biometric system vulnerabilities, studying 
potential threats, and proposing countermeasures seeking to overcome the possible threats. The 
presentation attack issue has obtained significant attention, specifically for those applications that 
operate in unsupervised environments. All studies in this field of research emphasize the 
importance of developing presentation attack detection mechanisms that ensure the biometric 
systems' integrity. 

Accordingly, this thesis investigates the vulnerability of biometric systems to presentation attacks 
with a focus on the fingerprint recognition system considering unsupervised environments. The 
investigation was initiated by revisiting the state-of-the-art investigations in presentation attack 
and presentation attack detection (Chapter 2). We taxonomized presentation attacks based on 3 
essential factors: (1) the cooperation with the bona fide user, (2) the intention of the attacker, and 
(3) the nature of the attack species. Subsequently, the presentation attack detection mechanisms 
were taxonomized based on the intended PAD features. The proposed taxonomies provided a 
deeper understanding of the issue of presentation attacks, and the development of presentation 
attack detection evaluations. Existing taxonomies focus on the used tools to build the PAD 
mechanism, e.g. hardware/software or static/dynamic mechanisms which does not imply the 
targeted PAD features. On the other hand, the proposed taxonomy classifies the PAD mechanisms 
with emphasis on the PAD features and the basis of distinguishing attacks from genuine biometric 
presentations. 

In Chapter 3, an evaluation methodology was developed by combining: (1) the PAD performance 
from the ISO/IEC 30107 standard, and (2) PAD vulnerability assessment from the Common 
Evaluation Methodology by the Common Criteria. The developed methodology provides 
comparable and accurate methods that characterize the technical capabilities of the PAD solutions 
considering specific attack potential. The main contribution of the methodology is the vulnerability 
assessment of presentation attacks considering all the factors that influence the attack potential. 
With that in mind, we end up knowing the PAD resistance to a known level of threat.  

The attack potential relates exponentially with the attacker expertise and the latter can be improved 
by practicing. For example, the attacker in this thesis started the first practical experiment with an 
objective of unlocking smartphones using PAIs; explained in Annex I. As had been the first 
attacking experience, the attacker reported that success rate increases with practice, and he reported 
90% success rate after 12 hours of practicing. After that, the attacker practiced to prepare PAIs 
using different species targeting different fingerprint sensors. During this training process the 



106 

 

attacker used thermal and optical sensing technologies to observe the differences between attacks 
and genuine patterns, and to prepare for the collecting data phase.  

Subsequently, the data collection was carried out considering fingerprint modality, two scenarios 
(ordinary and pressure), and dynamic acquisition. The data was collected from 66 fingerprints 
taken from eleven capture subjects. 3-D molds were collected as well to create the PAIs later. The 
captured fingerprint videos for genuine presentations had demonstrated a consistent and uniform 
visual development for the ridge/valley pattern. That is due to the natural phenomena of the 
genuine fingerprint trait such as 3-D shape, elasticity, and perspiration. On the other hand, seven 
PAI species were used to perform attack presentations, namely: Play-Doh, white gle, spray rubber, 
nail hardener, polish nails, gelatin, and latex. The selected species provided distinct physical 
characteristics where some materials (e.g. gelatin) are very elastic while others (e.g. white glue) 
were rigid. That causes variance on the produced dynamic fingerprint patterns of the attacks. In 
general, the videos of attack presentations had shown irregularities and inhomogeneous 
development for the fingerprint pattern. These differences had been the basis for the proposed 
algorithms in the subsequent chapters. 

The dynamic database provides a great benefit to study the fingerprint as a 3-D signal. Instead of 
studying the 2-D pattern, fingerprint videos show the development of the fingerprint pattern in 
space and time which provides significant amount of information that can be utilized to distinguish 
genuine presentations from attacks. 

The first experiment (Chapter 4) had used the variation of global features in the fingerprint video 
frames as PAD features. These PAD features imply the global fingerprint characteristics (contrast, 
intensity, randomness, etc.) at each frame providing a feature vector that describes the fingerprint 
dynamics in the video. The PAD mechanism had achieved comparable performance considering 
thermal and optical technologies where BPCER20 was 18.1% for the thermal sensor and 19.5% 
for the optical sensor. Although the performance show similarity between the two sensors, the 
resistance of each sensor to the different PAI species varies. The optical sensor shows close rates 
in APCERPAI for the seven species, while the thermal sensor shows lower higher rates in 
APCERPAI for Play-Doh and white glue attacks. The attempt of improving the results using 
sequential feature selection had not provided an improvement to the results, contrarily, error rates 
were increased significantly. Even though the defined features were global and simple, the results 
had shown that they can be considered to mitigate the risk of attack presentations taking into 
account the corresponding error rates. Moreover, the proposed algorithm utilizes image statistics, 
thus, it does not require high computational cost and can be processed in real time.  

The second experiment (Chapter 5) improved the performance of the PAD mechanism by 
consolidating the information from the space and time in the fingerprint video. The 5 dynamic 
feature extractors (i.e. VLBP, LBP-TOP, VLPQ, LPQ-TOP, and GIST 3-D) had shown significant 
improvement compared to the mechanism in Chapter 4, moreover, the results provided an 
improvement to the state-of-the-art investigations (BPCER 20 is 1.11% for the optical sensor and 
3.89% for the thermal sensor). The most significant improvement achieved by this method is 
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achieving high level of security (low APCER) keeping high performance for the ease-of-use at 
(low BPCER). Additionally, the results of both sensing technologies were competitive compared 
to the state-of-the-art mechanisms. The mechanism was able to either mitigate or eliminate all the 
attack species for both sensors except the white glue attack for the thermal sensor where the 
APCERPAI was noticeably higher. The major flaw of the mechanism was the computational time. 
The evaluation was performed with an objective to validate the concept ignoring the computational 
time. However, the computation time is expected to be improved by utilizing optimized codes. 

The last experiment (Chapter 6) focused on analyzing the dynamic fingerprint features when 
pressure is applied during the presentation. Applying pressure during the placement of the 
fingerprint causes slight movement in the ridges of the fingerprint pattern of genuine fingerprints. 
On the other hand, applying pressure when a PAI is placed at the sensor surface would produce a 
reaction that depends on the physical characteristics of the used materials. The study had shown 
that the differences between genuine and attack presentations can be visually noticed, thus using 
dynamic descriptors would efficiently characterize those differences. Therefore, the experiment 
used the feature extractors from Chapter 5 and involved an improvement to the proposed method 
in Chapter 4. In this scenario, the PAD performance provided two advantages over the method in 
Chapter 5. First, a significant improvement on the PAD accuracy. The mechanism shows a high 
capability to mitigate all the PAI species to low APCERPAI rate with the exception of white glue 
attacks for the thermal sensor. Secondly, the PAD features demonstrated less dependency on the 
training set, thus the PAD mechanism had shown more stable performance when applying leave-
one-out cross-validation, achieving higher generalizability compared to ordinary presentations. 
The BPCER20 was reported as 0% for the optical sensor and 1.66% for the thermal sensor. 

The proposed solutions had shown a better understanding of the attacks and the natural phenomena 
of biometric traits leads to stable and accurate solutions. This was shown by the sequence of our 
experiment. We first investigated the variation of global features, then the temporal information 
was integrated with the spatial domain achieving higher accuracy. Finally, we exploited the nature 
of genuine fingerprint and achieved the highest PAD accuracy and stability. The proposed methods 
provide a ground for future investigations and propose to exploit the dynamics of fingerprint as 
the basis for the PAD features. 

 FUTURE WORK 

Following the obtained results in this thesis, it is recommended that further research should be 
undertaken in the following areas: 

1. Although the obtained results in Chapter 4 and Chapter 5 are promising, they should be 
validated by a larger dataset in order to provide a high level of confidence. Rules such as 
Rule of 3 and Rule of 30, might be utilized to obtain certain level of confidence about the 
achieved performance.  
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2. We observed through the experiments that fingerprint perspiration is capable of producing 
significant distortion when considering the class of subjects who have very moisture skin. 
On the other hand, the subjects with dry skin might demonstrate dynamic fingerprint 
behaviour similar to the rigid PAIs. Those observations were not systematically reported 
in this thesis due to the lack of data that supports those claims, therefore, further studies 
should analyse the fingerprint patterns for the users with extreme conditions (dry, 
perspiratory, skin diseases, etc.). 

3. At the moment of finishing this thesis, there are no investigations or public datasets that 
are collected with different attack potentials. It is recommended to initiate data collections 
of presentation attacks with multiple groups of attackers that represent different attack 
potentials. That allows identifying the resistance of the proposed PAD mechanisms at 
different levels of risk. 

4. The dynamic feature extractors can be customized to investigate specific fingerprint 
dynamics by focusing on particular regions in the fingerprint video. For instance, the 
development of a genuine fingerprint’s contour starts as a small ellipse that enlarges while 
the fingerprint is placed on the sensor. When analyzing attacks, the contour does not 
develop homogenously where it contains irregularities and sharp edges. 

5. In terms of biometric recognition, the different fingerprints of the same capture subject are 
statistically independent. It is interesting to investigate whither the PAD features of the 
different fingers of the same subject are also statistically independent. There expected to 
be specific correlation between the subject’s fingerprints since we are talking about the 
same physical characteristics.  

6. The framework of dynamic features can be applied to other biometric modalities such as 
Iris recognition systems. For example, the eye’s pupil naturally responds to the variations 
of lighting conditions (pupil dilation), and the eye makes slight movements when adjusting 
the eye in front of the sensor. The dynamic descriptors used in this thesis are expected to 
efficiently characterize these dynamics as PAD features.  

Finally, we believe that the proposed mechanisms in this thesis makes a step forward to achieving 
more secured recognition process, however, research should continue pursuing the perfection of 
system’s confidentiality, integrity, and availability.  
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Annex I. Attacking a Smartphone Biometric 
Fingerprint System 

Prior to performing the data collection (presented in Chapter 3), the attacker gained solid 
knowledge and experience in the subject of fingerprint presentation attacks. In addition to the 
theoretical knowledge, the attacker participated in an experiment given the task of creating a series 
of fake fingers in an attempt to unlock a variety of smartphones. 

The three key factors in undertaking this study were that: 

1. The attacker had no previous practical experience of fingerprint spoofing. 
2. Materials used were able to be purchased through outlets such as Amazon or supermarkets. 

The attacker was able to research methods and materials on-line for a one-week period prior 
to the study. 

3. The experiment was limited a 12-hour development and testing limit. 
In the experiment, the smartphones are considered as black boxes that give a binary response to 
each attack, i.e. accept or reject. Then, the resistance of each smartphone to presentation attacks is 
evaluated by showing the proportion of successful attacks, as shown in Table I. 

Table I. Attempts and successful attacks for each device 

Smartphone Total attacks Rejected Successful Success rate  
S01 20 17 3 15.0% 
S02 30 9 21 70.0% 
S03 52 13 39 75.0% 
S04 10 1 9 90.0% 
Total 112 40 72 64.3% 

The attacks were performed using four PAI species. Table II analyses the success rate for each 
species by showing the proportion of successful attacks for each species. 

Table II. Attempts and successful attacks for the used PAI species. 

PAI species Total attacks Rejected Successful Success rate  
Algenate 60 20 40 66.7% 
White glue + graphite  30 8 22 73.3% 
Plastilina  10 9 1 10.0% 
Wax + conductive ink 12 3 9 75.0% 
Total 112 40 72 64.3% 

The main observations reported by the attacker are: 

1. In the primary stages of the experiment, different presentation attack attempts were carried 
out and failed. They had not been reported since they were not detected by the sensors. 
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2. The results reporting started after defining the best PAI species for each smartphone. That 
is to say, for each smartphone (fingerprint sensor), there are species that work better than 
others, even if the sensors use the same sensing technology. 

3. The attack success rate increases while the attacker keeps practicing. In other words, as the 
attacker keeps experimenting, his expertise increases, thus the attack potential increases.  

4. The last experiment was performed on the device S04 after over 12 hours of practical work. 
The success rate was 90%. 
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