
36

A Survey of Address Translation Technologies for Flash Memories

DONGZHE MA, JIANHUA FENG, and GUOLIANG LI, Tsinghua University

Flash is a type of Electronically Erasable Programmable Read-Only Memory (EEPROM). Different from
traditional magnetic disks, flash memories have no moving parts and are purely electronic devices, giving
them unique advantages, such as lower access latency, lower power consumption, higher density, shock
resistance, and lack of noise. However, existing applications cannot run directly on flash memories due to
their special characteristics. Flash Translation Layer (FTL) is a software layer built on raw flash memories
that emulates a normal block device like magnetic disks. Primary functionalities of the FTL include address
translation, garbage collection, and wear leveling. This survey focuses on address translation technologies
and provides a broad overview of existing schemes described in patents, journals, and conference proceedings.

Categories and Subject Descriptors: B.7.1 [Integrated Circuits]: Types and Design Styles—Memory tech-

nologies; D.4.2 [Operating Systems]: Storage Management—Secondary storage; D.4.3 [Operating Sys-

tems]: File Systems Management—File organization; D.4.5 [Operating Systems]: Reliability—Fault-

tolerance; E.5 [Files]—Organization/structure

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Flash memory, flash translation layer, wear leveling, garbage collection

ACM Reference Format:

Dongzhe Ma, Jianhua Feng, and Guoliang Li, 2014. A survey of address translation technologies for flash
memories. ACM Comput. Surv. 46, 3, Article 36 (January 2014), 39 pages.
DOI: http://dx.doi.org/10.1145/2512961

1. INTRODUCTION

Flash memory was invented more than two decades ago [Wikipedia 2012c]. However,
flash memories started to become an affordable alternative to traditional disks only
recently, and flash technology has started to attract the attention of the industrial and
the academic communities.

There are two major categories of flash memories dominating the flash memory
market today, namely NOR and NAND, both invented by Dr. Fujio Masuoka at Toshiba
in 1980s [Wikipedia 2012c]. The commercial NOR flash product was introduced by Intel
in 1988, and Toshiba introduced NAND architecture in 1989 [Tal 2003]. NOR flash
provides independent address and data buses and thus allows a single byte to be read
or written independently. Many devices use NOR to store and run small programs,
such as graphic cards, magnetic disk drives, and the BIOS, exploiting its eXecute In

This work was partly supported by the National Natural Science Foundation of China under Grant Nos.
61003004 and 61272090, National Grand Fundamental Research 973 Program of China under Grant No.
2011CB302206, a project of Tsinghua University under Grant No. 20111081073, Tsinghua-Tencent Joint
Laboratory for Internet Innovation Technology, and the “NExT Research Center” funded by MDA, Singapore,
under Grant No. WBS:R-252-300-001-490.
Authors’ address: D. Ma (corresponding author), J. Feng, and G. Li, Department of Computer Science
and Technology, Tsinghua University, Beijing 100084, P.R. China; email: mdzfirst@gmail.com, {fengjh,
liguoliang}@tsinghua.edu.cn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0360-0300/2014/01-ART36 $15.00

DOI: http://dx.doi.org/10.1145/2512961

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

http://dx.doi.org/10.1145/2512961
http://dx.doi.org/10.1145/2512961

36:2 D. Ma et al.

Fig. 1. Structure of a flash memory cell. Basically, it is a standard transistor with an additional floating
gate below its control gate. The floating gate is surrounded by an oxide layer so that electrons can be trapped
to represent information.

Place (XIP) capability. Although its characteristic makes it a perfect replacement of
traditional Read-Only Memory (ROM), NOR suffers from extremely long write and
erase latencies. On the other hand, NAND is more like magnetic disks, where address
and data share the same I/O interface, and therefore NAND can only be read or written
by pages. However, since each storage cell requires less area than NOR, allowing higher
density and lower cost per bit, NAND has become a perfect candidate for secondary
storage. Besides, the write and erase performance of NAND is improved,1 and the
endurance is also enhanced.

Although some NOR-based technologies are also introduced in this survey, we focus
on NAND flash memories because NAND dominates the storage market today.

1.1. Principle of Operations

Flash memory stores information in an array of storage cells that are quite similar to
the Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). However, unlike
the standard transistor, a flash cell has an extra floating gate below the control gate,
which is insulated from the control gate by a thin oxide layer. Figure 1 shows the basic
structure of a flash cell.

When the voltage between the control gate and the source exceeds a certain threshold
voltage VT , the transistor will conduct. Information stored in a cell is represented by
its VT , which can be modified by adding and removing electrons to and from the
floating gate. Once an electron is injected into the floating gate, it is insulated by
the oxide layer unless there is a leakage, in which case a single bit error occurs.
Modern enterprise-level NAND products can retain static (read-only) data at normal
temperature for at least 10 years if the blocks are cycled less than 10 percent of the
specified maximum endurance [Samsung 1999; Liu et al. 2012].2 To determine the
amount of charge trapped in the floating gate, one or more voltage levels are applied
to the cell and the transistor is sensed to see whether it is conducting.

1.2. Single- and Multilevel Cell Technology

As mentioned in Section 1.1, the state of the flash cell represents the data stored. The
Single-Level Cell (SLC) technology defines two states for a single cell and thus can
store a single bit of information, whereas the Multilevel Cell (MLC)3 technology may

1NOR has a sightly faster read performance than NAND [Tal 2003].
2MLCs tend to have shorter retention time than SLCs because of the smaller difference between voltage
levels. There are also some works on improving the performance or endurance of flash-based Solid-State
Drives (SSDs) by trading the data retention time (to 1 year or even a few months) [Pan et al. 2012; Liu et al.
2012; Mohan et al. 2012]. They are, however, out of the scope of this survey.
3Some manufacturers use Triple-Level Cell (TLC) to describe devices that can store three bits in a single
cell. In our classification, MLC includes all devices that are not SLC.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:3

Fig. 2. Flash package organization.

Table I. Organizations of NAND Flash Blocks

Block Size Page Size OOB Size # Pages/Block

Small-block SLC 16KB 512 bytes 16 bytes 32

Large-block SLC 128KB 2KB 64 bytes 64

Large-block MLC 512KB 4KB 128 bytes 128

store more bits by defining more voltage levels for a single transistor [Dan and Singer
2003; Super Talent 2008]. Generally speaking, to store k bits in a single cell, 2k voltage
levels need to be supported by the transistor.

It is obvious that the MLC technology greatly increases the density of the flash chip
and reduces the average cost per bit. These advantages are achieved at the sacrifice
of performance and reliability, because it will take more time to place and sense the
charge precisely, which implicitly extends the duration of high voltage applied to the
transistor, and the closer two adjacent voltage levels are, the more likely errors will
happen.

Generally, SLC flash is used in industry-grade devices to provide high performance
and stable reliability, whereas MLC flash is often used in consumer products, such as
MP3 players, USB flash drives, and flash cards.

1.3. Organization

Figure 2 shows the typical organization of a NAND flash package. A NAND flash pack-
age consists of several dies that share the same I/O bus and can operate independently.
A die is made up of several planes, each of which owns an independent data register.
A plane consists of a constant number of blocks that are the basic unit of erase op-
erations, and a block is further divided into a constant number of pages, which are
the granularity of read and write operations. Most flash manufacturers also provide in
their products a spare area for each page to store some Out-Of-Band (OOB) data. OOB
data includes the Logical Page Number (LPN) or the Logical Block Number (LBN), the
Error Detection/Correction Code (EDC/ECC), and the state flags of the page. Typical
organizations of NAND blocks are summarized in Table I [Micron 2007; Super Talent
2008; Kang et al. 2007]. (NOR flash can be read and written in bytes and typical block
sizes range from 64KB to 256KB [Wikipedia 2012c].)

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:4 D. Ma et al.

Basically, new generations of flash products tend to have larger block size to provide
high density by reducing gaps between blocks. Larger page size can also help improve
the write throughput by allowing more bits to be programmed in parallel.

1.4. Characteristics

In this section, we summarize four special characteristics that make flash memory
different from traditional magnetic disks [Norheim 2008; Grupp et al. 2009].

—No In-Place Update. Like other Electronically Erasable Programmable Read-Only
Memory (EEPROM) devices, a used page in flash memory has to be erased before
it can be programmed again, because write operation can only change the state of
a bit from 1 to 0.4 Worse still, flash memory can only be erased in blocks, which is
much larger than the granularity of read and write operations. If a single page is
to be updated in the in-place manner like in magnetic disk, content of the whole
block needs to be copied to Random Access Memory (RAM), updated as required, and
written back after the block is erased. This inefficient method will not only affect the
endurance of the flash chip due to excessive erase operations but also will bring a
potential reliability problem, as if the system crashes after the erase operation, all
data that have not been written back will be lost.5 Therefore, out-of-place updates
are usually adopted in flash memory. In other words, when a page is going to be
updated, the overwriting data is always put in a newly allocated page.

—Limit Number of Program/Erase Cycles. After a certain number of program/erase
cycles, some blocks may wear out due to the breakdown of the oxide layer of tran-
sistors. The value is usually around 1,000 to 100,000, depending on the type of the
memory and the manufacturing technique. For the sake of yield cost considerations,
NAND devices are produced with some backup blocks to replace scattered bad ones.
Before shipped to consumers, the imperfect device is scanned and invalid blocks
are identified and mapped to backup ones. Remaining backup blocks can be used to
replace worn-out ones afterward but will be exhausted eventually. Therefore, erase
operations need to be distributed across the entire device evenly to prolong the life
span of the flash chip. This is also known as the wear leveling technology.

—No Mechanical Latency. Unlike magnetic disks, flash memory has no moving parts,
such as the motor, the moving arms and heads, and the rotating platters. There-
fore, flash memory does not have to suffer the seek or rotation latency. As a result,
random accesses of flash memory can be as fast as sequential scans, which makes a
distinguished feature compared with magnetic disks.

—Asymmetric Speed of Read/Write. Injecting electrons into the floating gate of a tran-
sistor always takes longer than sensing its status, resulting in an asymmetric per-
formance between read and write. Traditional applications usually assume that the
latencies of read and write operations are almost the same, as is true for magnetic
disks, and therefore need further tuning to work with flash memories. Most perfor-
mance optimizations for flash memory focus on reducing the amount of write and
erase operations (including data migration during garbage collections).

1.5. Programming Restrictions

1.5.1. Partial Page Programming. Some flash products support partial page program-
ming. In other words, each page can be divided into several segments, and each seg-
ment can be programmed individually [Samsung 1999]. This Number Of Partial (NOP)

4Many devices allow a page to be programmed many times. Refer to Section 1.5.1 for more details.
5Although some high-end products are equipped with capacitor arrays to provide power-loss data protection
[OBrien 2012; Intel 2012] (e.g., write operations [Birrell et al. 2007]), most flash devices only guarantee the
atomicity of a single write operation.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:5

Fig. 3. An example of sequential page programming. Suppose a block consists of 8 pages, and within a
program/erase cycle, pages 0, 1, 3, and 5 are used. The only acceptable programming order is the incremental
one. If another page of data is going to be written in this block, only pages 6 and 7 can be allocated. Pages 2
and 4 will remain unusable until the whole block is erased.

page programs is usually less than 10 and varies from device to device. Although sup-
porting partial page programming is quite helpful when implementing a journaling
file system or a database management system [Lee and Moon 2007], MLC devices no
longer support this feature [Dan and Singer 2003]. As a result, some flash-based file
systems choose not to use the spare area other than keeping the EDC/ECC field and
the bad block flag.

1.5.2. Sequential Page Programming. In SLC flash, pages in the same block can be pro-
grammed in any order. This is of vital importance to some Flash Translation Layer
(FTL) technologies introduced in this article, since they require that data should
reside in offsets corresponding with their addresses. Again, MLC flash disables this
feature so that no page has to suffer from program disturbs caused by its adjacent pages
twice [Dan and Singer 2003; Samsung 2009; Grupp et al. 2009]. It should be noted that
the sequential page programming requires that pages in a block can only be pro-
grammed sequentially, and there is no need to use every page. An example following
the rule of sequential page programming is given in Figure 3.

2. FLASH TRANSLATION LAYER

FTL is a software layer built on raw flash memories that emulates a normal block device
like magnetic disks. Employing some type of FTL is the most straightforward way to
deploy a flash-based application. One drawback of this choice lies in that most FTLs are
designed for general purposes, and an application can hardly tune its performance. At
the same time, some applications choose to work on flash memories directly, realizing
the functionalities of FTL themselves. In both cases, address translation is an essential
mechanism to all flash-based applications.

2.1. Functionalities

FTL is in essence a combination of several important mechanisms that are unavoidable
when deploying a flash device. In this section, major functionalities of the FTL are
introduced.

—Address Translation. As explained in Section 1.4, whenever a page is to be updated,
new data are always put in a newly allocated page. Since most applications are not
designed to track the continuous changes of the physical locations of data, a software
layer, namely FTL, is usually employed to track the most up-to-date data. Upper
applications use logical addresses, which do not change during operations.

—Garbage Collection. The update manner of flash memory will definitely generate
many invalid data, which need to be erased. FTL is responsible to implement this
mechanism, because traditional disk-based applications do not care about garbage
collection. Garbage collection consists of three steps. First, a victim block is selected
according to some policy. Second, valid pages are copied to a different block. Third,
the victim is erased and put in the free list. Modern flash-based Solid-State Drives
(SSDs) provide a TRIM command that allows the operating system to inform the SSD
that some pages of data are no longer valid due to data deletion [Wikipedia 2012d].

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:6 D. Ma et al.

Garbage collection can be carried out in the background or evoked on demand. Some
SSD products implement background garbage collection in order to overlap the con-
sequent overhead with other operations [Wikipedia 2012e].

—Wear Leveling. Wear leveling techniques try to prolong the life span of flash memories
by distributing erase operations across the entire memory. Wear leveling involves
many issues, such as how to identify worn-out blocks, which blocks to reclaim, and
where to put the valid data.

—Parallelization and Load Balancing. Different dies in a NAND flash package have
separate chip enable and ready/busy signals and can operate independently without
competing for the flash channel, while several (e.g., two) planes in the same die can
execute the same type of operations concurrently [Agrawal et al. 2008; Shin et al.
2009]. Therefore, parallel executions of FTL operations, such as address translation
and garbage collection, can be exploited. For skewed access patterns, FTL is also
responsible to balance the load for the sake of stable performance. RAID techniques,
such as striping and dynamic allocation, have been intensively studied, which may
help design high-performance FTLs.

—Worn-Out Block Management. During read and write operations, some fatal errors
may be detected. FTL is responsible to manage this information and prohibit allo-
cating or reclaiming those worn-out blocks.

These functionalities are relatively independent yet are also connected. Address
translation may trigger a garbage collection procedure when the number of free
blocks drops below a certain threshold, and garbage collection needs the assistance
of address translation mechanism to relocate valid data in erase victims. Meanwhile,
the address translation scheme that a device uses may also affect the garbage collection
algorithm because of specific data layouts. Wear leveling policy, as well as worn-out
block management, affects the allocation of free blocks and the victim selection of
garbage collection, and, as a result, is related to the two previous components. At
last, if parallel processing is supported, all other functionalities need to be carefully
designed. Striping-based allocation improves parallelism but will harm the locality
ofreference. Shin et al. [2009] provides a profound discussion about this issue.

Among these functionalities, address translation plays the most important role, from
which FTL gets its name. It should be noted that the file system community adopts
another way to cope with the out-of-place update requirement. Most, if not all, flash
file systems (e.g., JFFS [Woodhouse 2001], YAFFS [Manning 2012], LogFS [Engel and
Mertens 2005; LogFS Specification 2012], UBIFS [UBIFS 2013]) are log structured.
The first log-structured file system [Rosenblum and Ousterhout 1992] was designed to
improve the random write throughput of magnetic disks. All updates will be appended
at the end of a sequential log, and the metadata structure tracks the segments for
each file. The purpose of this mechanism is to perform sequential writes all the time
and avoid in-place update, which accords the requirement of flash memory perfectly.
Therefore, flash file systems do not employ any independent layer to perform address
translation and, as a result, have to face the wandering tree problem. Some of them
keep all metadata in main memory to support fast updates and rely on checkpoints to
support fast boot-up. In this survey, we focus on existing address translation techniques.

2.2. Architectures

There are two approaches to implement FTL in the system.
In embedded systems, FTL is usually implemented in the file system shown in

Figure 4(a), sharing the same CPU where user applications run. As introduced in the
previous section, many flash file systems do not employ any independent translation

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:7

Fig. 4. Architectures of FTL. In the first approach, there is no independent FTL, and the operating system
has to implement some important FTL functionalities (e.g., tracking the migration of data due to out-of-place
updates). In the second approach, FTL is implemented in the firmware of the device, and existing systems
can run atop them through standard interfaces (e.g., Serial ATA).

layer but track data migration themselves.6 They also have to carry out other FTL
functionalities, such as garbage collection and wear leveling.

Alternatively, in removable memory cards or SSDs, FTL is usually implemented in
the firmware (Figure 4(b)), which consists of a ROM (to store and run the code of FTL),
an SRAM7 (to store runtime data, mainly the referenced parts of, if not the whole,
mapping table), and a controller (to execute the FTL code).

2.3. Data Structures

There are two major data structures to implement address translation: a direct map
and an inverse map [Gal and Toledo 2005].

The direct map is the fundamental data structure of an FTL, which maps a logical
address to a physical address. The translation process can be as simple as an array
lookup, although it may also involve searching a tree. At the same time, a logical
address may need to go through several passes of translation to get its corresponding
physical address. The direct map usually resides in SRAM or the flash memory itself,
but for the sake of efficiency, at least the referenced parts of the direct map should be
kept in SRAM.

The inverse map is essentially made up of identifiers of flash pages or blocks, which
is always kept in flash memory. When scanning a physical page or block of a flash
memory, in order to identify valid data during garbage collection or recover the FTL
after a system failure, we can easily get its logical address from the inverse map.

In brief, the inverse map guarantees that we can always identify the logical address
of a page or block, and the direct map provides fast address translation. It should be
noted that an FTL may not necessarily employ a direct map and that not all FTLs store
a complete mirror of the direct map in permanent storage.

2.4. Metrics

Before further introduction, we provide some metrics that are useful to understand
the pros and cons of different FTL designs. Some of them depend on the mapping
granularity, whereas others rest with the choice of data structures and algorithms.

6When using file systems, one accesses data through directory structures and offsets within files rather than
device interfaces and addresses.
7SRAM is usually used due to its high performance and energy efficiency.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:8 D. Ma et al.

—Translation Performance. Performance of address translation depends on the choice
of data structures in the first place. Most FTL designs implement their mapping table
as an immediate lookup table, which supports fast lookups, whereas a few designs
employ some type of search trees, such as a B-tree. Besides, the storage of mapping
tables also plays an important role. Obviously, if the mapping table is small enough
to reside entirely in the SRAM, operations will be quite efficient. In other cases, the
mapping information is stored in the flash memory itself, either in the spare area or
in the data area, and I/O operations will be needed when the required parts are not
cached in the SRAM.

—SRAM Overhead. SRAM is a valuable resource to store at least part of the map-
ping table. Some FTLs are designed for small devices and can afford to keep the
entire mapping table in the SRAM, whereas others keep the entire mirror in flash
memory and cache the frequently referenced parts in the SRAM. The performance of
the latter is only acceptable when the operations present high locality. Meanwhile,
the amount of mapping information of variable-length mapping schemes depends
on the particular workload, leaving the SRAM overhead more unpredictable.

—Block Utilization. Block utilization is defined as the average number of pages pro-
grammed before a block is erased. Block utilization has a direct influence on the
number of erase operations, which affect the performance of the FTL as well as the
life span of the device.

—Garbage Collection Performance. During garbage collection procedures, valid pages in
the victim have to be moved to a different block. FTLs that are capable of separating
hot data from cold ones may take an advantage by reducing the movement of cold
data. Again, this affects the performance and the life span. Moreover, FTLs have to
find a way to update their mapping information efficiently to reflect the movement
of data.

—Fault Tolerance. For some embedded and mobile devices, it is highly possible that the
power is cut off suddenly. The ability of recovering a correct state is very important
to FTLs, because everything in the SRAM will be lost in case of failures. Some FTLs
rebuild the whole mapping table during initialization, whereas others rely on an
unreliable mirror in the flash memory. It is necessary for the latter type to identify
lost updates and apply them to the materialized but out-of-date mapping table.

2.5. Classifications

Most early FTL designs are for NOR-type flash only, which is widely used to replace
older on-board chips and also makes the basis of early flash-based removable media,
such as CompactFlash [Wikipedia 2012a]. Therefore, some of the early FTLs may not
work with NAND because NAND-type flash is not byte addressable.

In the early 2000s, NAND started to dominate the market [Samsung 2003], and
recent FTLs are mostly designed for NAND. NAND is usually treated as a permanent
storage device for user data, whose capacity can be hundreds of gigabytes; at the same
time, the capacity of NOR merely ranges from 1 to 32MB [Tal 2003]. As a result,
recent designers pay more attention to the scalability and update performance of their
designs.

According to the granularity of the mapping unit, existing FTL designs can be divided
into several categories: page-level, block-level, hybrid, log-based hybrid, and variable-
length mappings [Gal and Toledo 2005; Chung et al. 2006]. Both page- and block-level
schemes exist for NOR and NAND, and other granularities are mainly for NAND only.

As the name indicates, a page-level FTL maintains an entry for each page and is thus
able to translate an LPN directly to a Physical Page Number (PPN). This design is quite
flexible and efficient because it allows a page to be allocated to almost any position in
the memory, and at the same time, cold and hot (a.k.a. static and dynamic [Wikipedia

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:9

2012e]) data can be easily separated. This separation is very useful to control write
amplification [Wikipedia 2012e] and improve the performance. Hot data tends to be
updated more frequently than cold data. To reclaim the space occupied by out-of-date
data (usually hot ones), valid data (usually cold ones) located in the same block need
to be copied to another place. If all pages in the block have been invalidated, which
is common when hot data are collected, only a single erase operation is needed. One
drawback of the page-level FTLs is that the size of the mapping table is relatively large
compared with other granularities. Some page-level FTLs keep the entire mapping
table in the flash memory and load the referenced parts into the SRAM dynamically.

Different from page-level FTLs, a block-level FTL first divides an LPN into an LBN
and an in-block offset.8 The LBN is translated to a Physical Block Number (PBN), and
finally the physical block and its replacement blocks are searched to locate the required
page. Obviously, block-level FTLs bring quite small SRAM overhead,9 but the hot and
cold data are hardly separated.

Hybrid mapping FTLs try to take the advantages of both page- and block-level map-
ping schemes by applying page-level mapping to some data and block-level mapping to
others. This scheme can be further divided into two categories. Some hybrid FTLs treat
the two granularities equally and pages are directed according to their access pattern
or hotness, whereas other hybrid designs treat the fine mapping area as a buffer of
modifications to the coarse mapping area and these updates are periodically merged
with the original data. Update buffers in log-based hybrid mapping FTLs that employ
page-level mappings are usually called the Log Block Area (LBA), and the block-level
mapping area is referred as the Data Block Area (DBA).

It is also possible to adopt a variable-length granularity, which can be adjusted
according to the access pattern. Since the mapping units do not have an identical size
and may not be aligned to the boundaries of blocks, variable-length mapping FTLs can
only organize their mapping tables in form of a search tree, such as a B-tree.

In the rest of this survey, we will provide a brief introduction of existing address
translation schemes with different granularities.

3. EARLY FTL DESIGNS FOR NOR

3.1. SRAM-Based FTL

The simplest page-level FTL design is to keep in the SRAM the entire mapping table,
in which each element addressed by LPNs contains the corresponding PPN [Wu and
Zwaenepoel 1994; Estakhri and Assar 1998].

Each time a logical page is updated, a free page is allocated to accommodate the new
data and the SRAM-based mapping table is updated, as shown in Figure 5. It should
be noted that update of LPN 1 (see Figure 5(b)) is written to a different block from the
old data as well as the adjacent logical page, showing high flexibility and efficiency of
the page-level design.

When a physical block, say the first block in Figure 5(b), is selected as the victim of
garbage collection, all valid pages that it contains are copied to a different block as if
they are updated (Figure 5(c)), and then the victim can be erased.

There are two things to be considered about this FTL: scalability and reliability.
First, early NOR chips usually have a low density, and it is not a big problem to store
the mapping table in SRAM. Second, to protect the mapping table, eNVy [Wu and

8The LBN is not always calculated from an LPN. See Section 3.8 for more details.
9Consider a 1GB large-block SLC flash with 2KB pages and 128KB blocks (as shown in Table I). Each address
is 4 bytes wide. A block-level mapping table takes only 1GB/128KB * 4 bytes = 32KB, but a page-level FTL
requires 1GB/2KB * 4 bytes = 2MB to store the mapping table, just 64 (number of pages in a block) times
the size of a block-level mapping table.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:10 D. Ma et al.

Fig. 5. SRAM-based FTL. The page-level mapping table is stored entirely in the SRAM. It should be noted
that the logical address space does not have to be divided into logical blocks, as a logical page can be placed
anywhere in the device.

Fig. 6. CAM-based translation table. The two flag fields are used to indicate the state of an entry, and the
LPN field represents the logical page to which an entry belongs. All of these three fields are concatenated
together to serve a lookup request.

Zwaenepoel 1994] equips a battery to the SRAM, allowing the mapping table to live
even after system shutdown. Different from eNVy,Estakhri and Assar [1998] choose
to recover the mapping table after system boot-up by scanning all pages in the flash
memory. Considering the small capacity of NOR flash, the latency that it causes should
be acceptable.

Although quite simple, this design illustrates the basic mechanism about how FTL
works.

3.2. Content Addressable Memory-Based FTL

Early designers also suggest to use nonvolatile Content Addressable Memory (CAM)
to store the translation table, addressed by LPNs and their corresponding flags [Assar
et al. 1995].

Unlike RAM, CAM is designed to determine if a data word supplied by the user exists
anywhere in the memory. If the word is found, a list of addresses where the word can
be found is returned [Wikipedia 2012b].

As shown in Figure 6, each entry in the CAM-based translation table consists of
four fields: a free/used flag, a valid/invalid flag, an LPN, and a PPN. The free/used flag
indicates whether the entry has been used, and the valid/invalid flag indicates whether
the entry has been invalidated. Each entry is addressed by the former three fields. To
serve a lookup request, the LPN is concatenated with the set free/used flag (indicating
a used entry) and the unset valid/invalid flag (indicating a valid entry), forming the
lookup key of the translation table. When a page is updated, the address information
is written in a newly allocated entry, and the old one is invalidated by setting the

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:11

valid/invalid flag. Here, the out-of-date entry is not reused to avoid in-place update,
considering that the CAM itself may be formed of flash memory.

It should be noted that the PPN fields are not involved in the searching stage;
therefore, they can be ordinary flash memory or another type of EEPROM. The PPN
fields are stored explicitly rather than matching the physical address of an entry
(output of the CAM lookup) with the PPN of the data page, because if so, any defect in
the CAM will prevent the corresponding data page from being used.

Although CAM supports fast lookup, as is well known to all, each CAM cell requires
its own comparison circuit to detect a match with the input bit, and the comparison
results from all cells of a data word must be combined to form a word match result.
Besides, to make things worse, each flash page matches at least one entry in the CAM,
which means that the size of the CAM is linearly proportional to that of the flash chip.
These requirements do not only affect the integration of circuits but also increase the
cost of ownership.

3.3. Lookup by Searching

It is not always necessary to maintain a direct map between LPNs and PPNs. To get the
most up-to-date version of a page, we may simply scan the whole flash chip and compare
the LPN of each page [Assar et al. 1996]. When a match is found, corresponding flags
are examined, and if they indicate a valid page, the data is returned.

It is preferred to have a complete mirror of LPNs and flags in RAM, since RAM is
several orders of magnitude faster than flash memory. Modern devices also support
parallel operations in different planes; therefore, the translation procedure can be
easily parallelized.

Obviously, the latency of linear searching is only acceptable with small capacity. All
other schemes employ some kind of direct map to provide fast address translation.
Some schemes also rely on searching to find a requested page. However, this search is
usually limited to a few blocks or offsets.

3.4. Standard NOR-Based FTL

Ban [1995] patented a page-level FTL for NOR in 1995. This design was later adopted
as a Personal Computer Memory Card International Association (PCMCIA) standard
[Intel 1998]. The translation process is illustrated in Figure 7.

As other page-level mapping schemes, this FTL maintains an entry for each page,
and to provide high scalability, an entire mirror of the global mapping table (GMT) is
reserved in flash memory. This mapping table is further divided into several mapping
pages, and a secondary map is maintained in the SRAM, tracking the physical locations
of each mapping page of the GMT. To speed up mapping table lookups, frequently
referenced mapping pages are cached in the SRAM.

To serve a translation request, the input address is divided by the number of entries
that a mapping page can hold. The quotient is used to search the secondary map.
After the corresponding mapping page is located, the right entry that contains another
address is obtained using the residual. At last, this intermediate address has to go
through a block-level mapping table before the output physical address is obtained.
This translation is similar to the former. The intermediate address is divided by the
number of pages in a block. The quotient is used to search the block-level mapping
table, and the resulting PBN is concatenated with the residual: the in-block offset.

There are two important issues to implement a page-level FTL that stores its map-
ping table in flash memory. First, when a page is overwritten, the corresponding map-
ping page in flash memory needs to be updated. If dirty pages are allowed to reside in
the SRAM and written back only when swapped out, we will risk losing critical infor-
mation when the system crashes. If the mapping page is updated immediately, which

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:12 D. Ma et al.

Fig. 7. PCMCIA FTL standard. There are two layers of address translation. A page-level mapping trans-
forms an LPN to an intermediate address, which is then transformed to the final PPN by a block-level
mapping. The page-level mapping table is so large to reside in the SRAM that it has to be divided into
pages and stored in flash memory itself. Each mapping page is represented by a list of physical pages to
support multiple updates. A secondary map is maintained in the SRAM, tracking the migration of page-level
mapping pages. The block-level mapping helps improve the performance of garbage collection by hiding the
movement of valid data from the page-level mapping layer.

means that the new mapping page is written to a different place and the secondary map
is also updated, then performance will be hurt since at least two flash write operations
will be needed to serve a single write request or, in other words, write amplification
[Wikipedia 2012e] is at least 2. Second, when a block is selected as the victim of garbage
collection, all valid pages need to be copied elsewhere, which implies modification of
many entries in the mapping table. This operation may bring a tremendous overhead
even if the first issue is well settled.

To handle the first problem, a replacement page list is assigned for each mapping
page. To update an entry in a mapping page, the corresponding entry of the first
replacement page is used, taking advantage of the byte-addressable property of NOR
flash. If this entry is modified again, the second replacement page is used, then the
third one, and so on. Therefore, each entry in a single mapping page can be updated

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:13

Fig. 8. Variable-sized page. An allocation table is utilized to track the in-block offset of pages, as their sizes
are not identical after compression.

many times until the replacement page list is exhausted, at which time a new mapping
page is allocated and the old one is invalidated along with the replacement page list.

The second problem is solved by the block-level mapping. Before reclaiming a block,
all valid pages are copied to a newly allocated block, keeping the in-block offset un-
changed. In this way, only one entry in the block-level mapping table needs to be
modified to reflect this operation, and the page-level mapping table, including all re-
placement page lists, never needs to be touched.

Although this page-level FTL is quite efficient, it is not easy to deploy on NAND
flash, as NAND can only be programmed in pages.

3.5. Variable-Sized Page for NOR

Wells et al. [1998] proposed a variable-sized page scheme. This design is essentially
a page-level mapping, and the whole mapping table is kept in the RAM like the one
introduced in Section 3.1.

The only difference is that pages in the memory are variably sized due to compression.
Therefore, an allocation table is necessary for each block. As shown in Figure 8, the
allocation table grows from the head of the block, and the user data grows from the back,
which is quite similar to the page layout of modern database systems. The allocation
table consists of many fixed-length headers, each of which stores the metadata of a
page in the block, such as the LPN and the offset.

The mapping table translates an LPN to the PBN where the page locates and the
index of the header. If compression is enabled, a block may contain hundreds or even
thousands of pages (2,047 at most). Obviously, a single-byte index will not suffice, but a
two-byte one will be a waste. In this design, the three least significant bits are ignored,
and the rest is stored in a byte. Therefore, at most, eight headers need to be checked
when trying to find a logical page.

3.6. Block-Level FTL for NOR: In-Block Logging

One drawback of page-level mapping is that it requires a relatively large SRAM to keep
at least the active part of the mapping table. Shinohara [1999] proposed a block-level
translation method for NOR flash (Figure 9).

In each block, some pages are reserved to serve the updates of others. When these
log pages are exhausted, the whole block is reorganized and copied to a new free block,
putting each page at its own offset.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:14 D. Ma et al.

Fig. 9. In-block logging method. In the example, each block consists of eight pages, and the last two are
used as logs.

To find a certain page, its matching offset is first examined. If the page has been
invalidated, the reserved pages are searched. When an LPN is written for the first
time, we put it at its own offset. Future updates are all directed to the reserved log
pages.

Obviously, the reserved pages reduce the address space of the memory, since they
cannot be shared between blocks and the number of reserved pages in each block should
be fixed and identical; otherwise, it will be impossible to calculate the LBN directly
from an LPN.

3.7. Block-Level FTL for NOR: Moving Blocks

Estakhri et al. [1999] proposed another block-level translation method for NOR, which
was soon updated in Estakhri and Iman [1999]. We only introduce the updated version
here.

This scheme is designed to capture any sequential update pattern. A replacement
block10 is allocated for a data block if any page in it is updated, and subsequent
sequential updates are directed to the replacement block (Figure 10). To help locate the
most up-to-date pages, a bitmap is maintained in RAM for each data block, indicating
which pages have been moved to the replacement block.

In case a random update is detected or the update procedure reaches the end of the
block, the data block and the replacement block are merged by moving all pages that
have not been updated to the replacement block, and the replacement block becomes
the new data block, whereas the old one is marked as a candidate for garbage collection.

3.8. A Two-Stage Translation Scheme

Kim and Lee [2002] mentioned a conventional mapping method. This method is basi-
cally a block-level mapping. Unlike other block-level schemes, the LBN is not obtained
directly from the LPN, but by looking up an individual page-level mapping (Figure 11).
This design brings an advantage that pages in the same logical block are not always
stuck together. When necessary, pages can be reallocated to different logical blocks,
even though this operation is not very efficient.

10The original paper used the term moved block. In this survey, we use the term replacement block to indicate
a backup block that will likely, if not always, replace the corresponding data block. A similar term is log
block. A log block is used to hold updated data of the corresponding data blocks temporarily. Data in log
block will eventually be merged to the data blocks, although sometimes a log block can also replace a data
block. It must be noted that a replacement block can only be owned by a single data block, but a log block
may be shared by as many data blocks as the number of pages of a block. On the contrary, a data block may
have more than one replacement block or log block.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:15

Fig. 10. Moving block method. This method chooses in advance a replacement block to which valid data in
the old data block will be moved during garbage collection. Overwriting data are put in this block at the
right offset directly so that the amount of data migration can be reduced especially for sequential updates.

Fig. 11. A conventional mapping scheme. In this method, an LPN is transformed to the corresponding LBN
not by simple calculation but by looking up a table. Therefore, it is much more flexible than other block-
level mapping schemes. Note that an allocation map is necessary in each physical block since the in-block
offsets obtained from the LPNs may conflict with each other. In the example, the block with the PBN 100 is
reclaimed, and all valid data are moved to PBN 200.

Acute readers may notice that this FTL is quite similar to the standard FTL described
in Section 3.4, without the secondary map and the replacement page list parts. The
reason we put this scheme in the block-level category is because the standard FTL
sees each page as the mapping unit and reallocates any page that has been updated,
whereas the conventional mapping method treats each block as the mapping unit and
a updated page is put at a free offset in the original block. A page allocation map is
maintained in each physical block, tracking the offsets of each logical page.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:16 D. Ma et al.

Fig. 12. NFTL with log blocks. Each data block is allocated a log block when necessary, and all updates are
written in the log block sequentially. Several spare areas may need to be checked to find the most up-to-date
version of a requested LPN.

3.9. Summary

In summary, each byte in NOR can be programmed independently, making it possible
to design many types of NOR-based FTLs. Although SRAM is relatively expensive,
scalability is not a major concern, and many designs store the entire data structure in
the SRAM, since capacity of NOR flash is usually small. The PCMCIA standard FTL
(Section 3.4) makes a great step forward toward NOR-based mass storage by keeping
the entire mapping table in the flash memory itself. This design, however, cannot be
transferred to NAND without modification.

4. BLOCK-LEVEL FTL SCHEMES

Ban [1995] patented two other FTL schemes in 1999. These schemes are designed for
NAND-type flash memories and are known as the NFTLs [Choudhuri and Givargis
2007; Gal and Toledo 2005]. Detailed descriptions of these schemes are provided in
Sections 4.1 and 4.2.

4.1. NFTL: Log Blocks

This FTL is designed for NAND flash that has a spare area for each page and has de
facto become a standard [Micron 2011].

When a page is written for the first time, it is put in the data block where each page
is in its own place—in other words, the offset of the physical location is identical to
that of the logical address. When the page is updated, we first allocate a log block for
the relevant logical block if there is none and write the overwriting pages one after
another from the beginning of the log block, as shown in Figure 12.

To serve a read request, NFTL needs to scan all spare areas in the log block in reverse
order to find the most up-to-date version of the requested page since pages are written
in an out-of-place manner in the log block. If no matching logical address is found in
the log block, the corresponding page in the data block is returned. Fortunately, spare
areas in NAND-type flash memories are designed to support fast reference, and the
overhead of this search process is relatively low.

In case all pages of a log block have been programmed or when this log block is
selected for reclamation to create more free space or for wear-leveling reasons, the
most up-to-date pages of the relevant logical block are copied from the data block or
the log block to a newly allocated block, then the two invalidated blocks are erased and
put back in the free block pool. Only in special situations when all pages in a log block
are programmed sequentially from the first offset to the last one, could a log block be
treated as the new data block directly.

4.2. NFTL: Replacement Block List

On the other hand, since some models of NAND flash memories have no spare areas
to support fast search, this NFTL keeps a replacement block list for some of the logical
blocks when necessary, and write requests for each logical page are first handled by

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:17

Fig. 13. NFTL with replacement block list. Each data block is allocated a replacement block list when
necessary, and all logical pages are kept at their own offsets.

Fig. 14. State transition in STAFF. A free block is initially in F state. After allocation, we try to keep each
logical page in its own offset, and the block is in M state. If the block is successfully filled up, its state becomes
S; otherwise, the block is in N state (acting as a log block). After the corresponding logical block is reclaimed,
all out-of-date blocks move to O state.

the first block in the chain and then the next one, keeping the in-block offset identical
with that of the logical address, as shown in Figure 13.

Different from the former design, this NFTL has to scan the replacement block list
to serve either read or write requests. For read operations, the last nonfree page with
the same in-block offset as the requested LPN contains the most up-to-date data. For
write operations, the first free page in the chain is the target place to locate the new
page.

If all pages in the list with the requested offset have been programmed, a new block
is allocated and appended to the back of the list. When free space declines to a certain
threshold or when some replacement block list is too long to search, a logical block is
selected as the victim of garbage collection and then all valid pages are copied to the
last block in the list. Then, all blocks except the last one are freed.

Note that some manufacturers require that their products should be programmed
sequentially within a block during a write/erase cycle, as described in Section 1.5.2.
Obviously, this NFTL is not suitable for such products with the sequential page pro-
gramming restriction, as it is impossible to determine which offset will be used first.
However, the first NFTL scheme can be easily deployed on such devices by directing
all written data to log blocks.

4.3. A State Transition FTL

Chung et al. [2004] proposed another block-level FTL—State Transition Applied Fast
Flash Translation Layer (STAFF)—based on state transition. Five states are defined
for physical blocks in this method (Figure 14):

—F State: A block in this state is free.
—M State: Data pages of a block in this state all reside at their own offset, and this

block has not been filled up.
—N State: Pages of a block in this state are placed in an out-of-place manner, and this

block acts as a log block.
—S State: Like M state, pages are written in the in-place manner, but the block has no

free page.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:18 D. Ma et al.

—O State: A block in this state contains invalid data and needs to be erased before
being allocated again.

The basic idea is to decide the page placement according to access patterns. The M
and N states act as the replacement/log block in NFTL. The difference is that pages
in M-state blocks are written at their own offsets, but pages in N-state blocks do not.
Therefore, data in M-state blocks can be retrieved directly, but N-state blocks have to
be searched to find the required data.

When a block is allocated, it is in M state, as shown in Figure 14, and all following
updated pages are directed to their own offset if possible. Otherwise, the block is turned
to N state, indicating that a total reorganization is needed during garbage collection
procedure. It should be noted that this FTL always tries to write an updated page in
the in-place manner, even in an N-state block.

When an M-state block is filled up, it is turned to an S-state block, whereas a full
N-state block is marked as invalid after copying all pages to a new block in a merge
operation. This newly allocated block is in M or S state depending on whether it contains
free pages. If an S-state block is reached, further updates are served by a new M-state
block. STAFF allows a single LBN to be mapped to at most two PBNs (M + S or N + S).

4.4. Summary

Block-level mapping incurs much smaller SRAM overhead than page-level mapping.
However, a block-level FTL can hardly separate hot data from cold ones if they share
the same LBN. Hot data tend to be updated frequently, which generates lots of invalid
pages. In order to reclaim space, valid data, including cold ones, need to be copied to
a different place before the old blocks can be erased. This will definitely degrade the
garbage collection performance, since cold data have to be moved from time to time,
although they are not changed. As far as we know, no block-level FTLs can solve this
problem effectively.

5. HYBRID FTL SCHEMES

Hybrid FTLs try to take advantage of the flexibility and efficiency of page-level mapping
while keeping the memory overhead as low as block-level mapping. Research of this
type of FTLs focuses on how to identify randomly accessed data or hot data.

5.1. Adaptive FTL

Block-level mapping, such as NFTL (Section 4.1), exhibits inferior performance due to
high reclamation overhead caused by mixture of cold and hot data, but SRAM-based
page-level mapping requires large SRAM capacity to store the mapping table. A hybrid
mapping scheme called Adaptive Flash Translation Layer (AFTL) was proposed to
balance the advantages of the two granularities [Wu and Kuo 2006].

The flash is divided into two areas. The smaller one employs page-level mapping and
the mapping table is kept entirely in the SRAM, providing high lookup performance.
NFTL (Section 4.1) is applied to the rest of the memory. It must be noted that NFTL
covers the whole address space, whereas the page-level mapping table only tracks
selected addresses. Therefore, when accessing an LPN, the page-level mapping should
be checked first.

The switching policy of AFTL is quite simple. Whenever a log block in the NFTL area
overflows, instead of merging valid pages in the log block with the data block, AFTL
assumes that they contain hot data and moves them to the page-level mapping area.
If the page-level mapping area overflows, the least recently used page is swapped out
and copied to the NFTL area. Recall that NFTL covers the whole address space. The
swap-out is done by a normal write operation.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:19

Fig. 15. Architecture of HFTL. Each time a write request arrives, the LPN has to go through a hot data
detector. Pages that are identified as hot ones are written in a page-level mapping area, whereas others are
served by the coarse-grained mapping area.

Fig. 16. Hash-based hot data identification. Three hash functions are used in the example. Each maps an
LPN to a counter in the hash table. When an LPN is involved in a write operation, all corresponding counters
are increased. A page is considered hot if all counters related to its LPN exceed a certain threshold.

5.2. HFTL

Lee et al. [2009] proposed a hybrid FTL scheme named HFTL (Hybrid FTL) that em-
ploys a hash-based hot data identification technique [Hsieh et al. 2006] and serves
pages that contain hot data with a page-level mapping as long as they remain hot (Fig-
ure 15). Others are served by block-level or other (log-based) hybrid mapping schemes.

The hot data identification technique is based on the Bloom filter [Bloom 1970], as
shown in Figure 16. The LPN of a page is first mapped to several reference counters
by several independent hash functions. Suppose we use three hash functions. Then
LPN 10 will be mapped to 10, 2, and 1, LPN 15 will be mapped to 15, 4, and 1, and
LPN 20 will be mapped to 4, 5, and 2, respectively. Each time a page is updated, the
corresponding counters are increased by one. To distinguish hot pages from cold ones,
we only have to test whether all counters relevant to the LPN of a page exceed a
predefined threshold. In Figure 16, LPN 10 contains hot data if the threshold is 250,
and LPN 15 also contains hot data if the threshold is 150.

The purpose of using multiple hash functions is to reduce the probability of false
identification caused by conflicts. In our example, LPN 20 will always be identified as
cold page as long as the threshold is set to be larger than 100, although LPN 20 shares
two counters with LPN 10 and LPN 15.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:20 D. Ma et al.

Fig. 17. Three types of merge operations [Ma et al. 2011].

In essence, HFTL can be seen as an improvement of other schemes and is efficient in
the circumstance where the hot spot of references is centralized and stable. However,
when the access pattern changes, some hot pages will need to be swapped out, which
will introduce an extra overhead.

5.3. File System Aware FTL

Instead of detecting hot data passively, Wu et al. [2009] suggested that the FTL should
be aware of upper applications, especially the file system. By applying page-level map-
ping to the file system metadata, which is usually quite small (tens of megabytes),
systematic performance can be greatly improved, as the metadata may often need
in-place updates (e.g., to update access time or file size).11

5.4. Summary

Hybrid FTLs try to make the best of page-level mapping while keeping the translation
table small. The key problem is how to identify data that are updated frequently or in
a random manner. If the access pattern changes, users may suffer from extra overhead
when moving data from the fine mapping area to the coarse mapping area or vice versa.

6. LOG-BASED HYBRID FTL SCHEMES

Log-based Hybrid FTLs divide the flash memory into two major areas: the DBA and
the LBA. Block-level mapping is applied to the DBA, which takes a large part of the
memory, whereas the LBA is quite small and acts as a buffer of updates for the DBA.
Log blocks in the LBA are merged on demand with the corresponding data blocks in
the DBA to make room for further updates.

There are three types of merge operations (Figure 17). Generally, a merge operation
needs to copy all up-to-date data within the same LBN to a newly allocated block and
erase the old data blocks and log blocks. This is called a full merge and is usually quite
expensive. Sometimes when a log block is prepared to replace the data block, or in
other words, each page in the log block is at the right offset, a partial or switch merge
can be carried out. Efforts of designing an efficient log-based Hybrid FTL are focused
on the performance of merge operations by avoiding expensive full merge operations
whenever possible.

11Flash file systems are usually log structured and do not use a fixed location (inode number) to access a file.
As a result, no random writes will be involved.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:21

Fig. 18. BAST. The algorithm of data placement is similar to the NFTL introduced in Section 4.1 except
that pages in log blocks are tracked by a page-level mapping to support efficient lookup. Each log block
monopolizing by a single data block, BAST can easily run out of log blocks even if they are not completely
utilized.

Fig. 19. FAST. This scheme allows a log block to accommodate overwriting data from any data block and
thus it can be filled up before reclamation. The worst-case latency of reclaiming a single log block, however,
can be much longer than BAST due to unlimited log block associativity. FAST also reserves a log block (the
right-most one) to capture sequential updates. Unfortunately, sequential updates can be easily interrupted
by other operations, especially in a multiprocess environment.

6.1. Block-Associative Sector Translation

Block-Associative Sector Translation (BAST) [Kim et al. 2002] is the first proposed
log-based hybrid FTL scheme, which is similar to the design described in Section 4.1.
The only difference is that BAST maintains a page-level mapping for the log blocks
and the number of log blocks is limited to reduce the size of the mapping.

Obviously, reading performance of BAST is improved immensely, because looking
up a SRAM-reside map is several orders of magnitude faster than searching in flash
memory. However, random update patterns can easily exhaust valuable log blocks
since BAST does not allow log blocks to be shared (Figure 18). Therefore, BAST is
often forced to reclaim a log block that has not been fully utilized. This phenomenon
is called the block thrashing problem. Although Wang et al. [2010] suggested to reuse
the reclaimed data block in NFTL (Section 4.1) as a contaminated replacement block
in order to postpone the erase operation, we argue that this can hardly help because
storage systems (e.g., file systems) usually try to allocate a large continuous segment
of the address space to a single application, leaving few holes to be reused, let alone
whether the flash memory supports out-of-order programming of pages within a block.

To make things worse, it is almost impossible for BAST to perform a partial or
switch merge unless the data in a data block is overwritten sequentially from the very
beginning, as BAST always puts updated data to the first free page of a log block.

6.2. Fully Associative Sector Translation

Different from BAST, another hybrid FTL—Fully Associative Sector Translation
(FAST)—goes to the other extreme [Lee et al. 2007]. FAST always fills a log block
with random updates before allocating another one (Figure 19). As a result, FAST
solves the block-thrashing problem incurred by BAST.

Although FAST successfully improves log block utilization and delays garbage col-
lections, performance of reclaiming a single log block may turn out to be worse than
BAST. Because FAST allows a log block to be shared by any data block, reclamation of
a single log block may involve as many data blocks as the number of pages in a block,

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:22 D. Ma et al.

also known as the associativity of a log block. This quantity is a good measure of the
overhead to reclaim a log block. The larger, the higher.

In order to take the opportunity of partial or switch merge operations, FAST reserves
a sequential log block (the right-most one in Figure 19) and performs in-place sequen-
tial updates in it. However, this optimization can be further explored because update
streams of different processes are usually interleaved and a single sequential log block
is far from enough.

Lim et al. [2010] suggested to give valid pages in garbage collection victims a second
chance. FAST reclaims blocks in the LBA in the first in, first out (FIFO) order, and some
data are forced to be merged before being overwritten. By moving these valid pages
to the end of the LBA, it is possible that they can be updated in the second chance,
and thus the merge operation is avoided. However, effectiveness of this modification
relies on the relative size of the hot data compared with the size of the LBA. If random
accesses dominate the workload, performance can be worse, because the second chance
requires an extra copy of valid data and merge operations are incurred more frequently.

6.3. Superblock FTL

In order to avoid the drawbacks of the two extremes (BAST and FAST), a trade-off
needs to be made between log block utilization and log block associativity. In other
words, log blocks should be shared wisely.

Superblock FTL [Kang et al. 2006] made the first step to this goal by allowing N logi-
cal adjacent data blocks (or D-blocks) to share at most K log blocks (or U-blocks). Group-
ing adjacent data blocks and their log blocks into super blocks enables Superblock FTL
to exploit the spatial locality of reference, especially in modern computing environment
where the operating system tries to allocate continuous (logical) storage addresses to
the same file for the purpose of avoiding fragmentation.

Unlike other log-based hybrid FTL schemes, Superblock FTL does not collect log
blocks in an LBA but employs a three-level mapping structure, as shown in Figure 20.
The first block-level mapping table is kept in the SRAM, and the lower two are stored
in the spare areas of the super block. This design not only increases the difficulty to
implement, test, and debug the design but also affects the performance due to OOB
maintenance and extra lookups. To make things worse, the size of super blocks is quite
limited since there is usually not much room in the spare area.

6.4. Set-Associative Sector Translation

Set-Associative Sector Translation (SAST) [Park et al. 2008] adopts the same idea as
Superblock FTL. As shown in Figure 21, N adjacent logical data blocks are grouped
into a Data Block Group (DBG), and at most K log blocks are grouped into a Log Block
Group (LBG). One advantage of SAST is that it collects all LBGs in the LBA and
maintains a page-level mapping in the SRAM for all pages in the LBA. As a result,
read amplification of SAST is always minimal compared with Superblock FTL, which
has to search the spare areas.

The parameter N aims to take advantage of spatial reference locality, whereas K
takes the temporal reference locality into consideration. Both should be determined
by the specific access pattern. Choice of N is a trade-off between log block utilization
and the overhead of merge operations. On the other hand, although it appears to be
advantageous to add more log blocks to an LBG, different DBGs may compete for log
blocks if the LBA becomes too full. The situation is quite similar to BAST, where each
log block is monopolized by a single data block.

Park et al. [2008] provided a method on how to choose proper N and K according
to the trace of a given workload. The problem is that the trace may not accurately

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:23

Fig. 20. Superblock FTL. This scheme makes a trade-off between log block utilization and associativity. The
flash memory is divided into super blocks. Each super block consists of a few D-blocks to hold user data and
a few U-blocks which act as log blocks. Within a super block, U-blocks are shared by all D-blocks. Unlike
other log-based hybrid FTLs, Superblock FTL keeps some mapping information in the unused part of the
spare area, therefore losing some flexibility and lookup performance.

Fig. 21. SAST. Similar to Superblock FTL, SAST also allows a few log blocks to be shared among a group
of logically adjacent data blocks. By keeping in the SRAM the page-level mapping information for the LBA,
SAST provides better lookup performance.

represent future workload and a general system may run different applications that
generate different access patterns. SAST is not flexible enough to these circumstances.

6.5. Adaptive Set-Associative Sector Translation

Koo and Shin [2009] proposed an improved version of SAST called Adaptive Set-
Associative Sector Translation (A-SAST). A-SAST does not limit the size of an LBG
and allows changing of the size of DBGs adaptively according to the update pattern.

Consider the circumstance in Figure 22, in which four data blocks in the DBG 0
share two log blocks in the LBG 0. Since the update pattern of the DBG 0 is quite
random, associativity of blocks in the LBG 0 can hardly be lowered down. In this case,
it is better to split the DBG 0 into smaller DBGs and the spatial locality of reference
will be enhanced. Moreover, there are only a handful of updates to pages in the DBG 1
and the DBG 2, and the associativities of the corresponding LBGs are quite low (which

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:24 D. Ma et al.

Fig. 22. A-SAST. This is an improved version of SAST. A-SAST adjusts the sizes of data block groups on
the fly. In the example, DBG 0 is updated in a random manner. By dividing DBG 0 into smaller groups, the
associativity of log blocks can be reduced. In contrast, DBG 1 and DBG 2 are rarely modified. The log block
utilization can be improved if data blocks in these two groups are allowed to share the same log block.

Fig. 23. LBA structure of LAST. LAST diminishes the overhead of merge operations by optimizing usage
of the LBA. As shown in the figure, LAST further divides the LBA into smaller regions, each serving a
particular kind of workload. Large and sequential updates are carefully placed in the sequential log buffer
so that expensive full merge operations can be avoided. Frequently updated data are gathered in the hot
partition because they are prone to be overwritten soon, and reclaiming a dead block that contains no valid
data merely involves a single erase operation.

indicates high spatial locality). By combining these two DBGs, their log blocks can be
shared and the space utilization will be improved.

6.6. Locality-Aware Sector Translation

Unlike Superblock FTL and SAST (including A-SAST), Locality-Aware Sector Trans-
lation (LAST) [Lee et al. 2008] does not share log blocks among adjacent logical blocks
but directs updates to different regions in the LBA according to their access pattern. As
shown in Figure 23, LAST divides the LBA into two parts: a Random Log Buffer (RLB)
and a Sequential Log Buffer (SLB). The RLB is further divided into a Hot Partition
(HP) and a Cold Partition (CP).

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:25

The idea of LAST is very simple. If sequential updates can be separated from random
ones and handled properly, opportunities for switch and partial merge operations will
be increased. In the SLB, each log block is associated with a single data block like
BAST but is organized in the in-place manner; as a result, switch or partial merge can
always be applied to the data block. But in the RLB, a log block can accommodate pages
from any logical block like FAST, allowing the log blocks to be fully utilized. In order
to identify sequential updates, LAST employs a very simple spatial locality detecting
policy. If the size of the update request exceeds a certain predefined threshold (e.g., 4
or 8KB), it is considered a sequential update and will be served by the SLB; otherwise,
the data will be written into the RLB.

LAST also tries to exploit the temporal locality of reference by collecting hot data in
the HP of the RLB. When a full merge is performed against a log block in the RLB, all
data blocks that correlate with the log block will need to be reorganized. To reduce this
overhead, LAST delays the reclamation of log blocks in the HP, as pages in these blocks
are hot and expected to be overwritten in the near future and thus the associativity
of these log blocks tends to be lowered down. To identify hot data, LAST manages the
HP and the CP as two sequential arrays of pages. Each time an LPN is updated, the
duration since its last update is measured. If the duration is within a certain parameter
k, this page is considered as hot data and is written in the HP; otherwise, the CP is
used.

When the LBA is filled up, LAST employs different reclamation policies according to
the functionalities of different segments:

—If the SLB overflows, a least recently used log block is selected as the victim and a
switch or partial merge operation is performed.

—If the RLB overflows and a dead block exists (a block carrying no valid data) in the
HP, it is reclaimed since only one erase operation is needed.

—If the RLB overflows and there is no dead block in the HP, a log block in the CP that
has the lowest reclamation overhead or associativity is chosen as the victim.

—If some cold pages are misled to the HP and prevent the blocks from dying, blocks
in the HP that have not been updated or invalidated within a certain period are
considered too old and can be reclaimed compulsively.

6.7. K-Associative Sector Translation

Cho et al. [2009] proposed another design direction called K-Associative Sector Trans-
lation (KAST), where the systematic performance becomes the secondary goal. KAST is
designed for real-time systems and focuses on controlling the response time of a single
operation. Basically, KAST is the same as FAST, but the associativity of all log blocks
is restricted to be k at most. Therefore, the worst-case latency to reclaim a single log
block is expectable.

It must be noted that the parameter k should be chosen carefully. If k is too small,
KAST will face the block thrashing problem like BAST, and if too large, reclamation
overhead of a log block will become out of control and KAST will degrade to the FAST
scheme.

6.8. Janus FTL

Janus FTL [Kwon et al. 2010] is another variant of FAST that exhibits some different
characteristics as follows:

—The primary drawback of FAST is the worst-case performance of merge operations
due to unlimited log block associativity. Janus FTL handles this with garbage collec-
tion in the LBA rather than merge operations. In other words, if the merge cost is

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:26 D. Ma et al.

too high, Janus FTL moves valid pages in the garbage collection victim to other log
blocks rather than reorganizes the data blocks.

—The DBA in log-based hybrid FTLs usually employs block mapping schemes, which
means that each LPN owns its particular page in the DBA. However, since some
data are served by the LBA, their corresponding position can never be used by other
LPNs, resulting in holes in the DBA. Janus FTL moves this kind of data block to the
LBA to allow those holes to be utilized.

Janus FTL introduced two operations: fusion and defusion. When a write request
arrives, Janus FTL detects the update pattern first. Sequential updates are served
by sequential log blocks, as FAST does. And for random updates, Janus FTL puts
the overwriting data in a normal log block and starts a fusion procedure. The fusion
operation converts a data block to the LBA, which requires no data movement.12 The
rationale behind that is to create an opportunity to reuse the free pages in the data
block, because pages in the LBA are tracked independently. When the LBA becomes
full, Janus FTL chooses a victim and decides whether to merge it (defusion) or reclaim
its space according to the associativity.

Unlike other schemes described in Section 6, Janus FTL allows data to be moved
between the DBA and the LBA in both directions. The reason we classify Janus FTL
as a log-based hybrid scheme lies in that all writes are served by the LBA and the
fusion operation aims to reuse free pages in the DBA rather than because the data are
recognized to be hot.

6.9. Summary

Log-based hybrid FTL schemes also employ page-level mapping and block-level map-
ping at the same time. However, page-level mapping is subordinate to block-level map-
ping and acts like an update buffer. Research efforts on this topic mainly focus on how
to reduce the need for full merge operation, which is usually slow.

7. VARIABLE-LENGTH FTL SCHEMES

Variable-length mapping means that the granularity of the mapping table is neither
blocks nor pages, still less the hybrid of them, but a continuous part of the address
space that can expand or shrink along with the changes of access patterns.

7.1. Variable FTL

As far as we know, Chang and Kuo [2004] proposed the first variable-length FTL
scheme, which will be cited as Variable FTL in this survey.

The basic mapping unit of Variable FTL is called Physical Clusters (PCs). A PC
consists of a set of physically continuous pages in the flash memory and may be in the
state of any combination of free (F) or live (L) and clean (C) or dirty (D):

—An FCPC (free and clean PC) means that all pages in the PC are clean and can be
allocated for newly written data.

—An FDPC (free and dirty PC) means that all pages in the PC contain invalid data
and can be simply erased.

—An LCPC (live and clean PC) means that all pages in the PC contain valid data.
—An LDPC (live and dirty PC) means that some pages in the PC contain valid data and

some contain invalid ones. New space could be generated by reclaiming an LDPC.

12The page-level mapping table needs to be updated.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:27

Fig. 24. Variable FTL. The flash memory is divided into variable-sized clusters. A tree structure is main-
tained in the SRAM to represent the state of each cluster. Clusters in a subtree rooted at a dirty node can be
reclaimed to generate free space.

Information of all PCs is organized in a tree structure in the SRAM, as shown in
Figure 24, and each internal node has a property of clean or dirty. A subtree rooted at
a dirty node can be considered as a reclamation candidate.

To serve a write request, Variable FTL first gets an FCPC that is larger than or equal
to the request size, writes the new data at the very beginning, and generates a new
LCPC (Figure 24(b–d)).

When pages in an LCPC are updated, the LCPC is turned into an LDPC (Figure 24(d))
or an FDPC if all pages in it have been updated.

To reclaim space from an LDPC, it is split into several LCPCs and FDPCs, and the
FDPCs can be erased. Sometimes, data in an LCPC is moved to a new location and
adjacent FDPCs are combined into larger one in order to serve large write requests
(Figure 24(e)).

The clean/dirty flag of an internal node indicates whether the subtree rooted at the
current node can be involved in garbage collection procedures. After an FCPC is split,
the newly generated internal node is marked as clean since its two descendants are
either FCPC or LCPC. When an LCPC or LDPC is split, the newly generated internal
node is marked as dirty since part of the PC is updated and might be reclaimed.

Mapping tables of other types of FTL schemes can be organized in simple address
arrays since the mapping granularity is fixed. Variable FTL, instead, employs a hash-
based mapping approach (Figure 25). First of all, the logical address space is equally

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:28 D. Ma et al.

Fig. 25. Address translation of Variable FTL. Without a consistent size of the mapping units, Variable FTL
cannot implement its mapping table as a simple address array. Instead, Variable FTL divides the whole
address space into equal-sized regions and links the mapping information in each region together. If a linked
list becomes too long to search, Variable FTL cuts it into segments and reorganizes them in a binary search
tree.

divided into several regions, and mapping entries in each region are linked together,
forming a bucket. A mapping entry is a triple containing the starting logical address of
the PC, the starting physical address of the PC, and the size of the PC in pages. When
the number of entries of a bucket exceeds a certain threshold, the bucket overflows
and is split into two subbuckets according to the value of the starting logical address
of the mapping entries. In other words, buckets in one region are organized in a binary
search tree. Note that entries in the mapping table can be split and merged along with
their relevant PCs.

7.2. µ-FTL

µ-FTL [Lee et al. 2008] is another FTL scheme that employs the variable-length map-
ping. The most important difference between µ-FTL and Variable FTL is that µ-FTL
employs µ-Tree [Kang et al. 2007] as the structure of the mapping table.

µ-Tree is a variant of B-Tree that is able to store all pages on the path from the root
to any leaf in a single page (Figure 26). Therefore, although µ-Tree is a tree structure
linked by pointers, the update of a leaf node only incurs a single write operation.

As shown in Figure 26, leaf nodes of a µ-Tree occupy only half of a page, and along
a path from a leaf to the root, the size of each node except the root is reduced by half
compared to its direct descendant. Size of the root node is the same as its descendant.
As a result, each path from the root to a leaf is fit for a single page. Although update of

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:29

Fig. 26. µ-Tree: address translation structure of µ-FTL. µ-Tree is originally designed to solve the wandering
tree problem caused by the out-of-place update requirement of flash memory. By packing all nodes on the
path from a leaf to the root in a single page, write amplification is successfully controlled.

a leaf node leads to modifications of the whole path up to the root that contains direct
or indirect pointers13 to the leaf, it can be carried out efficiently by compacting the
whole path in a single page.

7.3. Self-Adjusting FTL

Wu [2010] proposed another variable-length mapping FTL called Self-Adjusting Flash
Translation Layer (SAFTL). This design is, at the same time, a combination of coarse-
and fine-grained mappings.

Similar to other variable FTLs, the mapping unit of SAFTL is a segment of physically
continuous blocks in the flash memory, but the content is a little complex (Figure 27).
Each entry in the coarse map contains five fields: LBN, PBN, a seq flag, a free pointer,
and a swap pointer. The seq flag indicates whether pages in the segment are written
sequentially. The free pointer and the swap pointer point to the head of thefree area
and the tail of the swap area, respectively. Note that the swap area grows from the end
of the segment.

SAFTL employs a fine-grained mapping. Different from hybrid mapping and log-
based hybrid mapping, this fine-grained mapping is not applied to an independent area
but acts as a supplement to the coarse-grained mapping area and speeds up random
accesses. Each entry in the fine-grained map contains three fields—LBN, PBN, and
size—tracking a piece of out-of-place updates in the same segment.

In order to control SRAM overhead, the fine-grained map is organized as a cache.
When it overflows, a victim segment is chosen and all of its mapping entries are
collected and packed into pages. These pages are finally written to the swap area of the
segment.

13Physical addresses are used here.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:30 D. Ma et al.

Fig. 27. Segment structure of SAFTL. Segments are the basic mapping unit of SAFTL, which can be very
large compared with other FTL designs (e.g., >100MB). Within a segment, user data are appended as logs
from the very beginning. A fine-grained mapping is maintained in main memory to support fast lookup. If
too much fine-grained mapping information is generated, some of them are swapped out to the swap area of
the corresponding segment.

7.4. Summary

Variable-length mapping FTLs try to adjust the granularity of mapping unit according
to the access pattern. Unfortunately, the address translation algorithm, the space
allocation policy, the garbage collection algorithm, and the implementation of wear
leveling are all complicated because the mapping units may not be aligned to block
boundaries and the sizes of them are not identical and keep changing.

8. PAGE-LEVEL FTL SCHEMES

Among all mapping granularities, page-level mapping shows the best performance,
as it can separate hot and cold data easily, needs no merge operations, and can be
implemented in simple data structures, although a page-level FTL requires a large
mapping table. This section introduces a few typical page-level FTL designs.

8.1. Demand-Based FTL

Demand-Based FTL (DFTL) [Gupta et al. 2009], a page-level FTL scheme, made the
first attempt to applying page-level mapping to NAND flash memories. As shown in
Figure 28, DFTL is similar to the standard FTL described in Section 3.4 but without
the replacement pages, as NAND can only be programmed in pages.

When a page is overwritten, DFTL modifies the corresponding mapping entry in
the SRAM to indicate the physical location change of the page. To minimize the over-
head of maintaining the page-level mapping table, DFTL writes a dirty mapping page
only when this page is swapped out of the SRAM according to the replacement pol-
icy, such as the LRU algorithm. Therefore, DFTL faces a serious reliability problem,
because all modified information in the SRAM will be lost if a system failure occurs.
In this case, the whole memory needs to be scanned to recover a consistent mapping
table.

8.2. LazyFTL

LazyFTL [Ma et al. 2011] is another page-level FTL scheme that aims to provide high
performance without giving up consistency.

As presented in Figure 29, besides a DBA and a mapping block area (MBA), LazyFTL
reserves two other areas, namely cold block area (CBA) and update block area (UBA),
to handle the moved data. The CBA is used to accommodate pages that are moved

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:31

Fig. 28. DFTL. This scheme is very similar to the standard NOR-based FTL introduced in Section 3.4. The
whole mapping table is stored in flash memory, and only the referenced parts are cached in the SRAM. Each
time a page is modified, DFTL does not try to update its mapping entry in flash memory, but allows the dirty
mapping page to reside in the cache until it is swapped out.

Fig. 29. Architecture of LazyFTL [Ma et al. 2011]. Based on former designs, LazyFTL tries to solve the
reliability problem of DFTL. By collecting overwriting data and moved data during garbage collection in two
special logical areas (the UBA and the CBA, respectively), LazyFTL can efficiently recover the system to a
consistent state after power failures. An independent page-level mapping table is employed for data in the
UBA and the CBA. Unlike hybrid mapping schemes, LazyFTL never performs merge operations.

during garbage collection. These pages are considered cold. Updated data are written
in the UBA. This is a simple mechanism to separate hot data from cold ones.

The GMT, which is stored in the MBA, is a page-level mapping that tracks all valid
data in the DBA. The most frequently accessed parts of the GMT are cached in a small
LRU cache in the SRAM. A secondary map named global mapping directory (GMD)
tracks the physical locations of different parts of the GMT.

Like hybrid mapping FTLs, LazyFTL maintains an update mapping table (UMT)
for the CBA and the UBA. The difference is that in hybrid FTLs, the LBA is only a
temporary location to accommodate updates of user data, but in LazyFTL, the CBA and
the UBA merely indicate the extent to which the address information of user data might
need to be updated to the GMT and there is no merge operation. When the CBA and the
UBA overflow, LazyFTL chooses a victim that has the minimal overhead and converts
it to a normal data block by updating the address mapping information of its content.

To help indicate the states of pages in the CBA and the UBA, LazyFTL maintains
two flags for each page—namely, the update flag and the invalidate flag.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:32 D. Ma et al.

To minimize the overhead of convert operations, we update all translation infor-
mation that shares the same mapping page as some page in the victim block whose
address needs to be updated. Therefore, we need the update flag to indicate whether
the translation information of the corresponding page needs to be updated to the GMT.
The update flag should be:

—Set when the page is written in the CBA or UBA
—Cleared when the GMT entry is updated

When a page is overwritten, the new data is written in a newly allocated page. At
this time, the corresponding mapping page may not reside in the SRAM. Therefore, we
do not try to invalidate the old page right now but instead wait until the mapping page
is loaded into the SRAM to be updated. The invalidate flag is used to indicate whether
the old page that the corresponding GMT entry points to needs to be invalidated. An
invalidate flag should be:

—Set when the page is written in the UBA for the first time
—Inherited from the old page during write operations if a validate one is found in the

UBA or the CBA
—Cleared when the GMT entry is updated (since the old page is invalidated during

the operation)
—Cleared when the old block is reclaimed (since the old page no longer exists)

8.3. Summary

As far as we know, page-level mapping FTLs perform the best against most real-
world datasets, as they can separate hot data and cold data easily, do not have merge
operations, and can be implemented easily [Ma et al. 2011]. However, if the working
set is so large that the corresponding portion of the mapping table cannot reside in
the cache, performance will degrade due to frequent swapping operations. Fortunately,
most applications do exhibit some extent of access locality. For workloads that have
many sequential updates, the mapping table can be efficiently compressed so that more
requests can be served by the cached parts of the mapping table [Xu et al. 2012].

9. NEW CHALLENGES

9.1. No Partial Page Programming Support for MLC

One challenge met by researchers is that MLC no longer supports partial page pro-
gramming. In other words, the spare area and the data area of a page can only be
programmed once. Since most existing FTL designs rely on keeping state information
of a page in its spare area (through flags), developers are forced to reconsider their
basic assumptions when designing new FTL schemes.

One solution to avoid storing this flag explicitly is to keep the whole mapping table in
the SRAM like the page-level mapping introduced in Section 3.1 (for efficiency reasons).
To determine whether a page is still valid, we only have to look up the mapping table
to see whether it is being pointed. Unfortunately, SRAM is a limited resource, and it is
not always possible to keep everything in it.Qin et al. [2011] suggested that we should
co-locate the changed part of the mapping structure with the updated page, or, more
specifically, in the spare area. Superblock FTL (Section 6.3) also employs a similar
design. Unfortunately, since the spare area is usually small, not to mention the extra
SRAM space required to track the information stored in spare areas, the SRAM saving
is limited.

YAFFS 2, a flash file system running on raw flash memories, chooses to keep the
states of all (file system level) pages in the system memory [Manning 2012]. Because
modern computer systems usually provide a large memory and each page requires

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:33

only a bit to store its state, memory requirement is not a major concern for YAFFS 2.
When mounting a YAFFS 2 partition, YAFFS 2 may recover the system state from
a checkpoint or rebuild it by scanning the whole memory. Since YAFFS 2 does not
explicitly invalidate a page, it is necessary to identify the valid data from the out-
of-date ones. As a log-structured file system, YAFFS 2 treats the whole memory as
a sequential log by assigning monotonic sequential numbers to each of the allocated
blocks. In order to rebuild the system state from scratch, YAFFS 2 scans all blocks to
determine their sequential numbers, sorts them in the memory, and scans the blocks
again in reversed order. Obviously, the most up-to-date version of a page should be
encountered first.

9.2. Limited SRAM Resource

As the capacity of flash memory increases, the SRAM has become a precious resource,
and researchers have begun to pay more attention to the scalability of their FTL
designs.

To reduce the SRAM overhead, Qin et al. [2010] suggested to store the whole mapping
of NFTL in the flash memory and cache those frequently accessed pages in the SRAM.
DFTL and LazyFTL may also work with relatively small SRAM. However, since page-
level mapping tables are much larger than block-level ones, their performance is more
sensitive to small SRAM.14

A second solution is to reduce the total size of the mapping information by employing
larger and variable mapping unit as the designs described in Section 7. Depending on
the access pattern, the size of a mapping unit can be hundreds of megabytes, and thus
the size of the mapping table is greatly reduced.

Zhang et al. [2012] proposed another method by waiving some design goals of FTLs.
As described in Section 2, most FTLs are designed to track the migration of all pages,
thus requiring a large mapping table. Zhang et al. [2012] suggested to let the appli-
cation (e.g., file system) track the positions of data pages and provide a small logical
address space (like ordinary FTLs) to maintain metadata so as to prevent recursive
update phenomenon. Consider a tree structure that is commonly used in file systems
and database management systems. The leaf layer is stored in raw flash, using the
physical address as the identifier. When a leaf node is modified, a free page is selected
to accommodate the overwriting data. Since its identifier is changed, the pointer in its
parent node needs to be updated. Fortunately, all internal nodes are stored in a small
logical address space and can be updated in place. Fan-out of tree structures in sec-
ondary storage is usually very large (several hundreds or even thousands). As a result,
this method can tremendously reduce the amount of data that need to be tracked, and
in the meantime, the size of the mapping table. The only drawback is that the device
interface needs to be redesigned as well as existing applications.

10. SIDE EFFECTS OF THE FTL ARCHITECTURE

The out-of-place update characteristic of flash memory and the architecture of FTLs
bring several opportunities to the system design.

10.1. Atomicity of Write Operations

The atomicity of write operations is very important to a reliable system. Database sys-
tems use logs to achieve ACID, and file systems employ journals to ensure consistency
(at least for metadata).

14For applications that regard performance as a top importance, the flash device can be equipped with a
large memory (maybe part of the system memory) to implement page-level address mapping [Birrell et al.
2007].

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:34 D. Ma et al.

Update of a single page can be easily ensured to be atomic [Gal and Toledo 2005].
The operation is carried out in five steps: (1) allocate a free page and clear its free
flag, indicating that this page is no longer free; (2) write the overwriting data to the
newly allocated page; (3) clear the ready flag of the page, indicating that the data is
ready to serve read requests; (4) update the address mapping information to the FTL;
and (5) clear the valid flag of the page where the out-of-date data resides to invalidate
it. If the system fails or the power is cut off suddenly, an update operation can be
interrupted at steps (2) and (4), since the other three steps are easily ensured to be
atomic by hardware. If an error is detected by the EDC/ECC or the page is not marked
as ready, we only have to invalidate the page and ignore its content. If the operation is
interrupted before step (5), we identify the old data by comparing the timestamps in
the spare areas and invalidate the out-of-date data.

Park et al. [2005] declared that ensuring atomicity of a single write operation is
not enough. The authors argued that a file system usually stores the metadata of a
single file in multiple pages, such as a tree structure of inodes; as a result, it is better
to protect the metadata as a whole. However, this requires bookkeeping a little more
information in the metadata and slight modification to the write and garbage collection
algorithms.

File systems usually use journal information to enhance consistency, especially for
the metadata. Choi et al. [2009] suggested that we should combine the designs of the
file system and the FTL. By exploiting the out-of-place update characteristic of FTL and
passing file system information, such as deletion of a file, to the FTL, a file system with
high consistency level could be implemented without introducing too much overhead.

10.2. Transaction Processing

Besides protecting write operations of a file system, researchers also tried to build
transaction processing systems over FTLs, such as LGeDBMS [Kim et al. 2006].

Lee and Moon [2007] proposed In-Page Logging (IPL) and suggested to keep log
information in the same block as the corresponding data in order to reduce reclamation
overhead. In this design, the last few pages15 are reserved and divided into several log
sectors.16 In the memory pool, each page is associated with a log sector, and each
modification to the page generates a log in the log sector. When a page is swapped out
or when its log sector becomes full, the log sector is flushed to one of the log sectors
in the same block where the data page locates. If all log sectors are filled up, the
whole block is reclaimed. To support transaction processing, IPL discards logs whose
transaction has been roll backed, merges logs whose transaction has been committed,
and leaves alone logs of unfinished transactions.

10.3. Multiversion Support

System failure is not the only reason we need the out-of-date data. Sometimes, the
overwritten data is reserved to provide multiversion support [Sun et al. 2008]. The
method is quite straightforward. In an in-place update system, supporting multiversion
requires copying the old data to a different place. However, since flash memory always
writes updated data to a new page, leaving the old one unchanged, we only have to
prevent the history version of a page from being reclaimed. Therefore, besides the
effort of tracking the locations of history data, some type of purge policy needs to be
embedded in the garbage collection algorithm.

15When Lee and Moon [2007] was written, a block contained only 16 pages. Therefore, only 1 page is used to
store log information in the original design.
16Obviously, IPL requires the support of partial page programming, and the number of log sectors into which
each log page is divided depends on the NOP of the device.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

A Survey of Address Translation Technologies for Flash Memories 36:35

10.4. Data Sanitization

Sometimes, the out-of-place update nature of flash memory brings challenges as op-
posed to opportunities. There are many cases in which data in part of (e.g., files) or the
whole storage device need to be sanitized, or, in other words, erased reliably [Wei et al.
2011]. People wish to remove all data before getting rid of (e.g., throwing in the trash or
selling to a third party) their storage devices. Before sending their digital devices back
to the store for repair, people wish to remove their personal or financial information
(e.g., communication records or saved passwords).

There are several methods to purge the whole or part of a traditional magnetic disk,
such as overwriting the protected data, using the built-in ATA or SCSI commands, or
destroying the device physically (including degaussing) [Wei et al. 2011].

However, due to the use of FTLs, overwriting is no longer a reliable method, especially
when only a few files need to be sanitized. For one thing, it is usually useless to overwrite
the target file, because the overwriting data will be directed to a different physical
address. For another, even if the whole free portion of the logical address space is filled
with random pattern, the old data may still survive because the physical address space
may be larger than the advertised logical capacity due to performance considerations.
To make things worse, the limited life span of flash-based devices also circumscribes
the use of overwriting.

Besides, built-in commands are also not reliable for flash-based devices. According to
Wei et al. [2011], many existing flash-based SSDs cannot perform the “securely erase”
command correctly and need intensive verification.

Since no software method available at hand is completely reliable, the only way to
ensure a secure data destruction is to grind one’s flash-based device into fine powder. If
one wants to enhance the security of a single file deletion, he will need the assistance
of FTL, which owns all of the address information when the file is updated [Wei et al.
2011].

There are also some products that allow users to enable data encryption (e.g., AES).
Although encryption can help enhance data security to a certain extent, one still needs
to make sure that the encryption key, which is used to access a file, is securely sanitized
if he does not want the file to be recovered by an attacker.

10.5. I/O Characteristics

Although characteristics of raw flash memories have been well specified (Section 1.4),
flash-based devices, such as SSDs, USB drives, and SD cards, which are integrated with
an FTL, turn out to be a black box from the system’s view of point and present different
characteristics [Bouganim et al. 2009]. Many of these characteristics can be explained
by the design choices of the FTL, and we highlight some of them in this section:

—Read operations are always very efficient, which coheres with the read performance
of flash chips. Sequential reads may be slightly faster than random ones if not all
mapping information resides in the SRAM.

—Sequential writes can be several times faster than random ones. Random updates
may result in holes in the blocks, and many erase operations are needed to reclaim
the space. On the contrary, sequential writes can invalidate a continuous segment of
pages that needs fewer erases.

—If random writes exhibits high spatial locality, performance may benefit. For one
thing, some requests can be served by the write cache; for another, many FTLs, such
as AFTL, HFTL, and LAST, treat hot data especially.

As demonstrated in Bouganim et al. [2009], different devices may employ different
FTL algorithms, and their performance may vary dramatically. Readers should be
careful when designing data structures and algorithms for their devices.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

36:36 D. Ma et al.

11. CONCLUSIONS

Flash is a promising memory technology that has emerged for tens of years. Since
in-place updates are no longer supported, address translation technology becomes an
indispensable approach to make flash memory a new layer in the modern storage
hierarchy. FTL is a software layer built in the firmware or in the system software that
implements address translation, garbage collection, wear leveling, and so forth, and
wraps the flash memory into a normal block device like magnetic disks.

Unfortunately, many of these technologies are either undocumented or only described
in patents. This survey provides a broad overview of some typical state-of-the-art
address translation technologies described in patents, journals, and conference pro-
ceedings. We hope that this survey will facilitate future research and development of
flash-based applications.

REFERENCES

Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, et al. 2008. Design tradeoffs for SSD performance. In
Proceedings of the USENIX 2008 Annual Technical Conference on Annual Technical Conference. 57–70.

Mahmud Assar, Petro Estakhri, Siamack Nemazie, et al. 1996. Flash memory mass storage architecture
incorporating wear leveling technique without using CAM cells. (January 1996). United States Patent
No. 5,485,595.

Mahmud Assar, Siamack Nemazie, and Petro Estakhri. 1995. Flash memory mass storage architecture.
(February 1995). United States Patent No. 5,388,083.

Amir Ban. 1995. Flash file system. (April 1995). United States Patent No. 5,404,485.

Amir Ban. 1999. Flash file system optimized for page-mode flash technologies. (August 1999). United States
Patent No. 5,937,425.

Andrew Birrell, Michael Isard, Chuck Thacker, et al. 2007. A design for high-performance flash disks. ACM
Operating Systems Review 41, 2 (April 2007).

Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13, 7
(July 1970), 422–426.

Luc Bouganim, Björn pór, Jónsson, and Philippe Bonnet. 2009. uFLIP: Understanding flash IO patterns. In
Proceedings of the 4th Biennial Conference on Innovative Data Systems Research.

Li-Pin Chang and Tei-Wei Kuo. 2004. An efficient management scheme for large-scale flash-memory storage
systems. In Proceedings of the 2004 ACM Symposium on Applied Computing. 862–868.

Hyunjin Cho, Dongkun Shin, and Young Ik Eom. 2009. KAST: K-associative sector translation for NAND
flash memory in real-time systems. In Proceedings of the Conference on Design, Automation and Test in
Europe. 507–512.

Hyun Jin Choi, Seung-Ho Lim, and Kyu Ho Park. 2009. JFTL: A flash translation layer based on a journal
remapping for flash memory. ACM Transactions on Storage 4, 4 (January 2009).

Siddharth Choudhuri and Tony Givargis. 2007. Performance improvement of block based NAND flash trans-
lation layer. In Proceedings of the 5th IEEE/ACM International Conference on Hardware/Software Code-
sign and System Synthesis. 257–262.

Tae-Sun Chung, Dong-Joo Park, Sangwon Park, et al. 2006. System software for flash memory: A survey. In
Proceedings of the 2006 International Conference on Embedded and Ubiquitous Computing. 394–404.

Tae-Sun Chung, Stein Park, Myung-Jin Jung, et al. 2004. STAFF: State transition applied fast flash trans-
lation layer. In Proceedings of the International Conference on Architecture of Computing Systems.
199–212.

Raz Dan and Rochelle Singer. 2003. Implementing MLC NAND flash for cost-effective, high-capacity memory.
M-Systems White Paper 91-SR-014-02-8L, REV 1.0. (January 2003).

Jörn Engel and Robert Mertens. 2005. LogFS—Finally a scalable flash file system. Retrieved from http://www.
informatik.uni-osnabrueck.de/papers_pdf/2005_07.pdf.

Petro Estakhri and Mahmud Assar. 1998. Direct logical block addressing flash memory mass storage archi-
tecture. (December 1998). United States Patent No. 5,845,313.

Petro Estakhri and Berhanu Iman. 1999. Moving sequential sectors within a block of information in a flash
memory mass storage architecture. (July 1999). United States Patent No. 5,930,815.

Petro Estakhri, Berhau Iman, and Ali R. Ganjuei. 1999. Moving sectors within a block of information in a
flash memory mass storage architecture. (May 1999). United States Patent No. 5,907,856.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

http://www.informatik.uni-osnabrueck.de/paperspdf/200507.pdf
http://www.informatik.uni-osnabrueck.de/paperspdf/200507.pdf

A Survey of Address Translation Technologies for Flash Memories 36:37

Eran Gal and Sivan Toledo. 2005. Algorithms and data structures for flash memories. Comput. Surveys 37,
2 (June 2005), 138–163.

Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, et al. 2009. Characterizing flash memory: Anomalies,
observations, and applications. In Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture. 24–33.

Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: A flash translation layer employing
demand-based selective caching of page-level address mappings. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating Systems. 229–240.

Jen-Wei Hsieh, Tei-Wei Kuo, and Li-Pin Chang. 2006. Efficient identification of hot data for flash memory
storage systems. ACM Transactions on Storage 2, 1 (February 2006), 22–40.

Intel Corporation. 1998. Understanding the Flash Translation Layer (FTL) Specification. Technical report
AP-864 (December 1998).

Intel Corporation. 2012. Enhanced power-loss data protection in the Intel Solid-State Drive 320 Se-
ries. http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/ssd-320-series-
power-loss-data-protection-brief.pdf

Intel. 2012. Enhanced power-loss data protection in the Intel solid-state drive 320 series. (2012).

Dongwon Kang, Dawoon Jung, Jeong-Uk Kang, et al. 2007. µ-Tree: An ordered index structure for NAND
flash memory. In Proceedings of the 7th ACM & IEEE International Conference on Embedded Software.
144–153.

Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, et al. 2006. A superblock-based flash translation layer for NAND
flash memory. In Proceedings of the 6th ACM & IEEE International Conference on Embedded Software.
161–170.

Bum-Soo Kim and Gui-Young Lee. 2002. Method of driving remapping in flash memory and flash memory
architecture suitable therefor. (April 2002). United States Patent No. 6,381,176 B1.

Gye-Jeong Kim, Seung-Cheon Baek, Hyun-Sook Lee, et al. 2006. LGeDBMS: A small DBMS for embedded
system with flash memory. In Proceedings of the 32nd International Conference on Very Large Data
Bases. 1255–1258.

Jesung Kim, Jong Min Kim, Sam H. Noh, et al. 2002. A space-efficient flash translation layer for compact
flash systems. IEEE Transactions on Consumer Electronics 48, 2 (May 2002), 366–375.

Duckhoi Koo and Dongkun Shin. 2009. Adaptive log block mapping scheme for log buffer-based FTL (flash
translation layer). In Proceedings of the International Workshop on Software Support for Portable
Storage.

Hunki Kwon, Eunsam Kim, Jongmoo Choi, et al. 2010. Janus-FTL: Finding the optimal point on the spectrum
between page and block mapping schemes. In Proceedings of the 10th ACM International Conference on
Embedded Software. 169–178.

Hyun-Seob Lee, Hyun-Sik Yun, and Dong-Ho Lee. 2009. HFTL: Hybrid flash translation layer based on
hot data identification for flash memory. IEEE Transactions on Consumer Electronics 55, 4 (November
2009), 2005–2011.

Sungjin Lee, Dongkun Shin, Young-Jin Kim, et al. 2008. LAST: Locality-aware sector translation for NAND
flash memory-based storage systems. ACM SIGOPS Operating Systems Review 42, 6 (October 2008),
36–42.

Sang-Won Lee and Bongki Moon. 2007. Design of flash-based DBMS: An in-page logging approach. In
Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. 55–66.

Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, et al. 2007. A log buffer based flash translation layer using
fully associative sector translation. ACM Transactions on Embedded Computing Systems 6, 3 (July
2007).

Yong-Goo Lee, Dawoon Jung, Dongwon Kang, et al. 2008. µ-FTL: A memory-efficient flash translation layer
supporting multiple mapping granularities. In Proceedings of the 8th ACM International Conference on
Embedded Software. 21–30.

Sang-Phil Lim, Sang-Won Lee, and Bongki Moon. 2010. FASTer FTL for enterprise-class flash memory SSDs.
In Proceedings of the 2010 International Workshop on Storage Network Architecture and Parallel I/Os.
3–12.

Ren-Shuo Liu, Chia-Lin Yang, and Wei Wu. 2012. Optimizing NAND flash-based SSDs via retention relax-
ation. In Proceedings of the 10th USENIX Conference on File and Storage Technologies.

LogFS Specification. 2012. The LogFS Flash File System Specification. Retrieved from http://www.kernel.org/
doc/Documentation/filesystems/logfs.txt.

Dongzhe Ma, Jianhua Feng, and Guoliang Li. 2011. LazyFTL: A page-level flash translation layer optimized
for NAND flash memory. In Proceedings of the 2011 International Conference on Management of Data.
1–12.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

http://www.kernel.org/doc/Documentation/filesystems/logfs.txt
http://www.kernel.org/doc/Documentation/filesystems/logfs.txt

36:38 D. Ma et al.

Charles Manning. 2012. How Yaffs works. Retrieved from http://www.yaffs.net/documents/how-yaffs-works.

Micron Technology, Inc. 2007. Small-Block vs. Large-Block NAND Flash Devices. Technical Note TN-29-07
(May 2007).

Micron Technology, Inc. 2011. NAND Flash Translation Layer (NFTL) 4.6.0. NFTL User Guide Rev. L.
(February 2011).

Vidyabhushan Mohan, Sriram Sankar, and Sudhanva Gurumurthi. 2012. reFresh SSDs: Enabling High
Endurance, Low Cost Flash in Datacenters. Technical Report CS-2012-05. University of Virginia and
Microsoft Corporation.

Hans Olav Norheim. 2008. How Flash Memory Changes the DBMS World. Retrieved from http://www.
hansolav.net/blog/content/binary/HowFlashMemory.pdf.

Kevin OBrien. 2012. Samsung SSD SM825 Enterprise SSD Review. Retrieved from http://www.
storagereview.com/samsung_ssd_sm825_enterprise_ssd_review.

Yangyang Pan, Guiqiang Dong, Qi Wu, et al. 2012. Quasi-nonvolatile SSD: Trading flash memory nonvolatil-
ity to improve storage system performance for enterprise applications. In Proceedings of the 2012 IEEE
18th International Symposium on High-Performance Computer Architecture. 1–10.

Chanik Park, Wonmoon Cheon, Jeonguk Kang, et al. 2008. A reconfigurable FTL (flash translation layer)
architecture for NAND flash-based applications. ACM Transactions on Embedded Computing Systems
7, 4 (July 2008).

Sunhwa Park, Ji Hyun Yu, and Seong Yong Ohm. 2005. Atomic write FTL for robust flash file system. In
Proceedings of the 9th International Symposium on Consumer Electronics. 155–160.

Qhiwei Qin, Yi Wang, Duo Liu, et al. 2010. Demand-based block-level address mapping in large-scale
NAND flash storage systems. In Proceedings of the 8th IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis. 173–182.

Zhiwei Qin, Yi Wang, Duo Liu, et al. 2011. MNFTL: An efficient flash translation layer for MLC NAND flash
memory storage systems. In Proceedings of the 48th Design Automation Conference. 17–22.

Mendel Rosenblum and John K. Ousterhout. 1992. The Design and Implementation of a Log-structured File
System. ACM Transactions on Computer Systems, 10, 1 (February 1992), 26–52.

Samsung Electronics Co., Ltd. 1999. Application Note for NAND Flash Memory, Rev. 2.0 (December 1999).

Samsung Semiconductor, Inc. 2003. Selecting the Right Flash Partner to Turn Technology Advantages into
Profits. Position Paper CG2020-A (January 2003).

Samsung Electronics Co., Ltd. 2009. Page Program Addressing for MLC NAND (Version 0.2). Application
Note (November 2009).

Ji-Yong Shin, Zeng-Lin Xia, Ning-Yi Xu, and others. 2009. FTL design exploration in reconfigurable high-
performance SSD for server applications. In Proceedings of the 23rd International Conference on Super-
computing. 338–349.

Takayuki Shinohara. 1999. Flash memory card with block memory address arrangement. (May 1999). United
States Patent No. 5,905,993.

Kyoungmoon Sun, Seungjae Baek, Jongmoo Choi, et al. 2008. LTFTL: Lightweight time-shift flash trans-
lation layer for flash memory based embedded storage. In Proceedings of the 8th ACM International
Conference on Embedded Software. 51–58.

Arie Tal. 2003. Two Technologies Compared: NOR vs. NAND. M-Systems White Paper 91-SR-012-04-8L, Rev
1.1 (July 2003).

Super Talent Technology, Inc. SLC vs. 2008. MLC: An analysis of flash memory. White Paper (March 2008).

UBIFS. 2013. The UBIFS Documentation. Retrieved from http://www.linux-mtd.infradead.org/doc/ubifs.
html.

Yi Wang, Duo Liu, Meng Wang, et al. 2010. RNFTL: A Reuse-Aware NAND Flash Translation Layer for Flash
Memory. In Proceedings of the ACM SIGPLAN/SIGBED 2010 Conference on Languages, Compilers, and
Tools for Embedded Systems. 163–172.

Michael Wei, Laura M. Grupp, and Frederick E. Spada. 2011. Reliably erasing data from flash-based solid
state drives. In Proceedings of the 9th USENIX conference on File and Storage Technologies.

Steven Wells, Robert N. Hasbun, and Kurt Robinson. 1998. Sector-based storage device emulator having
variable-sized sector. (October 1998). United States Patent No. 5,822,781.

Wikipedia. 2012a. CompactFlash. Retrieved from http://en.wikipedia.org/wiki/CompactFlash.

Wikipedia. 2012b. Content-addressable Memory. Retrieved from http://en.wikipedia.org/wiki/Content-
addressable_memory.

Wikipedia. 2012c. Flash Memory. Retrieved from http://en.wikipedia.org/wiki/Flash_memory.

Wikipedia. 2012d. TRIM. Retrieved from http://en.wikipedia.org/wiki/TRIM.

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

http://www.yaffs.net/documents/how-yaffs-works
http://www.hansolav.net/blog/content/binary/HowFlashMemory.pdf
http://www.hansolav.net/blog/content/binary/HowFlashMemory.pdf
http://www.storagereview.com/samsungssdsm825enterprisessdr
http://www.storagereview.com/samsungssdsm825enterprisessdr
http://www.linux-mtd.infradead.org/doc/ubifs.html
http://www.linux-mtd.infradead.org/doc/ubifs.html
http://en.wikipedia.org/wiki/CompactFlash
http://en.wikipedia.org/wiki/Content-addressablememory
http://en.wikipedia.org/wiki/Content-addressablememory
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/TRIM

A Survey of Address Translation Technologies for Flash Memories 36:39

Wikipedia. 2012e. Write amplification. Retrieved from http://en.wikipedia.org/wiki/Write_amplification.

David Woodhouse. 2001. JFFS: The journalling flash file system. Retrieved from http://sources.redhat.
com/jffs2/jffs2.pdf.

Chin-Hsien Wu. 2010. A self-adjusting flash translation layer for resource-limited embedded systems. ACM
Transaction on Embedded Computing Systems 9, 4 (April 2010).

Chin-Hsien Wu and Tei-Wei Kuo. 2006. An adaptive two-level management for the flash translation layer in
embedded systems. In Proceedings of the 2006 IEEE/ACM International Conference on Computer-Aided
Design. 601–606.

Michael Wu and Willy Zwaenepoel. 1994. eNVy: A non-volatile, main memory storage system. In Proceedings
of the 6th International Conference on Architectural Support for Programming Languages and Operating
Systems. 86–97.

Po-Liang Wu, Yuan-Hao Chang, and Tei-Wei Kuo. 2009. A file-system-aware FTL design for flash-memory
storage systems. In Proceedings of the Conference on Design, Automation and Test in Europe. 393–398.

Zhiyong Xu, Ruixuan Li, and Cheng-Zhong Xu. 2012. CAST: A page-level FTL with compact address mapping
and parallel data blocks. In Proceedings of the 2012 IEEE International Performance Computing and
Communications Conference. 142–151.

Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, et al. 2012. De-indirection for flash-based
SSDs with nameless writes. In Proceedings of the 10th USENIX Conference on File and Storage Tech-
nologies. 1–16.

Received October 2012; revised August 2013; accepted August 2013

ACM Computing Surveys, Vol. 46, No. 3, Article 36, Publication date: January 2014.

http://en.wikipedia.org/wiki/Write_amplification
http://sources.redhat.com/jffs2/jffs2.pdf
http://sources.redhat.com/jffs2/jffs2.pdf

