
A Survey of Active Network Research

David L. Tennenhouse, Massachusetts Institute of Technology

Jonathan M. Smith, University of Pennsylvania

W. David Sincoskie, Bell Communications Research

David J. Wetherall, Massachusetts Institute of Technology

Gary J. Minden, University of Kansas

Abstract
Active networks are a novel approach to network architecture in which the switches of the
network perform customized computations on the messages flowing through them. This
approach is motivated by both lead user applications, which perform user-driven
computation at nodes within the network today, and the emergence of mobile code
technologies that make dynamic network service innovation attainable. In this paper, we
discuss two approaches to the realization of active networks and provide a snapshot of the
current research issues and activities.

Introduction – What Are Active Networks?
In an active network, the routers or switches of the network perform customized
computations on the messages flowing through them. For example, a user of an active
network could send a “trace” program to each router and arrange for the program to be
executed when their packets are processed. Figure 1 illustrates how the routers of an IP
network could be augmented to perform such customized processing on the datagrams
flowing through them. These active routers could also interoperate with legacy routers,
which transparently forward datagrams in the traditional manner.

These networks are active in the sense that nodes can perform computations on, and
modify, the packet contents. In addition, this processing can be customized on a per user
or per application basis. In contrast, the role of computation within traditional packet
networks, such as the Internet, is extremely limited. Although routers may modify a
packet’s header, they pass the user data opaquely without examination or modification.
Furthermore, the header computation and associated router actions are specified
independently of the user process or application that generates the packet.

The concept of active networking emerged from discussions within the broad DARPA
research community in 1994 and 1995 on the future directions of networking systems.
Several problems with today’s networks were identified: the difficulty of integrating new
technologies and standards into the shared network infrastructure, poor performance due
to redundant operations at several protocol layers, and difficulty accommodating new
services in the existing architectural model. Several strategies, collectively referred to as
active networking, emerged to address these issues. The idea of messages carrying
procedures and data is a natural step beyond traditional circuit and packet switching, and
can be used to rapidly adapt the network to changing requirements. Coupled with a well

page 2

understood execution environment within network nodes, this program-based approach
provides a foundation for expressing networking systems as the composition of many
smaller components with specific properties: services can be distributed and configured to
meet the needs of applications; and statements can be made about overall network
behavior in terms of the properties of individual components.

In this paper we discuss two approaches to the realization of active networks. The
programmable switch approach maintains the existing packet/cell format, and provides a
discrete mechanism that supports the downloading of programs. Separating the injection
of programs from the processing of messages may be particularly attractive when the
selection of programs is made by network administrators, rather than individual end users.
In contrast, the capsule approach goes somewhat further – the passive packets of present
day architectures are replaced by active miniature programs that are encapsulated in
transmission frames and executed at each node along their path. User data can be
embedded within these capsules, in much the way a page’s contents are embedded within
a fragment of PostScript code.

Research in active networks is motivated by both technology “push” and user “pull”. The
“pull” comes from the assortment of firewalls, web proxies, multicast routers, mobile
proxies, video gateways, etc. that perform user-driven computation at nodes “within” the
network. Some of these lead users are described in Table 1. In many cases, these
services are implemented at nodes, such as firewalls, that adopt the facade of routers, yet
perform application-specific processing that transcends conventional architectural
guidelines. Our goal is to replace the numerous ad hoc approaches to network-based
computation with a generic capability that allows users to program their networks.

The technology “push” is the emergence of active technologies that make our goals
attainable. Until recently, the specter of administrators (let alone end users) programming
their networks has raised insurmountable concerns with respect to infrastructure safety
and efficiency. However, recent advances in programming languages, compilers and
operating systems may provide the keys to the safe and efficient execution of mobile

Source Legacy
Router

DestinationActive
Router

user

network

user

network

active
client

active
server

ip_send

device device

ip_forw

device

ip_recv

device

ip_active

device

ip_active

Active
Router

Figure 1. Application-specific processing within the nodes of an Active Network

page 3

program fragments. Today, these active technologies are applied within individual end
systems and above the end-to-end network layer; for example, to allow web servers and
clients to exchange Java applets. Active networks leverage and extend these technologies
for use within the network – in ways that will fundamentally change our mindset
concerning what is “in” the network.

This article provides a current snapshot of active network research activities, including
work on the underlying active technologies. In the next two sections, we describe the
impact active networks may have on infrastructure innovation and the new applications
that will be enabled. We then present a framework, or set of issues, that can be used to
categorize and organize activity within the field. Finally, we present a survey of current
research activities within our own laboratories and elsewhere in the community.

CATEGORY DESCRIPTION

Firewalls Firewalls implement filters that determine which packets should be passed
transparently and which should be blocked. Although they have a peer
relationship to other routers, they implement application- and user-specific
functions in addition to packet routing [1]. The need to update the firewall
to enable the use of new protocols is an impediment to their adoption. In an
active network, this process could be automated by allowing applications
from approved vendors to authenticate themselves to the firewall and inject
the appropriate modules into it.

Web Proxies Web proxies provide a user-transparent service that is tailored to the serving
and caching of Web pages. Harvest [2] employs a hierarchical scheme in
which cache nodes are located near the edges of the network, i.e. within end
user organizations. This system could be extended by allowing nodes of the
hierarchy to be located at strategic points within the network.

Nomadic
Routers

Kleinrock describes a “nomadic router” [3] that is interposed between an end
system and the network. This module observes and adapts to the means by
which the end system is connected to the network, e.g., through a phone line
in a hotel room versus through the LAN in the home office. It might decide
to perform more file caching or link compression when the end system is
connected through a low bandwidth link and invoke additional security, such
as encryption, when operating away from the home office.

Transport

Gateways

“Transport gateways” are nodes located at strategic points that bridge
networks with vastly different bandwidth and reliability characteristics, e.g.,
at the junctions between wired and wireless networks. To support mobile
access to wired networks, TCP snooping [4] retains per-connection state
information at wireless base stations.

Application

Services

Application-specific gateways support services such as the transcoding of
images [5] among video conference users with differing bandwidth
constraints. Similarly, InfoPad [6] instantiates user-specific “pad servers”,
supporting applications such as voice and handwriting recognition, at
intermediate nodes.

Table 1. Lead Users

page 4

Accelerating Infrastructure Innovation
As the lead users cited in Table 1 demonstrate, computation within the network is already
happening – the demonstrated demand for these services suggests that network
architectures must adapt to deal with this new reality.

At a more fundamental level, the network innovation process is itself ripe for renewal.
The pace of network innovation is far too slow and, as the Internet grows, it is
increasingly difficult to maintain, let alone accelerate, this pace. To a large degree this is a
function of the need to achieve consensus – a network’s utility increases with the number
of interconnected nodes. Today, the path from prototype demonstration to large scale
deployment takes about ten years. The process involves standardization, incorporation
into vendor hardware platforms, user procurement and installation. The present backlog
of Internet services includes multicast, authentication and mobility extensions, RSVP and
IPv6.

The Internet Protocol (IP) enables interoperability by defining a standard packet format
and addressing scheme; although router implementations may differ, they implement
roughly “equivalent” programs. Thus, the mechanisms for IP innovation are: changing the
IP service, which means changing everything (since it is the basis for interoperability); or
establishing overlays, e.g. the MBone.

In contrast, active nodes can execute many different programs, i.e., they can perform very
different computations on each of the packets flowing through them. Instead of insisting
that all of the routers perform “equivalent” computations on every packet, active networks
specify that all nodes support equivalent computational models, i.e., virtual instruction
sets. Active networks raise the level of abstraction at which interoperability is realized,
allowing applications to customize message processing to suit their purposes.

The ability to download new services into the infrastructure will lead to a user-driven
innovation process in which the availability of new services will be dependent on their
acceptance in the marketplace. Active networks present an opportunity to change the
structure of the networking industry, from a “mainframe” mind-set, in which hardware and
software are bundled together, to a “virtualized” approach in which hardware and
software innovation are decoupled [7]. The network programming abstraction provides a
powerful platform for user-driven customization of the infrastructure, allowing new
services to be deployed at a faster pace than can be sustained by vendor driven consensus
and standardization activities.

Enabling New Applications

Active Networks will enable new applications that rely on: the network-based merging of
information; user-aware network protection; and active network management.

The merging and distribution of information

The era of multi-user, multi-site applications has just begun – the success of the MBone
and the Web are but harbingers of what might lie ahead. There is an untapped reservoir of
applications that require network-based services to support the merging and distribution of
information. However, existing systems are based on a service that provides an extremely

page 5

limited function, i.e., the copying of IP packets, without support for application-specific
distribution, let alone network-based storage or information fusion.

Figure 2 illustrates how sophisticated multi-site applications will leverage computation and
storage within the network. In this figure an application, such as simulation or remote
manipulation, allows each user to “see” composite images constructed by fusing
information obtained from a large number of sensors. Furthermore, each sensor can be
“watched” by a number of users, who will have differing requirements concerning the
encoding and presentation of the information they access. Merging data within the
network reduces the bandwidth requirements at the users, who are located at the (low
bandwidth) periphery of the network. Similarly, user-specific multicast services within the
network reduce the load on the sensors and on the network backbone.

Web proxies that cache pages of information, are another example of a multi-user service
that could benefit from network-based computation and storage. Harvest [2] employs a
hierarchical caching scheme that can reduce the latencies experienced by individual users
and the aggregate bandwidth that is consumed. The cache nodes are presently located
near the edges of the network, i.e., at nodes within the end user organizations. These
systems could be extended by allowing nodes of the hierarchy to be located at strategic
points within the networks of Internet access providers and inter-exchange carriers. An
interesting problem is the development of algorithms and tools that automatically
“balance” the hierarchy by re-positioning the caches themselves, not just the cached
information. A further argument in favor of using active technologies for Web caching is
that a significant fraction of Web pages are dynamically computed and not susceptible to
passive caching. This suggests the development of schemes that support active caches
that store and execute programs that generate these pages.

sensorssensors

networknetwork

FusionFusion
proc.proc.

FusionFusion
proc.proc.

useruser

useruser

FusionFusion
proc.proc.

ActuatorActuator
Proc.Proc.

actuatorsactuators

Figure 2. Exploiting the network-based merging and distribution of information.
(Diagram courtesy of Prof. Henry Fuchs, UNC)

page 6

User-aware network protection

Protection of information means that the right information gets to the right people at the
right place and time. Although network security and authentication mechanisms are being
proposed in many networking forums, active networking may admit the design of an
integrated mechanism that governs all network resources and the information flowing
through them. This eliminates the need for multiple security/authentication systems that
operate independently at each communication protocol layer. It allows us to program in
security policy for the network on a per-user or per-use basis. Finally, a formal approach
using rigorous specifications and language enforced type-safety can be used to reason
about the protection policies and the mechanisms of their implementation.

Active network management

Many network management tasks consist of collecting and collating data, such as event
counts. To provide the most useful network management data, such as exception
indications, intelligence must be used to filter out uninteresting (unexceptional) events.
Active technologies could be used to implement sophisticated approaches to network
monitoring and event filtering. Network components, such as routers, may even assume a
degree of responsibility for monitoring themselves, e.g., by injecting customized
monitoring and diagnostic programs into their nearest neighbors. Similarly, active
networks can provide the flexibility necessary to improve fault detection and to update the
survivability policies that govern component response to correlated failures, such as those
caused by earthquakes or malicious intruders.

A Framework for Active Network Research
In this section, we distinguish two approaches to active networks, discrete and integrated,
depending on whether programs and data are carried discretely, i.e., within separate
messages, or in an integrated fashion. We then discuss common issues related to node
programming and interoperability.

Programmable switches – a discrete approach

The processing of messages may be architecturally separated from the business of injecting
programs into the node, with a separate mechanism for each function. This preserves the
current distinction between in-band data transfer and out-of-band management channels.
Users would first inject their custom processing routines into the required routers. Then
they would send their packets through such “programmable” nodes much the way they do
today. When a packet arrives at a node, its header is examined and the appropriate
program is dispatched to operate on its contents.

Separate mechanisms for loading and execution might be valuable when program loading
must be carefully controlled. Allowing operators to dynamically load code into their
routers would be useful for router extensibility purposes, even if the programs do not
perform application- or user-specific computations. In the Internet, for example, program
loading could be restricted to a router’s operator who is furnished with a “back door”
through which they can dynamically load code. This back door would at minimum
authenticate the operator and might also perform extensive checks on the code that is
being loaded.

page 7

Capsules – an integrated approach

A more extreme view of active networks is one in which every message is a program.
Every message, or capsule, that passes between nodes contains a program fragment (of at
least one instruction) that may include embedded data. When a capsule arrives at an
active node, its contents are evaluated, in much the same way that a PostScript printer
interprets the contents of each file that is sent to it.

Bits arriving on incoming links are processed by a mechanism that identifies capsule
boundaries, possibly using the framing mechanisms provided by traditional link layer
protocols. The capsule’s contents are then dispatched to a transient execution
environment where they can safely be evaluated. We hypothesize that programs are
composed of instructions, that perform basic computations on the capsule contents, and
can also invoke “built-in” primitives, which may provide access to resources external to
the transient environment. The execution of a capsule results in the scheduling of zero or
more capsules for transmission on the outgoing links and may change the non-transient
state of the node.

PROJECT M S E DESCRIPTION

Safe-Tcl [8]

(source)

X X Safe-Tcl (based on Tcl) is a scripting language that
provides safety through interpretation of a source program
and closure of its namespace. It depends on the restricted
closure and correctness of the interpreter to prevent
programs from deliberately or accidentally straying beyond
their permitted execution environment.

Java [9]

(intermediate)

X X x Java uses an intermediate instruction set to achieve
mobility. Traditionally, the safe execution of intermediate
code has relied on its careful interpretation. One of Java’s
key contributions is to improve efficiency by off-loading
responsibility from the interpreter: the instruction set and its
approved usage are designed to reduce operand validation
per executed instruction. Work at the University of
Arizona and elsewhere seeks to further boost efficiency
through the use of compilation techniques.

Omniware [10]

(object-code)

x X X Omniware portable object-code depends on software-based
fault isolation (SFI) to enforce safety efficiently. It
prescribes a set of rules that instruction sequences must
adhere to, e.g. restrictions on how address arithmetic is
performed. In conjunction with run-time support, these
rules define a “sandbox” within which the program can do
what it likes, but that it may not escape.

Proof-Carrying
Code [11]

(object-code)

X X PCC uses a novel approach to achieve safety: it attaches a
formal proof of the properties of a binary program. The
recipient can check that the proof is valid, a process that is
much simpler than constructing it from scratch. Currently,
PCC is practical only for short programs.

Table 2. Program Encoding Technologies (with labeled columns M, S, and E
assessing mobility, safety, and efficiency, respectively)

page 8

Towards a common programming model

Network programs must be transmitted across the communication substrate and loaded
into a range of platforms. This suggests the development of common models for: the
encoding of network programs; the “built-in” primitives available at each node; and the
description and allocation of node resources.

Program encoding. Our objectives for program encodings are that they support:

• Mobility – the ability to transfer programs and execute them on a range of
platforms.

• Safety – the ability to restrict the resources that programs can access.
• Efficiency – enabling the above without compromising network performance, at

least in the most common cases.
Mobility may be achieved at several different levels of program representation: express the
program in a high-level scripting language, e.g. Tcl; adopt a platform independent
intermediate representation, typically a byte-coded virtual instruction set, e.g. Java; or
transfer programs in binary formats, e.g., Omniware. Table 2 describes recently developed
enabling technologies that support the safe and efficient execution of each level of
program encoding. We expect that all three approaches will prove useful: source
encodings support rapid prototyping; intermediate representations provide a compact and
relatively efficient way to express short programs; and commonly used modules might best
be expressed at the object-code level.

A possible approach to node interoperability would be to agree on an intermediate
instruction encoding as the backstop for code mobility. Node implementors and users
would be welcome to leverage alternative encodings, so long as they provide mechanisms
through which an intermediate encoding of a program can be obtained or generated.
Implementors may also leverage techniques such as dynamic (“on-the-fly”) compilation
that optimize common processing routines, both by converting portable representations to
native ones, and by specializing programs to individual contexts. Operating system
support for more specific strategies, such as “path”-based scheduling, protocol code
reorganization, and low-level extensibility should also prove useful. Table 3 describes
some of these compilation and operating systems technologies.

Common primitives. The services built-in to each node might include several categories
of operations [12]: primitives that allow the packet itself to be manipulated, e.g., by
changing its header, payload, length, etc.; primitives that provide access to the node’s
environment, e.g., the node address, time-of-day, link status, etc.; and primitives for
controlling packet flow, such as forwarding, copying, discarding. Additional primitives
might provide access to node storage and scheduling, e.g., to facilitate rendezvous
operations that combine processing across multiple packets.

Node resources and their allocation. Beyond encodings and primitives, there must be a
common model of node resources and the means by which policies governing their
allocations are communicated. The resources to be modeled include: physical resources,
such as transmission bandwidth, processing capacity, and storage; as well as logical
resources, such as routing tables and the node’s management information base. Safe
resource allocation is an area that will require considerable attention. Active nodes will be
embedded within the shared network infrastructure, and so their designs must address a

page 9

range of “sharing” issues that are often brushed over in the design of programmable
systems destined for less public environments.

Current Research
Work on active networks is underway at a number of sites that are independently
studying: capsule and programmable switch architectures; enabling technologies;
specification techniques; end system issues; and applications, including network
management, mobility and congestion management.

Massachusetts Institute of Technology

The MIT team is prototyping an architecture based on the capsule approach [17] and
studying issues related to component specification, “active storage”, multicast NACK
fusion, and network-based traffic filtering. A reference platform that demonstrates the
capsule architecture is being implemented on Linux using a Java-based capsule encoding.
Additional enabling technologies, including advanced operating system techniques [14]
and “on-the-fly” compilation [16] are also under investigation.

Capsules use the built-in constructs of a programming language to perform packet
processing. This language will be extended through the specification of a suite of
“foundation components” that invoke built-in primitives, interact with the local node
environment, and can be extended and specialized to suit application-specific
requirements. Demand loading and the caching of components are being developed as
strategies to support compact programs and reduce the overhead associated with their
transfer and evaluation. Demand loading allows capsules to reference components rather
than carry them; and caching implies that recently used components need not be reloaded
and verified for safety.

PROJECT DESCRIPTION

Scout [13] Scout is designed to support communication-oriented tasks. It allocates
and schedules resources on a “path” basis and applies a number of optim-
izations intended to increase throughput and decrease latency. Many of the
techniques may be applicable to programs loaded into network nodes.

Exokernel [14] The exokernel enables programs to safely share low-level access to system
resources. It implements a thin veneer that securely multiplexes the raw
hardware. This in turn allows programs to tailor their own abstractions of
operating system services, e.g., access to the active node environment.

SPIN [15] SPIN relies on the properties of the Modula 3 language and a trustworthy
compiler to generate programs that will not stray beyond a restricted
environment. Programs signed by the compiler may be dynamically loaded
into the operating system.

‘C [16] ‘C and VCODE enable “on-the-fly” code generation. This allows source
programs to be automatically tailored, or even wholly generated, at
runtime. These technologies could allow active nodes to translate
commonly-used programs to binary encodings.

Table 3. Operating System Technologies

page 10

Programming will also be facilitated by allowing capsules to leave “soft state” behind in a
node. Thus, a flow or connection may be opened by having a capsule leave a small
amount of associated state at each node along the path it traverses. Subsequent packets
can include code whose execution leverages this “soft state” but can regenerate it if
necessary. Connections and flows in active networks can be more powerful than those of
present day systems because the state left behind may be in the form of programs. A more
persistent form of active storage, workflow state, is being developed to support loosely
synchronized activities and to track dependencies.

University of Pennsylvania

The SwitchWare project [18] is developing a programmable switch approach that allows
digitally signed type-checked modules to be loaded into the nodes of a network. The basic
idea is to raise the level of abstraction of the switch functionality to be closer to that of a
Turing machine. Aspects of security dictate limitations in the tradeoffs which can be made
in support of other goals: resource allocation must be robust enough that denial of service
attacks are frustrated; extensibility must be restricted so as to preclude security breaches,
yet still adequate for advanced applications.

Penn’s approach uses formal methodologies to prove security properties of SwitchWare
programs. The focus of SwitchWare is the identification of properties of the underlying
infrastructure for which theorems can be developed. Proofs are supported by a language
(SML/NJ) with a precise definition and run-time support that includes concurrent garbage
collection and resource allocation. An advantage of supporting security at the
programming language level is that the high overhead of protection domain-crossing in
kernelized operating systems is avoided, since the need for carefully gated entry points is
removed at compilation time.

The approach will be evaluated with a prototype based on a shared-memory
multiprocessor. Early prototype applications include: software scalable bandwidth based
on a general mechanism for inverse multiplexing, i.e., network striping; and support for an
active packet model (“Switchlets”).

Bell Communications Research

Several aspects of the Penn design will be studied jointly with Bellcore, using a different
infrastructure (OPCV2) to extend the design space that is explored. The Output Port
Controller Version 2 (OPCV2) attaches to the Sunshine Asynchronous Transfer Mode
(ATM) switch, developed for the AURORA Gigabit Testbed, and can also be used as a
standalone cell processor that enables line speed manipulation of ATM streams. This
allows studies of SwitchWare multiplexing algorithms and run-time system functionality to
be embedded in the port controllers of a scalable switch.

A second component of the Bellcore effort is the specification of the semantics of an
Active Router, and the investigation of those semantics in a collaboration prototyping
effort involving Penn. The prototype will use a small-scale multiprocessor as an active
network element that interconnects ATM networks with 10 and 100 Mbps Ethernets.
This Active Router will serve as an experimental platform for the investigation of
applications under development within the SwitchWare project.

page 11

Bellcore is also studying uses of the new network infrastructure, such as Self-Paying
Information Transport, in which electronic payment information is embedded in the active
packets. Bellcore’s interest in active networks is related to its previous work on: protocol
boosters [19], which dynamically optimize protocol components on an end-to-end basis;
and the Advanced Intelligent Network (AIN), which separated the implementation of
value added services from switching, by moving the service control functions to adjunct
processors.

Columbia University

The NetScript project, led by Yemini and da Silva [20], consists of a programming
language and execution environment. The language provides a means to script the
processing of packet streams. It is particularly suited to the implementation of routing,
packet analysis, signaling and management functions. NetScript agents can be sent to
remote systems including intermediate network nodes, such as routers and switches. The
goal is to enable programming of these nodes as easily and quickly as end-systems.

Carnegie Mellon University

The CMU team, led by Steenkiste and Zhang, is developing resource management
mechanisms in support of “application-aware” networks. They are considering three
dimensions of resource allocation: physical infrastructure, including processing and
storage; decision making on different time scales, ranging from application startup to
packet and cell scheduling; and the sharing of infrastructure among organizational entities.
The mechanisms will support network customization across all three dimensions.

CMU is also exploring support for sophisticated multi-party applications, such as video
conferencing and data mining, that use a multiplicity of traffic streams with divergent
characteristics. These applications will be “network-aware” so they can perform well on a
variety of networks and adapt quickly to changing network conditions.

Work Elsewhere

Additional research on active networks is being conducted at several sites:

• At BBN, Partridge and Jackson are exploring issues of programmability, data
dictionaries, and authentication mechanisms, in the context of IP and to improve
management and diagnostic capabilities.

• At the Georgia Institute of Technology, active network concepts are being
applied to network congestion by allowing applications to request that specific
node algorithms (e.g. lossless compression, selective discard, transcoding) be
invoked during periods of congestion [21].

• At the University of Kansas, Frost and Minden are considering the application of
active technologies to rapidly deployable radio networks.

• At the University of Arizona, Peterson is developing “liquid” software, a suite of
mobile code technologies that includes rapid compilation of intermediate code,
i.e., at network link rates [22].

• At the University of Cincinatti, Alexander is investigating techniques for the
formal specification of network elements and behavior.

page 12

Summary
We realize that suggestions for software-intensive approaches to networking surface every
ten years or so. For example, Zander [23] describes an experimental system in which
packets of FORTH code were interpreted by network elements. Nonetheless, we are
convinced that recent improvements in the safety and efficiency of active technologies, and
the demand created by lead applications, present new research opportunities.

Active networks involve the synthesis and extension of programming language, operating
systems and networking expertise. We also anticipate changes to the organization of end-
system software – in place of protocol “stacks”, applications may use protocol
“components” that can be specialized and composed to perform application-specific
functions [24]. This will lead to a massive increase in the degree and sophistication of
network-based computation and address the mismatch between the rate at which user
requirements change and the pace at which network infrastructure can be deployed.

Acknowledgments

This work has been influenced by discussions with a number of researchers, especially
Deborah Estrin, David Farber, David Feldmeier, Henry Fuchs, Steve Garland, Carl
Gunter, John Guttag, Frans Kaashoek, Butler Lampson, Paul Leach, Scott Nettles, Hilary
Orman, Herb Schorr, Scott Shenker, Liuba Shrira and Bob Sproull.

References
1. Greenwald, M., et al. Designing an Academic Firewall: Policy, Practice and
Experience with SURF. in Proc. of the 1996 Symp. on Network and Distributed Systems
Security. 1996. San Diego, CA.

2. Chankhuntod, A., P.B. Danzig, and C. Neerdaels. A Hierarchical Internet Object
Cache. in Proceedings of 1996 USENIX. 1996.

3. Kleinrock, L. Nomadic Computing (Keynote Address). in Intl. Conf. on Mobile
Computing and Networking. 1995. Berkeley, CA: ACM.

4. Balakrishnan, H., et al. Improving TCP/IP Performance over Wireless Networks. in
Intl. Conf. on Mobile Computing and Networking. 1995. Berkeley, CA.

5. Amir, E., S. McCanne, and H. Zhang. An Application Level Video Gateway. in ACM
Multimedia '95. 1995. San Francisco, CA.

6. Le, M.T., F. Burghardt, and J. Rabaey. Software Architecture of the Infopad System.
in Mobidata Workshop on Mobile and Wireless Information Systems. 1994. New
Brunswick, NJ.

7. Tennenhouse, D., et al., Virtual Infrastructure: Putting Information Infrastructure on
the Technology Curve. Computer Networks and ISDN Systems, Vol. 26, No. 13.
(October 1996)

8. Borenstein, N. Email with a Mind of its Own: The Safe-Tcl Language for Enabled
Mail. in IFIP International Conference. 1994. Barcelona, Spain.

9. Gosling, J. and H. McGilton, The Java Language Environment: A White Paper. 1995,
Sun Microsystems: Mountain View, CA.

page 13

10. Adl-Tabatabai, A., et al. Efficient and Language-Independent Mobile Programs. in
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI '96). 1996. Philadelphia, PA: ACM.

11. Necula, G. and P. Lee. Safe Kernel Extensions Without Run-Time Checking. in
Second Symp. on Operating System Design and Implementation (OSDI '96). 1996.
Seattle, WA.

12. Wetherall, D. and D. Tennenhouse. The ACTIVE IP Option. in 7th ACM SIGOPS
European Workshop. 1996. Connemara, Ireland.

13. Mosberger, D. and L. Peterson, Making Paths Explicit in the Scout Operating System.
1996, Technical Report 96-05, Dept. of Computer Science, University of Arizona.

14. Engler, D.R., M.F. Kaashoek, and J. O’Toole, Jr. Exokernel: An Operating System
Architecture for Application-Level Resource Management. in 15th ACM Symp. on
Operating Systems Principles. 1995.

15. Bershad, B., et al. Extensibility, Safety and Performance in the SPIN Operating
System. in 15th ACM Symp. on Operating Systems Principles. 1995.

16. Engler, D.R., W.C. Hsieh, and M.F. Kaashoek. `C: A Language for High-Level,
Efficient, and Machine-Independent Dynamic Code Generation. in 23rd Annual ACM
Symp. on Principles of Programming Languages (POPL '96). 1996. St. Petersburg, FL.

17. Tennenhouse, D. and D. Wetherall. Towards an Active Network Architecture. in
Multimedia Computing and Networking (MMCN 96). Jan 1996. San Jose, CA: SPIE. A
revised version of this paper appears in Computer Communication Review, Vol. 26, No. 2
(April 96).

18. Smith, J., et al., SwitchWare: Accelerating Network Evolution. 1996, Technical
Report MS-CIS-96-38, CIS Department, University of Pennsylvania. Also available as
http://www.cis.upenn.edu/~jms/white-paper.ps.

19. Feldmeier, D., A. McAuley, and J. Smith, Protocol Boosters. 1997. Submitted to
IEEE Journal on Selected Areas of Communication. Jan 1997.

20. Yemini, Y., and da Silva, S. Towards Programmable Networks. 1996. in FIP/IEEE
International Workshop on Distributed Systems. Oct 1996.

21. Bhattacharjee, B., K. Calvert, and E. Zegura, An Architecture for Active Networking,
1996. Technical Report GIT-CC-96-20, College of Computing, Georgia Institute of
Technology.

22. Hartman, J., et al., Liquid Software: A New Paradigm for Networked Systems.. 1996,
Technical Report 96-11, Dept. of Computer Science, University of Arizona.

23. Zander, J. and R. Forchheimer. SOFTNET - An approach to high level packet
communication. in Proc. of AMRAD Conf. 1983. San Francisco, CA.

24. Clark, D.D. and D.L. Tennenhouse. Architectural Considerations for a New
Generation of Protocols. in SIGCOMM’90. 1990.

page 14

Biographies

David L. Tennenhouse is a Principal Research Scientist at the MIT Laboratory for
Computer Science and the Sloan School of Management. He is leader of the Telemedia,
Networks and Systems Group, which is addressing “systems” issues arising at the
confluence of broadband networks, advanced digital video, and distributed computing.
David has a B.A.Sc. and an M.A.Sc in Electrical Engineering from the University of
Toronto and a Ph.D. from the University of Cambridge. His is a member of the IEEE and
his email address is dlt@lcs.mit.edu.

Jonathan M. Smith is an Associate Professor in the CIS Department of U. Penn., where he
is a member of the Distributed Systems Laboratory. He was Co-Principal Investigator on
the NSF/DARPA-sponsored AURORA gigabit testbed project. He is an editor of
ACM/IEEE Transactions on Networking and a Senior Member of the IEEE. Jonathan
previously worked for Boeing Aerospace, Bell Telephone Laboratories, and Bell
Communications Research (Bellcore).

W. David Sincoskie is Vice President of the Internet Research Laboratory at Bellcore. He
supervises research on broadband services control, gigabit networking, feature interaction,
IP over ATM, NSFNET, next generation IP, and computer network management. He is a
Senior Editor of JSAC and a Fellow of the IEEE. He was a member of the Internet
Architecture Board from 1993 to 1995. David received his B.E.E. in 1975, M.E.E. in
1977, and Ph.D. (E.E.) in 1980 from the University of Delaware.

David J. Wetherall is a doctoral candidate at the MIT Laboratory for Computer Science.
He is interested in networks, programming languages and distributed systems. David
joined the Laboratory after working at QPSX Communications, a high speed networking
company. He received his E.E and M.S. in computer science from MIT in 1995 and 1994,
respectively, and his B.E. in electrical engineering from the University of Western
Australia in 1989. He is a student member of the IEEE.

Gary J. Minden is an Associate Professor in the EECS Department of the University of
Kansas. He recently completed a tour at the Defense Advanced Research Projects Agency
(DARPA) Information Technology Office. Gary’s research interests are in the areas of
large scale distributed systems which encompass high performance networks, computing
systems, and distributed software systems. He received the B.S.E.E. degree in 1973 and
the Ph.D. degree in 1982, both from the University of Kansas, and is a member of the
IEEE.

