
SLAC PUB-21 89

August 1978

A SURVEY OF ALGORITHMS AND DATA STRUCTURES FOR
RANGE SEARCHING*

Jon Louis Bentley

Departments of Computer Science and Mathematics
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

Jerome H. Friedman
Computation Research Group

Stanford Linear Accelerator Center

Stanford, California 94305

ABSTRACT

An important problem in database systems is answering queries quickly. This paper

surveys a number of algorithms for efficiently answering range queries. First a set of

“loGical structures” is described and ‘then their implementation in primary and

secondary memories is discussed. The algorithms included are of both “practical” and

“theoretical” interest. Although some new results are presented, the primary purpose

of this paper is to collect together the known results on range searching and to

present them in a common terminology.

(Submitted to ACM Transactions on Database Systems)

-Work partially supported by Department of Energy

-i-

Table of Contents

1. Introduction

2. Logical Structures

2.1 Brute Force
2.2 Projection
2.3 Cells
2.4 k-d Trees

2.5 Range Trees

2.6 k-ranges
2.7 Other Structures
2.8 Comparison of Methods

3. Implementations

3.1 Internal Memory

3.2 Disk

3.3 Tape

4. Further Work

5. Conclusions

1

3

3
3
5
8

11

13

14
14

17

17

17

18

22

23

-l-

i. Int reduction

Rezarchers in database system s have recently identified and investigated many

fundamental areas of study in their field; among these are issues such as database

security, reliability, and integrity. One area which has not received much attention,

however, is that of algorithmic efficiency, which is the study of “best possible”

algorithms and data structures for answering different kinds of queries. In this paper

we apply the tools of algorithm design and analysis to database problems by

examining algorithms and data structures for answering a particular type of query.

We need some definitions to describe this searching problem. A file is a collection

of records, each containing several attributes or keys. A query asks for all records

satisfying certain characteristics. An orthogonal range query asks for all records with

key values each within specified ranges. The process of retrieving the appropriate

records is called range searching. The problem of range searching can be cast ih

geometric terms. One can regard the record attributes as coordinates, and the k

values for each record as representing a point in a k-dimensional coordinate space.

The intersection of the query ranges can be represented as a k-dimensional

hyperrectangle in this space. The problem of range searching is then to find all points

lying inside this hyperrectangle. We will often cast range searching in this geometric

framework as an aid to intuition.

Range searching arises in many applications. A university administrator may wish to

know those students whose age i s between 21 and 24 years and whose grade point.

average is greater than 3.5. In a geographic database of U.S. cities one might seek a

list of all those for which the latitude is between 37’ and 41’ and longitude between

102’ and 109’ (defining the state of Colorado). In data analysis it is often useful to

do separate analyses on sets of data lying in different regions (ranges) of the

observation space and then compare (or contrast) the respective results. (At the

Stanford Linear Accelerator Center, for example, over ten hours per week of IBM

370/168 time is devoted to this application.) In statistics range searching can be

employed to determine the empirical probability content of a hyperrectangle, to

determine empirical cumulative distributions, and to perform density estimation.

In this paper we survey various algorithms and data structures useful for range

searching. In Section 2 we study the “logical” structures and then turn to their

implementations in, Section 3. Directions for further work and conclusions are offered

in Sections 4 and 5. Because this is a survey, we have omitted the more -mathematical

-2-

analyses of the various structures in favor of presenting a more intuitive description.

Readers interested in the analyses are referred to the works in which they appear.

There are several problems closely related to range searching on which there has

been considerable research. In the future, these methods might be usefully applied to

the problem of range searching. Bentley [1975a] discusses the problem of finding all

points within a fixed radius of a given point. Yuval [1975] and Bentley, Stanat, and

Williams [1977] investigate this problem for the special case of the L, metric.

Friedman, Bentley, and Finkel [1977] discuss the problem of finding the k nearest

neighbors of a point in a file of N points. Bentley [1976] discusses the problem of

finding the nearest neighbor to each of the N points in the file. Domination problems

are closely ‘related to range searching; a point is said to dominate another if all of its

coordinates are larger. Kung, Luccio, and Preparata [1975] discuss the determination

of whether a given point is dominated by any other point. Bentley and Shamos [1977]

investigate the calculation of how many points a given point dominates, which is the

empirical cumulative distribution evaluated at the point.

-3-

2. Logical Structures

In this section we discuss the various methods for range searching in terms of their

logical structures; that is, the logical structure of the data at the level of “adjacency”

and “pointers” without regard to implementation. In Section 3 we will study the

problem of how one implements these logical structures on specific storage media.

A search method is specified by a data structure for storing the data and algorithms

for building the structure (which we call preprocessing), and searching the structure.

There may also be various utility operations such as insertion and deletion. One

analyzes a search structure (say S) by giving three cost functions: 1) the cost of

preprocessing N points in k-space, PS(N,k); 2) the storage required, SS(N,k); and 3) the

search time or query cost, QS(N,k). These costs can be analyzed in terms of their ,,

average or their worst-case cost. We will usually speak of the worst-case cost,

explicitly mentioning the average whenever we employ it.

2.1 Brute Force

The simplest approach to range searching is to store each of the N points in a

sequential list. As each query arrives all members of the list are scanned and all

records that satisfy the query are enumerated. If the queries do not have to be

handled immediately then they can be batched so that many queries can be processed

with one sequential pass through the file. It is easy to see that the brute force

structure, 8, possesses the properties

PB(N,k) = O(Nk),

St$N,k) = O(Nk), and

Q$N,k) = O(Nk).

Brute force searching has the advantage of being trivial to implement on any storage

medium. It is competitive with the more sophisticated methods described below when

the file is small and the number of attributes is large;or when a large fraction of the

records in the file satisfy the query (or queries, if they are batched).

2.2 Projection

The projection technique is referred to as inverted lists by Knuth [1973]. This

technique ‘wa s applied by Friedman, Baskett, and Shustek [1976] in their solution of

the nearest neighbor problem, and by Lee, Chin, and Chang [1976] to a number of

database problems. Projection involves keeping, for each attribute, a sequence of the

-4-

records in the file sorted by that attribute. One can view this geometrically as a

projation of the points on each coordinate. The k lists representing the projections

can be obtained by using a standard sorting algorithm k times. After preprocessing, a

range query can be answered by the following search procedure: choose one’of the

attributes, say the i-th. Look up the two positions in the i-th sequence (using a

binary search) of the extreme values defining the range on the i-th attribute of the

query. All records satisfying the query will be in the list between these two positions

just found. This smaller list is then searched by brute force.

The projection technique is illustrated in Figure 2.1. The points represent a set of

sixteen records of two keys each, represented by ,x and y coordinates. The dashed

lines are the projection of the records onto the x coordinate (that is, the records

sorted into x order). The vertical slab is the x- range of the query, the horizontal

slab is the y-range, and the rectangle which is their intersection contains those points

which satisfy the query. To answer this query we need only investigate the six points

which are inside the vertical slab, marked by the 45O lines.

x range

?
I I/n .

’ Y

Figure 2.1. Illustration of projection.

One can apply the projection technique with only one sorted list. If the distribution

of values of the various attributes are more or less uniform over similar ranges and

the query ranges of each attribute are similar, then one list is sufficient. If not, then

it can pay to keep sorted sequences on all k attributes. The positions of the

‘5-

corresponding query range extremes are found in each of the k lists. The list for

which-the difference in positions is smallest is searched between the two positions.

Analysis of the projection technique, P, for nearest neighbor searching is reported

in Friedman, Baskett, and Shustek [1976]. Most of this analysis directly carries over

to the problem of range searching. It is clear that

PP(N,k) = O(kN log N), and

Sp(N,k) = O(kN).

For searches that find a small number of records (and are therefore similar to near

neighbor searches) one has

Qp(N,k) = O(N’-‘/kX [Average Case]

The projection technique is most effective when the number of records satisfying each

query is usually close to zero.

2.3 Cells.

There are two ways they can search [for the murder weapon]: from the

body outward in a spiral, or divide the room up into squares--that’s the

grid meth0d.l

Cartographers as well as detectives use the grid (or cell) method: Street maps of

metropolitan areas are often printed in the form of books. The first page of the book

shows the entire area and the remaining pages at-e detailed maps of (say)

one-mile-square regions. To find (for example) all schools in a specified rectangle one

would look in the’ first page to find which squares overlap the rectangle and then

check only on those pages to find the schools. This approach can be mechanized

immediately. A square of the map corresponds to a cell in k-space, and the points of

the file within the cell are stored as a linked list. The first page of the map book

corresponds to a directory which allows one to take a hyperrectangle and look up the

set of cells.

Knuth [1973] has discussed this scheme for the two-dimensional case. Levinthal

[1966] used a cell technique in three-dimensional Euclidean space for determining all

atoms within five angstroms of every atom in a protein molecule--he referred 40 this

as “cubing”. Yuval [1975] and Rabin [1976] apply an overlapping cell structure to the

lFrom the CBS seriee Kojsk, “Death Ie Not a Passing Grade”.

-6-

closest-pair problem.

The directory can be implemented in two ways. If the points are (say) uniformly

distributed on [0, lOJ2 and we have chosen 1 x 1 cells, then we can use a

two-dimensional array as the directory. in DIRECT(i, j) we would keep a pointer to a

list of all points in the cell [i, itl] x [j, jtl]. If we then wanted to find all points in

[5.2, 6.31 x C1.2, 3.41 then we would only have to examine cells (5,1), (5,2), (5,3), (6,1),

(6,2), (6,3). The multidimensional array works very well when the points are known a

priori all to be in some given rectangle. When this is not known to be the case one

would probably use a search method such as hashing for the directory. In this method

we name each celt as before, so cell (i, j) is a pointer to the points in [i,i+l] x [j,j+l].

Instead of storing all cells, however, we store only cells which contain points of% the

file. To process a query we “decode” the rectangle into a set of cell id’s, look up

those id’s, and check the points in the occupied cells for inclusion in the rectangle.

The storage required for the cell technique is the storage for the directory plus

locations for the linked list representing points in cells; the size of the directory is

usually much smaller than N.

The cell technique is illustrated in Figure 2.2. The sixteen points in that figure

represent sixteen records” containing two keys each. The points in each cell are

The query is given by the rectangle in the stored together in an implementation.

upper part of the figure, and to answer it only those points in the four dashed ceils

need be investigated.

-7-
’ A /

’ /
/’ / ’

‘.. ,’
/

/ ’ ,‘/ /
0 ’ ’ ’ ’

/ ’ ”
’ ’ ’ ’

,’
) l ” ..”

’
’

’
’ / ’

’ ’ /

’ 0’ ’ ’

0 . ’ ’ ’ ’

(, ’ ’ ’ /

/ , ’ ’

’ ’ ‘0

’ ’ ’ ’

, / ’ ’

4r

.-

/,

7-

,

l

Figure 2.2. illustration of cells,

Basic parameters of the cell technique are the size and shape of each ceil. In

analyzing a search there are two costs to count: cell accesses (the number directory

look-ups) and inclusion tests (testing whether a point satisfies the range query). If

tpe cells are extremely large, then there will be few cell accesses and many inclusion

tests. If the ceil size is very small, on the other hand, then there will be very many

cell accesses and very few inclusion tests. Clearly either extr.eme is bad.

The best cell size and shape depends upon the size and shape of the query

hyperrectangle. ,Bentley, Stanat, and Williams [1977] show that if the query

hyperrectangles have constant size and shape so that only their location (in the

coordinate space) is unspecified, then for a single grid a nearly optimum size and

shape for the cells are the same as that for the query hyperrectangle. For this case

the number of cells accessed is 2k and the expected search time is proportional to 2k

times the number of points in the range. In this context the ,performance of cells is

given by

PC(N,k) = OWL

SC(N,k) = O(Nk), and

Q&k) = OPk I=) [Average]

where F is the number of records found. In most applications the queries will vary in

their size and shape as well as their location, so that there is little information

-a-

available for making a good choice of cell size and shape.

2.4 k-d Trees

This data structure was introduced by Bentley [1975b]. Friedman, Bentley and

Finked [1977] introduced adaptive k-d trees and showed that this structure is very

effective for nearest neighbor searching. Bentley [1978] has discussed the

application of k-d t’rees to database problems. The application of k-d trees has the

effect of dividing the k-space into a collection of irregular hyperrectangles each with

the property that they are approximately cubical and all contain nearly the same

number of points. This overcomes the problem of empty cells which severely limits

the performance of searching with regular grids. The cell pattern induced by k-d

trees adapts to the distribution of the points in k-space.

The k-d tree is a generalization of the binary search tree used for sorting and

searching. The k-d tree is a binary tree in which each node represents both a

subcollection of the points in the space and a partitioning of that subcollection. The

root of the tree represents the entire collection. Each nonterminal node has two sons;

these son nodes represent the two su&ollections defined by the -partitioning. The

terminal nodes represent mutually exclusive small subsets of the points, which

collectively form a partition of k-space. These terminal subsets are called buckets.

In the case of one-dimensional searching a point is represented by a single

coordinate value and a partition is defined by some value of that coordinate. All

records in a subcollection with key values less than or equal to the partition’value

belong to the left son while those with a larger value belong to the’right son. That

coordinate is thus a discriminator foi assigning records to the two subcollections. A

point in k-space is represented by k coordinate values. Any one of these can serve

as a discriminator for partitioning the subcollection represented by a particular node

in the tree; that is, the discriminator can range from 1 to k.

The prescription for constructing in adaptive k-d tree is to choose for the

discriminator that coordinate j for which the spread of attribute values (as measured

by any convenient statistid) is maximum for the subcollection represented by the node.

The partitioning value is chosen. to be the median value of this attribute. This

prescription is then applied r&cursively to the two subcollections represented by the

two sons of the node just partitioned. The partitioning is stopped, creating a terminal

-9-

node (or bucket), when the cardinality of the subcollection is less than a prespecified

maxiwm, which is a parameter of the procedure. Friedman, Bentley, and Finkel

[1977] found empirically that values ranging from 8 to 16 work well for nearest

neighbor searching. The result of this procedure is that the coordinate space is

divided into a number of buckets, each containing approximately the same number of

points (by the stopping criteria) and each approximately “cubical” in shape (by the

choice of discriminator).

Range searching’with k-d trees is straightforward. Starting at the root the k-d tree

is recursively searched in the following manner. When visiting a node which

discriminates by the j-th key (which we call a j-discriminator) one compares the j-th

range of the query with the j-th key of the node. If the query range is totally above

(or below) the key’s value then one need only search the right subtree (respectively

left) of that node; the other son can be pruned from the search because any node it

contains does not satisfy the query in that particular key. If the query range overlaps

the node’s key (that is, the key is between the low and high bounds of the range),

then both sons need be searched. This can be accomplished by searching both sons

recursively, making use of a stack. A modification can increase the speed of this basic

recursive algorithm if it is suspected that many large subtrees will be contained

entirely within the query region. The “bounds-array” technique described by

Friedman, Bentley, and Finkel [19771 can be employed to detect the inclusion of a

subtree within a region, and the points in that region can be listed without the

overhead of the tree traversal.

The application of k-d trees to range searching is illustrated in Figure 2.3. The k-d

tree is depicted in two ways; Figure 2.3.a shows the structure in 2-space and Figure

2.3.b shows the abstract tree. The root of the tree is internal node A; it is an

x-discriminator, and the the vertical line in the right part of the figure Jabelled A is

the discriminating line. That is, every point to the left of ,that vertical line is in the

left subtree of A (which is B), and every point to the right is in the subtree with root

C. This partitioning continues recursively, and the cells in this tree each contain two

points. The query rectangle is illustrated in Figure 2.3.a, and the search for all points

within the rectangle is illustrated in both figures. The search starts at the root, and

since the query rectangle is entirely to the right of the vertical line defined by A the

left subtree of A (which is B) can be pruned from the search. This is illustrated in

Figure 2.3.b by the perpendicular line through the son link from A to B. The search

continues, searching both sons of C, both sons of F, and only the left son of G. A total

- 10 -

of three buckets are searched; these buckets are dashed in the planar representation

and are marked bv an S in the tree representation.

a.) Planar representation

A

b.) Tree representation

Figure 2.3. Illustration of k-d trees.

Analysis of k-d trees for range searching has been considered by several

researchers. The work required to construct a k-d tree and its storage requirements

are

Pk (N,k) = 0 (N log N), and

Sk (N,k) = O(Nk).

The search cost depends upon the nature of the query. In the very wotst case Lee

and Wong [1976] show that

Qk(N,k) I O(N’-‘/k) [Worst Case].

- 11 -

If the number of records that satisfies the query is small so that the range query is ’

sirnil% to a nearest neighbor search then one has from Friedman, Bentley and ‘Finkel

[1977] that

Q&b&) = O(log N+F) [Average Case for small answer]

where F is the number of points found in the region. For the case where a large

fraction of the file satisfies the query Bentley and Stanat [1975] show that

Qk(N, k) = O(F). [Average Case for large answer]

The k-d tree structure is most effective in situations where little is known about

the nature of the queries or a wide variety of queries are expected. They are also

useful if other types of queries (in addition to range queries) are’anticipated.

2.5 Range Trees

In this section we describe the range tree, a structure introduced by Bentley

[1977]. It achieves the best (worst-case) search time of all the structures discussed

so far, but has relatively high preprocessing and storage costs. For most applications

the high storage will be prohibitive, but the range tree is very interesting from a

theoretical viewpoint. Since the range tree is defined recursively we will begin our

discussion by looking at a one-dimensional structure, and then generalize that

structure to higher dimensions.

The simplest structure for one-dimensional range searching is a sorted array. The

preprocessing sorts the N elements to be in ascending order by key. To answer a

range query we do two binary searches to find the positions of the low and high end

of the range in the array. After these two positions have been found we can list all

the points in that part of the array as the answer to the range query. For this

structure we use linear storage and O(N Ig N) preprocessing time. The two binary

searches will each cost O(lg N), and the cost of listing the points found in the region

will, of course, be proportional to the number of such points. Letting F be the number

of points found in the region, we have

+(N,l) = OW lg NJ,

s~(N,l) = O(N), and

QR(N,l) = O(lg N + F).

We will now build a two-dimensional range tree, using as a tool the one-dimensional

- 12 -

sorted arrays we described above (which we abbreviate S/I’s). The range tree is

simile to the “binary search trees” described by Knuth [1973, Section 6.21 so we will

use his terminology in our discussions. The range tree will be a rooted binary tree in

which every node has a left son, a right son, a discriminating value (all nodes in the

left subtree have a discriminating value less than the node’s) and (unlike a regular

binary search tree) every node contains an SA. The root of the range tree contains

an SA (sorted by y-coordinate) and has as discriminating value the median x-value for

all points. The left subtree of the root has an SA containing the N/2 points with

x-value less than median sorted by y-coordinate. Likewise the left son of the root

represents the N/2 points with x-value greater than the median and has an SA of

those points sorted by y-coordinate. This partitioning continues so that i levels away

from the root we have 2i subtrees, each representing N/2i points contiguous in the

x-coordinate, and each containing an SA of the points sorted by y-coordinate. This

partitioning continues for a total of (approximately) Ig N levels; we handle small point

sets (say less than a dozen ponts) by brute force.

The search algorithm for a range tree is most easily described recursively. Each

node in the tree represents a range in the x-dimension. When visiting a node we

compare the x-range of the query to the range of the node, and if the node’s range is

entirely within the query’s then we search that structure’s SA for all points in the

query’s y-range. After this we compare the query’s x-range to the node’s

discriminator value. If the range is entirely below the discriminator we recursively

visit the left subtree; if it is above ‘we visit the right; and if the range overlaps the

discriminator then we visit both subtrees.

The analysis of the planar tree is somewhat complicated. Since there are lg N

levels in the tree and N points are stored on each level, the total storage required is

O(N lg N). The preprocessing can performed in O(N lg N) time if clever techniques are

employed. Analysis shows that at most two SA searches are done on each level of the

tree (each of cost approximately lg N) so the total cost for a search is O(lg2 N) plus

the time for listing the points in the region. Letting F stand, as before, for the total

number of ‘points found in the ‘region we have

PP(N,2) = O(N lg N),

SP(N,2) = O(N lg N), and

QR(N,2) = O(lg2 N + F).

If we step back for a moment we can see how we built the structure: we

- 13 -

constructed a two-dimensional structure by building a tree of one-dimens.ional

struct+ures. We can perform essentially the same operation to yield a

three-dimensional structure: we construct a tree containing two-dimensional

structures in the nodes. This process can be continued to yield a structure for

k-dimensions, which will be a tree containing (k-l)-dimensional structures. This will

yield a structure with performances

PP(N,k) = O(N lgk-’ N),

SP(N k) = O(N lgk-’ N), and

QP(N:k) = O(lgk N + F).

The range tree structure is very interesting from a theoretical viewpoint. The

asymptotic search time is very fast, but the amount of storage used is probably

prohibitive in practice. Although the application of this structure to practical problems

will probably be limited to cases when k = 2 or 3, it does provide an important

theoretical benchmark. It also gives us an interesting method that might yield fruit in

practice. (Indeed, there are some very interesting relationships between range trees

and the k-d trees of Section 2.4.)

2.6 k-ranges

The k-range I ‘s an efficient worst-case structure for range searching introduced by

Bentley and Maurer [1978]. They developed two types of k-ranges: overlapping and

noneverlapping. Both of these structures involve storing sets of lists of points sorted

by different coordinates; additional dimensions are added recursively, much like the

range trees of the last section. The overlapping k-ranges can be made to have

performance

PO(N,k) = SO(N k) = O(N1+‘)

Qo(N,k) = O(lg ; + F) ’

for any f > 0. It is pleasing to note that the consants “hidden” in the big-ohs of the

above equations a;e just k/C. Overlapping k-ranges have very efficient retrieval time

but somewhat high preprocessing and storage costs; their dual, nonoverlapping

k-ranges, have very efficient preprocessing and storage costs but increased query

times. Their performance is

PN(N,k) = O(N lg N),

SN(N,k) = O(N), and

QN(N,k) = CUJ’?.

- 14 -

for any fixed c 5 0. The details of these structures can be found in Bentley and

Maurcr [1978]. Although these structures were developed primarily as a theoretical

device, they might prove efficient in some implementations.

2.7 Other Structures

In this section we briefly mention several structures that we feel are no longer

competitive with those discussed above. We include them for completeness and in the

hope that someone might be inspired by one of them to invent techniques superior to

those we have discussed.

Knuth [1973] points out that the notion of .cells can be applied recursively. That is,

when one of the cubes has more than some certain number of points, the cube is

further divided into subcubes of yet smaller size. This scheme implies a

multidimensional tree with, multiway branching. In terms of both the partitioning

imposed on the space and the ease of implementation, this idea seems to be dominated

by the quad tree (see below), which is in turn dominated by the k-d tree.

Finkel and Bent1e.y [1974] describe a structure called the quad tree. It is a

generalization of the binary tree in which every node has 2k sons. Bentley and

Stanat [1975] analyzed the performance of quad trees for “square” range searches in

uniform planar point sets. Lin [1973] discussed the fact that quad trees (which he

called “search-sort k trees”) have advantages over binary trees when used in a

synchronized multiprocessor system. This application aside, however, the quad tree

seems to be dominated by its historical successor, the k-d tree.

Bentley and Shamos [1977] describe a data structure (the ECDF tree) for finding

the empirical cumulative distribution of a point (in k-dimensional space) among a

collection of points. If only a count of the number of points in the- query

hyperrectangle is required and, not a listing of the points, then several ECDF searches

can be used to obtain that count. This structure has very desirable worst-case query

performance but requires storage and preprocessing requirements similar to the range

trees of Section 2.5.

2.8 Comparison of Methods

In Sections 2.1 to 2.6 we have discussed six structures for range searching. The

performance of these six structures (seven including the two .variants of k-ranges) is ’

- 15 -

summarized in Table 2.1, which shows for each the preprocessing, storage, and .query

.costs, All of the functions in that table reflect worst-case costs, except those query

costs which are marked with an asterisk. For those functions the probabilistic

assumptions are described in the notes.

Structure : P(N,k) . S(N,k) QNk)

Brute Force O(N) O(N) O(N)

Projection O(N Ie N) O(N) .O(N1-‘/k+F) *

Cells ON O(N) O(F) *

l-l/k

k-d trees O(N Ig NJ O(N)
O(N +F)

O(lg N + F) *:

Nonoverlappping k-ranges O(N, lg N) ON O(NE + F)

Range Trees O(N k k-lN) O(N lgk-IN) O(lgk N + F)

ltc 1+c
Overlapping k-ranges O(N) O(N) O(lg i + F)

s’ed query times indicate average case analysis.
Probabilistic assumptions:

1. Smooth data sets, very small query region.

2. Any data set, cell size equals query size.

3. Smooth data set.

Table 2.1. Performance of data structures for range searching.

Four of these six structures (brut.e force, projection, cells, and k-d trees) have been

presented as providing practical solutions to the range searching problem. For each

there are situations for which it is clearly superior and other situations where it

performs badly, In this section we will mention various situations and compare the

performance of the four methods.

If the file is small and the number of attributes is large, if the file is to be searched

only a few times, or if the ‘queries can be batched so that nearly all of the records in

the file satisfy at least one, then brute force is the method of choice. Otherwise one

of the other methods is likely to be more efficient. Projection does best when the

- 16 -

query range on only one of the attributes is sufficient to eliminate nearly ali of the

file r&cords. For this case the low overhead of searching this structure allows it to

dominate the others. In situations where several or many of the attributes serve to

restrict the range query the projection technique performs relatively poorly.

The cell and k-d tree structures are appropriate in those situations where the

query restricts several or many of the attributes. If the approximate size and shape

of the queries are roughly constant and are known in advance, then cells defined by a

fixed grid with size and shape common to that of the expected queries is most

advantageous. F& queries with sizes and shapes that differ considerably from the

design, however, performance is poor.

The k-d tree structure is characterized by its robustness to wildly varying queries.

The cell design adapts to the distribution of the attribute values of the file records in

the k-dimensional coordinate space. The ,cells all contain very nearly the same number

of records; there are no empty cells. In dense regions there are many cells and a fine

division of the coordinate space; in sparse regions there is a coarser division with

fewer cells. If a wide variety of queries are expected then the k-d tree structure

should serve best.

- 17 -

3. Implementations

In Section 2 we discussed the various structures for range searching in a more or

less abstract way without regard to implementation. We now turn our attention to

how one implement: these structures on real computers.

3.1 Internal Memory

If the file is small enough so that it can be contained in the internal memory of the

computer then implementation of these structures is straightforward. The brute force

structure is implemented as a two dimensional (N x k) array. For projection one has ,k

tables of pointers to records; each table is sorted on a different coordinate.

As discussed in Section 2.3, there are two possible ways to associate records with

cells when implementing the grid method. If the points are uniformly distributed in a

more or less rectangular area (so that there are few empty cells) then the grid can be

efficiently represented as a multidimensional array. If there are many empty cells

then the k attribute values defining a cell can be treated collectively as a key and a

well known search method such as binary searching or hashing can be employed-.

The k-d tree can be implemented as any other binary tree; see Knuth [1973] and

Bentley [1975b]. It is easy to store for each node a pair of pointers to the records

defining the subcollection associated with the node, This facilitates enumeration of the

records satisfying the query (if this is the case for ail records belo% that node)

without traversing the descendants of that node.

3.2 Disk

Implementing these structures on random access disks is only slightly less

straightforward than on central memory. For the most part disk addresses simply

replace memory addresses. For brute force one simply performs a sequential scan of

the records. With projection the sorted lists contain pointers to the disk address of

the corresponding records. The lists for each attribute can themselves be stored on

the disk and only one list at a time need reside in central memory. With the cell

technique the hash tables contain disk pointers and reside in central memory. The

records themselves are stored on disk, with all records in a cell stored on the same

disk page. Only pages containing those cells overlapping the query rectangle need be

read into central memory.

- 18-

Tree structures lend themselves nicely to implementation on ‘random access disks;

this& discussed by Knuth [1973, p.4721. Figure 3.2.1 shows how the nodes of the

tree can be grouped (as shown by the dotted lines) onto disk pages. The size of each

page is chosen as some convenient unit of disk memory (such as a track or sector),

While the tree is searched in the usual manner only a few pages at a time .need reside

in central memory. If the records satisfying the query represent a small fraction of

the file then on the order of lg (N/b) disk accesses are required where b is the

number of records per page. Bentley [1978] describes this implementation in more

detail, and Williams et al. [1975] have actually implemented k-d trees for range

searching on a random access disk system.

Figure 3.1. Disk pages denoted by dashed lines.

3.3 Tape

By its nature magnetic tape is a sequential storage medium, and therefore ideal for

the brute force approach. Even within this sequential limitation, however, it is

possible to employ to advantage the other range searching methods described above.

In order to read a record from a magnetic tape it is necessary to pass over all

records from the beginning to it. It is not necessary, though, to read all of those

records into central memory or even transmit them from the controller to the channel.

On most computing systems it is possible to issue instructions to skip one or several

blocks without transmitting any data. Although the real time to read a tape is nearly

the same whether blocks are skipped or read, the CPU requirement, memory

interference, and channel activity can be substantially reduced. This is important in a

multiprogramming environment.

The abstract projection method of Section 2.2 calls for storing the set of records in

- 19 -

k sorted lists, each sorted by a different key. Magnetic tape is an ideal medium for

storing sorted lists--just store each of the k lists sequentially on the tape. In addition

some mechanism is needed for deciding which list to search when answering a

particular query. When all sorted lists were in main memory this was accomplished by

inspecting each; on tape one can store a sample of each of the k sorted lists before

storing any list in its entirety. This tape layout is illustrated in Figure 3.2. To answer

a particular query one counts how many sample records it overlaps in each of the k

samples, and then searches that sorted list which has fewest intersections. The

search therefore skips over all records until arriving at the desired sorted list, and

then skips over re;ords in that list until we finding a record within the desired range.

At that point it starts reading all records and testing to see whether they satisfy all k’

ranges.

Sample aor ted Records sorted by

by all k coord’s first key

Records sorted by

second key

k I 0 * l l
Records sorted by

I k-th key

I

Figure 3.2. Tape layout for projection.

The cell method is implemented similarly. Here the directory comprises the first few

blocks of the tape with the data following, arranged so that points within each cell

comprise one block of data. The cells overlapping the query are determined from the

directory and then those cells are read sequentially from the tape, skipping unwanted

blocks. This tape layout is illustrated in Figure 3.3.

Cell

Directory

-2o-

‘Records in

Cell I

Records in

Cell 2

Recorde in

Figure 3.3. Tape layout for cells.

.The hierarchical nature of k-d trees and range trees allows for a natural

implementation on a sequential storage medium such as magnetic tape. The nodes of

the tree are stored in the order of a preorder (node, left son, right son) traversal of

the tree. Each node comprises a record. The terminal nodes are the data blocks.

Associated with each node is the number, D, of its descendants.

With this arrangement the tree search can proceed directly from the tape. At each

node visited (beginning with the root which is the first record on the tape) a

determination is ma,le as to whether it is necessary to search one or both of its sons;

the outcome of this test yields three cases. The easiest is when both sons are to be

visited--continue reading the tape. If only the right son is to be visited, this is also

easy--skip the number of blocks occuppied by the left subtree. The case of visiting

only the left subtree is slightly more complicated--stack the number of records in the

right subtree, and when control is returned to this node skip that many blocks. With

this method the number of blocks read into main memory is equal to the number of

nodes visited in the tree search. This technique can be applied to a wide v,ariety of

tree searches on tape and the same behavior will be obtained. In particular this

method can be used with the range trees of Section 2.5, in that magnetic tape can

often accommodate their large storage requirements.

Figure 3.4 illustrates the process of tree searching on tape. Figure 3.4.a is the

abstract tree and Figure 3.4.b is its implementation on tape. Notice that the nodes of

the tree appear in “preorder” on the tape: a’ node appears before all of its

descendants, and all descendants of the left son appear before all descendants of the

right son. A search in the tree is depicted in the tree by lines through son pointers:

the search starts at the. root and then “prunes” the left son (number 2) from

consideration. The search then visits the right son (number 51, and then must

I

recursively search both of that node’s sons (numbers 6 and 7); at that point the

.exteraal nodes e and h are pruned, and nodes f and g are visited. This same search is

described on tape in Figure 3.4; nodes which are visited are underlined by solid lines

and those which are skipped are underlined by dashed lines. So node 1 is visted, and

when it is determined that the left son can be pruned from the search the seven

records following it are skipped, and the search proceeds to node 5. Notice that the

nodes underlined by solid lines on the tape are exactly those visited by the search in

the abstract tree.

a.) Binary tree

~G--J@~l--q@~J--l> - ---^--______--_--___---------------------

b.) Corresponding tape

Figure 3.4. Tape layout for trees.

- 22 -

4. Further Wbrk

Our discussion of range searching has in many r&pects just scratched the surface

and there are many avenues open for further research. All files that we have

discussed so far have been static, that is, unchanging. Many applications require

dynamic structures, in which insertions and deletions can be made. Dynamic versions

of brute force, projection, and cell structures are easily obtained. Dynamic k-d trees

are discussed by Bentley [1975b] and Bentley [1978]. Considerable work remains to

be done in the dynamic analysis of all of these structures.

Considerable research also remains in the development of heuristics for aiding

these search methods. For example, if in a seven dimensional problem the ranbe

queries almost always involve only two of the attributes, then the, design of the

structure should involve only these two attributes. Heuristics for detecting these and

other similar situations would be very helpful. Bentley and Burkhard [1976-J might

prove useful in such an investigation.

5. Conclusions
t

The problem of range searching arises in many database applications. In Section 1

of this paper we mentioned some of those applications and defined an “abstract”

problem which models the real problems. In Section 2 we used the techniques of

“algorithm design and analysis” to describe and analyze a number of data structures

for range searching; these abstract structures are interesting from a theoretical

viewpoint. In Section 3 we saw how these abstract structures can be efficiently

implemented on a number of different storage media, showing that the structures are

also practical. Avenues open for further research were mentioned in Section 4.

‘In 1973 Knuth [1973, p. 5541 was able to write that “no really nice data structures

seem to exist” for the problem of range searching. In this paper we have tried to

show that this situation has changed in the interim, and that these changes can have a

substantial impact on database systems.

- 23 -

Bibliography

Bentley, J. L. [1975a]. A survey of techniques for fixed radius near neighbor

searching, Stanford Linear Accelerator Center Report SLAC-186, August 1975,’ 33 pp.

Bentley, J. L. [1975b]. “Multidimensional binary search trees used for associative

searching,” Communications of the ACM 18, 9, September 1975, pp. 509-517.

Bentley, J. L. [1976]. Divide and conquer algorithms for closest-point problems in

multidimensional space. Ph.D. Thesis, University of North Carolina, Chapel Hill, North

Carolina, 101 pp.

Bentley, J. L. [1477]. Decomposable searching problems, extended abstract,

Carnegie-Mellon UniversityComputer Science Department.

Bentley, J. L. [1978]. “Multidimensional binary search trees in database applications,

” to appear in the Second Computer Software and Applications Conference

Proceedings.

Bentley, J. L. and W. A. Burkhard [1976]. “Heuristics for partial match retrieval data

base design,” Information Processing Letters 4, 5, February 1976, pp. 132-135.

Bentley, J. L. and H. A. Maurer [197&l. “Efficient worst-case data structures for

range searching,” submitted for publication.

Bentley, J. L. and M. I. Shamos [1976.]. “Divide and conquer in multidimensional

space,” Proceedings of the Eighth Symposium on the Theory of Computing, ACM, May

1976, pp. 220-230.

Bentley, J. L. and M. I. Shamos [1977). “A problem in multivariate statistics:

algorithm, data structure, and applications,” Proceedings of the fifteenth Allerton

Conference on Communication, Control and Computing, pp. 193-201.

Bentley, J. L. and 0. F. Stanat [1975]. “Analysis of range searches in quad trees,”

Information Processing Letters 3, 6, July 1975, pp. 170-173.

Bentley, J. L., 0. F. Stanat, and E. H. Williams, Jr. [1977]. “The complexity of near

neighbor searching,” Information Processing Letters 6, 6, December 1977, pp.

209-212.

- 24 -

Dobkin, D. and R. J. Lipton [1976]. “Multidimensional searching problems,” SIAM

Journ”al of Computing 5, 2, pp. 181-l 86.

Finkel, R. A. and J. L. Bentley [1974]. “Quad trees--a data structure for retrieval on

composite keys,” Acta Informatica 4, 1, pp. l-9.

Friedman, J. H., F. Baskett, and L. J. Shustek [1975]. “An algorithm for finding

nearest neighbors,” IEEE, Transactions on Computers C-24, 10, October 1975, pp.

1000-1006.

Friedman, J. H., J. L. Bentley, and A. A. Finkel [1977]. “An algorithm for finding best

matches in logarithmic time,” ACM Transactions on Mathematical Software 3, 3,

September 1977, pp. 209-226.

.

Knuth, D. E. [1973 1. Sorting and Searching, The Art of Computer Programming, vol.

3, Addison-Wesley, Reading Massachusetts.

Kung, H. T., F. Luccio, and F. P. Preparata [19751. “On finding the maxima of a set of

vectors,” Journal of the ACM 22, 4, October 1975, pp. 469-476.

Lee, R. C. T., Y. H. Chin, and S. C. Chang [1975]. “Application of principal component

analysis to multi-key searching,” IEEE Transactions on Software Engineering X-2, 3,

September 1976, pp. 185-133.

Lee, D. T. and C. K. Wong [1978]. “Worst-case analysis for region and partial region

searches in multidimensional binary search trees and quad trees,” Acta Informatica 9,

1, pp. 23-29.

Rabin, M, 0. [19761. “Probabilistic algorithms,” in Algorithms and complexity: New

directions and recent results, J. F. Traub (ed.), Academic Press, pp. 21-39.

Williams, E. H. Jr. et al. [1976]. PABST Program Logic Manual. Unpublished class

project, University of North Carolina, Chapel Hill, North Carolina.
+

Yuval, G. [1975]. “Find/ng near neighbors in k-dimensional space,” Information

Processing Letters 3, 4, March 1975, pp. 113-114. ,

