
 Open access Journal Article DOI:10.1109/TSMCC.2012.2218595

A Survey of Actor-Critic Reinforcement Learning: Standard and Natural Policy
Gradients — Source link

I. Grondman, Lucian Busoniu, Gabriel A. D. Lopes, Robert Babuska

Institutions: Delft University of Technology

Published on: 01 Nov 2012 - Systems, Man and Cybernetics

Topics: Reinforcement learning and Approximation algorithm

Related papers:

 Reinforcement Learning: An Introduction

 Human-level control through deep reinforcement learning

 Policy Gradient Methods for Reinforcement Learning with Function Approximation

 Asynchronous methods for deep reinforcement learning

 Continuous control with deep reinforcement learning

Share this paper:

View more about this paper here: https://typeset.io/papers/a-survey-of-actor-critic-reinforcement-learning-standard-and-
ya29rk9vmw

https://typeset.io/
https://www.doi.org/10.1109/TSMCC.2012.2218595
https://typeset.io/papers/a-survey-of-actor-critic-reinforcement-learning-standard-and-ya29rk9vmw
https://typeset.io/authors/i-grondman-1je1awomn1
https://typeset.io/authors/lucian-busoniu-2ey6976685
https://typeset.io/authors/gabriel-a-d-lopes-1avgrc4ub2
https://typeset.io/authors/robert-babuska-2dp0sruaw5
https://typeset.io/institutions/delft-university-of-technology-2b85q0ia
https://typeset.io/conferences/systems-man-and-cybernetics-1tf575tv
https://typeset.io/topics/reinforcement-learning-19scn3xh
https://typeset.io/topics/approximation-algorithm-3j82mu0v
https://typeset.io/papers/reinforcement-learning-an-introduction-rzxgej9p17
https://typeset.io/papers/human-level-control-through-deep-reinforcement-learning-40h0gx9pjx
https://typeset.io/papers/policy-gradient-methods-for-reinforcement-learning-with-4dw6389kcb
https://typeset.io/papers/asynchronous-methods-for-deep-reinforcement-learning-2ugcuvr1v6
https://typeset.io/papers/continuous-control-with-deep-reinforcement-learning-4gs6uzlycf
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-survey-of-actor-critic-reinforcement-learning-standard-and-ya29rk9vmw
https://twitter.com/intent/tweet?text=A%20Survey%20of%20Actor-Critic%20Reinforcement%20Learning:%20Standard%20and%20Natural%20Policy%20Gradients&url=https://typeset.io/papers/a-survey-of-actor-critic-reinforcement-learning-standard-and-ya29rk9vmw
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-survey-of-actor-critic-reinforcement-learning-standard-and-ya29rk9vmw
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-survey-of-actor-critic-reinforcement-learning-standard-and-ya29rk9vmw
https://typeset.io/papers/a-survey-of-actor-critic-reinforcement-learning-standard-and-ya29rk9vmw

HAL Id: hal-00756747
https://hal.archives-ouvertes.fr/hal-00756747

Submitted on 23 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A survey of actor-critic reinforcement learning: standard
and natural policy gradients

Ivo Grondman, Lucian Busoniu, Gabriel Lopes, Robert Babuska

To cite this version:
Ivo Grondman, Lucian Busoniu, Gabriel Lopes, Robert Babuska. A survey of actor-critic reinforce-
ment learning: standard and natural policy gradients. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, Institute of Electrical and Electronics Engineers,
2012, 42 (6), pp.1291-1307. 10.1109/TSMCC.2012.2218595. hal-00756747

https://hal.archives-ouvertes.fr/hal-00756747
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS 1

A Survey of Actor-Critic Reinforcement Learning:

Standard and Natural Policy Gradients
Ivo Grondman, Lucian Buşoniu, Gabriel A.D. Lopes and Robert Babuška

Abstract—Policy gradient based actor-critic algorithms are
amongst the most popular algorithms in the reinforcement
learning framework. Their advantage of being able to search
for optimal policies using low-variance gradient estimates has
made them useful in several real-life applications, such as
robotics, power control and finance. Although general surveys
on reinforcement learning techniques already exist, no survey
is specifically dedicated to actor-critic algorithms in particular.
This paper therefore describes the state of the art of actor-
critic algorithms, with a focus on methods that can work in
an online setting and use function approximation in order to
deal with continuous state and action spaces. After starting
with a discussion on the concepts of reinforcement learning and
the origins of actor-critic algorithms, this paper describes the
workings of the natural gradient, which has made its way into
many actor-critic algorithms in the past few years. A review of
several standard and natural actor-critic algorithms follows and
the paper concludes with an overview of application areas and
a discussion on open issues.

Index Terms—reinforcement learning, actor-critic, natural gra-
dient, policy gradient

I. INTRODUCTION

REINFORCEMENT learning is a framework in which an

agent (or controller) optimizes its behavior by interacting

with its environment. After taking an action in some state, the

agent receives a scalar reward from the environment, which

gives the agent an indication of the quality of that action.

The function that indicates the action to take in a certain state

is called the policy. The main goal of the agent is to find

a policy that maximizes the total accumulated reward, also

called the return. By following a given policy and processing

the rewards, the agent can build estimates of the return. The

function representing this estimated return is known as the

value function. Using this value function allows the agent

to make indirect use of past experiences to decide on future

actions to take in or around a certain state.

Over the course of time, several types of RL algorithms

have been introduced and they can be divided into into three

groups [1]: actor-only, critic-only and actor-critic methods,

where the words actor and critic are synonyms for the policy

and value function, respectively. Actor-only methods typically

work with a parameterized family of policies over which

I. Grondman, G.A.D. Lopes and R. Babuška are with the Delft Cen-
ter for Systems and Control, Delft University of Technology, 2628 CD
Delft, The Netherlands (email: i.grondman@tudelft.nl; g.a.delgadolopes;
r.babuska@tudelft.nl).

L. Buşoniu is with CNRS, Research Center for Automatic Control, Univer-
sity of Lorraine, 54500 Nancy, France and also with the Department of
Automation, Technical University of Cluj-Napoca, 400020 Cluj-Napoca, Ro-
mania (e-mail: lucian@busoniu.net).

optimization procedures can be used directly. The benefit of a

parameterized policy is that a spectrum of continuous actions

can be generated, but the optimization methods used (typically

called policy gradient methods) suffer from high variance in

the estimates of the gradient, leading to slow learning [1]–[5].

Critic-only methods that use temporal difference learning

have a lower variance in the estimates of expected returns [3],

[5], [6]. A straightforward way of deriving a policy in critic-

only methods is by selecting greedy actions [7]: actions for

which the value function indicates that the expected return

is the highest. However, to do this, one needs to resort

to an optimization procedure in every state encountered to

find the action leading to an optimal value. This can be

computationally intensive, especially if the action space is

continuous. Therefore, critic-only methods usually discretize

the continuous action space, after which the optimization over

the action space becomes a matter of enumeration. Obviously,

this approach undermines the ability of using continuous

actions and thus of finding the true optimum.

Actor-critic methods combine the advantages of actor-only

and critic-only methods. While the parameterized actor brings

the advantage of computing continuous actions without the

need for optimization procedures on a value function, the

critic’s merit is that it supplies the actor with low-variance

knowledge of the performance. More specifically, the critic’s

estimate of the expected return allows for the actor to update

with gradients that have lower variance, speeding up the

learning process. The lower variance is traded for a larger

bias at the start of learning when the critic’s estimates are

far from accurate [5]. Actor-critic methods usually have good

convergence properties, in contrast to critic-only methods [1].

These nice properties of actor-critic methods have made

them a preferred reinforcement learning algorithm, also in real-

life application domains. General surveys on reinforcement

learning already exist [8]–[10], but because of the growing

popularity and recent developments in the field of actor-critic

algorithms, this class of reinforcement algorithms deserves a

survey in its own right. The goal of this paper is to give

an overview of the work on (online) actor-critic algorithms,

giving technical details of some representative algorithms, and

also to provide references to a number of application papers.

Additionally, the algorithms are presented in one unified

notation, which allows for a better technical comparison of

the variants and implementations. Because the discrete-time

variant has been developed to a reasonable level of maturity,

this paper solely discusses algorithms in the discrete-time

setting. Continuous-time variants of actor-critic algorithms,

e.g. [11], [12] and multi-agent actor-critic schemes [13], [14]

2 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

are not considered here.

The focus is put on actor-critic algorithms based on policy

gradients, which constitute the largest part of actor-critic

algorithms. A distinction is made between algorithms that use

a standard (sometimes also called vanilla) gradient and the

natural gradient that became more popular in the course of

the last decade. The remaining part of actor-critic algorithms

consists mainly of algorithms that choose to update the ac-

tor by moving it towards the greedy policy underlying an

approximate state-action value function [10]. In this paper,

these algorithms are regarded as critic-only algorithms as the

policy is implemented implicitly by the critic. Algorithms

are only categorized as actor-critic here if they implement

two separately parameterized representations for the actor and

the critic. Furthermore, all algorithms make use of function

approximation, which in real-life applications such as robotics

is necessary in order to deal with continuous state and action

spaces.

This paper is organized as follows. Section II introduces

the basic concepts of a Markov decision process, which is the

cornerstone of reinforcement learning. Section III describes

critic-only, actor-only and actor-critic RL algorithms and the

important policy gradient theorem, after which Section IV

surveys actor-critic algorithms that use a standard gradient.

Section V describes the natural gradient and its application

to actor-critic methods, and also surveys several natural actor-

critic algorithms. Section VI briefly reviews the application

areas of these methods. A discussion and future outlook is

provided in Section VII.

II. MARKOV DECISION PROCESSES

This section introduces the concepts of discrete-time re-

inforcement learning, based on [7], but extended to the use

of continuous state and action spaces and also assuming a

stochastic setting, as covered more extensively in [15], [16].

A reinforcement learning algorithm can be used to solve

problems modelled as Markov decision processes (MDPs). An

MDP is a tuple 〈X,U, f, ρ〉, where X denotes the state space,

U the action space, f : X×U×X 7→ [0,∞) the state transition

probability density function and ρ : X×U×X 7→ R the reward

function. In this paper, only stationary MDP’s are considered,

i.e., the elements of the tuple 〈X,U, f, ρ〉 do not change over

time.

The stochastic process to be controlled is described by the

state transition probability density function f . It is important

to note that since state space is continuous, it is only possible

to define a probability of reaching a certain state region, since

the probability of reaching a particular state is zero. The

probability of reaching a state xk+1 in the region Xk+1 ⊆ X
from state xk after applying action uk is

P(xk+1 ∈ Xk+1|xk, uk) =

∫

Xk+1

f(xk, uk, x
′)dx′.

After each transition to a state xk+1, the controller receives

an immediate reward

rk+1 = ρ(xk, uk, xk+1),

which depends on the previous state, the current state and the

action taken. The reward function ρ is assumed to be bounded.

The action uk taken in a state xk is drawn from a stochastic

policy π : X × U 7→ [0,∞).
The goal of the reinforcement learning agent is to find the

policy π which maximizes the expected value of a certain

function g of the immediate rewards received while following

the policy π. This expected value is the cost-to-go function

J(π) = E {g(r1, r2, . . .)|π} .

In most cases1, the function g is either the discounted sum of

rewards or the average reward received, as explained next.

A. Discounted Reward

In the discounted reward setting [18], the cost function J is

equal to the expected value of the discounted sum of rewards

when starting from an initial state x0 ∈ X drawn from an

initial state distribution x0 ∼ d0(·), also called the discounted

return

J(π) = E

{
∞∑

k=0

γkrk+1

∣∣∣∣∣ d0, π
}

=

∫

X

dπγ (x)

∫

U

π(x, u)

∫

X

f(x, u, x′)ρ(x, u, x′)dx′dudx,

(1)

where dπγ (x) =
∑∞

k=0 γ
kp(xk = x|d0, π) is the discounted

state distribution under the policy π [16], [19] and γ ∈ [0, 1)
denotes the reward discount factor. Note that p(xk = x) is a

probability density function here.

During learning, the agent will have to estimate the cost-to-

go function J for a given policy π. This procedure is called

policy evaluation. The resulting estimate of J is called the

value function and two definitions exist for it. The state value

function

V π(x) = E

{
∞∑

k=0

γkrk+1

∣∣∣∣∣x0 = x, π

}
(2)

only depends on the state x and assumes that the policy π
is followed starting from this state. The state-action value

function

Qπ(x, u) = E

{
∞∑

k=0

γkrk+1

∣∣∣∣∣x0 = x, u0 = u, π

}
. (3)

also depends on the state x, but makes the action u chosen

in this state a free variable instead of having it generated

by the policy π. Once the first transition onto a next state

has been made, π governs the rest of the action selection.

The relationship between these two definitions for the value

function is given by

V π(x) = E {Qπ(x, u)|u ∼ π(x, ·)} .

With some manipulation, Equations (2) and (3) can be put

into a recursive form [18]. For the state value function this is

V π(x) = E {ρ(x, u, x′) + γV π(x′)} , (4)

1Other cost functionals do exist and can be used for actor-critic algorithms,
such as the risk-sensitive cost in [17].

GRONDMAN et al.: A SURVEY OF ACTOR-CRITIC REINFORCEMENT LEARNING: STANDARD AND NATURAL POLICY GRADIENTS 3

with u drawn from the probability distribution function π(x, ·)
and x′ drawn from f(x, u, ·). For the state-action value func-

tion the recursive form is

Qπ(x, u) = E {ρ(x, u, x′) + γQπ(x′, u′)} , (5)

with x′ drawn from the probability distribution function

f(x, u, ·) and u′ drawn from the distribution π(x′, ·). These

recursive relationships are called Bellman equations [7].

Optimality for both the state value function V π and the

state-action value function Qπ is governed by the Bellman

optimality equation. Denoting the optimal state value function

with V ∗(x) and the optimal state-action value with Q∗(x, u),
the corresponding Bellman optimality equations for the dis-

counted reward setting are

V ∗(x) = max
u

E {ρ(x, u, x′) + γV ∗(x′)} (6a)

Q∗(x, u) = E
{
ρ(x, u, x′) + γmax

u′

Q∗(x′, u′)
}
. (6b)

B. Average Reward

As an alternative to the discounted reward setting, there is

also the approach of using the average return [18]. In this

setting a starting state x0 does not need to be chosen, under

the assumption that the process is ergodic [7] and thus that

J does not depend on the starting state. Instead, the value

functions for a policy π are defined relative to the average

expected reward per time step under the policy, turning the

cost-to-go function into

J(π) = lim
n→∞

1

n
E

{
n−1∑

k=0

rk+1

∣∣∣∣∣π
}

=

∫

X

dπ(x)

∫

U

π(x, u)

∫

X

f(x, u, x′)ρ(x, u, x′)dx′dudx.

(7)

Equation (7) is very similar to Equation (1), except that

the definition for the state distribution changed to dπ(x) =
limk→∞ p(xk = x, π). For a given policy π, the state value

function V π(x) and state-action value function Qπ(x, u) are

then defined as

V π(x) = E

{
∞∑

k=0

(rk+1 − J(π))

∣∣∣∣∣x0 = x, π

}

Qπ(x, u) = E

{
∞∑

k=0

(rk+1 − J(π))

∣∣∣∣∣x0 = x, u0 = u, π

}
.

The Bellman equations for the average reward — in this case

also called the Poisson equations [20] — are

V π(x) + J(π) = E {ρ(x, u, x′) + V π(x′)} , (8)

with u and x′ drawn from the appropriate distributions as

before and

Qπ(x, u) + J(π) = E {ρ(x, u, x′) +Qπ(x′, u′)} , (9)

again with x′ and u′ drawn from the appropriate distributions.

Note that Equations (8) and (9) both require the value J(π),
which is unknown and hence needs to be estimated in some

way. Bellman optimality equations, describing an optimum for

the average reward case, are

V ∗(x) + J∗ = max
u

E {ρ(x, u, x′) + V ∗(x′)} (10a)

Q∗(x, u) + J∗ = E
{
ρ(x, u, x′) + max

u′

Q∗(x′, u′)
}

(10b)

where J∗ is the optimal average reward as defined by (7) when

an optimal policy π∗ is used.

III. ACTOR-CRITIC IN THE CONTEXT OF RL

As discussed in the introduction, the vast majority of

reinforcement learning methods can be divided into three

groups [1]: critic-only, actor-only and actor-critic methods.

This section will give an explanation on all three groups,

starting with critic-only methods. The part on actor-only

methods introduces the concept of a policy gradient, which

provides the basis for actor-critic algorithms. The final part of

this section explains the policy gradient theorem, an important

result that is now widely used in many implementations of

actor-critic algorithms.

In real-life applications, such as robotics, processes usually

have continuous state and action spaces, making it impossible

to store exact value functions or policies for each separate

state or state-action pair. Any RL algorithm used in practice

will have to make use of function approximators for the value

function and/or the policy in order to cover the full range of

states and actions. Therefore, this section assumes the use of

such function approximators.

A. Critic-only Methods

Critic-only methods, such as Q-learning [21]–[23] and

SARSA [24], use a state-action value function and no explicit

function for the policy. For continuous state and action spaces,

this will be an approximate state-action value function. These

methods learn the optimal value function by finding online an

approximate solution to the Bellman equation (6b) or (10b).

A deterministic policy, denoted by π : X 7→ U is calculated

by using an optimization procedure over the value function

π(x) = argmax
u

Q(x, u). (11)

There is no reliable guarantee on the near-optimality of the

resulting policy for just any approximated value function when

learning in an online setting. For example, Q-learning and

SARSA with specific function approximators have been shown

not to converge even for simple MDPs [25]–[27]. However,

the counterexamples used to show divergence were further

analyzed in [28] (with an extension to the stochastic setting

in [29]) and it was shown that convergence can be assured for

linear-in-parameters function approximators if trajectories are

sampled according to their on-policy distribution. The work

in [28] also provides a bound on the approximation error

between the true value function and the approximation learned

by online temporal difference learning. An analysis of more

approximate policy evaluation methods is provided by [30],

mentioning conditions for convergence and bounds on the

approximation error for each method. Nevertheless, for most

choices of basis functions an approximated value function

4 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

learned by temporal difference learning will be biased. This

is reflected by the state-of-the-art bounds on the least-squares

temporal difference (LSTD) solution quality [31], which al-

ways include a term depending on the distance between the

true value function and its projection on the approximation

space. For a particularly bad choice of basis functions, this

bias can grow very large.

B. Actor-only Methods and the Policy Gradient

Policy gradient methods (see, for instance, the SRV [32]

and Williams’ REINFORCE algorithms [33]) are principally

actor-only and do not use any form of a stored value function.

Instead, the majority of actor-only algorithms work with a

parameterized family of policies and optimize the cost defined

by (1) or (7) directly over the parameter space of the policy.

Although not explicitly considered here, work on nonpara-

metric policy gradients does exist, see e.g. [34], [35]. A major

advantage of actor-only methods over critic-only methods is

that they allow the policy to generate actions in the complete

continuous action space.

A policy gradient method is generally obtained by parame-

terizing the policy π by the parameter vector ϑ ∈ Rp. Consid-

ering that both (1) and (7) are functions of the parameterized

policy πϑ, they are in fact functions of ϑ. Assuming that

the parameterization is differentiable with respect to ϑ, the

gradient of the cost function with respect to ϑ is described by

∇ϑJ =
∂J

∂πϑ

∂πϑ
∂ϑ

. (12)

Then, by using standard optimization techniques, a locally

optimal solution of the cost J can be found. The gradient

∇ϑJ is estimated per time step and the parameters are then

updated in the direction of this gradient. For example, a simple

gradient ascent method would yield the policy gradient update

equation

ϑk+1 = ϑk + αa,k∇ϑJk, (13)

where αa,k > 0 is a small enough learning rate for the actor,

by which it is obtained that2 J(ϑk+1) ≥ J(ϑk).
Several methods exists to estimate the gradient, e.g. by

using infinitesimal perturbation analysis (IPA) or likelihood-

ratio methods [36], [37]. For a broader discussion on these

methods, see [4], [38]. Approaches to model-based gradient

methods are given in [39]–[41] and in the more recent work

of Deisenroth [42].

The main advantage of actor-only methods is their strong

convergence property, which is naturally inherited from gradi-

ent descent methods. Convergence is obtained if the estimated

gradients are unbiased and the learning rates αa,k satisfy [7],

[38]

∞∑

k=0

αa,k = ∞
∞∑

k=0

α2
a,k <∞

A drawback of the actor-only approach is that the estimated

gradient may have a large variance [19], [43]. Also, every

2One could also define the cost J such that it should be minimized. In that
case, the plus sign in Equation (13) is replaced with a minus sign, resulting
in J(ϑk+1) ≤ J(ϑk).

Actor

Critic

Process

Rewardr

xx u

Fig. 1. Schematic overview of an actor-critic algorithm. The dashed line
indicates that the critic is responsible for updating the actor and itself.

gradient is calculated without using any knowledge of past

estimates [1], [44].

C. Actor-Critic Algorithms

Actor-critic methods [45], [46] aim to combine the ad-

vantages of actor-only and critic-only methods. Like actor-

only methods, actor-critic methods are capable of producing

continuous actions, while the large variance in the policy

gradients of actor-only methods is countered by adding a critic.

The role of the critic is to evaluate the current policy prescribed

by the actor. In principle, this evaluation can be done by any

policy evaluation method commonly used, such as TD(λ) [6],

[18], LSTD [3], [18], [47] or residual gradients [25]. The critic

approximates and updates the value function using samples.

The value function is then used to update the actor’s policy pa-

rameters in the direction of performance improvement. These

methods usually preserve the desirable convergence properties

of policy gradient methods, in contrast to critic-only methods.

In actor-critic methods, the policy is not directly inferred from

the value function by using (11). Instead, the policy is updated

in the policy gradient direction using only a small step size αa,

meaning that a change in the value function will only result in

a small change in the policy, leading to less or no oscillatory

behavior in the policy as described in [48].

Fig. 1 shows the schematic structure of an actor-critic

algorithm. The learning agent has been split into two separate

entities: the actor (policy) and the critic (value function). The

actor is only responsible for generating a control input u, given

the current state x. The critic is responsible for processing the

rewards it receives, i.e. evaluating the quality of the current

policy by adapting the value function estimate. After a number

of policy evaluation steps by the critic, the actor is updated

by using information from the critic.

A unified notation for the actor-critic algorithms described

in this paper allows for an easier comparison between them.

Also, most algorithms can be fitted to a general template of

standard update rules. Therefore, two actor-critic algorithm

templates are introduced: one for the discounted reward setting

and one for the average reward setting. Once these templates

are established, specific actor-critic algorithms can be dis-

cussed by only looking at how they fit into the general template

or in what way they differ from it.

For both reward settings, the value function is parameterized

by the parameter vector θ ∈ Rq . This will be denoted

with Vθ(x) or Qθ(x, u). If the parameterization is linear, the

GRONDMAN et al.: A SURVEY OF ACTOR-CRITIC REINFORCEMENT LEARNING: STANDARD AND NATURAL POLICY GRADIENTS 5

features (basis functions) will be denoted with φ, i.e.

Vθ(x) = θ⊤φ(x) or Qθ(x, u) = θ⊤φ(x, u). (14)

The stochastic policy π is parameterized by ϑ ∈ Rp and will be

denoted with πϑ(x, u). If the policy is denoted with πϑ(x), it

is deterministic and no longer represents a probability density

function, but the direct mapping from states to actions u =
πϑ(x).

The goal in actor-critic algorithms — or any other RL

algorithm for that matter — is to find the best policy possible,

given some stationary MDP. A prerequisite for this is that

the critic is able to accurately evaluate a given policy. In

other words, the goal of the critic is to find an approximate

solution to the Bellman equation for that policy. The difference

between the right-hand and left-hand side of the Bellman

equation, whether it is the one for the discounted reward

setting (4) or the average reward setting (8), is called the

temporal difference (TD) error and is used to update the critic.

Using the function approximation for the critic and a transition

sample (xk, uk, rk+1, xk+1), the TD error is estimated as

δk = rk+1 + γVθk(xk+1)− Vθk(xk). (15)

Perhaps the most standard way of updating the critic, is to

exploit this TD error for use in a gradient descent update [7]

θk+1 = θk + αc,kδk∇θVθk(xk), (16)

where αc,k > 0 is the learning rate of the critic. For

the linearly parameterized function approximator (14), this

reduces to

θk+1 = θk + αc,kδkφ(xk). (17)

This temporal difference method is also known as TD(0)

learning, as no eligibility traces are used. The extension to

the use of eligibility traces, resulting in TD(λ) methods, is

straightforward and is explained next.

Using (16) to update the critic results in a one-step backup,

whereas the reward received is often the result of a series of

steps. Eligibility traces offer a better way of assigning credit

to states or state-action pairs visited several steps earlier. The

eligibility trace vector for all q features at time instant k is

denoted with zk ∈ Rq and its update equation is [1], [7]

zk = λγzk−1 +∇θVθk(xk).

It decays with time by a factor λγ, with λ ∈ [0, 1) the trace

decay rate. This makes the recently used features more eligible

for receiving credit. The use of eligibility traces speeds up the

learning considerably. Using the eligibility trace vector zk, the

update (16) of the critic becomes

θk+1 = θk + αc,kδkzk. (18)

With the use of eligibility traces, the actor-critic template

for the discounted return setting becomes

δk = rk+1 + γVθk(xk+1)− Vθk(xk) (19a)

zk = λγzk−1 +∇θVθk(xk) (19b)

θk+1 = θk + αc,kδkzk (19c)

ϑk+1 = ϑk + αa,k∇ϑJk. (19d)

Although not commonly seen, eligibility traces may be in-

troduced for the actor as well. As with actor-only methods,

several ways exist to estimate ∇ϑJk.

For the average reward case, the critic can be updated using

the average-cost TD method [49]. Then, Bellman equation (8)

is considered, turning the TD error into

δk = rk+1 − Ĵk + Vθk(xk+1)− Vθk(xk),

with Ĵk an estimate of the average cost at time k. Obviously,

this requires an update equation for the estimate Ĵ as well,

which usually is [1]

Ĵk = Ĵk−1 + αJ,k(rk+1 − Ĵk−1),

where αJ,k ∈ (0, 1] is another learning rate. The critic still

updates with Equation (18). The update of the eligibility trace

also needs to be adjusted, as the discount rate γ is no longer

present. The template for actor-critic algorithms in the average

return setting then is

Ĵk = Ĵk−1 + αJ,k(rk+1 − Ĵk−1) (20a)

δk = rk+1 − Ĵk + Vθk(xk+1)− Vθk(xk) (20b)

zk = λzk−1 +∇θVθk(xk) (20c)

θk+1 = θk + αc,kδkzk (20d)

ϑk+1 = ϑk + αa,k∇ϑJk. (20e)

For the actor-critic algorithm to converge, it is necessary that

the critic’s estimate is at least asymptotically accurate. This is

the case if the step sizes αa,k and αc,k are deterministic, non-

increasing and satisfy [1]
∑

k

αa,k = ∞
∑

k

αc,k = ∞ (21)

∑

k

α2
a,k <∞

∑

k

α2
c,k <∞

∑

k

(
αa,k

αc,k

)d

<∞ (22)

for some d ≥ 0. The learning rate αJ,k is usually set equal to

αc,k. Note that such assumptions on learning rates are typical

for all RL algorithms. They ensure that learning will slow

down, but never stops and also that the update of the actor

operates on a slower time-scale than the critic, to ensure that

the critic has enough time to evaluate the current policy.

Although TD(λ) learning is used quite commonly, other

ways of determining the critic parameter θ do exist and some

are even known to be superior in terms of convergence rate

in both discounted and average reward settings [50], such as

least-squares temporal difference learning (LSTD) [3], [47].

LSTD uses samples collected along a trajectory generated by

a policy π to set up a system of temporal difference equations

derived from or similar to (19a) or (20b). As LSTD requires

an approximation of the value function which is linear in its

parameters, i.e. Vθ(x) = θ⊤φ(x), this system is linear and can

easily be solved for θ by a least-squares method. Regardless

of how the critic approximates the value function, the actor

update is always centered around Equation (13), using some

way to estimate ∇ϑJk.

For actor-critic algorithms, the question arises how the critic

influences the gradient update of the actor. This is explained

in the next subsection about the policy gradient theorem.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

D. Policy Gradient Theorem

Many actor-critic algorithms now rely on the policy gradient

theorem, a result obtained simultaneously in [1] and [19],

proving that an unbiased estimate of the gradient (12) can be

obtained from experience using an approximate value function

satisfying certain properties. The basic idea, given by [1], is

that since the number of parameters that the actor has to update

is relatively small compared to the (usually infinite) number of

states, it is not useful to have the critic attempting to compute

the exact value function, which is also a high-dimensional

object. Instead, it should compute a projection of the value

function onto a low-dimensional subspace spanned by a set

of basis functions, which are completely determined by the

parameterization of the actor.

In the case of an approximated stochastic policy, but exact

state-action value function Qπ , the policy gradient theorem is

as follows.

Theorem 1 (Policy Gradient): For any MDP, in either the

average reward or discounted reward setting, the policy gradi-

ent is given by

∇ϑJ =

∫

X

dπ(x)

∫

U

∇ϑπ(x, u)Q
π(x, u)dudx,

with dπ(x) defined for the appropriate reward setting.

Proof: See [19].

This clearly shows the relationship between the policy gradient

∇ϑJ and the critic function Qπ(x, u) and ties together the

update equations of the actor and critic in the templates (19)

and (20).

For most applications, the state-action space is contin-

uous and thus infinite, which means that it is necessary

to approximate the state(-action) value function. The result

in [1], [19] shows that Qπ(x, u) can be approximated with3

hw : X × U 7→ R, parameterized by w, without affecting the

unbiasedness of the policy gradient estimate.

In order to find the closest approximation of Qπ by hw, one

can try to find the w that minimizes the quadratic error

Eπ
w(x, u) =

1

2
[Qπ(x, u)− hw(x, u)]

2
.

The gradient of this quadratic error with respect to w is

∇wE
π
w(x, u) = [Qπ(x, u)− hw(x, u)]∇whw(x, u) (23)

and this can be used in a gradient descent algorithm to find

the optimal w. If the estimator of Qπ(x, u) is unbiased, the

expected value of Equation (23) is zero for the optimal w i.e.
∫

X

dπ(x)

∫

U

π(x, u)∇wE
π
w(x, u)dudx = 0. (24)

The policy gradient theorem with function approximation is

based on the equality in (24).

Theorem 2 (Policy Gradient with Function Approximation):

If hw satisfies Equation (24) and

∇whw(x, u) = ∇ϑlnπϑ(x, u), (25)

3This approximation of Qπ(x, u) is not denoted with an accented Q as it
is not actually the value function Q that it is approximating, as shown later
in this section.

x

u

−5 0 5
−5

0

5

(a) Value function Q∗(x, u)

x

u

−5 0 5
−5

0

5

(b) Advantage function A∗(x, u)

Fig. 2. The optimal value and advantage function for the example MDP
in [16]. The system is xk+1 = xk + uk , using the optimal policy π∗(x) =
−Kx with K the state feedback solution based on the reward function rk =
−x2

k
− 0.1u2

k
. The advantage function nicely shows the zero contour line of

the optimal action u = −Kx.

where πϑ(x, u) denotes the stochastic policy, parameterized

by ϑ, then

∇ϑJ =

∫

X

dπ(x)

∫

U

∇ϑπ(x, u)hw(x, u)dudx. (26)

Proof: See [19].

An extra assumption in [1] is that in (25), h actually

needs to be an approximator that is linear with respect to

some parameter w and features ψ, i.e. hw = w⊤ψ(x, u),
transforming condition (25) into

ψ(x, u) = ∇ϑlnπϑ(x, u). (27)

Features ψ that satisfy Equation (27) are known as compatible

features [1], [19], [51]. In the remainder of the paper, these will

always be denoted by ψ and their corresponding parameters

with w.

A technical issue, discussed in detail in [16], [19], is

that using the compatible function approximation hw =
w⊤∇ϑlnπϑ(x, u) gives

∫

U

π(x, u)hw(x, u)du = w⊤∇ϑ

∫

U

πϑ(x, u)du

︸ ︷︷ ︸
=1

= 0.

This shows that the expected value of hw(x, u) under the

policy πϑ is zero for each state, from which can be concluded

that hw is generally better thought of as the advantage function

Aπ(x, u) = Qπ(x, u) − V π(x). In essence, this means that

using only compatible features for the value function results

in an approximator that can only represent the relative value of

an action u in some state x correctly, but not the absolute value

Q(x, u). An example showing how different the value function

Q(x, u) and the corresponding advantage function A(x, u)
can look is shown in Figure 2. Because of this difference,

the policy gradient estimate produced by just the compatible

approximation will still have a high variance. To lower the

variance, extra features have to be added on top of the com-

patible features, which take the role of modeling the difference

between the advantage function Aπ(x, u) and the state-action

value function Qπ(x, u), i.e. the value function V π(x). These

extra features are therefore only state-dependent, as depen-

dence on the action would introduce a bias into the gradient

estimate. The state-dependent offset that is created by these

GRONDMAN et al.: A SURVEY OF ACTOR-CRITIC REINFORCEMENT LEARNING: STANDARD AND NATURAL POLICY GRADIENTS 7

additional features is often referred to as a (reinforcement)

baseline. The policy gradient theorem actually generalizes to

the case where a state-dependent baseline function is taken

into account. Equation (26) would then read

∇ϑJ =

∫

X

dπ(x)

∫

U

∇ϑπ(x, u) [hw(x, u) + b(x)] dudx.

(28)

where b(x) is the baseline function that can be chosen arbitrar-

ily. Adding a baseline will not affect the unbiasedness of the

gradient estimate, but can improve the accuracy of the critic’s

approximation and prevent an ill-conditioned projection of the

value function on the compatible features ψ [1]. In that respect,

this paper treats w as a subset of θ, and ψ as a subset of φ. In

practice, the optimal baseline, i.e. the baseline that minimizes

the variance in the gradient estimate for the policy π, is the

value function V π(x) [19], [20]. In [52], it is noted that, in

light of the policy gradient theorem that was only published

many years later, Gullapalli’s earlier idea in [32] of using

the temporal difference δ in the gradient used to update the

policy weights can be shown to yield the true policy gradient

∇ϑJ(ϑ), and hence corresponds to the policy gradient theorem

with respect to Equation (28).

Theorem 2 yields a major benefit. Once a good parame-

terization for a policy has been found, a parameterization for

the value function automatically follows and also guarantees

convergence. Further on in this paper, many actor-critic algo-

rithms make use of this theorem.

Part of this paper is dedicated to giving some examples of

relevant actor-critic algorithms in both the standard gradient

and natural gradient setting. As it is not possible to describe

all existing actor-critic algorithms in this survey in detail, the

algorithms addressed in this paper are chosen based on their

originality: either they were the first to use a certain technique,

extended an existing method significantly or the containing

paper provided an essential analysis. In Section II a distinction

between the discounted and average reward setting was already

made. The reward setting is the first major axis along which

the algorithms in this paper are organized. The second major

axis is the gradient type, which will be either the standard

gradient or the natural gradient. This results in a total of four

categories to which the algorithms can (uniquely) belong, see

Table I. References in bold are discussed from an algorith-

mic perspective. Section IV describes actor-critic algorithms

that use a standard gradient. Section V first introduces the

concept of a natural gradient, after which natural actor-critic

algorithms are discussed. References in italic are discussed in

the Section VI on applications.

IV. STANDARD GRADIENT ACTOR-CRITIC ALGORITHMS

Many papers refer to Barto et al. [46] as the starting

point of actor-critic algorithms, although there the actor and

critic were called the associative search element and adaptive

critic element, respectively. That paper itself mentions that the

implemented strategy is closely related to [45], [69]. Either

way, it is true that [46] defined the actor-critic structure that

resembles the recently proposed actor-critic algorithms the

TABLE I
ACTOR-CRITIC METHODS, CATEGORIZED ALONG TWO AXES: GRADIENT

TYPE AND REWARD SETTING.

Standard gradient Natural gradient

Discounted
return

Barto et al. [46],
FACRLN [53], [54],
CACM [55],
Bhatnagar [56], Chun-Gui

et al. [57], Kimura et

al. [58], Raju et al. [59]

(e)NAC [16], [52], Park et
al. [60], Girgin and
Preux [61],
Kimura [62],Richter et

al. [2], Kim et al. [63],

Nakamura et al. [64],

El-Fakdi et al. [65]

Average
return

Konda and Tsitsiklis [1],
Paschalidis et al. [50],
ACFRL [5], [66],
Bhatnagar et al. I [20],
ACSMDP [67]

Bhatnagar et al.
II–IV [20], gNAC [68]

most. Therefore, the discussion on standard actor-critic algo-

rithms starts with this work, after which other algorithms in the

discounted return setting are discussed. As many algorithms

based on the average return also exist, they are dealt with in

a separate section.

A. Discounted return setting

Barto et al. [46] use simple parameterizations

Vθ(x) = θ⊤φ(x) πϑ(x) = ϑ⊤φ(x)

with the same features φ(x) for the actor and critic. They

chose binary features, i.e. for some state x only one feature

φi(x) has a non-zero value, in this case φi(x) = 1. For ease

of notation, the state x was taken to be a vector of zeros with

only one element equal to 1, indicating the activated feature.

This allowed the parameterization to be written as

Vθ(x) = θ⊤x πϑ(x) = ϑ⊤x.

Then, they were able to learn a solution to the well-known

cart-pole problem using the update equations

δk = rk+1 + γVθk(xk+1)− Vθk(xk) (29a)

zc,k = λczc,k−1 + (1− λc)xk (29b)

za,k = λaza,k−1 + (1− λa)ukxk (29c)

θk+1 = θk + αcδkzc,k (29d)

ϑk+1 = ϑk + αaδkza,k (29e)

with

uk = τ (πϑk
(xk) + nk) ,

where τ is a threshold, sigmoid or identity function, nk is noise

which accounts for exploration and zc, za are eligibility traces

for the critic and actor, respectively. Note that these update

equations are similar to the ones in template (19), considering

the representation in binary features. The product δkza,k in

Equation (29e) can then be interpreted as the gradient of the

performance with respect to the policy parameter.

Although no use was made of advanced function approxima-

tion techniques, good results were obtained. A mere division

of the state space into boxes meant that there was no gen-

eralization among the states, indicating that learning speeds

8 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

could definitely be improved upon. Nevertheless, the actor-

critic structure itself remained and later work largely focused

on better representations for the actor and the calculation of

the critic.

Based on earlier work in [53], Wang et al. [54], intro-

duced the Fuzzy Actor-Critic Reinforcement Learning Net-

work (FACRLN), which uses only one fuzzy neural network

based on radial basis functions for both the actor and the critic.

That is, they both use the same input and hidden layers, but

differ in their output by using different weights. This is based

on the idea that both actor and critic have the same input and

also depend on the same system dynamics. Apart from the

regular updates to the actor and critic based on the temporal

difference error, the algorithm not only updates the parameters

of the radial basis functions in the neural network, but also

adaptively adds and merges fuzzy rules. Whenever the TD

error or the squared TD error is too high and the so-called ǫ-
completeness property [70] is violated, a new rule, established

by a new radial basis function, is added to the network.

A closeness measure of the radial basis functions decides

whether two (or more) rules should be merged into one. For

example, when using Gaussian functions in the network, if two

rules have their centers and their widths close enough to each

other, they will be merged into one. FACRLN is benchmarked

against several other (fuzzy) actor-critic algorithms, including

the original work in [46], and turns out to outperform them

all in terms of the number of trials needed, without increasing

the number of basis functions significantly.

At about the same time, Niedzwiedz et al. [55] also claimed,

like with FACRLN, that there is redundancy in learning

separate networks for the actor and critic and developed their

Consolidated Actor-Critic Model (CACM) based on that same

principle. They too set up a single neural network, using

sigmoid functions instead of fuzzy rules, and use it for both

the actor and the critic. The biggest difference is that here, the

size of the neural network is fixed, i.e. there is no adaptive

insertion/removal of sigmoid functions.

More recently, work by Bhatnagar on the use of actor-critic

algorithms using function approximation for discounted cost

MDP’s under multiple inequality constraints appeared in [56].

The constraints considered are bounds on the expected values

of discounted sums of single-stage cost functions ρn, i.e.

Sn(π) =
∑

x∈X

d0(x)W
π
n (x) ≤ sn, n = 1 . . . N

with

Wπ
n (x) = E

{
∞∑

k=0

γkρn(xk, uk)

∣∣∣∣∣x0 = x, π

}

and d0 a given initial distribution over the states. The approach

is, as in usual constrained optimization problems, to extend the

discounted cost function J(π) to a Lagrangian cost function

L(π, µ̄) = J(π) +
N∑

n=1

µkGn(π)

where µ̄ = (µ1, . . . , µN)⊤ is the vector of Lagrange multipli-

ers and Gn(π) = Sn(π) − sn the functions representing the

inequality constraints.

The algorithm generates an estimate of the policy gradi-

ent using simultaneous perturbation stochastic approximation

(SPSA) [71], which has been found to be efficient even

in high-dimensional parameter spaces. The SPSA gradient

requires the introduction of two critics instead of one. The

first critic, parameterized by θ⊤φ(x), evaluates a policy

parameterized by ϑk. The second critic, parameterized by

θ′⊤φ(x) evaluates a slightly perturbed policy parameterized

by ϑk + ǫ∆k with a small ǫ > 0. The element-wise policy

parameter update is then given by4

ϑi,k+1 = Γi

[
ϑk + αa

∑

x∈X

d0(x)

(
(θk − θ′k)

⊤φ(x)

ǫ∆i(k)

)]
(30)

where Γi is a truncation operator. The Lagrange parameters µ
also have an update rule of their own (further details in [56]),

which introduces a third learning rate αL,k into the algorithm

for which the regular conditions
∑

k

αL,k = ∞
∑

k

α2
L,k <∞

must be satisfied and another constraint relating αL,k to the

actor step size αa,k

lim
k→∞

αL,k

αa,k

= 0

must also hold, indicating that the learning rate for the

Lagrange multipliers should decrease quicker than the actor’s

learning rate. Under these conditions, the authors prove the

almost sure convergence to a locally optimal policy.

B. Average reward setting

In [1], together with the presentation of the novel ideas

of compatible features, discussed in Section III-D, two actor-

critic algorithms were introduced, differing only in the way

they update the critic. The general update equations for these

algorithms are

Ĵk = Ĵk−1 + αc,k(rk+1 − Ĵk−1) (31a)

δk = rk+1 − Ĵk +Qθk(xk+1, uk+1)−Qθk(xk, uk)
(31b)

θk+1 = θk + αc,kδkzk (31c)

ϑk+1 = ϑk + αa,kΓ(θk)Qθk(xk, uk)ψ(xk, uk), (31d)

where ψ is the vector of compatible features as defined in (27),

and the parameterization Qθ also contains these compatible

features. The first and the second equation depict the standard

update rules for the estimate of the average cost and the

temporal difference error. The third equation is the update of

the critic. Here, the vector zk represents an eligibility trace [7]

and it is exactly this what distinguishes the two different

algorithms described in the paper. The first algorithm uses

a TD(1) critic, basically taking an eligibility trace with decay

rate λ = 1. The eligibility trace is updated as

zk =

{
zk−1 + φk(xk, uk) if xk 6= xS

φk(xk, uk) otherwise

4This requires two simultaneous simulations of the constrained MDP.

GRONDMAN et al.: A SURVEY OF ACTOR-CRITIC REINFORCEMENT LEARNING: STANDARD AND NATURAL POLICY GRADIENTS 9

where xS is a special reset state for which it is assumed

that the probability of reaching it from any initial state x
within a finite number of transitions is bounded away from

zero for any sequence of randomized stationary policies. Here,

the eligibility trace is reset when encountering a state that

meets this assumption. The second algorithm is a TD(λ) critic,

simply updating the eligibility trace as

zk = λzk−1 + φk(xk, uk).

The update of the actor in Equation (31d) uses the policy

gradient estimate from Theorem 2. It leaves out the state

distribution dπ(x) earlier seen in Equation (26) of the policy

gradient theorem, as the expected value of ∇J(ϑk) is equal

to that of ∇ϑπ(x, u)Q̂
π
w(x, u) and puts the critic’s current

estimate in place of Q̂π
w(x, u). Finally, Γ(θk) is a truncation

term to control the step size of the actor, taking into account

the current estimate of the critic. For this particular algorithm,

some further assumptions on the truncation operator Γ must

hold, which are not listed here.

It is known that using least-squares TD methods for policy

evaluation is superior to using regular TD methods in terms

of convergence rate as they are more data efficient [3], [47].

Inevitably, this resulted in work on actor-critic methods using

an LSTD critic [52], [72]. However, Paschalidis et al. [50]

showed that it is not straightforward to use LSTD without

modification, as it undermines the assumptions on the step

sizes (21)-(22). As a result of the basics of LSTD, the step size

schedule for the critic should be chosen as αc,k = 1
k

. Plugging

this demand into Equations (21) and (22) two conditions on

the step size of the actor conflict, i.e.
∑

k

αa,k = ∞
∑

k

(kαa,k)
d <∞ for some d > 0.

They conflict because the first requires αa to decay at a rate

slower than 1/k, while the second demands a rate faster than

1/k. This means there is a trade-off between the actor having

too much influence on the critic and the actor decreasing

its learning rate too fast. The approach presented in [50] to

address this problem is to use the following step size schedule

for the actor. For some K >> 1, let L = ⌊k/K⌋ and

αa,k :=
1

L+ 1
α̂a(k + 1− LK),

where
∑

k(kα̂a(k))
d ≤ ∞ for some d > 0. As a possible

example,

α̂a,k(b) := ̺(C) · b−C

is provided, where C > 1 and ̺(C) > 0. The critic’s step size

schedule is redefined as

αc,k :=
1

k − κ(L,K)
.

Two extreme cases of κ(L,K) are κ(L,K) , 0 and

κ(L,K) = LK − 1. The first alternative corresponds to

the unmodified version of LSTD and the latter corresponds

to “restarting” the LSTD procedure when k is an integer

multiple of K. The reason for adding the κ term to the

critic update is theoretical, as it may be used to increase the

accuracy of the critic estimates for k → ∞. Nevertheless,

choosing κ(L,K) = 0 gave good results in the simulations

in [50]. These step size schedules for the actor and critic

allow the critic to converge to the policy gradient, despite

the intermediate actor updates, while constantly reviving the

learning rate of the actor such that the policy updates do not

stop prematurely. The actor step size schedule does not meet

the requirement
∑

k(kαa)
d < ∞ for some d > 0, meaning

that convergence of the critic for the entire horizon cannot be

directly established. What is proven by the authors is that the

critic converges before every time instant k = JK, at which

point a new epoch starts5. For the actor, the optimum is not

reached during each epoch, but in the long run it will move to

an optimal policy. A detailed proof of this is provided in [50].

Berenji & Vengerov [5] used the actor-critic algorithm of [1]

to provide a proof of convergence for an actor-critic fuzzy

reinforcement learning (ACFRL) algorithm. The fuzzy element

of the algorithm is the actor, which uses a parameterized fuzzy

Takagi-Sugeno rulebase. The authors show that this parame-

terization adheres to the assumptions needed for convergence

stated in [1], hence providing the convergence proof. The

update equations for the average cost and the critic are the

same as Equations (31a) and (31c), but the actor update is

slightly changed into

ϑk+1 = Γ
(
ϑk + αa,kθ

⊤
k φk(xk, uk)ψk(xk, uk)

)
,

i.e. the truncation operator Γ is now acting on the complete

update expression, instead of limiting the step size based on

the critic’s parameter. While applying ACFRL to a power

management control problem, it was acknowledged that the

highly stochastic nature of the problem and the presence of

delayed rewards necessitated a slight adaptation to the original

framework in [1]. The solution was to split the updating

algorithm into three phases. Each phase consists of running

a finite number of simulation traces. The first phase only

estimates the average cost Ĵ , keeping the actor and critic

fixed. The second phase only updates the critic, based on the Ĵ
obtained in the previous phase. This phase consists of a finite

number of traces during which a fixed positive exploration

term is used on top of the actor’s output and an equal number

of traces during which a fixed negative exploration term is

used. The claim is that this systematic way of exploring is

very beneficial in problems with delayed rewards, as it allows

the critic to better establish the effects of a certain direction

of exploration. The third and final phase keeps the critic fixed

and lets the actor learn the new policy. Using this algorithm,

ACFRL consistently converged to the same neighborhood of

policy parameters for a given initial parameterization. Later,

the authors extended the algorithm to ACFRL-2 in [66], which

took the idea of systematic exploration one step further by

learning two separate critics: one for positive exploration and

one for negative exploration.

Bhatnagar et al. [20] introduced four algorithms. The first

one uses a regular gradient and will therefore be discussed in

5The authors use the term “episode”, but this might cause confusion with
the commonly seen concept of episodic tasks in RL, which is not the case
here.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

this section. The update equations for this algorithm are

Ĵk = Ĵk−1 + αJ,k(rk+1 − Ĵk−1) (32a)

δk = rk+1 − Ĵk + Vθk(xk+1)− Vθk(xk) (32b)

θk+1 = θk + αc,kδkφ(xk) (32c)

ϑk+1 = Γ(ϑk + αa,kδkψ(xk, uk)). (32d)

The critic update is simply an update in the direction of the

gradient ∇θV . The actor update uses the fact that δkψ(xk, uk)
is an unbiased estimate of ∇ϑJ under conditions mentioned

in [20]. The operator Γ is a projection operator, ensuring

boundedness of the actor update. Three more algorithms are

discussed in [20], but these make use of a natural gradient for

the updates and hence are discussed in Section V-C2.

V. NATURAL GRADIENT ACTOR-CRITIC ALGORITHMS

The previous section introduced actor-critic algorithms

which use standard gradients. The use of standard gradients

comes with drawbacks. Standard gradient descent is most

useful for cost functions that have a single minimum and

whose gradients are isotropic in magnitude with respect to

any direction away from its minimum [73]. In practice, these

two properties are almost never true. The existence of multiple

local minima of the cost function, for example, is a known

problem in reinforcement learning, usually overcome by ex-

ploration strategies. Furthermore, the performance of methods

that use standard gradients relies heavily on the choice of a

coordinate system over which the cost function is defined. This

“non-covariance” is one of the most important drawbacks of

standard gradients [51], [74]. An example for this will be given

later in this section.

In robotics, it is common to have a “curved” state space

(manifold), e.g. because of the presence of angles in the state.

A cost function will then usually be defined in that curved

space too, possibly causing inefficient policy gradient updates

to occur. This is exactly what makes the natural gradient

interesting, as it incorporates knowledge about the curvature

of the space into the gradient. It is a metric based not on

the choice of coordinates, but on the manifold that those

coordinates parameterize [51].

This section is divided into two parts. The first part explains

what the concept of a natural gradient is and what its effects

are in a simple optimization problem, i.e. not considering a

learning setting. The second part is devoted to actor-critic

algorithms that make use of this type of gradient to update

the actor. As these policy updates are using natural gradients,

these algorithms are also referred to as natural policy gradient

algorithms.

A. Natural Gradient in Optimization

To introduce the notion of a natural gradient, this section

summarizes work presented in [73]–[75]. Suppose a function

J(ϑ) is parameterized by ϑ. When ϑ lives in a Euclidean

space, the squared Euclidean norm of a small increment ∆ϑ
is given by the inner product

‖∆ϑ‖2E = ∆ϑ⊤∆ϑ.

A steepest descent direction is then defined by minimizing

J(ϑ+∆ϑ) while keeping ‖∆ϑ‖E equal to a small constant.

When ϑ is transformed to other coordinates ϑ̃ in a non-

Euclidean space, the squared norm of a small increment ∆ϑ̃
with respect to that Riemannian space is given by the product

‖∆ϑ̃‖2R = ∆ϑ̃⊤G(ϑ̃)∆ϑ̃

where G(ϑ̃) is the Riemannian metric tensor, an n×n positive

definite matrix characterizing the intrinsic local curvature

of a particular manifold in an n-dimensional space. The

Riemannian metric tensor G(ϑ̃) can be determined from the

relationship [73]:

‖∆ϑ‖2E = ‖∆ϑ̃‖2R.

Clearly, for Euclidean spaces G(ϑ̃) is the identity matrix.

Standard gradient descent for the new parameters ϑ̃ would

define the steepest descent with respect to the norm ‖∆ϑ̃‖2 =
∆ϑ̃⊤∆ϑ̃. However, this would result in a different gradient

direction, despite keeping the same cost function and only

changing the coordinates. The natural gradient avoids this

problem, and always points in the “right” direction, by taking

into account the Riemannian structure of the parameterized

space over which the cost function is defined. So now,

J̃(ϑ̃+∆ϑ̃) is minimized while keeping ‖∆ϑ̃‖R small (J̃ here

is just the original cost J , but written as a function of the new

coordinates). This results in the natural gradient ∇̃
ϑ̃
J̃(ϑ̃) of

the cost function, which is just a linear transformation of the

standard gradient ∇
ϑ̃
J̃(ϑ̃) by the inverse of G(ϑ̃):

∇̃
ϑ̃
J̃(ϑ̃) = G−1(ϑ̃)∇

ϑ̃
J̃(ϑ̃).

As an example of optimization with a standard gradient

versus a natural gradient, consider a cost function based on

polar coordinates

JP (r, ϕ) =
1

2
[(r cosϕ− 1)2 + r2 sin2 ϕ]. (33)

This cost function is equivalent to JE(x, y) = (x− 1)2 + y2,

where x and y are Euclidean coordinates, i.e. the relationship

between (r, ϕ) and (x, y) is given by

x = r cosϕ y = r sinϕ.

Fig. 3a shows the contours and antigradients of JP (r, ϕ)
for 0 ≤ r ≤ 3 and |ϕ| ≤ π, where

−∇(r,ϕ)JP (r, ϕ) = −

[
r − cosϕ
r sinϕ

]
.

The magnitude of the gradient clearly varies widely over

the (r, ϕ)-plane. When performing a steepest descent search

on this cost function, the trajectories from any point (r, ϕ)
to an optimal one will be far from straight paths. For the

transformation of Euclidean coordinates into polar coordinates,

the Riemannian metric tensor is [73]

G(r, ϕ) =

[
1 0
0 r2

]

GRONDMAN et al.: A SURVEY OF ACTOR-CRITIC REINFORCEMENT LEARNING: STANDARD AND NATURAL POLICY GRADIENTS 11

r

ϕ

0 1 2 3
−3

−2

−1

0

1

2

3

(a) Standard

r

ϕ

0 1 2 3
−3

−2

−1

0

1

2

3

(b) Natural

Fig. 3. Standard and natural gradients of the cost function JP (r, ϕ) in polar
coordinates.

r

ϕ

−2 −1 0 1 2 3
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Fig. 4. Trajectories for standard gradient (dashed) and natural gradient (solid)
algorithms for minimizing JP (r, ϕ) in polar coordinates.

so that the natural gradient of the cost function in (33) is

−∇̃(r,ϕ)JP (r, ϕ) = −G(r, ϕ)−1∇(r,ϕ)JP (r, ϕ)

= −

[
r − cosϕ
sinϕ

r

]
.

Fig. 3b shows the natural gradients of JP (r, ϕ). Clearly, the

magnitude of the gradient is now more uniform across the

space and the angles of the gradients also do not greatly vary

away from the optimal point (1, 0).
Fig. 4 shows the difference between a steepest decent

method using a standard gradient and a natural gradient on the

cost JP (r, ϕ) using a number of different initial conditions.

The natural gradient clearly performs better as it always finds

the optimal point, whereas the standard gradient generates

paths that are leading to points in the space which are not even

feasible, because of the radius which needs to be positive.

To get an intuitive understanding of what the effect of a

natural gradient is, Fig. 5 shows trajectories for the standard

and natural gradient that have been transformed onto the

Euclidean space. Whatever the initial condition6 is, the natural

6The exemplified initial conditions are not the same as in Fig. 4.

x

y

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 5. Trajectories for standard gradient (dashed) and natural gradient (solid)
algorithms for minimizing JP (r, ϕ), transformed to Euclidean coordinates.

gradient of JP (r, ϕ) always points straight to the optimum and

follows the same path that the standard gradient of JE(x, y)
would do.

When J(ϑ) is a quadratic function of ϑ (like in many

optimization problems, including for example those solved in

supervised learning), the Hessian H(ϑ) is equal to G(ϑ) for

the underlying parameter space, and there is no difference

between using Newton’s method and natural gradient opti-

mization. In general however, natural gradient optimization

differs from Newton’s method, e.g., G(ϑ) is always positive

definite by construction, whereas the Hessian H(ϑ) may not

be [73]. The general intuition developed in this section is

essential before moving on to the natural policy gradient in

MDPs, explained next.

B. Natural Policy Gradient

The possibility of using natural gradients in online learning

was first appreciated in [75]. As shown above, the crucial

property of the natural gradient is that it takes into account

the structure of the manifold over which the cost function is

defined, locally characterized by the Riemannian metric tensor.

To apply this insight in the context of policy gradient methods,

the main question is then what is an appropriate manifold, and

once that is known, what is its Riemannian metric tensor.

Consider first just the parameterized stochastic policy

πϑ(x, u) at a single state x; a probability distribution over

the actions u. This policy is a point on a manifold of

such probability distributions, found at coordinates ϑ. For a

manifold of distributions, the Riemannian tensor is the so-

called Fisher information matrix (FIM) [75], which for the

policy above is [51]

F (ϑ, x) = E
[
∇ϑlnπϑ(x, u)∇ϑlnπϑ(x, u)

⊤
]

=

∫

U

πϑ(x, u)∇ϑlnπϑ(x, u)∇ϑlnπϑ(x, u)
⊤

du.

(34)

The single-state policy is directly related with the expected

immediate reward, over a single step from x. However, it does

not tell much about the overall expected return J(π), which is

12 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

defined over entire state trajectories. To obtain an appropriate

overall FIM, in the average reward case, Kakade [51] made

the intuitive choice of taking the expectation of F (ϑ, x) with

respect to the stationary state distribution dπ(x)

F (ϑ) =

∫

X

dπ(x)F (ϑ, x)dx. (35)

He was, however, unsure whether this was the right choice.

Later on, the authors of [52] and [74] independently showed

that Equation (35) is indeed a true FIM, for the manifold of

probability distributions over trajectories in the MDP. When

used to control the MDP with stochastic dynamics f , πϑ(x, u)
gives rise to different controlled trajectories with different

probabilities, so each value of the parameter ϑ yields such

a distribution over trajectories. To understand how this distri-

bution is relevant to the value J(π) of the policy, observe that

this value can be written as the expected value of the infinite-

horizon return over all possible paths, where the expectation

is taken with respect to precisely the trajectory distribution.

Furthermore, [52] and [74] show that this idea also extends

to the discounted reward case, where the FIM is still given

by Equation (35), only with dπ(x) replaced by the discounted

state distribution dπγ (x), as defined in Section II-A.

Examples of the difference in performance between regular

policy gradients and natural policy gradients are provided

in [51], [52], [74].

C. Natural Actor-Critic Algorithms

This section describes several representative actor-critic

algorithms that employ a natural policy gradient. Again, a

distinction is made between algorithms using the discounted

return and the average return.

1) Discounted return setting: After the acknowledgement

by [75] that using the natural gradient could be beneficial

for learning, the aptly called Natural Actor-Critic algorithm

in Peters et al. [52] was, to the best of our knowledge,

the first actor-critic algorithm that successfully employed a

natural gradient for the policy updates. Together with [51],

they gave a proof that the natural gradient ∇̃ϑJ(ϑ) is in fact

the compatible feature parameter w of the approximated value

function, i.e.

∇̃ϑJ(ϑ) = w.

Consequently, they were able to use a natural gradient without

explicitly calculating the Fisher Information Matrix. This turns

the policy update step into

ϑk+1 = ϑk + αa∇̃ϑJ(ϑ) (36a)

= ϑk + αawk+1. (36b)

For the policy evaluation step of the algorithm, i.e. the

calculation of the critic parameter w, LSTD-Q(λ) was used,

which was their own extension to LSTD(λ) from [3]. The

Natural Actor-Critic outperformed standard gradient policy

gradient methods on a cart-pole balancing setup. Later, the

work was extended in [16], where it was shown that several

well-known reinforcement algorithms (e.g. Sutton and Barto’s

actor-critic [7] and Bradtke’s Q-learning [23]) are strongly

related to natural actor-critic algorithms. Furthermore, the

paper presents the successful application of an episodic variant

of Natural Actor-Critic (eNAC) on an anthropomorphic robot

arm. For another example of a natural-actor critic algorithm

with a regression-based critic, see [76].

Park et al. [60] extend the original work in [52] by using

a recursive least-squares method in the critic, making the

parameter estimation of the critic more efficient. They then

successfully apply it to the control of a two-link robot arm.

Girgin and Preux [61] improve the performance of natural

actor-critic algorithms, by using a neural network for the actor,

which includes a mechanism to automatically add hidden

layers to the neural network if the accuracy is not sufficient.

Enhancing the eNAC method in [16] with this basis expansion

method clearly showed its benefits on a cart-pole simulation.

Though a lot of (natural) actor-critic algorithms use so-

phisticated function approximators, Kimura showed in [62]

that a simple policy parameterization using rectangular coarse

coding can still outperform conventional Q-learning in high-

dimensional problems. In the simulations, however, Q-learning

did outperform the natural actor-critic algorithm in low-

dimensional problems.

2) Average reward setting: Bhatnagar et al. [20] intro-

duced four algorithms, three of which are natural-gradient

algorithms. They extend the results of [1] by using temporal

difference learning for the actor and by incorporating natural

gradients. They also extend the work of [16] by providing the

first convergence proofs and the first fully incremental natural

actor-critic algorithms. The contribution of convergence proofs

for natural-actor critic algorithms is important, especially

since the algorithms utilized both function approximation and

a bootstrapping critic, a combination which is essential to

large-scale applications of reinforcement learning. The second

algorithm only differs from the first algorithm, described at

the end of Section IV-B with Equation (32), in the actor

update (32d). It directly substitutes the standard gradient with

the natural gradient.

ϑk+1 = Γ(ϑk + αa,kF
−1
k (ϑ)δkψ(xk, uk)), (37)

where F is the Fisher Information Matrix. This requires the

actual calculation of the FIM. Since the FIM can be written

using the compatible features ψ as

F (ϑ) =

∫

X

dπ(x)

∫

U

π(x, u)ψ(x, u)ψ⊤(x, u)dudx

sample averages can be used to compute it:

Fk(ϑ) =
1

k + 1

k∑

l=0

ψ(xl, ul)ψ
⊤(xl, ul).

After converting this equation to a recursive update rule,

and putting the critic’s learning rate in place, the Sherman-

Morrison matrix inversion lemma is used to obtain an iterative

GRONDMAN et al.: A SURVEY OF ACTOR-CRITIC REINFORCEMENT LEARNING: STANDARD AND NATURAL POLICY GRADIENTS 13

update rule for the inverse of the FIM7.

F−1
k (ϑ) =

1

1− αc,k

·

[
F−1
k−1 − αc,k

(F−1
k−1ψk)(F

−1
k−1ψk)

⊤

1− αc,k(1− ψ⊤
k F

−1
k−1ψk)

]
,

where the initial value F−1
0 is chosen to be a scalar multiple of

the identity matrix. This update rule, together with the adjusted

update of the actor then form the second algorithm.

The third algorithm in [20] uses the fact that the compatible

approximation w⊤ψ(x, u) is better thought of as an advantage

function approximator instead of a state-action value function

approximator, as mentioned in Section III-D. Hence, the

algorithm tunes the weights w, such that the squared error

Eπ(w) = E
[
(w⊤ψ(x, u)−Aπ(x, u))2

]
is minimized. The

gradient of this error is

∇wE
π(w) = 2

∑

X

dπ(x)
∑

U

π(x, u)·

[
w⊤ψ(x, u)−Aπ(x, u)

]
ψ(x, u).

As δk is an unbiased estimate of Aπ(xk, uk) (see [77]), the

gradient is estimated with

∇̂wEπ(w) = 2(ψkψ
⊤
k w − δkψk) (38)

and the gradient descent update rule for w (using the same

learning rate as the critic) is

wk+1 = wk − αc,k(ψkψ
⊤
k wk − δkψk). (39)

Furthermore, the natural gradient estimate is given by w (as

shown by Peters and Schaal [16]), and an explicit calculation

for the FIM is no longer necessary. Therefore, the third

algorithm is obtained by using Equation (39) and replacing

the actor in Equation (37) with

ϑk+1 = Γ(ϑk + αa,kwk+1). (40)

The fourth algorithm in [20] is obtained by combining the

second and third algorithm. The explicit calculation of F−1
k

is now used for the update of the compatible parameter w.

The update of w now also follows its natural gradient, by

premultiplying the result in Equation (38) with F−1
k , i.e.

̂̃
∇wEπ(w) = 2F−1

k (ψkψ
⊤
k w − δkψk),

turning the update of w into

wk+1 = wk − αc,kF
−1
k (ψkψ

⊤
k wk − δkψk)

= wk − αc,k F
−1
k ψkψ

⊤
k︸ ︷︷ ︸

I

wk + αc,kF
−1
k δkψk

= wk − αc,kwk + αc,kF
−1
k δkψk,

where clever use is made of the fact that Fk is written as the

squared ψ’s. The actor update is still Equation (40).

Although most natural actor-critic algorithms use the natural

gradient as defined in Section V, the generalized Natural

7For readability, ψ(xk, uk) is replaced by ψk for the remainder of this
section.

Actor-Critic (gNAC) algorithm in [68] does not. Instead, a

generalized natural gradient (gNG) is used, which combines

properties of the Fisher Information Matrix and natural gra-

dient as defined before with the properties of a differently

defined Fisher Information Matrix and natural gradient from

the work in [78]. They consider the fact that the average

reward J(ϑ) is not only affected by the policy π, but also

by the resulting state distribution dπ(x) and define the Fisher

Information Matrix of the state-action joint distribution as

FSA(ϑ) = FS(ϑ) + FA(ϑ), (41)

where FS(ϑ) is the FIM of the stationary state distribution

dπ(x) and FA(ϑ) the FIM as defined in Equation (35). In [78],

the use of FSA(ϑ) as the FIM is considered better for learning

than using the original FIM because of three reasons: (i) Learn-

ing with FSA(ϑ) still benefits from the concepts of natural

gradient, since it necessarily and sufficiently accounts for

the probability distributions that the average reward depends

on. (ii) FSA(ϑ) is analogous to the Hessian matrix of the

average reward. (iii) Numerical experiments have shown a

strong tendency of avoiding plateaus in learning.

Nevertheless, the original FIM FA(ϑ) accounts for the

distribution over an infinite amount of time steps, whereas

FSA(ϑ) only accounts for the distribution over a single time

step. This might increase the mixing time of the Markov

chain drastically, making it hard for the RL learning agent to

estimate a gradient with a few samples. Therefore, the authors

suggest to use a weighted average, using a weighting factor ι,
of both FIM’s defined in Equations (34) and (41). The gNG is

then calculated by using the inverse of this weighted average,

leading to the policy gradient

∇̃ϑJ(ϑ) = (ιFS + FA)
−1

∇ϑJ(ϑ).

The implementation of the algorithm is similar to that of NAC,

with the slight difference that another algorithm, LSLSD [79],

is used to estimate ∇ϑd
π(x). If ι = 0, gNAC is equivalent to

the original NAC algorithm of Peters et al. [52], but now opti-

mizing over the average return instead of the discounted return.

In a numerical experiment with a randomly synthesized MDP

of 30 states and 2 actions, gNAC with ι > 0 outperformed the

original NAC algorithm.

VI. APPLICATIONS

This section provides references to papers that have applied

actor-critic algorithms in several domains. Note that the list

of applications is not exhaustive and that other application

domains for actor-critic algorithms and more literature on the

applications mentioned below exists.

In the field of robotics, early successful results of using

actor-critic type methods on real hardware were shown on a

ball on a beam setup [80], a peg-in-hole insertion task [81]

and biped locomotion [82]. Peters and Schaal showed in [16]

that their natural actor-critic method was capable of getting

an anthropomorphic robot arm to learn certain motor skills

(see Fig. 6). Kim et al. [63] recently successfully applied

a modified version of the algorithm in [60] to motor skill

learning. Locomotion of a two-link robot arm was learned

14 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

Fig. 6. The episodic Natural Actor-Critic method in [16] applied to an
anthropomorphic robot arm performing a baseball bat swing task.

using a recursive least-squares natural actor-critic method

in [60]. Another successful application on a real four-legged

robot is given in [58]. Nakamura et al. devised an algorithm

based on [16] which made a biped robot walk stably [64].

Underwater cable tracking [65] was done using the NAC

method of [16], where it was used in both a simulation

and real-time setting: once the results from simulation were

satisfactory, the policy was moved to an actual underwater

vehicle, which continued learning during operation, improving

the initial policy obtained from simulation.

An example of a logistics problem solved by actor-critic

methods is given in [50], which successfully applies such a

method to the problem of dispatching forklifts in a warehouse.

This is a high-dimensional problem because of the number of

products, forklifts and depots involved. Even with over 200

million discrete states, the algorithm was able to converge to

a solution that performed 20% better in terms of cost than a

heuristic solution obtained by taking the exact solution of a

smaller problem and expanding this to a large state space.

Usaha & Barria [67] use the algorithm from [1] described

in Section IV-B, extended to handle semi-Markov decision

processes8, for call admission control in lower earth orbit satel-

lite networks. They compared the performance of this actor-

critic semi-Markov decision algorithm (ACSMDP) together

with an optimistic policy iteration (OPI) method to an existing

routing algorithm. While both ACSMDP and OPI outperform

the existing routing algorithm, ACSMDP has an advantage in

terms of computational time, although OPI reaches the best

result. Based on the FACRLN from [54] in Section IV-A,

Chun-Gui et al. [57] devised a way to control traffic signals

at an intersection and showed in simulation that this method

outperformed the commonly seen time slice allocation meth-

ods. Richter et al. [2] showed similar improvements in road

traffic optimization when using natural actor-critic methods.

Finally, an application to the finance domain was described

in [59], where older work on actor-critic algorithms [83] was

applied in the problem of determining dynamic prices in an

8Semi-Markov decision processes extend regular MDPs by taking into
account a (possibly stochastically) varying transition time from one state to
another.

electronic retail market.

VII. DISCUSSION AND OUTLOOK

When applying reinforcement learning to a certain problem,

knowing a priori whether a critic-only, actor-only or actor-

critic algorithm will yield the best control policy is virtually

impossible. However, a few rules of thumb should help in

selecting the most sensible class of algorithms to use. The

most important thing to consider first is the type of control

policy that should be learned. If it is necessary for the control

policy to produce actions in a continuous space, critic-only

algorithms are no longer an option, as calculating a control

law would require solving the possibly non-convex optimiza-

tion procedure of Equation (11) over the continuous action

space. Conversely, when the controller only needs to generate

actions in a (small) countable, finite space, it makes sense to

use critic-only methods, as Equation (11) can be solved by

enumeration. Using a critic-only method also overcomes the

problem of high-variance gradients in actor-only methods and

the introduction of more tuning parameters (e.g. extra learning

rates) in actor-critic methods.

Choosing between actor-only and actor-critic methods is

more straightforward. If the problem is modeled by a

(quasi-)stationary MDP, actor-critic methods should provide

policy gradients with lower variance than actor-only methods.

Actor-only methods are however more resilient to fast chang-

ing non-stationary environments, in which a critic would be

incapable of keeping up with the time-varying nature of the

process and would not provide useful information to the actor,

cancelling the advantages of using actor-critic algorithms. In

summary, actor-critic algorithms are most sensibly used in a

(quasi-)stationary setting with a continuous state and action

space.

Once the choice for actor-critic has been made, the issue of

choosing the right features for the actor and critic, respectively,

remains. There is consensus, though, that the features for

the actor and critic do not have to be chosen independently.

Several actor-critic algorithms use the exact same set of

features for both the actor and the critic, while the policy

gradient theorem indicates that it is best to first choose a

parameterization for the actor, after which compatible features

for the critic can be derived. In this sense, the use of compat-

ible features is beneficial as it lessens the burden of choosing

a separate parameterization for the value function. Note that

compatible features do not eliminate the burden of choosing

features for the value function completely (see Section III-D).

Adding state-dependent features to the value function on top

of the compatible features remains an important task as this

is the only way to further reduce the variance in the policy

gradient estimates. How to choose these additional features

remains a difficult problem.

Choosing a good parameterization for the policy in the first

place also remains an important issue as it highly influences

the performance after learning. Choosing this parameterization

does seem less difficult than for the value function, as in

practice it is easier to get an idea what shape the policy has

than the corresponding value function.

GRONDMAN et al.: A SURVEY OF ACTOR-CRITIC REINFORCEMENT LEARNING: STANDARD AND NATURAL POLICY GRADIENTS 15

One of the conditions for successful application of rein-

forcement learning in practice is that learning should be quick.

Although this paper focuses on gradient-based algorithms and

how to estimate this gradient, it should be noted that it is

not only the quality of the gradient estimate that influences

the speed of learning. Balancing the exploration and exploita-

tion of a policy and choosing good learning rate schedules

also have a large effect on this, although more recently

expectation-maximization (EM) methods that work without

learning rates have been proposed [84], [85]. With respect

to gradient type, the natural gradient seems to be superior

to the standard gradient. However, an example of standard

Q-learning on low-dimensional problems in [62] and relative

entropy policy search (REPS) [44] showed better results than

the natural gradient. Hence, even though the field of natural

gradient actor-critic methods is still a very promising area for

future research, it does not always show superior performance

compared to other methods. A number of applications which

use natural gradients are mentioned in this paper. The use

of compatible features makes it straightforward to calculate

approximations of natural gradients, which implies that any

actor-critic algorithm developed in the future should attempt

to use this type of gradient, as it speeds up learning without

any real additional computational effort.

ACKNOWLEDGMENT

The authors are grateful for the very helpful comments and

suggestions that were received during the reviewing process.

REFERENCES

[1] V. R. Konda and J. N. Tsitsiklis, “On Actor-Critic Algorithms,” SIAM

Journal on Control and Optimization, vol. 42, no. 4, pp. 1143–1166,
2003.

[2] S. Richter, D. Aberdeen, and J. Yu, “Natural Actor-Critic for Road
Traffic Optimisation,” in Advances in Neural Information Processing

Systems 19. MIT Press, 2007, pp. 1169–1176.

[3] J. A. Boyan, “Technical Update: Least-Squares Temporal Difference
Learning,” Machine Learning, vol. 49, pp. 233–246, 2002.

[4] J. Baxter and P. L. Bartlett, “Infinite-Horizon Policy-Gradient Estima-
tion,” Journal of Artificial Intelligence Research, vol. 15, pp. 319–350,
2001.

[5] H. R. Berenji and D. Vengerov, “A Convergent Actor-Critic-Based
FRL Algorithm with Application to Power Management of Wireless
Transmitters,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 4, pp.
478–485, 2003.

[6] R. S. Sutton, “Learning to Predict by the Methods of Temporal Differ-
ences,” Machine Learning, vol. 3, pp. 9–44, 1988.

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

[8] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
Learning: A Survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[9] A. Gosavi, “Reinforcement Learning: A Tutorial Survey and Recent
Advances,” INFORMS Journal on Computing, vol. 21, no. 2, pp. 178–
192, 2009.

[10] C. Szepesvári, “Algorithms for Reinforcement Learning,” in Synthesis

Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2010.

[11] T. Hanselmann, L. Noakes, and A. Zaknich, “Continuous-Time Adaptive
Critics,” IEEE Transactions on Neural Networks, vol. 18, no. 3, pp. 631–
647, 2007.

[12] K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm to
solve the continuous-time infinite horizon optimal control problem,”
Automatica, vol. 46, no. 5, pp. 878–888, 2010.

[13] P. Pennesi and I. C. Paschalidis, “A Distributed Actor-Critic Algorithm
and Applications to Mobile Sensor Network Coordination Problems,”
IEEE Transactions on Automatic Control, vol. 55, no. 2, pp. 492–497,
2010.

[14] C. Li, M. Wang, and Q. Yuan, “A Multi-Agent Reinforcement Learning
Using Actor-Critic Methods,” in Proceedings of the Seventh Interna-

tional Conference on Machine Learning and Cybernetics, Kunming,
China, 2008, pp. 878–882.

[15] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst, Reinforcement

Learning and Dynamic Programming Using Function Approximators,
ser. Automation and Control Engineering Series. CRC Press, 2010.

[16] J. Peters and S. Schaal, “Natural Actor-Critic,” Neurocomputing, vol. 71,
pp. 1180–1190, 2008.

[17] V. S. Borkar, “A sensitivity formula for risk-sensitive cost and the actor-
critic algorithm,” Systems & Control Letters, vol. 44, no. 5, pp. 339–346,
2001.

[18] D. P. Bertsekas, Dynamic Programming and Optimal Control, Volume

II, 3rd ed. Athena Scientific, 2007.

[19] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy Gradient
Methods for Reinforcement Learning with Function Approximation,” in
Advances in Neural Information Processing Systems 12. MIT Press,
2000, pp. 1057–1063.

[20] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural
actor-critic algorithms,” Automatica, vol. 45, no. 11, pp. 2471–2482,
2009.

[21] C. J. C. H. Watkins, “Learning from Delayed Rewards,” Ph.D. disserta-
tion, King’s College, University of Cambridge, 1989.

[22] C. J. C. H. Watkins and P. Dayan, “Q-Learning,” Machine Learning,
vol. 8, pp. 279–292, 1992.

[23] S. J. Bradtke, B. E. Ydstie, and A. G. Barto, “Adaptive linear quadratic
control using policy iteration,” in Proceedings of the American Control

Conference, Baltimore, USA, 1994, pp. 3475–3479.

[24] G. A. Rummery and M. Niranjan, “On-Line Q-Learning Using
Connectionist Systems,” Cambridge University, Tech. Rep. CUED/F-
INFENG/TR 166, 1994.

[25] L. Baird, “Residual Algorithms: Reinforcement Learning with Function
Approximation,” in Proceedings of the 12th International Conference

on Machine Learning, Tahoe City, USA, 1995, pp. 30–37.

[26] G. J. Gordon, “Stable Function Approximation in Dynamic Program-
ming,” in Proceedings of the 12th International Conference on Machine

Learning, Tahoe City, USA, 1995, pp. 261–268.

[27] J. N. Tsitsiklis and B. Van Roy, “Feature-Based Methods for Large Scale
Dynamic Programming,” Machine Learning, vol. 22, pp. 59–94, 1996.

[28] ——, “An Analysis of Temporal-Difference Learning with Function
Approximation,” IEEE Transactions on Automatic Control, vol. 42,
no. 5, pp. 674–690, 1997.

[29] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, “An Analysis of Reinforce-
ment Learning with Function Approximation,” in Proceedings of the

25th International Conference on Machine Learning, Helsinki, Finland,
2008, pp. 664–671.

[30] R. Schoknecht, “Optimality of Reinforcement Learning Algorithms with
Linear Function Approximation,” in Advances in Neural Information

Processing Systems 15. MIT Press, 2003, pp. 1555–1562.

[31] A. Lazaric, M. Ghavamzadeh, and R. Munos, “Finite-Sample Analysis of
LSTD,” in Proceedings of the 27th International Conference on Machine

Learning, Haifa, Israel, 2010, pp. 615–622.

[32] V. Gullapalli, “A Stochastic Reinforcement Learning Algorithm for
Learning Real-Valued Functions,” Neural Networks, vol. 3, no. 6, pp.
671–692, 1990.

[33] R. J. Williams, “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning,” Machine Learning, vol. 8, pp.
229–256, 1992.

[34] J. A. Bagnell and J. Schneider, “Policy Search in Kernel Hilbert Space,”
Carnegie Mellon University, Tech. Rep. 80, 2003.

[35] K. Kersting and K. Driessens, “Non-Parametric Policy Gradients: A Uni-
fied Treatment of Propositional and Relational Domains,” in Proceedings

of the 25th International Conference on Machine Learning, Helsinki,
Finland, 2008, pp. 456–463.

[36] V. M. Aleksandrov, V. I. Sysoyev, and V. V. Shemeneva, “Stochastic
Optimization,” Engineering Cybernetics, vol. 5, pp. 11–16, 1968.

[37] P. W. Glynn, “Likelihood Ratio Gradient Estimation: An Overview,” in
Proceedings of the 1987 Winter Simulation Conference. Atlanta, USA:
ACM Press, 1987, pp. 366–375.

[38] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural Networks, vol. 21, no. 4, pp. 682–697, 2008.

16 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

[39] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming,
ser. Modern Analytic and Computational Methods in Science and
Mathematics. American Elsevier Publishing Company, Inc., 1970,
vol. 24.

[40] P. Dyer and S. R. McReynolds, The Computation and Theory of Optimal

Control, ser. Mathematics in Science and Engineering. Academic Press,
Inc., 1970, vol. 65.

[41] L. Hasdorff, Gradient Optimization and Nonlinear Control. John Wiley
& Sons, Inc., 1976.

[42] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A Model-Based and
Data-Efficient Approach to Policy Search,” in Proceedings of the 28th

International Conference on Machine Learning, Bellevue, WA, USA,
2011, pp. 465–472.

[43] M. Riedmiller, J. Peters, and S. Schaal, “Evaluation of Policy Gradient
Methods and Variants on the Cart-Pole Benchmark,” in Proceedings

of the IEEE Symposium on Approximate Dynamic Programming and

Reinforcement Learning, Honolulu, USA, 2007, pp. 254–261.

[44] J. Peters, K. Mülling, and Y. Altün, “Relative Entropy Policy Search,”
in Proceedings of the 24th AAAI Conference on Artificial Intelligence,
Atlanta, USA, 2010, pp. 1607–1612.

[45] I. H. Witten, “An Adaptive Optimal Controller for Discrete-Time
Markov Environments,” Information and Control, vol. 34, pp. 286–295,
1977.

[46] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike Adaptive
Elements That Can Solve Difficult Learning Control Problems,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 13, no. 5, pp. 834–
846, 1983.

[47] S. J. Bradtke and A. G. Barto, “Linear Least-Squares Algorithms for
Temporal Difference Learning,” Machine Learning, vol. 22, pp. 33–57,
1996.

[48] L. Baird and A. Moore, “Gradient Descent for General Reinforcement
Learning,” in Advances in Neural Information Processing Systems 11.
MIT Press, 1999.

[49] J. N. Tsitsiklis and B. Van Roy, “Average cost temporal-difference
learning,” Automatica, vol. 35, no. 11, pp. 1799–1808, 1999.

[50] I. C. Paschalidis, K. Li, and R. M. Estanjini, “An Actor-Critic Method
Using Least Squares Temporal Difference Learning,” in Proceedings of

the Joint 48th IEEE Congress on Decision and Control and 28th Chinese

Control Conference, Shanghai, China, 2009, pp. 2564–2569.

[51] S. Kakade, “ Natural Policy Gradient,” in Advances in Neural Informa-

tion Processing Systems 14. MIT Press, 2001, pp. 1531–1538.

[52] J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement Learning for
Humanoid Robotics,” in Proceedings of the Third IEEE-RAS Interna-

tional Conference on Humanoid Robots, Karlsruhe, Germany, 2003.

[53] Y. Cheng, J. Yi, and D. Zhao, “Application of Actor-Critic Learning to
Adaptive State Space Construction,” in Proceedings of the Third Inter-

national Conference on Machine Learning and Cybernetics, Shanghai,
China, 2004, pp. 2985–2990.

[54] X. Wang, Y. Cheng, and J. Yi, “A fuzzy Actor-Critic reinforcement
learning network,” Information Sciences, vol. 177, pp. 3764–3781, 2007.

[55] C. Niedzwiedz, I. Elhanany, Z. Liu, and S. Livingston, “A Consolidated
Actor-Critic Model with Function Approximation for High-Dimensional
POMDPs,” in AAAI 2008 Workshop for Advancement in POMDP

Solvers, Chicago, USA, 2008, pp. 37–42.

[56] S. Bhatnagar, “An actor-critic algorithm with function approximation
for discounted cost constrained Markov decision processes,” Systems &

Control Letters, vol. 59, no. 12, pp. 760–766, 2010.

[57] C. Li, M. Wang, Z. Sun, and Z. Zhang, “Urban Traffic Signal Learning
Control Using Fuzzy Actor-Critic Methods,” in Proceedings of the Fifth

International Conference on Natural Computation, Tianjin, China, 2009,
pp. 368–372.

[58] H. Kimura, T. Yamashita, and S. Kobayashi, “Reinforcement Learning
of Walking Behavior for a Four-Legged Robot,” in Proceedings of the

40th IEEE Conference on Decision and Control, Orlando, USA, 2001,
pp. 411–416.

[59] C. Raju, Y. Narahari, and K. Ravikumar, “Reinforcement Learning Ap-
plications in Dynamic Pricing of Retail Markets,” in IEEE International

Conference on E-Commerce, Newport Beach, USA, 2003, pp. 339–346.

[60] J. Park, J. Kim, and D. Kang, “An RLS-Based Natural Actor-Critic
Algorithm for Locomotion of a Two-Linked Robot Arm,” in Lecture

Notes on Artificial Intelligence 3801. Springer-Verlag Berlin Heidel-
berg, 2005, pp. 65–72.

[61] S. Girgin and P. Preux, “Basis Expansion in Natural Actor Critic
Methods,” in Lecture Notes in Artificial Intelligence 5323. Springer-
Verlag Berlin Heidelberg, 2008, pp. 110–123.

[62] H. Kimura, “Natural Gradient Actor-Critic Algorithms using Random
Rectangular Coarse Coding,” in Proceedings of the SICE Annual Con-

ference, Chofu, Japan, 2008, pp. 2027–2034.
[63] B. Kim, J. Park, S. Park, and S. Kang, “Impedance Learning for

Robotic Contact Tasks Using Natural Actor-Critic Algorithm,” IEEE

Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,
vol. 40, no. 2, pp. 433–443, 2010.

[64] Y. Nakamura, T. Mori, M.-a. Sato, and S. Ishii, “Reinforcement learning
for a biped robot based on a CPG-actor-critic method,” Neural Networks,
vol. 20, pp. 723–735, 2007.

[65] A. El-Fakdi and E. Galceran, “Two Steps Natural Actor Critic Learning
for Underwater Cable Tracking,” in Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation, Anchorage, USA, 2010,
pp. 2267–2272.

[66] D. Vengerov, N. Bambos, and H. R. Berenji, “A Fuzzy Reinforcement
Learning Approach to Power Control in Wireless Transmitters,” IEEE

Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,
vol. 35, no. 4, pp. 768–778, 2005.

[67] W. Usaha and J. A. Barria, “Reinforcement Learning for Resource
Allocation in LEO Satellite Networks,” IEEE Transactions on Systems,

Man, and Cybernetics—Part B: Cybernetics, vol. 37, no. 3, pp. 515–527,
2007.

[68] T. Morimura, E. Uchibe, J. Yoshimoto, and K. Doya, “A Generalized
Natural Actor-Critic Algorithm,” in Advances in Neural Information

Processing Systems 22. MIT Press, 2009, pp. 1312–1320.
[69] A. L. Samuel, “Some Studies in Machine Learning Using the Game of

Checkers,” IBM Journal of Research and Development, vol. 3, no. 3,
pp. 211–229, 1959.

[70] C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller —
Part I,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 20,
no. 2, pp. 404–418, 1990.

[71] J. C. Spall, “Multivariate Stochastic Approximation Using a Simul-
taneous Perturbation Gradient Approximation,” IEEE Transactions on

Automatic Control, vol. 37, no. 3, pp. 332–341, 1992.
[72] J. L. Williams, J. W. Fisher III, and A. S. Willsky, “Importance Sampling

Actor-Critic Algorithms,” in Proceedings of the 2006 American Control

Conference, Minneapolis, USA, 2006, pp. 1625–1630.
[73] S. Amari and S. C. Douglas, “Why Natural Gradient?” in Proceedings

of the IEEE International Conference on Acoustics, Speech and Signal

Processing, Seattle, USA, 1998, pp. 1213–1216.
[74] J. A. Bagnell and J. Schneider, “Covariant Policy Search,” in Proceed-

ings of the 18th International Joint Conference on Artificial Intelligence,
Acapulco, Mexico, 2003, pp. 1019–1024.

[75] S. Amari, “Natural Gradient Works Efficiently in Learning,” Neural

Computation, vol. 10, no. 2, pp. 251–276, 1998.
[76] F. S. Melo and M. Lopes, “Fitted Natural Actor-Critic: A New Al-

gorithm for Continuous State-Action MDPs,” in Proceedings of the

European conference on Machine Learning and Knowledge Discovery

in Databases, Antwerp, Belgium, 2008, pp. 66–81.
[77] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Incremental

Natural Actor-Critic Algorithms,” in Advances in Neural Information

Processing Systems 20, 2008, pp. 105–112.
[78] T. Morimura, E. Uchibe, J. Yoshimoto, and K. Doya, “A New Natural

Policy Gradient by Stationary Distribution Metric,” in Lecture Notes in

Artificial Intelligence 5212. Springer-Verlag Berlin Heidelberg, 2008,
pp. 82–97.

[79] T. Morimura, E. Uchibe, J. Yoshimoto, J. Peters, and K. Doya,
“Derivatives of logarithmic stationary distributions for policy gradient
reinforcement learning,” Neural Computation, vol. 22, no. 2, pp. 342–
376, 2010.

[80] H. Benbrahim, J. Doleac, J. A. Franklin, and O. Selfridge, “Real-Time
Learning: a Ball on a Beam,” in Proceedings of the International Joint

Conference on Neural Networks, Baltimore, USA, 1992, pp. 98–103.
[81] V. Gullapalli, “Learning Control Under Extreme Uncertainty,” in Ad-

vances in Neural Information Processing Systems 5. Morgan Kaufmann
Publishers, 1993, pp. 327–334.

[82] H. Benbrahim and J. A. Franklin, “Biped dynamic walking using
reinforcement learning,” Robotics and Autonomous Systems, vol. 22, pp.
283–302, 1997.

[83] V. R. Konda and V. S. Borkar, “Actor-Critic–Type Learning Algorithms
for Markov Decision Processes,” SIAM Journal on Control and Opti-

mization, vol. 38, no. 1, pp. 94–123, 1999.
[84] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”

Machine Learning, vol. 84, pp. 171–203, 2011.
[85] N. Vlassis, M. Toussaint, G. Kontes, and S. Piperidis, “Learning model-

free robot control by a Monte Carlo EM algorithm,” Autonomous Robots,
vol. 27, no. 2, pp. 123–130, 2009.

GRONDMAN et al.: A SURVEY OF ACTOR-CRITIC REINFORCEMENT LEARNING: STANDARD AND NATURAL POLICY GRADIENTS 17

Ivo Grondman received the B.Sc. degrees in applied
mathematics and telematics from the University of
Twente, Enschede, The Netherlands, in 2007 and the
M.Sc. degree (with merit) in control systems from
Imperial College London, London, U.K., in 2008.
He is currently working toward the Ph.D. degree at
the Delft Center for Systems and Control, Faculty
of 3mE, Delft University of Technology, Delft, The
Netherlands.

After graduation, he held a position with Math-
Works, Cambridge, U.K., until 2009. His research

interests include (approximate) dynamic programming and reinforcement
learning, (optimal) control theory, neural networks and computational intelli-
gence methods.

Lucian Buşoniu received the M.Sc. degree (vale-
dictorian) from the Technical University of Cluj-
Napoca, Cluj-Napoca, Romania, in 2003 and the
Ph.D. degree (cum laude) from the Delft University
of Technology, Delft, The Netherlands, in 2009.

He is a research scientist with CNRS, Research
Center for Automatic Control, University of Lor-
raine, Nancy, France. He is also with the Depart-
ment of Automation, Technical University of Cluj-
Napoca, Romania. His research interests include
reinforcement learning and dynamic programming

with function approximation, planning-based methods for nonlinear stochastic
control, multiagent learning, and, more generally, intelligent and learning
techniques for control. He has authored a book as well as a number of journal,
conference, and chapter publications on these topics.

Dr. Buşoniu was the recipient of the 2009 Andrew P. Sage Award for
the best paper in the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS.

Gabriel Lopes received his “Licenciatura” degree
(with honors) in Aerospace Engineering from In-
stituto Superior Técnico, Universidade Técnica de
Lisboa, Portugal in 1998. During that period he won
a “Youth Researcher” grant for the project “Compu-
tational Dynamics of Articulated Human Motion”.
He received his M.Sc. (2003) and Ph.D. (2007) in
Electric Engineering and Computer Science from the
University of Michigan, USA, with a grant from
Fundação para a Ciência e Tecnologia, Portugal.
Starting in 2005 he spent 3 years at the GRASP

laboratory at the University of Pennsylvania, USA. In 2008 he joined the
Delft Center for Systems and Control at the Delft University of Technology,
Netherlands, as a Postdoctoral fellow. Since 2010, he is an Assistant Professor
in that institution. He was a finalist for the Best Student Paper Award at the
2000 IEEE Conference on Decision and Control.

His research interests include geometric control, learning control, and
discrete-event systems.

Robert Babuška received the M.Sc. degree (cum
laude) in control engineering from the Czech Tech-
nical University in Prague, in 1990, and the Ph.D.
degree (cum laude) from the Delft University of
Technology, the Netherlands, in 1997. He has had
faculty appointments at the Technical Cybernet-
ics Department of the Czech Technical University
Prague and at the Electrical Engineering Faculty of
the Delft University of Technology. Currently, he is
a Professor of Intelligent Control and Robotics at
the Delft Center for Systems and Control.

His research interests include reinforcement learning, neural and fuzzy
systems, identification and state-estimation, nonlinear model-based and adap-
tive control and dynamic multi-agent systems. He has been working on
applications of these techniques in the fields of robotics, mechatronics, and
aerospace.

