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ABSTRACT 

An important problem in database systems is answering queries quickly. This paper 

surveys a number of algorithms for efficiently answering range queries. First a set of 

“loGical structures” is described and ‘then their implementation in primary and 

secondary memories is discussed. The algorithms included are of both “practical” and 

“theoretical” interest. Although some new results are presented, the primary purpose 

of this paper is to collect together the known results on range searching and to 

present them in a common terminology. 
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i. Int reduction 

Rezarchers in database system s have recently identified and investigated many 

fundamental areas of study in their field; among these are issues such as database 

security, reliability, and integrity. One area which has not received much attention, 

however, is that of algorithmic efficiency, which is the study of “best possible” 

algorithms and data structures for answering different kinds of queries. In this paper 

we apply the tools of algorithm design and analysis to database problems by 

examining algorithms and data structures for answering a particular type of query. 

We need some definitions to describe this searching problem. A file is a collection 

of records, each containing several attributes or keys. A query asks for all records 

satisfying certain characteristics. An orthogonal range query asks for all records with 

key values each within specified ranges. The process of retrieving the appropriate 

records is called range searching. The problem of range searching can be cast ih 

geometric terms. One can regard the record attributes as coordinates, and the k 

values for each record as representing a point in a k-dimensional coordinate space. 

The intersection of the query ranges can be represented as a k-dimensional 

hyperrectangle in this space. The problem of range searching is then to find all points 

lying inside this hyperrectangle. We will often cast range searching in this geometric 

framework as an aid to intuition. 

Range searching arises in many applications. A university administrator may wish to 

know those students whose age i s between 21 and 24 years and whose grade point. 

average is greater than 3.5. In a geographic database of U.S. cities one might seek a 

list of all those for which the latitude is between 37’ and 41’ and longitude between 

102’ and 109’ (defining the state of Colorado). In data analysis it is often useful to 

do separate analyses on sets of data lying in different regions (ranges) of the 

observation space and then compare (or contrast) the respective results. (At the 

Stanford Linear Accelerator Center, for example, over ten hours per week of IBM 

370/168 time is devoted to this application.) In statistics range searching can be 

employed to determine the empirical probability content of a hyperrectangle, to 

determine empirical cumulative distributions, and to perform density estimation. 

In this paper we survey various algorithms and data structures useful for range 

searching. In Section 2 we study the “logical” structures and then turn to their 

implementations in, Section 3. Directions for further work and conclusions are offered 

in Sections 4 and 5. Because this is a survey, we have omitted the more -mathematical 
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analyses of the various structures in favor of presenting a more intuitive description. 

Readers interested in the analyses are referred to the works in which they appear. 

There are several problems closely related to range searching on which there has 

been considerable research. In the future, these methods might be usefully applied to 

the problem of range searching. Bentley [1975a] discusses the problem of finding all 

points within a fixed radius of a given point. Yuval [1975] and Bentley, Stanat, and 

Williams [1977] investigate this problem for the special case of the L, metric. 

Friedman, Bentley, and Finkel [1977] discuss the problem of finding the k nearest 

neighbors of a point in a file of N points. Bentley [1976] discusses the problem of 

finding the nearest neighbor to each of the N points in the file. Domination problems 

are closely ‘related to range searching; a point is said to dominate another if all of its 

coordinates are larger. Kung, Luccio, and Preparata [1975] discuss the determination 

of whether a given point is dominated by any other point. Bentley and Shamos [1977] 

investigate the calculation of how many points a given point dominates, which is the 

empirical cumulative distribution evaluated at the point. 
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2. Logical Structures 

In this section we discuss the various methods for range searching in terms of their 

logical structures; that is, the logical structure of the data at the level of “adjacency” 

and “pointers” without regard to implementation. In Section 3 we will study the 

problem of how one implements these logical structures on specific storage media. 

A search method is specified by a data structure for storing the data and algorithms 

for building the structure (which we call preprocessing), and searching the structure. 

There may also be various utility operations such as insertion and deletion. One 

analyzes a search structure (say S) by giving three cost functions: 1) the cost of 

preprocessing N points in k-space, PS(N,k); 2) the storage required, SS(N,k); and 3) the 

search time or query cost, QS(N,k). These costs can be analyzed in terms of their ,, 

average or their worst-case cost. We will usually speak of the worst-case cost, 

explicitly mentioning the average whenever we employ it. 

2.1 Brute Force 

The simplest approach to range searching is to store each of the N points in a 

sequential list. As each query arrives all members of the list are scanned and all 

records that satisfy the query are enumerated. If the queries do not have to be 

handled immediately then they can be batched so that many queries can be processed 

with one sequential pass through the file. It is easy to see that the brute force 

structure, 8, possesses the properties 

PB(N,k) = O(Nk), 

St$N,k) = O(Nk), and 

Q$N,k) = O(Nk). 

Brute force searching has the advantage of being trivial to implement on any storage 

medium. It is competitive with the more sophisticated methods described below when 

the file is small and the number of attributes is large;or when a large fraction of the 

records in the file satisfy the query (or queries, if they are batched). 

2.2 Projection 

The projection technique is referred to as inverted lists by Knuth [1973]. This 

technique ‘wa s applied by Friedman, Baskett, and Shustek [1976] in their solution of 

the nearest neighbor problem, and by Lee, Chin, and Chang [1976] to a number of 

database problems. Projection involves keeping, for each attribute, a sequence of the 
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records in the file sorted by that attribute. One can view this geometrically as a 

projation of the points on each coordinate. The k lists representing the projections 

can be obtained by using a standard sorting algorithm k times. After preprocessing, a 

range query can be answered by the following search procedure: choose one’of the 

attributes, say the i-th. Look up the two positions in the i-th sequence (using a 

binary search) of the extreme values defining the range on the i-th attribute of the 

query. All records satisfying the query will be in the list between these two positions 

just found. This smaller list is then searched by brute force. 

The projection technique is illustrated in Figure 2.1. The points represent a set of 

sixteen records of two keys each, represented by ,x and y coordinates. The dashed 

lines are the projection of the records onto the x coordinate (that is, the records 

sorted into x order). The vertical slab is the x- range of the query, the horizontal 

slab is the y-range, and the rectangle which is their intersection contains those points 

which satisfy the query. To answer this query we need only investigate the six points 

which are inside the vertical slab, marked by the 45O lines. 

x range 

? 
I I/n . 

’ Y 

Figure 2.1. Illustration of projection. 

One can apply the projection technique with only one sorted list. If the distribution 

of values of the various attributes are more or less uniform over similar ranges and 

the query ranges of each attribute are similar, then one list is sufficient. If not, then 

it can pay to keep sorted sequences on all k attributes. The positions of the 
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corresponding query range extremes are found in each of the k lists. The list for 

which-the difference in positions is smallest is searched between the two positions. 

Analysis of the projection technique, P, for nearest neighbor searching is reported 

in Friedman, Baskett, and Shustek [1976]. Most of this analysis directly carries over 

to the problem of range searching. It is clear that 

PP(N,k) = O(kN log N), and 

Sp(N,k) = O(kN). 

For searches that find a small number of records (and are therefore similar to near 

neighbor searches) one has 

Qp(N,k) = O(N’-‘/kX [Average Case] 

The projection technique is most effective when the number of records satisfying each 

query is usually close to zero. 

2.3 Cells. 

There are two ways they can search [for the murder weapon]: from the 

body outward in a spiral, or divide the room up into squares--that’s the 

grid meth0d.l 

Cartographers as well as detectives use the grid (or cell) method: Street maps of 

metropolitan areas are often printed in the form of books. The first page of the book 

shows the entire area and the remaining pages at-e detailed maps of (say) 

one-mile-square regions. To find (for example) all schools in a specified rectangle one 

would look in the’ first page to find which squares overlap the rectangle and then 

check only on those pages to find the schools. This approach can be mechanized 

immediately. A square of the map corresponds to a cell in k-space, and the points of 

the file within the cell are stored as a linked list. The first page of the map book 

corresponds to a directory which allows one to take a hyperrectangle and look up the 

set of cells. 

Knuth [1973] has discussed this scheme for the two-dimensional case. Levinthal 

[1966] used a cell technique in three-dimensional Euclidean space for determining all 

atoms within five angstroms of every atom in a protein molecule--he referred 40 this 

as “cubing”. Yuval [1975] and Rabin [1976] apply an overlapping cell structure to the 

lFrom the CBS seriee Kojsk, “Death Ie Not a Passing Grade”. 



-6- 

closest-pair problem. 

The directory can be implemented in two ways. If the points are (say) uniformly 

distributed on [0, lOJ2 and we have chosen 1 x 1 cells, then we can use a 

two-dimensional array as the directory. in DIRECT(i, j) we would keep a pointer to a 

list of all points in the cell [i, itl] x [j, jtl]. If we then wanted to find all points in 

[5.2, 6.31 x C1.2, 3.41 then we would only have to examine cells (5,1), (5,2), (5,3), (6,1), 

(6,2), (6,3). The multidimensional array works very well when the points are known a 

priori all to be in some given rectangle. When this is not known to be the case one 

would probably use a search method such as hashing for the directory. In this method 

we name each celt as before, so cell (i, j) is a pointer to the points in [i,i+l] x [j,j+l]. 

Instead of storing all cells, however, we store only cells which contain points of% the 

file. To process a query we “decode” the rectangle into a set of cell id’s, look up 

those id’s, and check the points in the occupied cells for inclusion in the rectangle. 

The storage required for the cell technique is the storage for the directory plus 

locations for the linked list representing points in cells; the size of the directory is 

usually much smaller than N. 

The cell technique is illustrated in Figure 2.2. The sixteen points in that figure 

represent sixteen records” containing two keys each. The points in each cell are 

The query is given by the rectangle in the stored together in an implementation. 

upper part of the figure, and to answer it only those points in the four dashed ceils 

need be investigated. 
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Figure 2.2. illustration of cells, 

Basic parameters of the cell technique are the size and shape of each ceil. In 

analyzing a search there are two costs to count: cell accesses (the number directory 

look-ups) and inclusion tests (testing whether a point satisfies the range query). If 

tpe cells are extremely large, then there will be few cell accesses and many inclusion 

tests. If the ceil size is very small, on the other hand, then there will be very many 

cell accesses and very few inclusion tests. Clearly either extr.eme is bad. 

The best cell size and shape depends upon the size and shape of the query 

hyperrectangle. ,Bentley, Stanat, and Williams [1977] show that if the query 

hyperrectangles have constant size and shape so that only their location (in the 

coordinate space) is unspecified, then for a single grid a nearly optimum size and 

shape for the cells are the same as that for the query hyperrectangle. For this case 

the number of cells accessed is 2k and the expected search time is proportional to 2k 

times the number of points in the range. In this context the ,performance of cells is 

given by 

PC(N,k) = OWL 

SC(N,k) = O(Nk), and 

Q&k) = OPk I=) [Average] 

where F is the number of records found. In most applications the queries will vary in 

their size and shape as well as their location, so that there is little information 
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available for making a good choice of cell size and shape. 

2.4 k-d Trees 

This data structure was introduced by Bentley [1975b]. Friedman, Bentley and 

Finked [1977] introduced adaptive k-d trees and showed that this structure is very 

effective for nearest neighbor searching. Bentley [1978] has discussed the 

application of k-d t’rees to database problems. The application of k-d trees has the 

effect of dividing the k-space into a collection of irregular hyperrectangles each with 

the property that they are approximately cubical and all contain nearly the same 

number of points. This overcomes the problem of empty cells which severely limits 

the performance of searching with regular grids. The cell pattern induced by k-d 

trees adapts to the distribution of the points in k-space. 

The k-d tree is a generalization of the binary search tree used for sorting and 

searching. The k-d tree is a binary tree in which each node represents both a 

subcollection of the points in the space and a partitioning of that subcollection. The 

root of the tree represents the entire collection. Each nonterminal node has two sons; 

these son nodes represent the two su&ollections defined by the -partitioning. The 

terminal nodes represent mutually exclusive small subsets of the points, which 

collectively form a partition of k-space. These terminal subsets are called buckets. 

In the case of one-dimensional searching a point is represented by a single 

coordinate value and a partition is defined by some value of that coordinate. All 

records in a subcollection with key values less than or equal to the partition’value 

belong to the left son while those with a larger value belong to the’right son. That 

coordinate is thus a discriminator foi assigning records to the two subcollections. A 

point in k-space is represented by k coordinate values. Any one of these can serve 

as a discriminator for partitioning the subcollection represented by a particular node 

in the tree; that is, the discriminator can range from 1 to k. 

The prescription for constructing in adaptive k-d tree is to choose for the 

discriminator that coordinate j for which the spread of attribute values (as measured 

by any convenient statistid) is maximum for the subcollection represented by the node. 

The partitioning value is chosen. to be the median value of this attribute. This 

prescription is then applied r&cursively to the two subcollections represented by the 

two sons of the node just partitioned. The partitioning is stopped, creating a terminal 
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node (or bucket), when the cardinality of the subcollection is less than a prespecified 

maxiwm, which is a parameter of the procedure. Friedman, Bentley, and Finkel 

[1977] found empirically that values ranging from 8 to 16 work well for nearest 

neighbor searching. The result of this procedure is that the coordinate space is 

divided into a number of buckets, each containing approximately the same number of 

points (by the stopping criteria) and each approximately “cubical” in shape (by the 

choice of discriminator). 

Range searching’with k-d trees is straightforward. Starting at the root the k-d tree 

is recursively searched in the following manner. When visiting a node which 

discriminates by the j-th key (which we call a j-discriminator) one compares the j-th 

range of the query with the j-th key of the node. If the query range is totally above 

(or below) the key’s value then one need only search the right subtree (respectively 

left) of that node; the other son can be pruned from the search because any node it 

contains does not satisfy the query in that particular key. If the query range overlaps 

the node’s key (that is, the key is between the low and high bounds of the range), 

then both sons need be searched. This can be accomplished by searching both sons 

recursively, making use of a stack. A modification can increase the speed of this basic 

recursive algorithm if it is suspected that many large subtrees will be contained 

entirely within the query region. The “bounds-array” technique described by 

Friedman, Bentley, and Finkel [ 19771 can be employed to detect the inclusion of a 

subtree within a region, and the points in that region can be listed without the 

overhead of the tree traversal. 

The application of k-d trees to range searching is illustrated in Figure 2.3. The k-d 

tree is depicted in two ways; Figure 2.3.a shows the structure in 2-space and Figure 

2.3.b shows the abstract tree. The root of the tree is internal node A; it is an 

x-discriminator, and the the vertical line in the right part of the figure Jabelled A is 

the discriminating line. That is, every point to the left of ,that vertical line is in the 

left subtree of A (which is B), and every point to the right is in the subtree with root 

C. This partitioning continues recursively, and the cells in this tree each contain two 

points. The query rectangle is illustrated in Figure 2.3.a, and the search for all points 

within the rectangle is illustrated in both figures. The search starts at the root, and 

since the query rectangle is entirely to the right of the vertical line defined by A the 

left subtree of A (which is B) can be pruned from the search. This is illustrated in 

Figure 2.3.b by the perpendicular line through the son link from A to B. The search 

continues, searching both sons of C, both sons of F, and only the left son of G. A total 
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of three buckets are searched; these buckets are dashed in the planar representation 

and are marked bv an S in the tree representation. 

a.) Planar representation 

A 

b.) Tree representation 

Figure 2.3. Illustration of k-d trees. 

Analysis of k-d trees for range searching has been considered by several 

researchers. The work required to construct a k-d tree and its storage requirements 

are 

Pk (N,k) = 0 (N log N), and 

Sk (N,k) = O(Nk). 

The search cost depends upon the nature of the query. In the very wotst case Lee 

and Wong [1976] show that 

Qk(N,k) I O(N’-‘/k) [Worst Case]. 



- 11 - 

If the number of records that satisfies the query is small so that the range query is ’ 

sirnil% to a nearest neighbor search then one has from Friedman, Bentley and ‘Finkel 

[1977] that 

Q&b&) = O(log N+F) [Average Case for small answer] 

where F is the number of points found in the region. For the case where a large 

fraction of the file satisfies the query Bentley and Stanat [1975] show that 

Qk(N, k) = O(F). [Average Case for large answer] 

The k-d tree structure is most effective in situations where little is known about 

the nature of the queries or a wide variety of queries are expected. They are also 

useful if other types of queries (in addition to range queries) are’anticipated. 

2.5 Range Trees 

In this section we describe the range tree, a structure introduced by Bentley 

[1977]. It achieves the best (worst-case) search time of all the structures discussed 

so far, but has relatively high preprocessing and storage costs. For most applications 

the high storage will be prohibitive, but the range tree is very interesting from a 

theoretical viewpoint. Since the range tree is defined recursively we will begin our 

discussion by looking at a one-dimensional structure, and then generalize that 

structure to higher dimensions. 

The simplest structure for one-dimensional range searching is a sorted array. The 

preprocessing sorts the N elements to be in ascending order by key. To answer a 

range query we do two binary searches to find the positions of the low and high end 

of the range in the array. After these two positions have been found we can list all 

the points in that part of the array as the answer to the range query. For this 

structure we use linear storage and O(N Ig N) preprocessing time. The two binary 

searches will each cost O(lg N), and the cost of listing the points found in the region 

will, of course, be proportional to the number of such points. Letting F be the number 

of points found in the region, we have 

+(N,l) = OW lg NJ, 

s~(N,l) = O(N), and 

QR(N,l) = O(lg N + F). 

We will now build a two-dimensional range tree, using as a tool the one-dimensional 
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sorted arrays we described above (which we abbreviate S/I’s). The range tree is 

simile to the “binary search trees” described by Knuth [1973, Section 6.21 so we will 

use his terminology in our discussions. The range tree will be a rooted binary tree in 

which every node has a left son, a right son, a discriminating value (all nodes in the 

left subtree have a discriminating value less than the node’s) and (unlike a regular 

binary search tree) every node contains an SA. The root of the range tree contains 

an SA (sorted by y-coordinate) and has as discriminating value the median x-value for 

all points. The left subtree of the root has an SA containing the N/2 points with 

x-value less than median sorted by y-coordinate. Likewise the left son of the root 

represents the N/2 points with x-value greater than the median and has an SA of 

those points sorted by y-coordinate. This partitioning continues so that i levels away 

from the root we have 2i subtrees, each representing N/2i points contiguous in the 

x-coordinate, and each containing an SA of the points sorted by y-coordinate. This 

partitioning continues for a total of (approximately) Ig N levels; we handle small point 

sets (say less than a dozen ponts) by brute force. 

The search algorithm for a range tree is most easily described recursively. Each 

node in the tree represents a range in the x-dimension. When visiting a node we 

compare the x-range of the query to the range of the node, and if the node’s range is 

entirely within the query’s then we search that structure’s SA for all points in the 

query’s y-range. After this we compare the query’s x-range to the node’s 

discriminator value. If the range is entirely below the discriminator we recursively 

visit the left subtree; if it is above ‘we visit the right; and if the range overlaps the 

discriminator then we visit both subtrees. 

The analysis of the planar tree is somewhat complicated. Since there are lg N 

levels in the tree and N points are stored on each level, the total storage required is 

O(N lg N). The preprocessing can performed in O(N lg N) time if clever techniques are 

employed. Analysis shows that at most two SA searches are done on each level of the 

tree (each of cost approximately lg N) so the total cost for a search is O(lg2 N) plus 

the time for listing the points in the region. Letting F stand, as before, for the total 

number of ‘points found in the ‘region we have 

PP(N,2) = O(N lg N), 

SP(N,2) = O(N lg N), and 

QR(N,2) = O(lg2 N + F). 

If we step back for a moment we can see how we built the structure: we 
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constructed a two-dimensional structure by building a tree of one-dimens.ional 

struct+ures. We can perform essentially the same operation to yield a 

three-dimensional structure: we construct a tree containing two-dimensional 

structures in the nodes. This process can be continued to yield a structure for 

k-dimensions, which will be a tree containing (k-l)-dimensional structures. This will 

yield a structure with performances 

PP(N,k) = O(N lgk-’ N), 

SP(N k) = O(N lgk-’ N), and 

QP(N:k) = O(lgk N + F). 

The range tree structure is very interesting from a theoretical viewpoint. The 

asymptotic search time is very fast, but the amount of storage used is probably 

prohibitive in practice. Although the application of this structure to practical problems 

will probably be limited to cases when k = 2 or 3, it does provide an important 

theoretical benchmark. It also gives us an interesting method that might yield fruit in 

practice. (Indeed, there are some very interesting relationships between range trees 

and the k-d trees of Section 2.4.) 

2.6 k-ranges 

The k-range I ‘s an efficient worst-case structure for range searching introduced by 

Bentley and Maurer [1978]. They developed two types of k-ranges: overlapping and 

noneverlapping. Both of these structures involve storing sets of lists of points sorted 

by different coordinates; additional dimensions are added recursively, much like the 

range trees of the last section. The overlapping k-ranges can be made to have 

performance 

PO(N,k) = SO(N k) = O(N1+‘) 

Qo(N,k) = O(lg ; + F) ’ 

for any f > 0. It is pleasing to note that the consants “hidden” in the big-ohs of the 

above equations a;e just k/C. Overlapping k-ranges have very efficient retrieval time 

but somewhat high preprocessing and storage costs; their dual, nonoverlapping 

k-ranges, have very efficient preprocessing and storage costs but increased query 

times. Their performance is 

PN(N,k) = O(N lg N), 

SN(N,k) = O(N), and 

QN(N,k) = CUJ’?. 
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for any fixed c 5 0. The details of these structures can be found in Bentley and 

Maurcr [1978]. Although these structures were developed primarily as a theoretical 

device, they might prove efficient in some implementations. 

2.7 Other Structures 

In this section we briefly mention several structures that we feel are no longer 

competitive with those discussed above. We include them for completeness and in the 

hope that someone might be inspired by one of them to invent techniques superior to 

those we have discussed. 

Knuth [1973] points out that the notion of .cells can be applied recursively. That is, 

when one of the cubes has more than some certain number of points, the cube is 

further divided into subcubes of yet smaller size. This scheme implies a 

multidimensional tree with, multiway branching. In terms of both the partitioning 

imposed on the space and the ease of implementation, this idea seems to be dominated 

by the quad tree (see below), which is in turn dominated by the k-d tree. 

Finkel and Bent1e.y [1974] describe a structure called the quad tree. It is a 

generalization of the binary tree in which every node has 2k sons. Bentley and 

Stanat [1975] analyzed the performance of quad trees for “square” range searches in 

uniform planar point sets. Lin [1973] discussed the fact that quad trees (which he 

called “search-sort k trees”) have advantages over binary trees when used in a 

synchronized multiprocessor system. This application aside, however, the quad tree 

seems to be dominated by its historical successor, the k-d tree. 

Bentley and Shamos [1977] describe a data structure (the ECDF tree) for finding 

the empirical cumulative distribution of a point (in k-dimensional space) among a 

collection of points. If only a count of the number of points in the- query 

hyperrectangle is required and, not a listing of the points, then several ECDF searches 

can be used to obtain that count. This structure has very desirable worst-case query 

performance but requires storage and preprocessing requirements similar to the range 

trees of Section 2.5. 

2.8 Comparison of Methods 

In Sections 2.1 to 2.6 we have discussed six structures for range searching. The 

performance of these six structures (seven including the two .variants of k-ranges) is ’ 
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summarized in Table 2.1, which shows for each the preprocessing, storage, and .query 

.costs, All of the functions in that table reflect worst-case costs, except those query 

costs which are marked with an asterisk. For those functions the probabilistic 

assumptions are described in the notes. 

Structure : P(N,k) . S(N,k) QNk) 

Brute Force O(N) O(N) O(N) 

Projection O(N Ie N) O(N) .O(N1-‘/k+F) * 

Cells ON O(N) O(F) * 

l-l/k 

k-d trees O(N Ig NJ O(N) 
O(N +F) 

O(lg N + F) *: 

Nonoverlappping k-ranges O(N, lg N) ON O(NE + F) 

Range Trees O(N k k-lN) O(N lgk-IN) O(lgk N + F) 

ltc 1+c 
Overlapping k-ranges O(N ) O(N ) O(lg i + F) 

s’ed query times indicate average case analysis. 
Probabilistic assumptions: 

1. Smooth data sets, very small query region. 

2. Any data set, cell size equals query size. 

3. Smooth data set. 

Table 2.1. Performance of data structures for range searching. 

Four of these six structures (brut.e force, projection, cells, and k-d trees) have been 

presented as providing practical solutions to the range searching problem. For each 

there are situations for which it is clearly superior and other situations where it 

performs badly, In this section we will mention various situations and compare the 

performance of the four methods. 

If the file is small and the number of attributes is large, if the file is to be searched 

only a few times, or if the ‘queries can be batched so that nearly all of the records in 

the file satisfy at least one, then brute force is the method of choice. Otherwise one 

of the other methods is likely to be more efficient. Projection does best when the 
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query range on only one of the attributes is sufficient to eliminate nearly ali of the 

file r&cords. For this case the low overhead of searching this structure allows it to 

dominate the others. In situations where several or many of the attributes serve to 

restrict the range query the projection technique performs relatively poorly. 

The cell and k-d tree structures are appropriate in those situations where the 

query restricts several or many of the attributes. If the approximate size and shape 

of the queries are roughly constant and are known in advance, then cells defined by a 

fixed grid with size and shape common to that of the expected queries is most 

advantageous. F& queries with sizes and shapes that differ considerably from the 

design, however, performance is poor. 

The k-d tree structure is characterized by its robustness to wildly varying queries. 

The cell design adapts to the distribution of the attribute values of the file records in 

the k-dimensional coordinate space. The ,cells all contain very nearly the same number 

of records; there are no empty cells. In dense regions there are many cells and a fine 

division of the coordinate space; in sparse regions there is a coarser division with 

fewer cells. If a wide variety of queries are expected then the k-d tree structure 

should serve best. 
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3. Implementations 

In Section 2 we discussed the various structures for range searching in a more or 

less abstract way without regard to implementation. We now turn our attention to 

how one implement: these structures on real computers. 

3.1 Internal Memory 

If the file is small enough so that it can be contained in the internal memory of the 

computer then implementation of these structures is straightforward. The brute force 

structure is implemented as a two dimensional (N x k) array. For projection one has ,k 

tables of pointers to records; each table is sorted on a different coordinate. 

As discussed in Section 2.3, there are two possible ways to associate records with 

cells when implementing the grid method. If the points are uniformly distributed in a 

more or less rectangular area (so that there are few empty cells) then the grid can be 

efficiently represented as a multidimensional array. If there are many empty cells 

then the k attribute values defining a cell can be treated collectively as a key and a 

well known search method such as binary searching or hashing can be employed-. 

The k-d tree can be implemented as any other binary tree; see Knuth [1973] and 

Bentley [1975b]. It is easy to store for each node a pair of pointers to the records 

defining the subcollection associated with the node, This facilitates enumeration of the 

records satisfying the query (if this is the case for ail records belo% that node) 

without traversing the descendants of that node. 

3.2 Disk 

Implementing these structures on random access disks is only slightly less 

straightforward than on central memory. For the most part disk addresses simply 

replace memory addresses. For brute force one simply performs a sequential scan of 

the records. With projection the sorted lists contain pointers to the disk address of 

the corresponding records. The lists for each attribute can themselves be stored on 

the disk and only one list at a time need reside in central memory. With the cell 

technique the hash tables contain disk pointers and reside in central memory. The 

records themselves are stored on disk, with all records in a cell stored on the same 

disk page. Only pages containing those cells overlapping the query rectangle need be 

read into central memory. 
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Tree structures lend themselves nicely to implementation on ‘random access disks; 

this& discussed by Knuth [1973, p.4721. Figure 3.2.1 shows how the nodes of the 

tree can be grouped (as shown by the dotted lines) onto disk pages. The size of each 

page is chosen as some convenient unit of disk memory (such as a track or sector), 

While the tree is searched in the usual manner only a few pages at a time .need reside 

in central memory. If the records satisfying the query represent a small fraction of 

the file then on the order of lg (N/b) disk accesses are required where b is the 

number of records per page. Bentley [1978] describes this implementation in more 

detail, and Williams et al. [1975] have actually implemented k-d trees for range 

searching on a random access disk system. 

Figure 3.1. Disk pages denoted by dashed lines. 

3.3 Tape 

By its nature magnetic tape is a sequential storage medium, and therefore ideal for 

the brute force approach. Even within this sequential limitation, however, it is 

possible to employ to advantage the other range searching methods described above. 

In order to read a record from a magnetic tape it is necessary to pass over all 

records from the beginning to it. It is not necessary, though, to read all of those 

records into central memory or even transmit them from the controller to the channel. 

On most computing systems it is possible to issue instructions to skip one or several 

blocks without transmitting any data. Although the real time to read a tape is nearly 

the same whether blocks are skipped or read, the CPU requirement, memory 

interference, and channel activity can be substantially reduced. This is important in a 

multiprogramming environment. 

The abstract projection method of Section 2.2 calls for storing the set of records in 
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k sorted lists, each sorted by a different key. Magnetic tape is an ideal medium for 

storing sorted lists--just store each of the k lists sequentially on the tape. In addition 

some mechanism is needed for deciding which list to search when answering a 

particular query. When all sorted lists were in main memory this was accomplished by 

inspecting each; on tape one can store a sample of each of the k sorted lists before 

storing any list in its entirety. This tape layout is illustrated in Figure 3.2. To answer 

a particular query one counts how many sample records it overlaps in each of the k 

samples, and then searches that sorted list which has fewest intersections. The 

search therefore skips over all records until arriving at the desired sorted list, and 

then skips over re;ords in that list until we finding a record within the desired range. 

At that point it starts reading all records and testing to see whether they satisfy all k’ 

ranges. 

Sample aor ted Records sorted by 

by all k coord’s first key 

Records sorted by 

second key 

k I 0 * l l 
Records sorted by 

I k-th key 

I 

Figure 3.2. Tape layout for projection. 

The cell method is implemented similarly. Here the directory comprises the first few 

blocks of the tape with the data following, arranged so that points within each cell 

comprise one block of data. The cells overlapping the query are determined from the 

directory and then those cells are read sequentially from the tape, skipping unwanted 

blocks. This tape layout is illustrated in Figure 3.3. 



Cell 

Directory 

-2o- 

‘Records in 

Cell I 

Records in 

Cell 2 

Recorde in 

Figure 3.3. Tape layout for cells. 

.The hierarchical nature of k-d trees and range trees allows for a natural 

implementation on a sequential storage medium such as magnetic tape. The nodes of 

the tree are stored in the order of a preorder (node, left son, right son) traversal of 

the tree. Each node comprises a record. The terminal nodes are the data blocks. 

Associated with each node is the number, D, of its descendants. 

With this arrangement the tree search can proceed directly from the tape. At each 

node visited (beginning with the root which is the first record on the tape) a 

determination is ma,le as to whether it is necessary to search one or both of its sons; 

the outcome of this test yields three cases. The easiest is when both sons are to be 

visited--continue reading the tape. If only the right son is to be visited, this is also 

easy--skip the number of blocks occuppied by the left subtree. The case of visiting 

only the left subtree is slightly more complicated--stack the number of records in the 

right subtree, and when control is returned to this node skip that many blocks. With 

this method the number of blocks read into main memory is equal to the number of 

nodes visited in the tree search. This technique can be applied to a wide v,ariety of 

tree searches on tape and the same behavior will be obtained. In particular this 

method can be used with the range trees of Section 2.5, in that magnetic tape can 

often accommodate their large storage requirements. 

Figure 3.4 illustrates the process of tree searching on tape. Figure 3.4.a is the 

abstract tree and Figure 3.4.b is its implementation on tape. Notice that the nodes of 

the tree appear in “preorder” on the tape: a’ node appears before all of its 

descendants, and all descendants of the left son appear before all descendants of the 

right son. A search in the tree is depicted in the tree by lines through son pointers: 

the search starts at the. root and then “prunes” the left son (number 2) from 

consideration. The search then visits the right son (number 51, and then must 
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recursively search both of that node’s sons (numbers 6 and 7); at that point the 

.exteraal nodes e and h are pruned, and nodes f and g are visited. This same search is 

described on tape in Figure 3.4; nodes which are visited are underlined by solid lines 

and those which are skipped are underlined by dashed lines. So node 1 is visted, and 

when it is determined that the left son can be pruned from the search the seven 

records following it are skipped, and the search proceeds to node 5. Notice that the 

nodes underlined by solid lines on the tape are exactly those visited by the search in 

the abstract tree. 

a.) Binary tree 

~G--J@~l--q@~J--l> - ---^--______--_--___--------------------- 

b.) Corresponding tape 

Figure 3.4. Tape layout for trees. 
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4. Further Wbrk 

Our discussion of range searching has in many r&pects just scratched the surface 

and there are many avenues open for further research. All files that we have 

discussed so far have been static, that is, unchanging. Many applications require 

dynamic structures, in which insertions and deletions can be made. Dynamic versions 

of brute force, projection, and cell structures are easily obtained. Dynamic k-d trees 

are discussed by Bentley [1975b] and Bentley [1978]. Considerable work remains to 

be done in the dynamic analysis of all of these structures. 

Considerable research also remains in the development of heuristics for aiding 

these search methods. For example, if in a seven dimensional problem the ranbe 

queries almost always involve only two of the attributes, then the, design of the 

structure should involve only these two attributes. Heuristics for detecting these and 

other similar situations would be very helpful. Bentley and Burkhard [1976-J might 

prove useful in such an investigation. 

5. Conclusions 
t 

The problem of range searching arises in many database applications. In Section 1 

of this paper we mentioned some of those applications and defined an “abstract” 

problem which models the real problems. In Section 2 we used the techniques of 

“algorithm design and analysis” to describe and analyze a number of data structures 

for range searching; these abstract structures are interesting from a theoretical 

viewpoint. In Section 3 we saw how these abstract structures can be efficiently 

implemented on a number of different storage media, showing that the structures are 

also practical. Avenues open for further research were mentioned in Section 4. 

‘In 1973 Knuth [1973, p. 5541 was able to write that “no really nice data structures 

seem to exist” for the problem of range searching. In this paper we have tried to 

show that this situation has changed in the interim, and that these changes can have a 

substantial impact on database systems. 
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