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INTRODUCTION 

We shall express our darker purpose 

- W i l l i a m  Shakespea re  

It has long been recognized that  the study 
of the behavior of algorithms plays a cru- 
cial role in intelligent algorithm design. 
Aho, Hopcroft, and Ullman [1] begin the 
preface of their recent book on algorithmic 
design and analysis by pointing out tbat 
"the study of algorithms is at the very 
heart  of computer science." At the founda- 
tion of every computational discipline is a 
collection of algorithms. After a p rob lem-  
for example, understanding speech, ana- 
lyzing data, or compiling a p r o g r a m - i s  
analyzed at a high level and design deci- 
sions are finalized, the algorithm must be 
implemented on a real machine. One job 
of the computer scientist is to isolate and 
study these algorithms, which abound in 
graph theory, statistics, operations re- 
search, and many other areas. Hence the 
pervasive nature of analysis of algorithms. 

Despite (or perhaps because of) many 

* Thin work was supported in part by a National 
Scmnce Foundation Graduate Fellowship. 

significant new results in analysis of algo- 
rithms in the past few years, there is no 
current survey of the mathematical  tech- 
niques used in algorithmic analysis. For 
the reader who wants to see the gory 
details of the analysis of many algorithms, 
and is willing to and capable of supplying 
many more details himself, the three vol- 
umes of The Art of Computer Program- 
m~ng by Knuth [43, 44, 46] are unsur- 
passed for completeness. Aho, Hopcroft, 
and Ullman [1] is an excellent text with 
many examples of both design and analy- 
sis but, like Knuth, does not provide an 
overview of the area. 

For someone who wants an overview of 
techniques and a review of some important 
results, the l i terature is sparse. The arti- 
cles by Knuth [45], Reingold [56], and 
Frazer [22] provide some relief, but con- 
centrate heavily on presenting the details 
of one or two example algorithms or tech- 
niques. A fine paper by Borodin [6] treats 
primarily the theoretical aspects of com- 
putational complexity, reviewing the defi- 
nitions and properties of complexity 
classes for various automata. Hopcroft's 
survey [29] of principles of algorithm de- 
sign comes closest to fitting the bill, but 

Copyright © 1977, Association for Computing Machinery, Inc General permission to republish, but not for 
profit, all or part  of this material is granted provided that  ACM's copyright notice is given and that  
reference is made to the pubhcatlon, to its date of issue, and to the fact that reprinting privileges were 
granted by permismon of the Association for Computing Machinery 

Computing Surveys, Vol. 9, No. 4, December 1977 



292 • B .  W e i d e  

CONTENTS 

INTRODUCTION 

1 THE NOTION OF COMPLEXITY 

Bounds on Complexlty 

Worst-case versus Average-Case Analyms 

Models of Computatlon 

Measuring Problem Size 

2 LOWER BOUNDS 

Tr]vlal Lower Bounds 

Inforrnatlon-Theorehc Bounds and Declslon Trees 

Oracles 

Problem Redactmn 

Miscellaneous Tr~cks 
3 UPPER BOUNDS 

Identifying a Worst Case 
Counting Operatmns 
Recurrences 
The Brute Force Method 

4 THE AVERAGE CASE 
Pros and Cons of Average-Case Analysis 

Some Examples of Average-Case Analysis 
5 APPROXIMATION ALGORITHMS 

Problem Classes and Reduclblhty 
"Guaranteed" Approxlmatmn Algorithms 
Probabfllstlc Behawor of Approxlmatmn Algorithms 

CONCLUSIONS 
APPENDIX Glossary of Problems 
ACKNOWLEDGMENTS 
REFERENCES 

new results since it appeared are abun- 
dant, especially in the area of approxima- 
tion algorithms. In order to avoid duplica- 
tion, the more detailed examples given 
here discuss algorithms other than the 
ones treated in those papers. This survey 
is an at tempt to collect some of the impor- 
tant techniques used in algorithmic anal- 
ysis and to list some of the results pro- 
duced, and thereby (albeit temporarily) 
help fill the gap in this area. It is designed 
to be primarily a survey, with tutorial 
comments where appropriate. 

The reader is assumed to be familiar 
with the notions of algorithms and data 
structures, to have been introduced to 
computational models such as Turing ma- 
chines, and to know something about 
asymptotic bounds on functions and recur- 
rence relations. He or she should also 
recognize some of the important discrete 
(combinatorial) problems. These include 
sorting, searching, graph problems, dis- 
crete optimization, set manipulation, and 
pattern matching. The Appendix is a glos- 
sary of problems mentioned in the text, 

which should help in this regard. Some 
familiarity with the notation used by al- 
gorithmic analysts would also be helpful, 
but  is not essential. The paper is not 
intended as a review of algorithm or data 
structure design, but  as a survey of analy- 
sis techniques. The reader is urged to 
consult the original sources for detailed 
algorithms and analyses which can only 
be briefly mentioned here. 

1. THE NOTION OF COMPLEXITY 

I f  you w~sh to converse w~th me, define 

your  terms. 

-Voltaire 

I hate defin~twns. 

-Benjamin Disraeli 

The primary definition of complexity is 
running time, For a given problem, "time 
complexity" is a function that  maps prob- 
lem size into the time required to solve 
the problem. We will not consider other 
measures of problem difficulty, such as 
the amount of space required, nor will we 
attempt to measure comprehensibility of 
algorithms or the scores of other factors 
which must  be considered when designing 
an algorithm. To make even this intui- 
tively simple quantity, time, a useful mea- 
sure, we need to consider such questions 
as upper and lower bounds on complexity, 
the model of computation, and the manner 
of problem representation. The model of 
computation is important because we 
count its operations when measuring time. 
The problem representation is important 
because it affects the problem size. These 
questions are considered in the following 
subsections. 

Bounds on Complexity 

Typically, we are interested in the (inher- 
ent) complexity of computing the solution 
to problems in a particular class. For ex- 
ample, we might want  to know how fast 
we can hope to sort a list of n items, 
initially in an arbitrary order, regardless 
of the algorithm we use. In this case, we 
seek a "lower bound" L(n )  on sorting, 
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which is a property of the sorting problem 
and not of any particular algorithm. This 
lower bound says that  no algorithm can 
do the job in fewer than L(n) time units 
for arbitrary inputs, i.e., that  every sort- 
ing algorithm must take at least L(n) 
time in the worst case. Some approaches 
to refining lower bounds are surveyed in 
Section 2. 

On the other hand, we might also like 
to know how long it would take to sort 
such a list using a known sorting algo- 
rithm with a worst-case input. Here, we 
are after an "upper bound" U(n), which 
says that  for arbitrary inputs we can al- 
ways sort in time at most U(n). That is, 
in our current state of knowledge, we need 
not settle for an algorithm which takes 
more than U(n) time, because an algo- 
rithm which operates in that  many steps 
is known. For this reason, algorithms are 
normally analyzed to determine their 
worst-case behavior, in the hope of reduc- 
ing U(n) even further by demonstrating 
that some new algorithm has worst-case 
performance which is better than any pre- 
vious algorithm. Techniques for doing this 
are reviewed in Section 3. 

One way of seeing the distinction be- 
tween lower and upper bounds is to note 
that  both bounds are minima over the 
maximum complexity of inputs of size n. 
However, L(n) is the minimum, over all 
possible algorithms, of the maximum com- 
plexity, while U(n) is the minimum, over 
all known algorithms, of the maximum 
complexity. In trying to prove better lower 
bounds, we concentrate on techniques 
which will allow us to increase the preci- 
sion with which the minimum, over all 
possible algorithms, can be bounded. Im- 
proving an upper bound means finding an 
algorithm with better worst-case perform- 
ance. This difference leads to the differ- 
ences in techniques developed in complex- 
ity analysis. 

While there are apparently two com- 
plexity functions for problems, lower and 
upper bounds, the ultimate goal is to make 
these two functions coincide. When this is 
done, the "optimal" algorithm will have 
L(n) = U(n). For most of the problems we 
will mention, this goal is not yet realized. 

Worst-Case versus Average-Case Analysis 

Traditionally, the worst-case complexity 
has been of major theoretical interest for 
the reasons just  cited. Occasionally it is of 
practical importance to know the worst- 
case behavior of an algorithm. For exam- 
ple, an air-traffic control system with good 
expected performance might not be consid- 
ered useful if occurrence of its worst case, 
however unlikely, could cause an accident. 
Recently, however, there has been greater 
effort in the analysis of the behavior of 
algorithms "on the average," since the 
average is often more useful in practice. 
For example, the simplex algorithm for 
linear programming is known to require 
an amount of time which is an exponential 
function of the problem size in the worst 
case, but  for problems encountered in 
practice it almost always does extremely 
well. 

This approach has difficulties, however. 
For one thing, averaging over many cases 
complicates the analysis considerably. 
Further, while the average alone might 
be of some value, finding the distribution 
of solution times or even the variance is 
an added burden, and therefore often ne- 
glected in practice. Perhaps the biggest 
objection of all is that  the typical assump- 
tions regarding the probability distribu- 
tion over all possible inputs (usually sim- 
ple ones to make the analysis tractable) 
are often unrealistic. The objections will 
be covered in more detail in Section 4. 
Despite the objections, average-case anal- 
ysis is important and continues to grow. 

Models of Computation 

Does complexity measure the number of 
steps on a Turing machine, or the number 
of seconds on an IBM370/195? We are usu- 
ally not interested in either of these fig- 
ures exactly, although each is a legitimate 
measure of complexity in certain cases. 
The issue at hand is the "model of compu- 
tation." Turing machine complexity is 
sometimes important, as we will see in 
Section 5 when examining the problem 
classes P and NP. A highly sophisticated 
machine like the IBM370/195 is probably 
a bad choice because it makes the analysis 
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even more complicated than it needs to be 
for most purposes. Knuth [43, 44, 46] 
chooses an intermediate ground for his 
MIX machine, and derives running times 
for particular implementations of algo- 
rithms. Between the two extremes, results 
can differ by more than simply a constant 
scale factor. In choosing a model of com- 
putation, we try to balance realism 
against mathematical tractability. How- 
ever, our experience is that results can be 
useful despite what appear to be overly 
simplified computational models. 

Rather than finding exact running 
times on particular machines, most anal- 
yses count only certain ~elementary" op- 
erations. The complexity measure reports 
the asymptotic growth of this operation 
count. Mathematicians have used various 
notations for such "order" results, as re- 
ported by Knuth [47], who suggests the 
following generally accepted version. To 
express the fact that a function g(n) grows 
asymptotically no faster than another 
function /~n), we write g(n)= O(~n)), 
which reads, "of order at most f(n)". It is 
helpful to regard O(f(n)) as the set of 
functions with the property that for any 
function g(n) in O(f(n)) there is a constant 
c such that g(n) ~ cf(n). Similarly, ~(f(n)) 
Cof order at least f(n)") is the set of func- 
tions with the property that for any func- 
tion g(n) in ~(f(n)) there is a constant c > 
0 such that g(n)>-cf(n). Finally, 0(f(n)) 
Cof order exactly f(n)") is the set of func- 
tions with the property that for any func- 
tion g(n) in #(/~n)) there are constants c1> 
0 and c2 such that cgC(n) <- g(n) <- c~(n). 

We commonly write, for example, 
g(n) = OWn)) rather than g(n) E O(f(n)). 
In the present context, O-notation is used 
to describe upper bounds and ~-notation 
is used for lower bounds. The 0-notation is 
used when it is possible to characterize 
the complexity to within a constant factor. 
Aho, Hopcroft, and Ullman [1] argue con- 
vincingly that such asymptotic analyses 
are especially meaningful in light of faster 
hardware. How much larger problems 
such machines can solve, and therefore 
their cost-effectiveness, depends on the 
growth rate of the computation time. 

Consider the probl~- of finding the 

maximum element in a list of n items 
from a linearly ordered set. An appropri- 
ate choice for an elementary operation is 
a comparison between two items of the 
list, because the items might be records 
for which comparisons are nontrivial, 
while bookkeeping operations such as loop 
control and pointer management are usu- 
ally proportional to the number of compar- 
isons. By counting dominant operations, 
the asymptotic complexity measure is off 
by only a constant factor from the true 
number of operations performed. 

Some analyses use the ~'uniform cost 
criterion," where memory references, com- 
parisons, arithmetic operations, and all 
other instructions each take unit time. 
Still others employ the ~'logarithmic cost 
criterion," in which the charge for access- 
ing a piece of information is proportional 
to the number of symbols needed to repre- 
sent it. Normally, the choice of operations 
to be counted is not crucial to asymptotic 
analysis, assuming that the dominant op- 
eration is among them. 

Measuring Problem Size 

Problem size is another vague concept. It 
could be made exact by letting n be the 
number of symbols required to encode the 
problem for a particular Turing machine 
or for some other computational model. 
This encoding is extremely important (see 
[1], Section 10.1). Suppose that an algo- 
rithm takes as input a single integer, and 
that the input k requires ck time for some 
constant c. Let n(k) refer to the length of 
the encoding of the integer k (i.e., n(k) is 
the problem size when the input is the 
integer k). If k is encoded in unary nota- 
tion, then n(k) = k, so the algorithm runs 
in cn time. However, if k is encoded in 
binary, then n(k) = log2k, so that the 
running time of the algorithm is c2". No- 
tice that for any radix representation, the 
size of the representation is within a con- 
stant factor of the size of the binary encod- 
ing. Because of this, along with the fact 
that in practice we nearly always use a 
radix representation for integers, unary 
notation is not appropriate. 

Problem representation can be of major 
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importance in graph algorithms as well. 
Determining if a graph with n nodes is 
planar can be done in #(n) time if the 
graph is represented by adjacency lists, 
but requires ~(n 2) time if the representa- 
tion is an adjacency matrix [72]. In con- 
trast with the unary/binary choice for the 
representation of integers, both of these 
graph representations seem like reasona- 
ble choices, and indeed each is appropriate 
for various problems. 

These points illustrate that the problem 
size must be explicitly defined in each 
case in order for results to have any mean- 
ing. For example, in sorting problems, n 
is the number of items to be sorted; for 
graph problems, it may be the number of 
vertices. Describing the problem size may 
even be more convenient if two or more 
parameters are used, for example the 
number of edges and the number of ver- 
tices in a graph. If a graph has V vertices 
and E edges, then it is clear what is meant 
by "an algorithm which requires O ( V  + 

E) steps." 
For the results to be of practical interest, 

definitions of both the measure of problem 
size and the measure of computing time 
should be closely related to the well-de- 
fined meanings which these terms have 
for actual machines. Thus, the random- 
access machine model is more commonly 
used than the Turing machine model for 
calculations on most computers. On the 
other hand, the Turing machine is useful 
in theoretical studies and in modeling 
computations which are tape-bound. Aho, 
Hopcroft, and Ullman [1] present a good 
account of the similarities and differences 
between these two models of computation. 

2. LOWER BOUNDS 

• . . a b o u n d i n g  in t n t u i t m n s  w~ thou t  

m e t h o d  . . . 

-George Santayana 

The more difficult of the bounds on prob- 
lem complexity is the lower bound. There 
is no algorithm to analyze, few general 
principles to apply; proofs of results in 
this area often require outright cleverness. 
The results must apply to any algorithm, 

including undiscovered ones. Still a few 
techniques have been found useful, and 
others are promising. 

Trivial Lower Bounds 

The most obvious, and also the weakest, 
method produces what are appropriately 
called trivial lower bounds. The method 
consists of simply counting the number of 
inputs that must be examined and the 
number of outputs that must be produced, 
and noting that any algorithm must, at 
least, read its inputs and write its outputs. 

There are many examples of the use of 
such a technique. One interesting graph 
problem is the single-source shortest-path 
problem: given a directed graph G with 
nonnegative edge weights, and a distin- 
guished vertex v, find the minimum- 
weight path from v to each other vertex of 
G. Dijkstra [14] gives an algorithm for 
this version of the problem, where all edge 
weights are known to be nonnegative. A 
more interesting variation allows nega- 
tive-weight edges but no negative-weight 
cycles; by definition of the problem, a 
correct algorithm must be able to detect 
negative-weight cycles. Let n be the num- 
ber of vertices of G. Then there may be as 
many as n ( n  - 1) edges i n G ,  and any 
algorithm for solving the modified problem 
must inspect each of them. If some edge 
were ignored by any algorithm, we could 
change its weight so that a shortest path 
or a negative-weight cycle would be 
missed and force the algorithm to give a 
wrong answer• Hence there are inputs 
which require ft(n 2) time for any algo- 
rithm to solve the modified single-source 
shortest-path problem. 

Similarly, multiplication of a pair of n 
× n matrices requires that n 2 outputs be 
produced, and is therefore 12(n2). This says 
nothing about the number of multiplica- 
tions required to solve the problem, but 
only that s o m e  operation (namely output) 
must be performed f~(n 2) times; therefore, 
the dominant operation must be performed 
at least that many times. 

Trivial lower bounds are generally easy 
to come by and, therefore, are of less 
interest than sharper bounds which can 
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sometimes be proved by more sophisti- 
cated methods. In many cases, however, 
trivial bounds are the only lower bounds 
available. Because they are usually easy 
to prove, they should be tried before more 
difficult techniques are applied. 

Information-Theoretic Bounds and Decision 

Trees 

Several authors have used arguments 
from information theory to show that  any 
algorithm for solving some problem must  
do some minimal amount of work. The 
most useful principle of this kind is that  
the outcome of a comparison between two 
items contains at  most one bit of informa- 
tion (where ~bit" denotes the values 0 or 
1). Hence, if there are m possible input 
strings, and an algorithm purports to iden- 
tify which one it was given solely on the 
basis of comparisons between input sym- 
bols, then [log m] comparisons are needed. 
This is because [log rn] bits are necessary 
to specify one of the m possibilities (in 
standard binary notation, for example; for 
this reason, all logarithms in this paper 
are to the base 2). 

The best-known example of a lower 
bound on computational complexity from 
information theory is for the problem of 
searching an ordered table with n ele- 
ments for the position of a particular item. 
There are n possible outcomes, so unique 
identification of an index in the table re- 
quires [log n] bits. Hence, at  least [log n] 
comparisons are required according to the 
principle mentioned above. A similar ar- 
gument applied to the problem of sorting 
a linearly ordered set gives a lower bound 
ofl l (n log n) for that  problem. 

The same basic principle often appears 
in a different guise in lower bound proofs 
for comparison-based problems. For ex- 
ample, Krmth [46] uses a ~decision tree" 
model for the sorting problem, in which 
any sorting algorithm can be viewed as a 
binary tree. Each internal node of the tree 
represents a comparison between two in- 
put elements, and its two sons correspond 
to the two possible comparisons which are 
made next, depending on the outcome of 
the previous comparison. Each leaf node 

specifies an input permutation that  is 
uniquely identified by the outcomes of the 
comparisons along the path from the root 
of the tree. Since there must  be n! leaf 
nodes, some path of the tree must  be of 
length at least [log n!] This follows because 
the number of nodes at any level of a 
binary tree can be at most twice the num- 
ber on the previous level. The worst case 
of any sorting algorithm must  therefore 
be f~(log n!) = f~(n log n). 

Reingold [57] has extended this ap- 
proach to allow for comparisons between 
functions of the inputs, rather than simply 
between input values themselves. He 
shows, for example, that  deciding whether 
two sets of n real numbers are identical 
requires l~(n log n) comparisons, even if 
comparisons between linear functions of 
the inputs are allowed. Similarly, Dobkin 
and Lipton [15] show that  the ~element 
uniqueness" problem (determining among 
n real numbers whether any two numbers 
are equal) requires l)(n log n) steps, even 
if comparisons between linear functions of 
the inputs are allowed. 

Oracles 

Knuth [46] points out that  a bound can be 
obtained for the problem of merging two 
ordered lists by another technique which 
he calls the construction of an ~'oracle", or 
~adversary". An oracle is a fiendish enemy 
of an algorithm which at every opportu- 
nity tries to make the algorithm do as 
much work as possible. Consider compari- 
son-based algorithms for merging the two 
lists A1 < A 2  < • • • < A,  and B1 < B 2  < 

• "" < Bn. The oracle will provide the 
result of any comparison on the basis of 
some rule; in this case, a useful rule is 
A, < B~ iff i < j .  Of course, this rule ap- 
plies only for certain inputs, but  the algo- 
ri thm does not know which input it has, 
nor does it know the rule, and must  there- 
fore ask the questions anyway. If compar- 
isons are resolved by this oracle, merging 
must  end with the configuration: 

BI < A ~  < B 2  < A 2  < " '"  <B,~ < A n  

since this is the only ordering consistent 
with the oracle's rule, and the algorithm 
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must produce this output if it works 
properly. 

Suppose that  one of the comparisons 
between adjacent elements from this final 
list had not been made during the course 
of execution of the algorithm; say, A,:B2. 
Then the configuration: 

BI <=B2 <A~ <A2 < ""  <Bn <An 

would also be a legitimate possible out- 
come, being indistinguishable from the 
correct answer on the basis of the compar- 
isons which were made. Hence, all 2n - 1 
comparisons between adjacent elements of 
the final list must be performed for the 
algorithm to produce the correct output. 
An algorithm with this performance is 
easily constructed. We therefore know 
that for the problem of merging two or- 
dered lists of n elements, L(n) = U(n) = 
2n - 1. 

For searching an ordered table, inqui- 
ries are of the form: "Is the key element 
less than this element?" The obvious ora- 
cle simply responds to inquiries in such a 
way that the key item is always in the 
larger of the two portions of the list. Thus 
at most half  the table can be eliminated 
from consideration with each comparison, 
and at least [log nl comparisons are re- 
quired. Hyafil [33], among many others, 
has used an oracle to prove a lower bound 
for the selection problem (finding the 
kth-largest of n elements), where the triv- 
ial bound is simply n. In this case, both 
upper and lower bounds are known to be 
0(n), and the oracle provides a way of re- 
fining the lower bound to permit compari- 
son with precise upper bounds. 

Problem Reduction 

One of the most elegant means of proving 
a lower bound on a problem P~ is to show 
that an algorithm for solving P~, along 
with a transformation on problem in- 
stances, could be used to construct an 
algorithm to solve another problem P2 for 
which a lower bound is known. The power 
of this approach is substantial. 

Shamos and Hoey [66] use problem re- 
duction to show that an algorithm for 
finding the Euclidean minimum spanning 

tree of n points in the plane can be used to 
solve the element uniqueness problem, 
and must  therefore take time ~(n  log n). 
The reduction is quite simple. Suppose 
that  we want  to determine whether any 
two of the numbers x~, x2, • • • xn are equal. 
We can solve this problem by giving any 
Euclidean minimum spanning tree algo- 
rithm the points (x~, 0), (x~, 0), • • • (xn, 0). 
The two closest points are known to be 
joined by one of the n - 1 spanning-tree 
edges, so we can simply scan these edges 
and, in linear time, determine if any edge 
has zero length. Such an edge exists if 
and only if two of the x, are equal. There- 
fore, if the spanning tree algorithm could 
operate in less than O(n log n) time, the 
element uniqueness problem could be 
solved in less than O(n log n) time, contra- 
dicting the ~(n  log n) lower bound men- 
tioned earlier. 

Other applications include the reduction 
of context-free language recognition to ma- 
trix multiplication [74] and the mutual  
reductions between Boolean matrix multi- 
plication and transitive closure [18]. In 
these cases, the reductions provide the 
potential for proving lower bounds, but  
nontrivial lower bounds are not known for 
these particular problems. 

Many other examples of this technique 
are found in transformations between so- 
called NP-complete problems, where the 
purpose is not to show lower bounds but 
to demonstrate membership in the equiv- 
alence class of NP.complete problems (see 
Section 5). Note that  it is not always clear 
how to identify the problem P2, which is 
of course a requirement for using this 
approach. 

Miscellaneous Tricks 

Among the newer approaches for proving 
lower bounds is the use of graph models of 
algorithms. Hyafil and Kung [34] show 
tradeoffs between the depth and breadth 
of trees describing the parallel evaluation 
of arithmetic expressions to show that the 
possible speedup using k processors is 
bounded by (2k+1)/3. This result is 
counter to the intuition that  having k 
processors available would allow a speed- 
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up of k. In fact, for certain computations 
the speedup is even less; for adding up a 
list of k numbers, it is only k/log k. The 
lack of a good model for parallel computa- 
tion has hindered further development of 
ways of decomposing problems for parallel 
solutions and proving bounds such as 
these, even though the prospect of inex- 
pensive parallel hardware compels us to 
study such algorithms. Lawler [51] ex- 
presses confidence that  such graph-theo- 
retic arguments will continue to prove 
useful in demonstrating lower bounds, and 
recent results (see, for example, [75]) show 
this optimism to be well-founded. 

An interesting lower bound which re- 
lates to problem representations is the so- 
called Aanderaa-Rosenberg conjecture 
[59]. Simply stated, it asserts that  detect- 
ing any nontrivial monotone graph prop- 
erty ] requires ~(n 2) steps if the graph is 
represented by an n × n adjacency matrix. 
A proof of this conjecture by Rivest and 
Vuillemin [58] is based on a decision tree 
model for the evaluation of Boolean func- 
tions and on properties of permutation 
groups. 

Another new approach uses theorems 
from complex analysis. Shamos and Yuval 
[67] show that finding the average of all 
the interpoint distances for n points in the 
plane requires ~(n  2) square-root opera- 
tions. Their proof is based on the ambigu- 
ity of the square-root function. The pri- 
mary significance of this result is that  
while it had previously been almost impos- 
sible to obtain lower bounds except for the 
four common arithmetic operations and 
for comparisons, the new approach applies 
to any multiple-valued function such as 
square root, inverse trigonometrics, and 
logarithms. 

It remains to be seen whether these and 
other tricks will be applicable to enough 
problems to be called "methods" for prov- 
ing lower bounds. At present, nontrivial 
results and general techniques are quite 
sparse. 

' A graph property is nontmvlal ]f at least one, but 
not all, graphs have it. It ]s monotone ]f adding 
new edges to the graph does not change the prop- 
erty. Thus, for example, nonplanamty is a nontrivial 
monotone property. 

3. UPPER BOUNDS 

Method is good ~n all things. 

Order governs the world. 

-Jonathan Swift 

There are two powerful methods for prov- 
ing upper bounds by analyzing the worst- 
case behavior of an algorithm: counting 
instructions, or solving recurrence rela- 
tions. Either approach may require iden- 
tification of a worst-case input. A third 
alternative, using brute force computing 
power to find both a worst-case and an 
associated optimal algorithm, sometimes 
works. 

Identifying a Worst Case 

In seeking an upper bound on problem 
complexity, the first task is to identify a 
"worst case", i.e., an input of size n which 
maximizes the amount of work the algo- 
ri thm must  do for that  value of n. The 
algorithm with this input then defines 
U(n), provided that  no other algorithm's 
worst-case behavior is better. 

When the algorithm's work is the same 
for all inputs of size n, finding the worst 
case is easy. This phenomenon is easily 
recognized when the flow of control does 
not depend on the data. Then every case 
is a "worst" one, because all cases are the 
same from the standpoint of the analysis. 
For example, a straightforward algorithm 
for finding the larget element in a set S is: 

procedure largest (S); 
begin 

b~g := first element in S, 
for each remaining element x of S do b~g := 

max(b,g, x); 
return(b,g) 

end; 

Clearly, for every set S with n elements, 
the algorithm makes n - 1 comparisons 
(and this is optimal since the lower bound 
is also n - 1). Similarly, multiplication of 
two n × n matrices in the classical way 
takes 0(n 3) steps regardless of the data. 
There are many more examples of such 
algorithms for which identifying the worst 
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case m easy because every case is the 
same. 

Sometimes data-dependent decisions ob- 
scure the fact that  every case is the same. 
Many search algorithms have this feature; 
for example, the binary search algorithm 
searches through a sorted array A consist- 
ing of n elements with indices ~ through j 
(where n - j - ~ + 1), for the position of a 
particular "key" item. For simplicity, as- 
sume that the key item is in the table. 
The procedure below returns the index in 
A of the key item: 

procedure bmsearch (A,L3,key); 
ifL = j  

then return(D 

else 
begin 

integer mLddle = L(L+j)/2J ; 
if key <- A [mLddle] 

then return(blnsearch(A,t,mtddle,key)) 
else return(blnsearch (A,mtddle + 1, 

.],key)) 
end; 

It lS easy to see that  the basic idea here 
is "divide-and-conquer": one comparison 
detomines which half of the array to 
search next. A worst-case input is one for 
which the part  of the table which remains 
to be searched is always at least as large 
as the part  eliminated, which happens if 
the key item is in the first position of the 
array. We will see later (in the discussion 
of recurrences) that  the algorithm takes 
[log n] comparisons in this case, which is 
optimal because a lower bound of [ log n 1 
is obtained from an information-theoretic 
argument. 

A worst case which is only slightly 
harder to manufacture is one for Quick- 
sort, an ingenious sorting algorithm which 
was proposed by Hoare [28]. The algorithm 
is very simple: 

procedure qulcksort(S); 
begin 

if I S I <- i then return(S), 

choose some element x from S, 
partltmn S into these elements less than x 

($1), those equal to x ($2) and those greater 
than x (S ~), 

return(qmcksort(S1) followed by $2 followed 
by qulcksort(S~)) 

end, 

Quicksort is probably the best practical 
sorting algorithm known, primarily be- 
cause on the average it uses O(n log n) 
comparisons. One might guess that  this is 
true by noting that  if each partitioning 
stop divided the remaining lists into ap- 
proximately equal parts, there would be 
about log n partitioning stages, each cost- 
ing O(n) time. A rigorous proof of this 
result is not difficult. Further  aspects of 
the average case of Quicksort are dis- 
cussed in Section 4. 

This instance of Quicksort has poor 
worst-case performance. If all elements of 
S are distinct and the algorithm by poor 
luck picks x as the smallest element of S 
at every stage, then $1 is empty, $2 con- 
tains one element, and $3 contains only 
one element fewer than S. This case re- 
quires about n partitioning stages, with 
the k-th stage examining about n - k 
elements; thus the complexity is 0(n2). 
This is not optimal, since sorting algo- 
rithms which never require more than O(n 
log n) stops are known, and the best lower 
bound is ~(n  log n). A conceptually easy 
modification to Quicksort (choosing x as 
the median element of S) produces one 
such algorithm which is within a constant 
factor of being optimal; however, this al- 
gorithm is quite impractical. Heapsort  [78, 
19] is a practical sorting algorithm with 
complexity O(n log n). 

For more complex algorithms, particu- 
larly those for graph problems and discrete 
optimization problems, finding a worst 

i 
case can be more difficult. Scheduling 
problems have this feature (see [9]). An- 
other interesting case is the modified sin- 
gle-source shortost-path problem (i.e., 
negative-weight edges are allowed). Ed- 
monds and Karp [16] mention in passing 
that a modified version of Dijkstra's [14] 
algorithm runs in O(n 3) time for any di- 
rectod graph satisfying the conditions of 
the modified problem (described in Section 
2). Their one-sentence justification is su- 
perficially convincing, but  D. B. Johnson 
[36] shows an entire family of directed 
graphs for which the algorithm requires 
fl(n2 ~) time! This example demonstrates 
that  it is easy to be misled by faulty 
identification of the worst case. 
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Counting Operations 

Each of the above examples leads directly 
to a way of counting the number of steps 
required in the worst case. Often, how- 
ever, this counting stage is at  least as 
difficult as finding a worst-case input. In 
fact, it  seems very similar to the problem 
of finding invariant relations for proofs of 
program correctness. 

Consider an algorithm for finding the 
convex hull of n points in the plane. A 
correct solution (by definition of the con- 
vex hull) requires that  the vertices of the 
hull be output in the order they would be 
encountered by tracing the convex hull 
in, say, a clockwise direction. Shamos [65] 
shows that  a lower bound is f~(n log n), 
and Graham [26] has given an algorithm 
which achieves this. Graham's method op- 
erates in three stages. First, all n points 
are converted to polar coordinates about 
some point which is interior to the hull. 
Since any point which lies within the 
triangle formed by three noncollinear 
points of the set serves as such an origin, 
the conversion step can be done in O(n) 
time. Next, the points are sorted by polar 
angle in O(n log n) time. 

For the final phase, each point is on 
either one or two lists: the UNCONSIDERED 
list and the (circular) TENTATIVE list. The 
UNCONSIDERED list is the output of the 
sorting stage, while the TENTATIVE list is 
initially empty. A scan is then made 
through the UNCONSIDERED points. For 
each new point, the algorithm determines 
whether the path through the last two 
points on the TENTATIVE list and then 
through the new point turns to the right 
or the left. If it turns to the right, the 
algorithm adds the new point to the TEN- 
TATIVE list and continues scanning the 
UNCONSIDERED list. If  it turns to the left, 
then the middle point of the three cannot 
be on the hull, so the algorithm deletes 
the last point of the TENTATIVE list from 
that  list. Again, a path through the last 
two TENTATIVE points and the new point 
is checked, and this continues until a right 
turn is discovered or until there are fewer 
than two points on the TENTATIVE list. 
When all points on the UNCONSIDERED list 
have been scanned, the TENTATIVE list 

contains the points on the convex hull in 
the proper order. 

It is not immediately clear how long 
this step may take, since for each new 
point the scan can apparently back up to 
the beginning of the TENTATIVE list. A 
reasonable (but pessimistic) guess for the 
complexity of the final phase would then 
be O(n2), which is not sufficient for our 
purposes. It is not particularly easy to 
identify a worst-case input because of the 
tradeoffs involved. 

Graham noticed that  all the work is 
done in creating and testing paths be- 
tween three consecutive points, and that  
the total time is proportional to the num- 
ber of times this must  be done. Every 
time such a path is created and tested, 
either a new point is added to the TENTA- 
TIVE list, or a point is deleted from it. The 
number of points added cannot exceed n, 
and the number deleted also cannot exceed 
n because once deleted, a point is never 
considered again. Hence, a new three- 
point path is created at most 2n times. 

The argument is tantamount  to finding 
an invariant relation among the relevant 
quantities: P ,  the number of paths consid- 
ered so far; A, the number of points which 
have been added to the TENTATIVE list SO 
far; and D, the number which have been 
deleted from the TENTATIVE list SO far. 
The quanti ty P - A - D, calculated after 
any path is considered, is constant. Hence, 
P =O(A  + D ) , a n d s i n c e A  + D < - 2 n ,  P 
= O(n). The running time of the entire 
algorithm is therefore dominated by the 
sorting stage, and is O(n log n). 

A similar argument finds its way into 
the analysis of a number of other algo- 
rithms for very different problems. For 
instance, it is used to show that Tarjan's 
algorithms [72] which use depth-first 
search of graphs to solve various problems 
(such as finding biconnected components; 
see also [30]) run in an amount of time 
which is linear in the number of edges E.  
In this case, each edge is pushed onto a 
stack and later popped off and discarded. 
The total number of times this can be 
done equals the number of edges. A proof 
that  Knuth,  Morris, and Pratt 's  fast pat- 
tern matching algorithm [49] runs in lin- 
ear time uses the same approach. 
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Another version of the argument  is used 
by Hopcroft and Ullman [32] to analyze 
the behavior of a data structure and asso- 
ciated algorithms for set manipulation. A 
sequence of n UNION and FIND instructions 
is input; a UNION instruction requests that  
two disjoint sets be merged, and a FIND 
asks for the name of the set containing a 
particular element. Such a sequence can 
be processed in O(nG(n)) time, where G(n). 
is the least k such that  the k-th iterated 
logarithm of n does not exceed one. The 
proof of this bound relies on an ~account- 
ing trick" in analyzing the FIND algorithm. 
The total cost of all FIND instructions is 
divided between the instructions them- 
selves and the elements inspected by the 
instructions. Each account is then ana- 
lyzed separately and shown to be charged 
O(nG(n)) units; thus the total is O(nG(n)) 
for n FIND instructions, which dominates 
the time for the UNmN instructions. The 
reader is urged to consult Hopcroft and 
Ullman [32] or Aho, Hopcroft, and Ullman 
[1] for more details. 

Recurrences 

Although analysis of worst-case behav- 
ior by directly counting the number of 
steps is greatly simplified by a concrete 
description of the algorithm, it is not al- 
ways necessary to be so explicit. In deriv- 
ing recurrence relations for solution times, 
it is sometimes more convenient to think 
in abstract terms about what the algo- 
ri thm does. This is especially true when 
the algorithm itself is not written recur- 
sively. 

In accordance with established usage, 
let the running time be denoted by T(n). 
It is sometimes possible to find a recur- 
rence relation (difference equation) for T(n) 
and to solve it exac t ly -o r  even just  ap- 
proximately, concluding that  T(n) is 
O(f(n)), for example - to  discover the 
worst-case behavior of an algorithm. 

Recall the first example of the previous 
subsection, where the problem was to find 
the largest element in a set S of n ele- 
ments. Although the algorithm is not writ- 
ten as a recursive procedure, it can never- 
theless be viewed as finding the largest 
element of a set S'  consisting of the first n 

- 1 elements, then comparing the result 
to the n th  element of S. The recurrence 
obtained is 

T(n) = T(n - 1) + 1 for n > 1, 
T(1) = 0 

where the initial condition is zero because 
no comparisons are needed to find the 
maximum element of a singleton set. The 
solution to this recurrence is clearly T(n) 
= n - 1, the same result as before. 

Next consider the binary search algo- 
rithm, where it is true that  

T(n) <- T([n/2]) + 1 for n > 1, 
T(1) = 0. 

Again, the initial condition is zero because 
the process is finished without any more 
comparisons when only one element re- 
mains in the array. The recurrence is 
discovered by recognizing that  in the worst 
case, one comparison is used to determine 
which remaining part to search recur- 
sively, so that  the total number of compar- 
isons T(n) is the sum of this comparison 
plus the number T([n/2]) required to find 
the key in an array essentially half  as 
large. Since the remaining part  can never 
be larger than [n/2] whether n is odd or 
even, we use '~ '  rather  than  ~='. The 
solution T(n) <- [log n] can be discovered 
by computing the value of T(n) for the 
first several values of n, and can then be 
proved by induction. As mentioned before, 
the binary search algorithm is optimal, 
since this solution coincides with the lower 
bound. 

A more complicated recurrence results 
from analyzing the worst case of Quick- 
sort. Here, the equation is 

T(n) = T(n - 1) + P(n) + C(n) 

forn  > 1, 
T(1) = T(0) = 0, 

where C(n) is the number of comparisons 
required to choose an element x from S, 
and P(n) is the number needed to partition 
S on the chosen element x. Since we are 
counting only comparisons, C(n) = 0 and 
P(n) = n - 1; thus, 

T ( n ) =  T ( n -  1 ) + n -  1 f o r n > l ,  
T(1) = T(0) = 0, 
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for which the exact solution is T(n) = n(n 

- 1)/2. Of course, it is clearly not sufficient 
to choose x arbitrarily if a worst case of 
0(n 2) must be avoided. Rather, x should 
partition S into approximately equal 
parts. Aho, Hopcroft, and Ullman [1] call 
this the ~principle of balancing." It can be 
accomplished by choosing x as the median 
element of S, whereupon the recurrence 
becomes 

T(n) <- 2T([n/2j) + P(n) + C(n) 

forn  > 1, 
T(1) = T(0) = 0. 

As in the case of binary search, ~---' rather 
than '= '  is used because n may be odd and 
because the partitioning element is al- 
ready in place and need not be considered 
in the recursive step. T(n) still provides 
an upper bound since neither remaining 
list can contain more than half  the ele- 
ments. It is convenient to think of T as 
being defined not only for integer argu- 
ments, but on the entire real line. Since T 
is a nondecreasing function, T([xJ)- < T(x), 

so the inequality remains valid if In/2] is 
replaced by n/2. This step greatly simpli- 
fies the task of solving the recurrence. 

Now, P(n) = n - 1 as before; however, 
C(n) is no longer zero but the number of 
comparisons necessary to find the median 
of n elements. Blum et al., [5] present an 
algorithm which finds the median in at  
most 5.43n comparisons, and Schonhage, 
Paterson, and Pippenger [63] have an al- 
gorithm which uses at most 3n compari- 
sons. Taking C(n) <- 3n, we have 

T(n) < 2T(n/2) + 4n - 1 for n > 1, 
T(1) = T(0) = 0, 

for which the solution is T(n) <- 4n log n 
- n + 1, so that  T(n) is O(n log n). This 
algorithm is not practical, however, be- 
cause the 3n median algorithm is ex- 
tremely complicated, and because the ex- 
pected behavior of Quicksort is very good 
without such a modification (see Section 4). 

As a final example, consider Strassen's 
algorithm [71] for matrix multiplication. 
The algorithm is based on recursive appli- 
cation of a method for multiplying 2 x 2 
matrices with elements from an arbitrary 

ring, using seven multiplications and 18 
additions (as opposed to the textbook 
method which uses eight multiplications 
and four additions). Aho, Hopcroft, and 
Ullman [1] explain how the number of 
additions can be reduced to 15, which is 
optimal. 

Suppose n = 2 k. Strassen's algorithm 
begins by partitioning each of the original 
matrices into four submatrices of size 2 k-I 
x 2 k-1 (to which the algorithm is applied 
recursively), then multiplies the 2 x 2 
matrices (which have 2 k-~ x 2 k-~ matrices 
as elements) using the seven-multiplica- 
tion 15-addition algorithm. The recursive 
application of the algorithm to perform 
the seven multiplications is the key to its 
efficiency. Even though the total number 
of scalar operations used to multiply 2 x 2 
matrices of scalars is 22, as opposed to 12 
using the classical method, the number of 
multiplications is reduced by the new al- 
gorithm. When the elements of the 2 x 2 
matrices are themselves matrices, this fact 
becomes important, because matrix mul- 
tiplications are more costly than matrix 
additions. 

An analysis of the tradeoffs involved in 
sacrificing 11 additions in order to save 
one multiplication begins with the recur- 
rence describing the number of scalar op- 
erations used to multiply a pair of n x n 
matrices: 

T(n) = 7T(n/2) + 15(n/2) 2 for n > 1, 
T(1) = 1. 

Here, the recursive step requires seven 
applications of the algorithm to (n/2) x 
(n/2) matrices, plus 15 additions of such 
matrices. Each matrix addition takes (n/ 

2) ~ scalar operations. The initial condition 
is obvious, since multiplication of two 1 x 
1 matrices consists of a single scalar mul- 
tiplication. The solution is T(n) = 6n l°g7 - 
5 n 2 ;  t h u s  T(n)  i s  O(n l°gT) = O(n2"Sl), com- 
pared to O(n 3) for the classical method. 
Because of the factor of 6, though, the 
classical algorithm (which takes 2n 3 - n 2 
operations) is still faster for n less than 
about 300. By using a hybrid scheme 
which uses Strassen's algorithm for large 
matrices and the classical algorithm for 
smaller ones, this crossover point can be 
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reduced (for a real implementation) to 
about n = 40 [11]. 

Simply finding a recurrence is only part 
of the problem; the other half, of course, is 
solving it. It is relatively easy to find an 
upper bound on the solution by simply 
guessing a solution and then trying it. 
For example, given the recurrence 

T(n )  = 2T(n/2)  + n log n 

with some initial condition T(1), we might 
guess that  T(n )  should be no larger than 
O(n2). If we assume that  T(n)  = cn 2 and 
can show that  the right-hand side of the 
recurrence is at most cn 2 + lower-order 
terms, then O(n 2) is an upper bound on 
T(n) .  That this is true for the present 
example is easily verified. 

A better guess in this case is that  T(n )  

is O(n  log2n); this means that  our guess of 
the value of T(n )  is cn log2n, resulting in: 

T(n)  = 2 T ( n / 2 )  + n log n 
= cn log~(n/2) + n log n 
= en logan + (1 - 2c) n log n + cn 

so that  O(n  logZn) is an upper bound for 
T(n) .  In fact, since the coefficient of n 
log2n is the same on both sides of the 
equation, T(n )  = O(n log2n). 

This computation can be extended to 
find the exact solution. Suppose that  T(n )  

is a linear combination of linearly inde- 
pendent functions, the dominant one of 
which is n log2n. Substituting cn log2n 
into the recurrence gives rise to terms in 
n log n and in n, which appear on the 
right-hand side but not on the left. Conse- 
quently, T(n )  must also have terms a n  log 
n + bn,  which, when expanded nn the 
right, produce no new lower-order terms. 
Now it is a simple matter  to equate coeffi- 
cients of like functions to get the solution: 
T(n)  = (n log2n + n log n)/2 + T(1)n. 

More powerful techniques must some- 
times be applied. Generating functions (Z- 
transforms), which are also of value in 
solving problems associated with average- 
case analysis, are among the most useful 
of these tools. Knuth  [43], Liu [52], and 
Kleinrock [42] give excellent accounts of 
how to use this method. Some relatively 
easy recurrences can also be solved by 
referring to standard formulas (see, for 

example, [13] on difference equations), 
while at least references to others can be 
found by iterating the recurrence to find 
the first few terms and then looking up 
the sequence in Sloane [68]. 

The Brute Force Method 

Even though the method to be described 
here is not often practical, it is interesting 
because it is possible at all only with the 
aid of high-speed computers and, there- 
fore, could only recently have been at- 
tempted. The question of how to sort using 
a minimum number of comparisons is con- 
sidered in detail by Knuth  [46], who points 
out that  the merge-insertion algorithm of 
Ford and Johnson [21] is optimal for n < 
12 and for n = 20 and 21. That is, the 
number of comparisons is exactly [log n!] 
for these cases. 

The question of the optimality of merge- 
insertion for n = 12 was settled by Wells 
[76, 77] by using brute-force computing 
power to demonstrate that  no algorithm 
can sort 12 items using fewer than 30 
comparisons, so that  merge-insertion 
(which uses 30) is optimal even though 
[log 12!] = 29. In a sense, he refined the 
lower bound on sorting 12 elements by 
effectively bounding the worst-case per- 
formance of every possible algorithm! One 
can imagine finding worst cases in a simi- 
lar manner to demonstrate upper bounds, 
either by proving the existence of an algo- 
rithm or by explicitly producing one. 

4. THE AVERAGE CASE 

What ts normal is at once most 

conventent, most honest, and most 

wholesome. 

-Frederic Amiel 

The normal ~s what you f ind but 

rarely. 

-W. Somerset Maugham 

Recent efforts in algorithmic analysis have 
been largely directed toward analyzing 
expected behavior, i.e., finding the com- 
plexity of a computation averaged over 
some distribution of inputs. Generally, the 
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techniques reported in the previous section 
are still applicable, although some of the 
recurrences are tougher to handle and 
therefore stronger solution methods may 
need to be used. 

Pros and Cons of Average-Case Analysis 

The primary reason for analyzing the be- 
havior of algorithms "on the average" is, 
of course, that  a worst case may arise so 
rarely (perhaps never) in practice that  
some other complexity measure would be 
more useful. An alternative to worst-case 
analysis that  immediately comes to mind 
is some sort of average-case analysis. 
Rather than try to define and analyze a 
particular case which is somehow ~aver- 
age," the approach is to simultaneously 
analyze all cases and to weight the indi- 
vidual case complexities with the appro- 
priate probabilities of each case occurring. 

Obviously, this complicates the mathe- 
matics considerably. If this were the only 
objection to doing average-case analysis, 
all that  would be required would be more 
sophisticated tools, which could be dis- 
cussed in detail here. However, more seri- 
ous questions have been raised which tend 
to cast considerable doubt on the entire 
venture; this is the main reason for not 
going into more detailed description of the 
methods used in average-case analysis. 
Rather, the reader is urged to consult the 
original sources. 

The most important objection is that, 
typically, there is no way to identify the 
probability distribution over all problem 
occurrences. While it may be reasonable 
in some situations to assume that  every 
possible abstract problem instance is 
equally likely (for example, that  every 
item is equally likely to be the key in a 
binary search, or that  every permutation 
is equally likely to be the input to Quick- 
sort, or that  every n-vertex graph is 
equally likely), this assumption really 
only makes sense if the problem space is 
finite. It clearly makes no sense, for ex- 
ample, to say that  every integer program 
is equally likely. Furthermore,  even when 
it does have meaning, the assumption of a 
uniform distribution over all possible in- 
puts may not be at all realistic if we have 

prior knowledge about the likelihood of 
various inputs. While a uniform distribu- 
tion is not the only possible assumption, it 
is the one most often encountered. Excep- 
tions are Spira [70] on the expected time 
for finding all shortest paths in a graph, 
and Bentley and Shamos [4] on the ex- 
pected behavior of some geometric algo- 
rithms. In both of these cases, the only 
important assumptions deal with inde- 
pendence of the random variables involved 
and not with their distribution. The as- 
sumptions made in analyzing scheduling 
algorithms or parallel computations often 
include exponentially distributed or Er- 
langian distributed services times for 
tasks [8, 2]. 

In one at tempt to answer this objection, 
Yuval [79] has suggested that  algorithms 
might ~randomize" their inputs in order 
to make the assumption appear valid. He 
has pointed out that  if suitable random 
steps were being taken at certain stages, 
an algorithm could have good expected 
behavior for every input, and thereby as- 
sure good expected-case solution times re- 
gardless of the probability distribution 
being assumed (see also [55]). For exam- 
ple, Quicksort could choose the partition- 
ing element randomly (this idea was of- 
fered by Hoare [28] in his original paper 
on Quicksort). Even though this might  
seem a case of the tail wagging the dog, 
there is some justification for such an 
approach in this instance. In order to 
make the analysis of the algorithm tract- 
able, Sedgewick [64] assumes that  the files 
~o be sorted are random, and presents 
evidence that  the algorithm works better 
if they are! Clearly, not all algorithms can 
be modified in this manner.  The key ele- 
ment  in binary search cannot be ~'random- 
ized"; it is given as the sole input. Simi- 
larly, the array in which the search is to 
be made is certainly fixed during the 
search, so there is no room to manipulate 
the algorithm in this way. 

Despite the shaky basis for assuming 
random inputs, the results of analysis us- 
ing this assumption may be reasonable 
approximations for other distributions. 
Moreover, nonuniform distributions com- 
plicate the recurrences. 

Knowing the average behavior of an 
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algorithm is helpful, but  knowing the var- 
iance as well would be even more so. Few 
average-case analyses have considered 
higher moments of the solution time. One 
notable exception is Sedgewick's analysis 
of Quicksort [64] (see also Knuth [46]), in 
which he shows that the average number 
of comparisons is about p = 1.39n log n, 
and the standard deviation is approxi- 
mately ~ = 0.65n. Since ~//z diminishes 
with increasing n, our confidence that  the 
algorithm will be efficient grows with n. 
This explains in part why Quicksort works 
so well in practice. Spira [70] also finds 
the variance of the time required by his 
all-shortest-paths algorithm. 

Some Examples of Average-Case Analysis 

There is a large and growing number of 
algorithms that have been subjected to 
analysis of average-case complexity. 
While only a few will be discussed here, 
many others can be found in the litera- 
ture. 

Surely the single most comprehensive 
analysis of any algorithm is presented for 
Quicksort by Sedgewick in his PhD thesis 
[64]. He analyzes the average number of 
comparisons, exchanges, and partitioning 
stages through the use of recurrences, just  
as for the simple worst-case analysis of 
the number of comparisons described in 
Section 3. Along with Sedgewick's Appen- 
dix B, Knuth [43, 46] is a good reference 
for these techniques. 

Obviously, not all recurrences are easy 
to solve. In analyzing radix exchange sort- 
ing, Knuth [46] uses properties of the 
gamma function and complex-variable 
theory to derive asymptotic results for a 
recurrence that  looks fairly simple, but  
cannot be solved with traditional tech- 
niques. 

One algorithm that has been analyzed 
in at least three different ways is the 
alpha-beta search algorithm for game 
trees. The problem which the algorithm 
solves is a search through a game tree. 
There are two players who alternately 
make moves, the first trying to maximize 
some function of the position, the other 
trying to minimize it. The classical exam- 
ple is the game of chess; all sophisticated 

chess-playing programs use alpha-beta 
search. Good descriptions of the algorithm 
can be found in Fuller, Gaschnig, and 
Gillogly [23] and in Knuth and Moore 
[48]. Fuller, et al., assume that  the game 
tree is a complete tree with branching 
factor N and depth D, and that  each per- 
mutation of the ranks of the values of the 
leaf nodes is equally likely. They derive 
expressions for the probability of expand- 
ing individual nodes, and the expected 
number of evaluated bottom positions. 
While the answers in this case look simple 
enough because of concise notation, the 
authors point out the computational in- 
feasibility of calculating these quantities 
for any but  very small values of N and D. 
However, they surmise from simulation 
results that  the average number of nodes 
examined is about O(N°'72D). 

Knuth and Moore [48] make the same 
assumptions about the tree and the ran- 
dom ordering of leaf-node values, and 
show that  the average behavior of the 
algorithm is O((N/log N) ' ) .  They suggest 
that  the simulation results by Fuller, et 
al., result in a fit to N °'~2~ because N is so 
small. 

Newborn [53] uses a model in which the 
branch (rather than the node) values are 
randomly ranked; he obtains results for 
the cases D = 2, 3, 4, and in each case 
they differ from those of Knuth and Moore. 
This is yet another example of the depend- 
ence of results on the assumptions of the 
model being used in the analysis: the three 
different analyses for D = 2 give complex- 
ities of O(N 144), O((N/log N)2), and O(N 

log N), respectively. 
Other examples of average-case analysis 

include Guibas and Szemeredi [27] on dou- 
ble hashing, O'Neil and O'Neil [54] on 
Boolean matrix multiplication, and Knuth 
[45] and Floyd and Rivest [20] on selection. 

5. APPROXIMATE ALGORITHMS 

Trouble creates a capacity to handle st. 
-Oliver Wendell Holmes, Jr. 

Until very recently, the focus of attention 
in algorithmic analysis has been on "tract- 
able" combinatorial problems such as 
searching, sorting, and matrix multiplica- 
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tion, which have been mentioned above. 
These are among the "easy" problems 
(which in current terminology means that 
their complexity is bounded by a polyno- 
mial in n); on the other hand, many opti- 
mization and graph problems are "hard" 
(i.e., their complexity is apparently not 
bounded by any such polynomial). Since 
so many important problems are, unfortu- 
nately, in the latter category, an entire 
new group of algorithms that find approx- 
imate solutions to hard problems has been 
developed. They are known as "approxi- 
mation" or "heuristic" algorithms. With 
these algorithms have come new measures 
of "goodness" as well as techniques for 
their design and analysis. Two classes of 
approximation, one guaranteeing a near- 
optimal solution always, and the other 
producing an optimal or near-optimal so- 
lution "almost everywhere," are discussed. 

Problem Classes and Reducibility 

For the discussion that follows we require 
some concepts regarding Turing machines 
(TM) and formal languages. It is some- 
what artificial, but convenient, to pose a 
problem in terms of a language-recogni- 
tion task. This is done by formulating it 
to require a yes-no solution; for example, 
"Does this traveling salesman problem 
have a solution with cost less than k?" A 
TM can be asked to accept the input prob- 
lem description if the answer is "yes." To 
solve the problem, such a TM then accepts 
only input strings from some language L 
which comprises precisely those problem 
instances with "yes" answers. It is helpful 
to refer to the original problem and the 
language L interchangeably in the context 
of the classes P and NP (see [1] for more 
details). 

Formally, the class P (for "Polynomial") 
is the set of languages which are recog- 
nized by some deterministic TM that al- 
ways halts in a number of steps which is 
bounded by a fixed polynomial in the 
length of the input (i.e., in "polynomial 
time"). Similarly, the class NP (for "Non- 
deterministic Polynomial") is the set of 
languages which are recognized by some 
nondeterministic TM in polynomial time. 
A nondeterministic TM operates in poly- 

nomial time if all sequences of choices of 
moves are of polynomial bounded length; 
a string is accepted by such a machine if 
there exists any such sequence of steps 
which leads to an accepting state (see 
Hopcroft and Ullman [31]). 

That P C NP is clear from the defini- 
tions. Undoubtedly the most intriguing 
open question in the complexity area is 
whether P = NP, or whether there are 
problems in NP which cannot be solved in 
polynomial time by a deterministic TM. 
Problems known to be in P include the 
"easy" problems previously discussed. 
Other problems in NP which might also 
be in P are most of the so-called optimiza- 
tion and graph problems, such as 0/1 inte- 
ger programming, certain scheduling 
problems, finding Hamiltonian circuits, 
graph coloring, and many others (see Karp 
[39, 40]). So far as is known, there is no 
deterministic polynomial-time algorithm 
for solving any of these "hard" problems; 
all known algorithms have a worst-case 
complexity that is not bounded by a poly- 
nomial function of the input size. 

One method of proving the equivalence 
P = NP might be to demonstrate a deter- 
ministic polynomial-time simulation of a 
nondeterministic TM. Since this would 
amount to a systematic search through a 
tree of move sequences of polynomial 
depth, the total number of nodes (and 
hence the time for the simulation) could 
be exponential. Hence, it appears that it 
is not possible to simulate an arbitrary 
nondeterministic TM operating in polyno- 
mial time by a deterministic TM operating 
in polynomial time. Of course this does 
not by any means show that P ~ NP; 
there might well be other approaches, not 
resembling a deterministic simulation, 
which could solve one of the hard problems 
in NP in polynomial time. 

Fortunately, it is sufficient to consider 
solving these problems in polynomial time 
on a normal random-access computer 
rather than on a TM; the problems in P 
remain the same [1], because each ma- 
chine can simulate the other in polynomial 
time. Roughly speaking, problems that 
seem to require some sort of backtrack- 
searching through a tree of polynomially 
bounded depth are the difficult problems 
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of NP. While there is overwhelming cir- 
cumstantial evidence that  such problems 
are not also in P, no proof of this conjecture 
has yet been produced. 

A language L1 is "polynomially reduci- 
ble" to L2 if there is a deterministic poly- 
nomial-time algorithm which transforms 
a string x into a string f(x) such that  x is 
in LI iff f(x) is in L2. Among the conse- 
quences of reducibility is the fact that if 
there is a polynomial-time deterministic 
algorithm to recognize L2 and L1 is reduci- 
ble to L2, then a polynomial-time deter- 
ministic algorithm to recognize L~ can be 
constructed. It consists of applying the 
transformation f to the input x and then 
checking whether  f(x) is in L~, all of which 
can be done deterministically in polyno- 
mial time. 

The key to the argument that  P ~ NP 
is a remarkable theorem by Cook [12] 
stating that  every problem in NP can be 
polynomially reduced to Boolean satisfia- 
bility. This problem is very simply stated: 
Is there an assignment of t ruth values to 
the literals of a Boolean expression which 
makes the expression true? This means 
that every problem which can be solved in 
polynomial time on a nondeterministic TM 
can also be solved by subjecting the input 
string to a transformation (done determin- 
istically in polynomial time) that  converts 
it to an instance of satisfiability, and then 
solving the resulting satisfiability prob- 
lem. Many other problems have subse- 
quently been shown to have the same 
property. A problem such as satisfiability 
is called "NP-complete." One way to prove 
that  a problem is NP-complete is to dem- 
onstrate that  the problem is in NP, and 
that  another NP-complete problem is re- 
ducible to it. All NP-complete problems 
are also ~'P-complete" (see Sahni [60]), i.e., 
in the class of problems solvable in deter- 
ministic polynomial time iff P = NP. The 
distinction between these definitions has 
all but disappeared in the literature, and 
the term "NP-complete" has come to be 
used for either one. Under either defini- 
tion, if there is a polynomial-time deter- 
ministic algorithm for any NP-complete 
problem, then P = NP. 

Karp [39] shows reducibilities among 
problems which demonstrate that  the class 

of NP-complete problems is quite large, 
and includes all the optimization and 
graph problems mentioned above. This 
fact forms the basis for believing (even if 
one cannot prove) that  P ~ NP, since 
none of the hundreds of algorithms for the 
scores of problems that  are NP-complete 
runs in polynomial time. If any of these 
problems could be solved quickly, all of 
them could be; the fact that  so far none of 
them can be is a convincing argument  
(although not a proof) that  they never will 
be. 

Whether P = NP is not the only open 
question in this area. Some problems re- 
main unclassified. For example, deciding 
whether two regular expressions are 
equivalent, or whether a string is in a 
given context-sensitive language, are 
problems at least as hard as any problems 
in NP, but are not known to be in NP 
themselves (see Aho, Hopcroft, and Ull- 
man [1]). Such problems are called "NP- 
hard" because their inclusion in P would 
imply that  P = NP. On the other hand, 
deciding whether two given graphs are 
isomorphic, whether a given integer is a 
prime, or whether a given integer is not a 
prime, have not been shown to be NP- 
complete, even though they are in NP and 
cannot currently be solved in polynomial 
time. Hence, these may be problems in 
NP but not in P, whose solutions will not 
help solve the other problems in NP. Lad- 
her [50] has shown that  P @ NP implies 
the existence of such '~intermediate" prob- 
lems, but it is not known whether  the 
above problems are in this class. 

"Guaranteed" Approximation Algorithms 

All known algorithms for solving NP-com- 
plete problems run in nonpolynomial de- 
terministic time. It  is therefore impracti- 
cal to solve very large instances of these 
problems, even though some of them are 
among the most important problems of 
graph theory and operations research. 
Fortunately many applications requiring 
solution of such problems do not require 
exact solutions. To take advantage of this 
fact, algorithm designers have developed 
many new approximation methods. Most 
of these algorithms seek near-optimal so- 
lutions to all instances of a problem. 
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A generally accepted error measure for 
these algorithms is the maximum relative 
error over all problem instances [37]. Nor- 
mally, the quantities from which the rela- 
tive error is computed are obvious: an 
integer program's objective function value, 
a graph's chromatic number for the graph 
coloring problem, or a schedule's length. 
Sometimes, as for the satisfiability prob- 
lem, the original problem must  be re- 
phrased as an optimization problem in 
order to study approximate solutions. The 
ratio of the absolute error to the exact 
solution value is given the symbol ~. 

In designing approximation algorithms 
of this type, one is concerned with guar- 
anteeing that  the relative error ~ is never 
larger than some prescribed maximum, 
which essentially means that  e is taken as 
given. The goal is to develop an algorithm 
that always solves the problem to within 
a factor of 1 -+ ~. For this reason, many of 
these algorithms tend to resemble the pat- 
terns commonly encountered in calculus 
proofs, with strange functions of ~ appear- 
ing, as if by magic, in the early stages of 
the algorithm in order to assure that  the 
final solution will be within a factor of 1 
- ~ of optimal. Recognizing this takes 
much of the mystery out of what  can 
appear to be very complicated algorithms. 

Because error analysis is par t  of the 
design of such algorithms, understanding 
the analysis is tantamount  to understand- 
ing the operation of the algorithm. Sahni 
[62] nicely summarizes the techniques in 
this class, dividing the methods into three 
categories. These are especially useful for 
the knapsack problem, packing problems, 
and certain scheduling problems. The 
worst-case complexities they produce are 
usually like O(na/~) for constants a and b 
which depend on the problem. 

An example of one of Sahni's tech- 
niques, called interval partitioning, is a 
simple algorithm for solving the 0/1 knap- 
sack problem: 

maximize:  c" x 

subject to: a. x <- b 
x ~ { 0 ,  1} n 

Here, c and a are n-vectors of positive 

~'utilities" and ~weights", respectively, and 
b is a scalar representing the capacity of a 
knapsack. The objective is to fill the knap- 
sack with a subset of the n items so that  
the total utility c -x  is maximized without 
violating the capacity constraint a.x -< b. 
Item i is to be included iffx, = 1. 

The problem can be solved by a straight- 
forward tree-search method. For any par- 
tial assignment to the variables xl, x2, "" 
x, which we may have at level i of the 
tree, there correspond two more assign- 
ments (letting x,+l be either 0 or 1) at 
level i + 1. A feasible solution is one for 
which a.x -< b, and a partial assignment 
at level i consists of the fixed variables x~ 
through xz, with the remaining ones set to 
0. The key observation is that  the infeasi- 
bility of a partial assignment implies the 
infeasibility of every completion; accord- 
ingly, we may prune the tree at that  point. 
However, even with such pruning rules, 
the total number of solution candidates 
generated may be exponential in n. 

An approximation scheme using inter- 
val partitioning is constucted as follows: 
let P~ be the maximum total utility of 
partial solutions on level ~. Divide the 
interval [0, P,] into subintervals of size 
P,~/n, and discard all candidates with total 
utility in the same interval except that 
one with the least total weight. There are 
now at most Inlet + 1 nodes on each level, 
and therefore only O(n2/E) nodes in the 
entire tree. The errors introduced at each 
stage are additive, so the total error is 
bounded by E. This means that  in O(n2/e) 

time we can solve the 0/1 knapsack prob- 
lem to within E, for every ~ > 0. By 
another approach, Ibarra and Kim [35] 
have shown that this can be reduced to 
O(n log n) + O((3/e)41og(3/~)). 

Shamos and Yuval [67] have demon- 
strated an interesting approximation al- 
gorithm for a problem which is relatively 
easy. It finds an ~-approximation to the 
mean distance between n points in the 
plane in O(n) time although an optimal 
solution requires O(n 2) time. 

Not all NP-complete problems lend 
themselves equally well to approximation, 
even though they are, in a certain sense, 
of the same time complexity. D. S. John- 

Computing Surveys, Vol. 9, No 4, December 1977 



A n a l y s i s  T e c h n i q u e s  f o r  D t scre t e  A l g o r i t h m s  • 309 

son [37] points out that  for some problems, 
including those to which Sahni's tech- 
niques can be applied, the relative error e 
can be bounded by a constant independent 
of problem size. However, for others (such 
as the maximum clique problem) no algo- 
rithm has yet been found for which • does 
not grow at least as fast as n c for some 
c > 0. Garey and Johnson [24] show that 
approximating the chromatic number of a 
graph to within a factor of two is NP- 
complete; in fact, no known polynomial- 
time algorithm solves the problem to 
within any bounded ratio. Similarly dis- 
couraging is another result reported in 
the same paper: if there is a polynomial- 
time algorithm for approximating the size 
of the maximum clique of a graph to 
within s o m e  bounded ratio, then there is 
a polynomial-time algorithm for approxi- 
mating it to within a n y  bounded ratio. 

Examples of approximation algorithms 
and analysis of errors and complexitms 
have also been given by Johnson [38], 
Sahni [61], and Coffman and Sethi [10], 
among many others. Garey and Johnson 
[25] have compiled a fine annotated bibli- 
ography for this area. 

Probabilistic Behavior of Approximation 
Algorithms 

It is not easy to guarantee good approxi- 
mate solutions to certain NP-complete 
problems. This fact has motivated a search 
for alternatives to the guaranteed approx- 
imation approach. One alternative is to 
make such a sophisticated guess about the 
solution that  the likelihood of error is 
negligibly small. If we define Pn to be the 
probability that  such an algorithm gives 
an unacceptably bad answer to a randomly 
chosen problem of size n - s o m e  distribu- 
tion of problem instances is a s s u m e d -  
then the algorithm is said to work cor- 
rectly "almost everywhere" if ~ pn is fi- 
nite, where the sum is over all problem 
sizes n = 1, 2, -... 

Optimality or near-optimality "almost 
everywhere" is theoretically a strong con- 
dition. Were we to randomly choose one 
problem instance of each size n, for n = 1, 
2, ..., and run the algorithm on each of 
them, then not only would the algorithm 

give good answers infinitely often, but  
(with probability one) it would fail to give 
good answers only finitely often. 

Karp [41] illustrates such algorithms. 
He demonstrates an O (n log n) algorithm 
for solving random Euclidean traveling 
salesman problems which, for every e > 0, 
finds a solution within a factor of 1 + • of 
being optimal almost everywhere. The 
analysis depends heavily on an interesting 
theorem by Beardwood, Halten, and Ham- 
mersley [3], stating that  for n points cho- 
sen at random in a plane figure of area A, 
there is a constant c such that  the length 
of the shortest tour is within e of (cnA)  112 

almost everywhere. 
Karp's example, which uses results from 

geometry and probability, is typical of 
these algorithms. Results and techniques 
from a large number of fields of mathemat- 
ics seem to apply in the area of probabilis- 
tic algorithms. More examples can be 
found in the theory of random graphs [17], 
which contains many useful theorems re- 
garding connectedness, maximum cliques, 
and chromatic numbers. Rabin [55] and 
Solovay and Strassen [69] describe a differ- 
ent kind of probabilistic algorithm for test- 
ing whether a number is prime; the prob- 
ability of error (guessing that a composite 
number is prime) is halved at each step 
regardless of the size of the number being 
tested. 

Many probabilistic algorithms are re- 
markably simple, yet have been shown to 
work extremely well. However, the proba- 
bilistic approach suffers from the same 
basic objections as average-case analysis, 
especially with regard to the question of 
assuming a meaningful underlying distri- 
bution over problem instances. Even so, 
the approach does give some assurances 
that  an approximation algorithm will not 
fail very often; the user may confidently 
expect few "surprises." 

CONCLUSIONS 
He that  takes up conclusions on the trust  

o f  authors . . loses h~s labour, and does 

not know anything,  but only beheveth. 

-Thomas Hobbes 

There is a clear need for development of 
more sophisticated tools for proving lower 
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bounds. Techniques for proving upper 
bounds will not change significantly, and 
algorithm design will continue to advance 
with more unified principles. Average- 
case analyses must  be extended to include 
estimates of the variance and the nature 
of the distribution of solution times, and 
should be made more robust by requiring 
fewer unreasonable assumptions. 

An area which has hardly been explored 
is that  of realistic models for complexity 
analysis of parallel programs. Most prior 
work has dealt with parallel computation 
at the single-instruction level, and then 
essentially only for algebraic or numerical 
problems; see, for example, Traub [73] and 
Borodin and Munro [7]. There are practi- 
cally no parallel algorithms and associated 
analysis techniques for combinatorial 
problems. The proliferation of parallel 
hardware makes this a particularly attrac- 
tive area for exploration. 

Possibly the most exciting and poten- 
tially rewarding area for research in the 
near future will be in designing and ana- 
lyzing algorithms for very hard problems. 
Of course, the interesting theoretical ques- 
tions include the now-infamous P = NP 
problem. Since presumably P # NP, ap- 
proximate algorithms will predominate. 
For those problems which are not amena- 
ble to guaranteed approximate solutions, 
the probabilistic approach may be pre- 
ferred. However, the "almost everywhere" 
concept is too restrictive and says too little 
about problems of a particular size; a new 
definition of what  constitutes an accepta- 
ble approximation algorithm might result 
in a new family of practical algorithms for 
some NP-complete problems. Such results 
can be expected to heavily apply concepts 
from probability and statistics. 

APPENDIX 

Glossary of Problems 

Biconnected components: Given a graph 
G, determine whether G remains con- 
nected when any vertex and its incident 
edges are removed. (Sometimes, find all 
such vertices.) 

Context-free language recognition: Given 

a context-free language L and a string 
x, determine whether x is in L. 

Context-sensitive language recognition: 
Given a context-sensitive language L 
and a string x, determine whether x is 
inL .  

Convex hull: Find the smallest convex set 
containing n given points. 

Element uniqueness: Determine whether 
any two of n given elements are equal. 

Equivalence of regular expressions: De- 
termine whether two given regular 
expressions denote the same set. 

Graph coloring (chromatic number): For 
a graph G, find an assignment of 
"colors" to the vertices of G such that no 
adjacent vertices are the same color, 
and such that the number of different 
colors used is a minimum. The number 
of colors used is called the "chromatic 
number" of G. 

Graph isomorphism: Determine whether 
two given graphs are isomorphic. 

Hamiltonian circuit: Determine whether 
a given graph contains a cycle passing 
through each node exactly once. 

Integer programming: Given an n-vector 
c, an m × n matrix A, and an m-vector 
b, find an n-vector x (of integers) which 
maximizes c.x subject to Ax -< b and x 
>- O. For the 0/1 version, each xt must  
be either 0 or 1. 

Knapsack problem: Given n-vectors c 
("utilities") and a ("weights"), and a 
scalar b ("capacity"), find an n-vector x 
(of integers) which maximizes c.x sub- 
ject to a.x -< b and x - 0. For the 0/1 
version, each x, must  be either 0 or 1. 

Linear programming: Given an n-vector 
c, an m × n matrix A, and an m-vector 
b, find an n-vector x (of reals) which 
maximizes c.x subject to Ax <- b and x 
~ O .  

Matrix multiplication: Given matrices A 
and B, compute the matrix product AB. 

Maximum clique: Determine the size of 
the largest complete subgraph of a given 

graph. 
Maximum element: Find the largest of n 

elements of a linearly ordered set. 
Mean distance: Find the average of all 

the pairwise distances between n points 
in space. 
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Median: Find the median of a list of n 
elements of a linearly ordered set. (The 
median is one which is at least as large 
as half  the elements, and as small as 
the others). 

Merging: Coalesce two ordered lists into 
one. 

Minimum spanning tree: For a given 
graph G with edge weights, find the 
minimum-cost set of edges which con- 
nects all the vertices of G without form- 
ing any cycles. For the Euclidean ver- 
sion, the vertices are points in space 
and the edge weights are Euclidean in- 
terpoint distances. 

Nonprimes: Determine whether a given 
integer is a composite number (i.e., can 
be factored). 

Planarity of a graph: Determine whether 
a given graph can be drawn in the plane 
without any crossing edges. 

Primes: Determine whether a given inte- 
ger is a prime number. 

Satisfiability: For a given Boolean expres- 
sion, determine whether there Is any 
assignment of values to the literals for 
which the expression is true. 

Scheduling: Given n tasks and some con- 
straints on the order in which they may 
be done, find the best sequence in which 
to perform them. There are many vari- 
ations which involve number of proces- 
sors, processing times, precedence, 
deadlines, and penalties for late comple- 
tion. 

Search: Given a set of n elements and a 
"key" element, determine whether the 
key element is in the given set. Many 
variations of this problem have been 
defined. 

Selection: Find the kth-smallest element 
from a given list of n linearly ordered 
elements. 

Set identity: Determine whether two 
given n-element sets are identical. 

Set manipulation (UNION-FIND): A UNION 
operation forms the union of two sets; a 
FIND operation determines which set 
contains a particular element. Perform 
a sequence of n such operations. 

Shortest path: Given a graph G with non- 
negative edge weights, and a distin- 
guished vertex v, find the minimum- 

weight path from v to every other vertex 
of G. A modified version of this single- 
source problem allows negative edge 
weights. The all-pairs version requires 
minimum-weight paths between all 
pairs of vertices of G. 

Sorting: Arrange a list of n elements {x~} 
from a linearly ordered set so that  x l < 

X 2 ~ ... ~ X n. 

Transitive closure: Given a Boolean ma- 
trix A, compute A + A 2 + A 3 + . . . .  

Traveling salesman: Given a graph G 
with nonnegative edge weights, find the 
minimum-cost cycle which passes 
through each vertex exactly once. For 
the Euclidean version of this problem, 
the vertices are points in space, and the 
edge weights are Euclidean interpoint 
distances. 
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