
A Survey of Analysis Techniques for Discrete Algorithms*

BRUCE WEIDE

Department of Computer Science, Carneg~e-MeUon UnwersLty, PLttsburgh, Pennsylvanm 15213

This survey includes an introduction to the concepts of problem complexity, analysis of
algorithms to find bounds on complexity, average-case behavior, and approximation
algomthms The major techmques used m analysis of algorithms are reviewed and

examples of the use of these methods are presented. A brief explanation of the problem

classes P and NP, as well as the class of NP-complete problems, is also presented.

Keywords and Phrases Analysis of algorithms, computational complexity,
combmatorlcs, NP-complete problems, approximation algorithms.

CR Categories 5.25, 5 30, 5.39

INTRODUCTION

We shall express our darker purpose

- W i l l i a m Shakespea re

It has long been recognized that the study
of the behavior of algorithms plays a cru-
cial role in intelligent algorithm design.
Aho, Hopcroft, and Ullman [1] begin the
preface of their recent book on algorithmic
design and analysis by pointing out tbat
"the study of algorithms is at the very
heart of computer science." At the founda-
tion of every computational discipline is a
collection of algorithms. After a p rob lem-
for example, understanding speech, ana-
lyzing data, or compiling a p r o g r a m - i s
analyzed at a high level and design deci-
sions are finalized, the algorithm must be
implemented on a real machine. One job
of the computer scientist is to isolate and
study these algorithms, which abound in
graph theory, statistics, operations re-
search, and many other areas. Hence the
pervasive nature of analysis of algorithms.

Despite (or perhaps because of) many

* Thin work was supported in part by a National
Scmnce Foundation Graduate Fellowship.

significant new results in analysis of algo-
rithms in the past few years, there is no
current survey of the mathematical tech-
niques used in algorithmic analysis. For
the reader who wants to see the gory
details of the analysis of many algorithms,
and is willing to and capable of supplying
many more details himself, the three vol-
umes of The Art of Computer Program-
m~ng by Knuth [43, 44, 46] are unsur-
passed for completeness. Aho, Hopcroft,
and Ullman [1] is an excellent text with
many examples of both design and analy-
sis but, like Knuth, does not provide an
overview of the area.

For someone who wants an overview of
techniques and a review of some important
results, the l i terature is sparse. The arti-
cles by Knuth [45], Reingold [56], and
Frazer [22] provide some relief, but con-
centrate heavily on presenting the details
of one or two example algorithms or tech-
niques. A fine paper by Borodin [6] treats
primarily the theoretical aspects of com-
putational complexity, reviewing the defi-
nitions and properties of complexity
classes for various automata. Hopcroft's
survey [29] of principles of algorithm de-
sign comes closest to fitting the bill, but

Copyright © 1977, Association for Computing Machinery, Inc General permission to republish, but not for
profit, all or part of this material is granted provided that ACM's copyright notice is given and that
reference is made to the pubhcatlon, to its date of issue, and to the fact that reprinting privileges were
granted by permismon of the Association for Computing Machinery

Computing Surveys, Vol. 9, No. 4, December 1977

292 • B . W e i d e

CONTENTS

INTRODUCTION

1 THE NOTION OF COMPLEXITY

Bounds on Complexlty

Worst-case versus Average-Case Analyms

Models of Computatlon

Measuring Problem Size

2 LOWER BOUNDS

Tr]vlal Lower Bounds

Inforrnatlon-Theorehc Bounds and Declslon Trees

Oracles

Problem Redactmn

Miscellaneous Tr~cks
3 UPPER BOUNDS

Identifying a Worst Case
Counting Operatmns
Recurrences
The Brute Force Method

4 THE AVERAGE CASE
Pros and Cons of Average-Case Analysis

Some Examples of Average-Case Analysis
5 APPROXIMATION ALGORITHMS

Problem Classes and Reduclblhty
"Guaranteed" Approxlmatmn Algorithms
Probabfllstlc Behawor of Approxlmatmn Algorithms

CONCLUSIONS
APPENDIX Glossary of Problems
ACKNOWLEDGMENTS
REFERENCES

new results since it appeared are abun-
dant, especially in the area of approxima-
tion algorithms. In order to avoid duplica-
tion, the more detailed examples given
here discuss algorithms other than the
ones treated in those papers. This survey
is an at tempt to collect some of the impor-
tant techniques used in algorithmic anal-
ysis and to list some of the results pro-
duced, and thereby (albeit temporarily)
help fill the gap in this area. It is designed
to be primarily a survey, with tutorial
comments where appropriate.

The reader is assumed to be familiar
with the notions of algorithms and data
structures, to have been introduced to
computational models such as Turing ma-
chines, and to know something about
asymptotic bounds on functions and recur-
rence relations. He or she should also
recognize some of the important discrete
(combinatorial) problems. These include
sorting, searching, graph problems, dis-
crete optimization, set manipulation, and
pattern matching. The Appendix is a glos-
sary of problems mentioned in the text,

which should help in this regard. Some
familiarity with the notation used by al-
gorithmic analysts would also be helpful,
but is not essential. The paper is not
intended as a review of algorithm or data
structure design, but as a survey of analy-
sis techniques. The reader is urged to
consult the original sources for detailed
algorithms and analyses which can only
be briefly mentioned here.

1. THE NOTION OF COMPLEXITY

I f you w~sh to converse w~th me, define

your terms.

-Voltaire

I hate defin~twns.

-Benjamin Disraeli

The primary definition of complexity is
running time, For a given problem, "time
complexity" is a function that maps prob-
lem size into the time required to solve
the problem. We will not consider other
measures of problem difficulty, such as
the amount of space required, nor will we
attempt to measure comprehensibility of
algorithms or the scores of other factors
which must be considered when designing
an algorithm. To make even this intui-
tively simple quantity, time, a useful mea-
sure, we need to consider such questions
as upper and lower bounds on complexity,
the model of computation, and the manner
of problem representation. The model of
computation is important because we
count its operations when measuring time.
The problem representation is important
because it affects the problem size. These
questions are considered in the following
subsections.

Bounds on Complexity

Typically, we are interested in the (inher-
ent) complexity of computing the solution
to problems in a particular class. For ex-
ample, we might want to know how fast
we can hope to sort a list of n items,
initially in an arbitrary order, regardless
of the algorithm we use. In this case, we
seek a "lower bound" L(n) on sorting,

Compu t ing Surveys , Vol. 9, No. 4, December 1977

Analys~s Techniques for D~screte Algorithms • 293

which is a property of the sorting problem
and not of any particular algorithm. This
lower bound says that no algorithm can
do the job in fewer than L(n) time units
for arbitrary inputs, i.e., that every sort-
ing algorithm must take at least L(n)
time in the worst case. Some approaches
to refining lower bounds are surveyed in
Section 2.

On the other hand, we might also like
to know how long it would take to sort
such a list using a known sorting algo-
rithm with a worst-case input. Here, we
are after an "upper bound" U(n), which
says that for arbitrary inputs we can al-
ways sort in time at most U(n). That is,
in our current state of knowledge, we need
not settle for an algorithm which takes
more than U(n) time, because an algo-
rithm which operates in that many steps
is known. For this reason, algorithms are
normally analyzed to determine their
worst-case behavior, in the hope of reduc-
ing U(n) even further by demonstrating
that some new algorithm has worst-case
performance which is better than any pre-
vious algorithm. Techniques for doing this
are reviewed in Section 3.

One way of seeing the distinction be-
tween lower and upper bounds is to note
that both bounds are minima over the
maximum complexity of inputs of size n.
However, L(n) is the minimum, over all
possible algorithms, of the maximum com-
plexity, while U(n) is the minimum, over
all known algorithms, of the maximum
complexity. In trying to prove better lower
bounds, we concentrate on techniques
which will allow us to increase the preci-
sion with which the minimum, over all
possible algorithms, can be bounded. Im-
proving an upper bound means finding an
algorithm with better worst-case perform-
ance. This difference leads to the differ-
ences in techniques developed in complex-
ity analysis.

While there are apparently two com-
plexity functions for problems, lower and
upper bounds, the ultimate goal is to make
these two functions coincide. When this is
done, the "optimal" algorithm will have
L(n) = U(n). For most of the problems we
will mention, this goal is not yet realized.

Worst-Case versus Average-Case Analysis

Traditionally, the worst-case complexity
has been of major theoretical interest for
the reasons just cited. Occasionally it is of
practical importance to know the worst-
case behavior of an algorithm. For exam-
ple, an air-traffic control system with good
expected performance might not be consid-
ered useful if occurrence of its worst case,
however unlikely, could cause an accident.
Recently, however, there has been greater
effort in the analysis of the behavior of
algorithms "on the average," since the
average is often more useful in practice.
For example, the simplex algorithm for
linear programming is known to require
an amount of time which is an exponential
function of the problem size in the worst
case, but for problems encountered in
practice it almost always does extremely
well.

This approach has difficulties, however.
For one thing, averaging over many cases
complicates the analysis considerably.
Further, while the average alone might
be of some value, finding the distribution
of solution times or even the variance is
an added burden, and therefore often ne-
glected in practice. Perhaps the biggest
objection of all is that the typical assump-
tions regarding the probability distribu-
tion over all possible inputs (usually sim-
ple ones to make the analysis tractable)
are often unrealistic. The objections will
be covered in more detail in Section 4.
Despite the objections, average-case anal-
ysis is important and continues to grow.

Models of Computation

Does complexity measure the number of
steps on a Turing machine, or the number
of seconds on an IBM370/195? We are usu-
ally not interested in either of these fig-
ures exactly, although each is a legitimate
measure of complexity in certain cases.
The issue at hand is the "model of compu-
tation." Turing machine complexity is
sometimes important, as we will see in
Section 5 when examining the problem
classes P and NP. A highly sophisticated
machine like the IBM370/195 is probably
a bad choice because it makes the analysis

Computing Surveys, Vol. 9, No 4, December 1977

294 • B. Weide

even more complicated than it needs to be
for most purposes. Knuth [43, 44, 46]
chooses an intermediate ground for his
MIX machine, and derives running times
for particular implementations of algo-
rithms. Between the two extremes, results
can differ by more than simply a constant
scale factor. In choosing a model of com-
putation, we try to balance realism
against mathematical tractability. How-
ever, our experience is that results can be
useful despite what appear to be overly
simplified computational models.

Rather than finding exact running
times on particular machines, most anal-
yses count only certain ~elementary" op-
erations. The complexity measure reports
the asymptotic growth of this operation
count. Mathematicians have used various
notations for such "order" results, as re-
ported by Knuth [47], who suggests the
following generally accepted version. To
express the fact that a function g(n) grows
asymptotically no faster than another
function /~n), we write g(n)= O(~n)),
which reads, "of order at most f(n)". It is
helpful to regard O(f(n)) as the set of
functions with the property that for any
function g(n) in O(f(n)) there is a constant
c such that g(n) ~ cf(n). Similarly, ~(f(n))
Cof order at least f(n)") is the set of func-
tions with the property that for any func-
tion g(n) in ~(f(n)) there is a constant c >
0 such that g(n)>-cf(n). Finally, 0(f(n))
Cof order exactly f(n)") is the set of func-
tions with the property that for any func-
tion g(n) in #(/~n)) there are constants c1>
0 and c2 such that cgC(n) <- g(n) <- c~(n).

We commonly write, for example,
g(n) = OWn)) rather than g(n) E O(f(n)).
In the present context, O-notation is used
to describe upper bounds and ~-notation
is used for lower bounds. The 0-notation is
used when it is possible to characterize
the complexity to within a constant factor.
Aho, Hopcroft, and Ullman [1] argue con-
vincingly that such asymptotic analyses
are especially meaningful in light of faster
hardware. How much larger problems
such machines can solve, and therefore
their cost-effectiveness, depends on the
growth rate of the computation time.

Consider the probl~- of finding the

maximum element in a list of n items
from a linearly ordered set. An appropri-
ate choice for an elementary operation is
a comparison between two items of the
list, because the items might be records
for which comparisons are nontrivial,
while bookkeeping operations such as loop
control and pointer management are usu-
ally proportional to the number of compar-
isons. By counting dominant operations,
the asymptotic complexity measure is off
by only a constant factor from the true
number of operations performed.

Some analyses use the ~'uniform cost
criterion," where memory references, com-
parisons, arithmetic operations, and all
other instructions each take unit time.
Still others employ the ~'logarithmic cost
criterion," in which the charge for access-
ing a piece of information is proportional
to the number of symbols needed to repre-
sent it. Normally, the choice of operations
to be counted is not crucial to asymptotic
analysis, assuming that the dominant op-
eration is among them.

Measuring Problem Size

Problem size is another vague concept. It
could be made exact by letting n be the
number of symbols required to encode the
problem for a particular Turing machine
or for some other computational model.
This encoding is extremely important (see
[1], Section 10.1). Suppose that an algo-
rithm takes as input a single integer, and
that the input k requires ck time for some
constant c. Let n(k) refer to the length of
the encoding of the integer k (i.e., n(k) is
the problem size when the input is the
integer k). If k is encoded in unary nota-
tion, then n(k) = k, so the algorithm runs
in cn time. However, if k is encoded in
binary, then n(k) = log2k, so that the
running time of the algorithm is c2". No-
tice that for any radix representation, the
size of the representation is within a con-
stant factor of the size of the binary encod-
ing. Because of this, along with the fact
that in practice we nearly always use a
radix representation for integers, unary
notation is not appropriate.

Problem representation can be of major

Computing Surveys, Vol 9, No. 4, December 1977

A n a l y s i s T e c h n i q u e s f o r D i s c r e t e A l g o r i t h m s • 295

importance in graph algorithms as well.
Determining if a graph with n nodes is
planar can be done in #(n) time if the
graph is represented by adjacency lists,
but requires ~(n 2) time if the representa-
tion is an adjacency matrix [72]. In con-
trast with the unary/binary choice for the
representation of integers, both of these
graph representations seem like reasona-
ble choices, and indeed each is appropriate
for various problems.

These points illustrate that the problem
size must be explicitly defined in each
case in order for results to have any mean-
ing. For example, in sorting problems, n
is the number of items to be sorted; for
graph problems, it may be the number of
vertices. Describing the problem size may
even be more convenient if two or more
parameters are used, for example the
number of edges and the number of ver-
tices in a graph. If a graph has V vertices
and E edges, then it is clear what is meant
by "an algorithm which requires O (V +

E) steps."
For the results to be of practical interest,

definitions of both the measure of problem
size and the measure of computing time
should be closely related to the well-de-
fined meanings which these terms have
for actual machines. Thus, the random-
access machine model is more commonly
used than the Turing machine model for
calculations on most computers. On the
other hand, the Turing machine is useful
in theoretical studies and in modeling
computations which are tape-bound. Aho,
Hopcroft, and Ullman [1] present a good
account of the similarities and differences
between these two models of computation.

2. LOWER BOUNDS

• . . a b o u n d i n g in t n t u i t m n s w~ thou t

m e t h o d . . .

-George Santayana

The more difficult of the bounds on prob-
lem complexity is the lower bound. There
is no algorithm to analyze, few general
principles to apply; proofs of results in
this area often require outright cleverness.
The results must apply to any algorithm,

including undiscovered ones. Still a few
techniques have been found useful, and
others are promising.

Trivial Lower Bounds

The most obvious, and also the weakest,
method produces what are appropriately
called trivial lower bounds. The method
consists of simply counting the number of
inputs that must be examined and the
number of outputs that must be produced,
and noting that any algorithm must, at
least, read its inputs and write its outputs.

There are many examples of the use of
such a technique. One interesting graph
problem is the single-source shortest-path
problem: given a directed graph G with
nonnegative edge weights, and a distin-
guished vertex v, find the minimum-
weight path from v to each other vertex of
G. Dijkstra [14] gives an algorithm for
this version of the problem, where all edge
weights are known to be nonnegative. A
more interesting variation allows nega-
tive-weight edges but no negative-weight
cycles; by definition of the problem, a
correct algorithm must be able to detect
negative-weight cycles. Let n be the num-
ber of vertices of G. Then there may be as
many as n (n - 1) edges i n G , and any
algorithm for solving the modified problem
must inspect each of them. If some edge
were ignored by any algorithm, we could
change its weight so that a shortest path
or a negative-weight cycle would be
missed and force the algorithm to give a
wrong answer• Hence there are inputs
which require ft(n 2) time for any algo-
rithm to solve the modified single-source
shortest-path problem.

Similarly, multiplication of a pair of n
× n matrices requires that n 2 outputs be
produced, and is therefore 12(n2). This says
nothing about the number of multiplica-
tions required to solve the problem, but
only that s o m e operation (namely output)
must be performed f~(n 2) times; therefore,
the dominant operation must be performed
at least that many times.

Trivial lower bounds are generally easy
to come by and, therefore, are of less
interest than sharper bounds which can

Computing Surveys, Vol. 9, No. 4, December 1977

296 • B. Weide

sometimes be proved by more sophisti-
cated methods. In many cases, however,
trivial bounds are the only lower bounds
available. Because they are usually easy
to prove, they should be tried before more
difficult techniques are applied.

Information-Theoretic Bounds and Decision

Trees

Several authors have used arguments
from information theory to show that any
algorithm for solving some problem must
do some minimal amount of work. The
most useful principle of this kind is that
the outcome of a comparison between two
items contains at most one bit of informa-
tion (where ~bit" denotes the values 0 or
1). Hence, if there are m possible input
strings, and an algorithm purports to iden-
tify which one it was given solely on the
basis of comparisons between input sym-
bols, then [log m] comparisons are needed.
This is because [log rn] bits are necessary
to specify one of the m possibilities (in
standard binary notation, for example; for
this reason, all logarithms in this paper
are to the base 2).

The best-known example of a lower
bound on computational complexity from
information theory is for the problem of
searching an ordered table with n ele-
ments for the position of a particular item.
There are n possible outcomes, so unique
identification of an index in the table re-
quires [log n] bits. Hence, at least [log n]
comparisons are required according to the
principle mentioned above. A similar ar-
gument applied to the problem of sorting
a linearly ordered set gives a lower bound
ofl l (n log n) for that problem.

The same basic principle often appears
in a different guise in lower bound proofs
for comparison-based problems. For ex-
ample, Krmth [46] uses a ~decision tree"
model for the sorting problem, in which
any sorting algorithm can be viewed as a
binary tree. Each internal node of the tree
represents a comparison between two in-
put elements, and its two sons correspond
to the two possible comparisons which are
made next, depending on the outcome of
the previous comparison. Each leaf node

specifies an input permutation that is
uniquely identified by the outcomes of the
comparisons along the path from the root
of the tree. Since there must be n! leaf
nodes, some path of the tree must be of
length at least [log n!] This follows because
the number of nodes at any level of a
binary tree can be at most twice the num-
ber on the previous level. The worst case
of any sorting algorithm must therefore
be f~(log n!) = f~(n log n).

Reingold [57] has extended this ap-
proach to allow for comparisons between
functions of the inputs, rather than simply
between input values themselves. He
shows, for example, that deciding whether
two sets of n real numbers are identical
requires l~(n log n) comparisons, even if
comparisons between linear functions of
the inputs are allowed. Similarly, Dobkin
and Lipton [15] show that the ~element
uniqueness" problem (determining among
n real numbers whether any two numbers
are equal) requires l)(n log n) steps, even
if comparisons between linear functions of
the inputs are allowed.

Oracles

Knuth [46] points out that a bound can be
obtained for the problem of merging two
ordered lists by another technique which
he calls the construction of an ~'oracle", or
~adversary". An oracle is a fiendish enemy
of an algorithm which at every opportu-
nity tries to make the algorithm do as
much work as possible. Consider compari-
son-based algorithms for merging the two
lists A1 < A 2 < • • • < A, and B1 < B 2 <

• "" < Bn. The oracle will provide the
result of any comparison on the basis of
some rule; in this case, a useful rule is
A, < B~ iff i < j . Of course, this rule ap-
plies only for certain inputs, but the algo-
ri thm does not know which input it has,
nor does it know the rule, and must there-
fore ask the questions anyway. If compar-
isons are resolved by this oracle, merging
must end with the configuration:

BI < A ~ < B 2 < A 2 < " '" <B,~ < A n

since this is the only ordering consistent
with the oracle's rule, and the algorithm

C o m p u t i n g Surveys , Vol 9, No 4, December 1977

Analysis Techniques for Discrete Algorithms • 297

must produce this output if it works
properly.

Suppose that one of the comparisons
between adjacent elements from this final
list had not been made during the course
of execution of the algorithm; say, A,:B2.
Then the configuration:

BI <=B2 <A~ <A2 < "" <Bn <An

would also be a legitimate possible out-
come, being indistinguishable from the
correct answer on the basis of the compar-
isons which were made. Hence, all 2n - 1
comparisons between adjacent elements of
the final list must be performed for the
algorithm to produce the correct output.
An algorithm with this performance is
easily constructed. We therefore know
that for the problem of merging two or-
dered lists of n elements, L(n) = U(n) =
2n - 1.

For searching an ordered table, inqui-
ries are of the form: "Is the key element
less than this element?" The obvious ora-
cle simply responds to inquiries in such a
way that the key item is always in the
larger of the two portions of the list. Thus
at most half the table can be eliminated
from consideration with each comparison,
and at least [log nl comparisons are re-
quired. Hyafil [33], among many others,
has used an oracle to prove a lower bound
for the selection problem (finding the
kth-largest of n elements), where the triv-
ial bound is simply n. In this case, both
upper and lower bounds are known to be
0(n), and the oracle provides a way of re-
fining the lower bound to permit compari-
son with precise upper bounds.

Problem Reduction

One of the most elegant means of proving
a lower bound on a problem P~ is to show
that an algorithm for solving P~, along
with a transformation on problem in-
stances, could be used to construct an
algorithm to solve another problem P2 for
which a lower bound is known. The power
of this approach is substantial.

Shamos and Hoey [66] use problem re-
duction to show that an algorithm for
finding the Euclidean minimum spanning

tree of n points in the plane can be used to
solve the element uniqueness problem,
and must therefore take time ~(n log n).
The reduction is quite simple. Suppose
that we want to determine whether any
two of the numbers x~, x2, • • • xn are equal.
We can solve this problem by giving any
Euclidean minimum spanning tree algo-
rithm the points (x~, 0), (x~, 0), • • • (xn, 0).
The two closest points are known to be
joined by one of the n - 1 spanning-tree
edges, so we can simply scan these edges
and, in linear time, determine if any edge
has zero length. Such an edge exists if
and only if two of the x, are equal. There-
fore, if the spanning tree algorithm could
operate in less than O(n log n) time, the
element uniqueness problem could be
solved in less than O(n log n) time, contra-
dicting the ~(n log n) lower bound men-
tioned earlier.

Other applications include the reduction
of context-free language recognition to ma-
trix multiplication [74] and the mutual
reductions between Boolean matrix multi-
plication and transitive closure [18]. In
these cases, the reductions provide the
potential for proving lower bounds, but
nontrivial lower bounds are not known for
these particular problems.

Many other examples of this technique
are found in transformations between so-
called NP-complete problems, where the
purpose is not to show lower bounds but
to demonstrate membership in the equiv-
alence class of NP.complete problems (see
Section 5). Note that it is not always clear
how to identify the problem P2, which is
of course a requirement for using this
approach.

Miscellaneous Tricks

Among the newer approaches for proving
lower bounds is the use of graph models of
algorithms. Hyafil and Kung [34] show
tradeoffs between the depth and breadth
of trees describing the parallel evaluation
of arithmetic expressions to show that the
possible speedup using k processors is
bounded by (2k+1)/3. This result is
counter to the intuition that having k
processors available would allow a speed-

Computing Surveys, Vol. 9, No. 4, December 1977

298 • B. We~de

up of k. In fact, for certain computations
the speedup is even less; for adding up a
list of k numbers, it is only k/log k. The
lack of a good model for parallel computa-
tion has hindered further development of
ways of decomposing problems for parallel
solutions and proving bounds such as
these, even though the prospect of inex-
pensive parallel hardware compels us to
study such algorithms. Lawler [51] ex-
presses confidence that such graph-theo-
retic arguments will continue to prove
useful in demonstrating lower bounds, and
recent results (see, for example, [75]) show
this optimism to be well-founded.

An interesting lower bound which re-
lates to problem representations is the so-
called Aanderaa-Rosenberg conjecture
[59]. Simply stated, it asserts that detect-
ing any nontrivial monotone graph prop-
erty] requires ~(n 2) steps if the graph is
represented by an n × n adjacency matrix.
A proof of this conjecture by Rivest and
Vuillemin [58] is based on a decision tree
model for the evaluation of Boolean func-
tions and on properties of permutation
groups.

Another new approach uses theorems
from complex analysis. Shamos and Yuval
[67] show that finding the average of all
the interpoint distances for n points in the
plane requires ~(n 2) square-root opera-
tions. Their proof is based on the ambigu-
ity of the square-root function. The pri-
mary significance of this result is that
while it had previously been almost impos-
sible to obtain lower bounds except for the
four common arithmetic operations and
for comparisons, the new approach applies
to any multiple-valued function such as
square root, inverse trigonometrics, and
logarithms.

It remains to be seen whether these and
other tricks will be applicable to enough
problems to be called "methods" for prov-
ing lower bounds. At present, nontrivial
results and general techniques are quite
sparse.

' A graph property is nontmvlal]f at least one, but
not all, graphs have it. It]s monotone]f adding
new edges to the graph does not change the prop-
erty. Thus, for example, nonplanamty is a nontrivial
monotone property.

3. UPPER BOUNDS

Method is good ~n all things.

Order governs the world.

-Jonathan Swift

There are two powerful methods for prov-
ing upper bounds by analyzing the worst-
case behavior of an algorithm: counting
instructions, or solving recurrence rela-
tions. Either approach may require iden-
tification of a worst-case input. A third
alternative, using brute force computing
power to find both a worst-case and an
associated optimal algorithm, sometimes
works.

Identifying a Worst Case

In seeking an upper bound on problem
complexity, the first task is to identify a
"worst case", i.e., an input of size n which
maximizes the amount of work the algo-
ri thm must do for that value of n. The
algorithm with this input then defines
U(n), provided that no other algorithm's
worst-case behavior is better.

When the algorithm's work is the same
for all inputs of size n, finding the worst
case is easy. This phenomenon is easily
recognized when the flow of control does
not depend on the data. Then every case
is a "worst" one, because all cases are the
same from the standpoint of the analysis.
For example, a straightforward algorithm
for finding the larget element in a set S is:

procedure largest (S);
begin

b~g := first element in S,
for each remaining element x of S do b~g :=

max(b,g, x);
return(b,g)

end;

Clearly, for every set S with n elements,
the algorithm makes n - 1 comparisons
(and this is optimal since the lower bound
is also n - 1). Similarly, multiplication of
two n × n matrices in the classical way
takes 0(n 3) steps regardless of the data.
There are many more examples of such
algorithms for which identifying the worst

Computing Surveys, Vol. 9, No. 4, December 1977

Analysis Techniques for Discrete Algori thms • 299

case m easy because every case is the
same.

Sometimes data-dependent decisions ob-
scure the fact that every case is the same.
Many search algorithms have this feature;
for example, the binary search algorithm
searches through a sorted array A consist-
ing of n elements with indices ~ through j
(where n - j - ~ + 1), for the position of a
particular "key" item. For simplicity, as-
sume that the key item is in the table.
The procedure below returns the index in
A of the key item:

procedure bmsearch (A,L3,key);
ifL = j

then return(D

else
begin

integer mLddle = L(L+j)/2J ;
if key <- A [mLddle]

then return(blnsearch(A,t,mtddle,key))
else return(blnsearch (A,mtddle + 1,

.],key))
end;

It lS easy to see that the basic idea here
is "divide-and-conquer": one comparison
detomines which half of the array to
search next. A worst-case input is one for
which the part of the table which remains
to be searched is always at least as large
as the part eliminated, which happens if
the key item is in the first position of the
array. We will see later (in the discussion
of recurrences) that the algorithm takes
[log n] comparisons in this case, which is
optimal because a lower bound of [log n 1
is obtained from an information-theoretic
argument.

A worst case which is only slightly
harder to manufacture is one for Quick-
sort, an ingenious sorting algorithm which
was proposed by Hoare [28]. The algorithm
is very simple:

procedure qulcksort(S);
begin

if I S I <- i then return(S),

choose some element x from S,
partltmn S into these elements less than x

($1), those equal to x ($2) and those greater
than x (S ~),

return(qmcksort(S1) followed by $2 followed
by qulcksort(S~))

end,

Quicksort is probably the best practical
sorting algorithm known, primarily be-
cause on the average it uses O(n log n)
comparisons. One might guess that this is
true by noting that if each partitioning
stop divided the remaining lists into ap-
proximately equal parts, there would be
about log n partitioning stages, each cost-
ing O(n) time. A rigorous proof of this
result is not difficult. Further aspects of
the average case of Quicksort are dis-
cussed in Section 4.

This instance of Quicksort has poor
worst-case performance. If all elements of
S are distinct and the algorithm by poor
luck picks x as the smallest element of S
at every stage, then $1 is empty, $2 con-
tains one element, and $3 contains only
one element fewer than S. This case re-
quires about n partitioning stages, with
the k-th stage examining about n - k
elements; thus the complexity is 0(n2).
This is not optimal, since sorting algo-
rithms which never require more than O(n
log n) stops are known, and the best lower
bound is ~(n log n). A conceptually easy
modification to Quicksort (choosing x as
the median element of S) produces one
such algorithm which is within a constant
factor of being optimal; however, this al-
gorithm is quite impractical. Heapsort [78,
19] is a practical sorting algorithm with
complexity O(n log n).

For more complex algorithms, particu-
larly those for graph problems and discrete
optimization problems, finding a worst

i
case can be more difficult. Scheduling
problems have this feature (see [9]). An-
other interesting case is the modified sin-
gle-source shortost-path problem (i.e.,
negative-weight edges are allowed). Ed-
monds and Karp [16] mention in passing
that a modified version of Dijkstra's [14]
algorithm runs in O(n 3) time for any di-
rectod graph satisfying the conditions of
the modified problem (described in Section
2). Their one-sentence justification is su-
perficially convincing, but D. B. Johnson
[36] shows an entire family of directed
graphs for which the algorithm requires
fl(n2 ~) time! This example demonstrates
that it is easy to be misled by faulty
identification of the worst case.

Computing Surveys: Vol. 9, No. 4, December 1977

300 • B. Weide

Counting Operations

Each of the above examples leads directly
to a way of counting the number of steps
required in the worst case. Often, how-
ever, this counting stage is at least as
difficult as finding a worst-case input. In
fact, it seems very similar to the problem
of finding invariant relations for proofs of
program correctness.

Consider an algorithm for finding the
convex hull of n points in the plane. A
correct solution (by definition of the con-
vex hull) requires that the vertices of the
hull be output in the order they would be
encountered by tracing the convex hull
in, say, a clockwise direction. Shamos [65]
shows that a lower bound is f~(n log n),
and Graham [26] has given an algorithm
which achieves this. Graham's method op-
erates in three stages. First, all n points
are converted to polar coordinates about
some point which is interior to the hull.
Since any point which lies within the
triangle formed by three noncollinear
points of the set serves as such an origin,
the conversion step can be done in O(n)
time. Next, the points are sorted by polar
angle in O(n log n) time.

For the final phase, each point is on
either one or two lists: the UNCONSIDERED
list and the (circular) TENTATIVE list. The
UNCONSIDERED list is the output of the
sorting stage, while the TENTATIVE list is
initially empty. A scan is then made
through the UNCONSIDERED points. For
each new point, the algorithm determines
whether the path through the last two
points on the TENTATIVE list and then
through the new point turns to the right
or the left. If it turns to the right, the
algorithm adds the new point to the TEN-
TATIVE list and continues scanning the
UNCONSIDERED list. If it turns to the left,
then the middle point of the three cannot
be on the hull, so the algorithm deletes
the last point of the TENTATIVE list from
that list. Again, a path through the last
two TENTATIVE points and the new point
is checked, and this continues until a right
turn is discovered or until there are fewer
than two points on the TENTATIVE list.
When all points on the UNCONSIDERED list
have been scanned, the TENTATIVE list

contains the points on the convex hull in
the proper order.

It is not immediately clear how long
this step may take, since for each new
point the scan can apparently back up to
the beginning of the TENTATIVE list. A
reasonable (but pessimistic) guess for the
complexity of the final phase would then
be O(n2), which is not sufficient for our
purposes. It is not particularly easy to
identify a worst-case input because of the
tradeoffs involved.

Graham noticed that all the work is
done in creating and testing paths be-
tween three consecutive points, and that
the total time is proportional to the num-
ber of times this must be done. Every
time such a path is created and tested,
either a new point is added to the TENTA-
TIVE list, or a point is deleted from it. The
number of points added cannot exceed n,
and the number deleted also cannot exceed
n because once deleted, a point is never
considered again. Hence, a new three-
point path is created at most 2n times.

The argument is tantamount to finding
an invariant relation among the relevant
quantities: P , the number of paths consid-
ered so far; A, the number of points which
have been added to the TENTATIVE list SO
far; and D, the number which have been
deleted from the TENTATIVE list SO far.
The quanti ty P - A - D, calculated after
any path is considered, is constant. Hence,
P =O(A + D) , a n d s i n c e A + D < - 2 n , P
= O(n). The running time of the entire
algorithm is therefore dominated by the
sorting stage, and is O(n log n).

A similar argument finds its way into
the analysis of a number of other algo-
rithms for very different problems. For
instance, it is used to show that Tarjan's
algorithms [72] which use depth-first
search of graphs to solve various problems
(such as finding biconnected components;
see also [30]) run in an amount of time
which is linear in the number of edges E.
In this case, each edge is pushed onto a
stack and later popped off and discarded.
The total number of times this can be
done equals the number of edges. A proof
that Knuth, Morris, and Pratt 's fast pat-
tern matching algorithm [49] runs in lin-
ear time uses the same approach.

Computing Surveys, Vol 9, No 4, December 1977

Analysis Techniques for D~screte Algori thms • 301

Another version of the argument is used
by Hopcroft and Ullman [32] to analyze
the behavior of a data structure and asso-
ciated algorithms for set manipulation. A
sequence of n UNION and FIND instructions
is input; a UNION instruction requests that
two disjoint sets be merged, and a FIND
asks for the name of the set containing a
particular element. Such a sequence can
be processed in O(nG(n)) time, where G(n).
is the least k such that the k-th iterated
logarithm of n does not exceed one. The
proof of this bound relies on an ~account-
ing trick" in analyzing the FIND algorithm.
The total cost of all FIND instructions is
divided between the instructions them-
selves and the elements inspected by the
instructions. Each account is then ana-
lyzed separately and shown to be charged
O(nG(n)) units; thus the total is O(nG(n))
for n FIND instructions, which dominates
the time for the UNmN instructions. The
reader is urged to consult Hopcroft and
Ullman [32] or Aho, Hopcroft, and Ullman
[1] for more details.

Recurrences

Although analysis of worst-case behav-
ior by directly counting the number of
steps is greatly simplified by a concrete
description of the algorithm, it is not al-
ways necessary to be so explicit. In deriv-
ing recurrence relations for solution times,
it is sometimes more convenient to think
in abstract terms about what the algo-
ri thm does. This is especially true when
the algorithm itself is not written recur-
sively.

In accordance with established usage,
let the running time be denoted by T(n).
It is sometimes possible to find a recur-
rence relation (difference equation) for T(n)
and to solve it exac t ly -o r even just ap-
proximately, concluding that T(n) is
O(f(n)), for example - to discover the
worst-case behavior of an algorithm.

Recall the first example of the previous
subsection, where the problem was to find
the largest element in a set S of n ele-
ments. Although the algorithm is not writ-
ten as a recursive procedure, it can never-
theless be viewed as finding the largest
element of a set S' consisting of the first n

- 1 elements, then comparing the result
to the n th element of S. The recurrence
obtained is

T(n) = T(n - 1) + 1 for n > 1,
T(1) = 0

where the initial condition is zero because
no comparisons are needed to find the
maximum element of a singleton set. The
solution to this recurrence is clearly T(n)
= n - 1, the same result as before.

Next consider the binary search algo-
rithm, where it is true that

T(n) <- T([n/2]) + 1 for n > 1,
T(1) = 0.

Again, the initial condition is zero because
the process is finished without any more
comparisons when only one element re-
mains in the array. The recurrence is
discovered by recognizing that in the worst
case, one comparison is used to determine
which remaining part to search recur-
sively, so that the total number of compar-
isons T(n) is the sum of this comparison
plus the number T([n/2]) required to find
the key in an array essentially half as
large. Since the remaining part can never
be larger than [n/2] whether n is odd or
even, we use '~ ' rather than ~='. The
solution T(n) <- [log n] can be discovered
by computing the value of T(n) for the
first several values of n, and can then be
proved by induction. As mentioned before,
the binary search algorithm is optimal,
since this solution coincides with the lower
bound.

A more complicated recurrence results
from analyzing the worst case of Quick-
sort. Here, the equation is

T(n) = T(n - 1) + P(n) + C(n)

forn > 1,
T(1) = T(0) = 0,

where C(n) is the number of comparisons
required to choose an element x from S,
and P(n) is the number needed to partition
S on the chosen element x. Since we are
counting only comparisons, C(n) = 0 and
P(n) = n - 1; thus,

T (n) = T (n - 1) + n - 1 f o r n > l ,
T(1) = T(0) = 0,

Computing Surveys, VQI. 9, No. 4, December 1977

302 • B. Weide

for which the exact solution is T(n) = n(n

- 1)/2. Of course, it is clearly not sufficient
to choose x arbitrarily if a worst case of
0(n 2) must be avoided. Rather, x should
partition S into approximately equal
parts. Aho, Hopcroft, and Ullman [1] call
this the ~principle of balancing." It can be
accomplished by choosing x as the median
element of S, whereupon the recurrence
becomes

T(n) <- 2T([n/2j) + P(n) + C(n)

forn > 1,
T(1) = T(0) = 0.

As in the case of binary search, ~---' rather
than '= ' is used because n may be odd and
because the partitioning element is al-
ready in place and need not be considered
in the recursive step. T(n) still provides
an upper bound since neither remaining
list can contain more than half the ele-
ments. It is convenient to think of T as
being defined not only for integer argu-
ments, but on the entire real line. Since T
is a nondecreasing function, T([xJ)- < T(x),

so the inequality remains valid if In/2] is
replaced by n/2. This step greatly simpli-
fies the task of solving the recurrence.

Now, P(n) = n - 1 as before; however,
C(n) is no longer zero but the number of
comparisons necessary to find the median
of n elements. Blum et al., [5] present an
algorithm which finds the median in at
most 5.43n comparisons, and Schonhage,
Paterson, and Pippenger [63] have an al-
gorithm which uses at most 3n compari-
sons. Taking C(n) <- 3n, we have

T(n) < 2T(n/2) + 4n - 1 for n > 1,
T(1) = T(0) = 0,

for which the solution is T(n) <- 4n log n
- n + 1, so that T(n) is O(n log n). This
algorithm is not practical, however, be-
cause the 3n median algorithm is ex-
tremely complicated, and because the ex-
pected behavior of Quicksort is very good
without such a modification (see Section 4).

As a final example, consider Strassen's
algorithm [71] for matrix multiplication.
The algorithm is based on recursive appli-
cation of a method for multiplying 2 x 2
matrices with elements from an arbitrary

ring, using seven multiplications and 18
additions (as opposed to the textbook
method which uses eight multiplications
and four additions). Aho, Hopcroft, and
Ullman [1] explain how the number of
additions can be reduced to 15, which is
optimal.

Suppose n = 2 k. Strassen's algorithm
begins by partitioning each of the original
matrices into four submatrices of size 2 k-I
x 2 k-1 (to which the algorithm is applied
recursively), then multiplies the 2 x 2
matrices (which have 2 k-~ x 2 k-~ matrices
as elements) using the seven-multiplica-
tion 15-addition algorithm. The recursive
application of the algorithm to perform
the seven multiplications is the key to its
efficiency. Even though the total number
of scalar operations used to multiply 2 x 2
matrices of scalars is 22, as opposed to 12
using the classical method, the number of
multiplications is reduced by the new al-
gorithm. When the elements of the 2 x 2
matrices are themselves matrices, this fact
becomes important, because matrix mul-
tiplications are more costly than matrix
additions.

An analysis of the tradeoffs involved in
sacrificing 11 additions in order to save
one multiplication begins with the recur-
rence describing the number of scalar op-
erations used to multiply a pair of n x n
matrices:

T(n) = 7T(n/2) + 15(n/2) 2 for n > 1,
T(1) = 1.

Here, the recursive step requires seven
applications of the algorithm to (n/2) x
(n/2) matrices, plus 15 additions of such
matrices. Each matrix addition takes (n/

2) ~ scalar operations. The initial condition
is obvious, since multiplication of two 1 x
1 matrices consists of a single scalar mul-
tiplication. The solution is T(n) = 6n l°g7 -
5 n 2 ; t h u s T(n) i s O(n l°gT) = O(n2"Sl), com-
pared to O(n 3) for the classical method.
Because of the factor of 6, though, the
classical algorithm (which takes 2n 3 - n 2
operations) is still faster for n less than
about 300. By using a hybrid scheme
which uses Strassen's algorithm for large
matrices and the classical algorithm for
smaller ones, this crossover point can be

Computing Surveys, Vol 9, No 4, December 1977

A n a l y s i s T e c h n i q u e s for Discre te A l g o r i t h m s • 303

reduced (for a real implementation) to
about n = 40 [11].

Simply finding a recurrence is only part
of the problem; the other half, of course, is
solving it. It is relatively easy to find an
upper bound on the solution by simply
guessing a solution and then trying it.
For example, given the recurrence

T(n) = 2T(n/2) + n log n

with some initial condition T(1), we might
guess that T(n) should be no larger than
O(n2). If we assume that T(n) = cn 2 and
can show that the right-hand side of the
recurrence is at most cn 2 + lower-order
terms, then O(n 2) is an upper bound on
T(n) . That this is true for the present
example is easily verified.

A better guess in this case is that T(n)

is O(n log2n); this means that our guess of
the value of T(n) is cn log2n, resulting in:

T(n) = 2 T (n / 2) + n log n
= cn log~(n/2) + n log n
= en logan + (1 - 2c) n log n + cn

so that O(n logZn) is an upper bound for
T(n) . In fact, since the coefficient of n
log2n is the same on both sides of the
equation, T(n) = O(n log2n).

This computation can be extended to
find the exact solution. Suppose that T(n)

is a linear combination of linearly inde-
pendent functions, the dominant one of
which is n log2n. Substituting cn log2n
into the recurrence gives rise to terms in
n log n and in n, which appear on the
right-hand side but not on the left. Conse-
quently, T(n) must also have terms a n log
n + bn, which, when expanded nn the
right, produce no new lower-order terms.
Now it is a simple matter to equate coeffi-
cients of like functions to get the solution:
T(n) = (n log2n + n log n)/2 + T(1)n.

More powerful techniques must some-
times be applied. Generating functions (Z-
transforms), which are also of value in
solving problems associated with average-
case analysis, are among the most useful
of these tools. Knuth [43], Liu [52], and
Kleinrock [42] give excellent accounts of
how to use this method. Some relatively
easy recurrences can also be solved by
referring to standard formulas (see, for

example, [13] on difference equations),
while at least references to others can be
found by iterating the recurrence to find
the first few terms and then looking up
the sequence in Sloane [68].

The Brute Force Method

Even though the method to be described
here is not often practical, it is interesting
because it is possible at all only with the
aid of high-speed computers and, there-
fore, could only recently have been at-
tempted. The question of how to sort using
a minimum number of comparisons is con-
sidered in detail by Knuth [46], who points
out that the merge-insertion algorithm of
Ford and Johnson [21] is optimal for n <
12 and for n = 20 and 21. That is, the
number of comparisons is exactly [log n!]
for these cases.

The question of the optimality of merge-
insertion for n = 12 was settled by Wells
[76, 77] by using brute-force computing
power to demonstrate that no algorithm
can sort 12 items using fewer than 30
comparisons, so that merge-insertion
(which uses 30) is optimal even though
[log 12!] = 29. In a sense, he refined the
lower bound on sorting 12 elements by
effectively bounding the worst-case per-
formance of every possible algorithm! One
can imagine finding worst cases in a simi-
lar manner to demonstrate upper bounds,
either by proving the existence of an algo-
rithm or by explicitly producing one.

4. THE AVERAGE CASE

What ts normal is at once most

conventent, most honest, and most

wholesome.

-Frederic Amiel

The normal ~s what you f ind but

rarely.

-W. Somerset Maugham

Recent efforts in algorithmic analysis have
been largely directed toward analyzing
expected behavior, i.e., finding the com-
plexity of a computation averaged over
some distribution of inputs. Generally, the

Computing Surveys, Vol. 9, No. 4, December 1977

304 • B . We~de

techniques reported in the previous section
are still applicable, although some of the
recurrences are tougher to handle and
therefore stronger solution methods may
need to be used.

Pros and Cons of Average-Case Analysis

The primary reason for analyzing the be-
havior of algorithms "on the average" is,
of course, that a worst case may arise so
rarely (perhaps never) in practice that
some other complexity measure would be
more useful. An alternative to worst-case
analysis that immediately comes to mind
is some sort of average-case analysis.
Rather than try to define and analyze a
particular case which is somehow ~aver-
age," the approach is to simultaneously
analyze all cases and to weight the indi-
vidual case complexities with the appro-
priate probabilities of each case occurring.

Obviously, this complicates the mathe-
matics considerably. If this were the only
objection to doing average-case analysis,
all that would be required would be more
sophisticated tools, which could be dis-
cussed in detail here. However, more seri-
ous questions have been raised which tend
to cast considerable doubt on the entire
venture; this is the main reason for not
going into more detailed description of the
methods used in average-case analysis.
Rather, the reader is urged to consult the
original sources.

The most important objection is that,
typically, there is no way to identify the
probability distribution over all problem
occurrences. While it may be reasonable
in some situations to assume that every
possible abstract problem instance is
equally likely (for example, that every
item is equally likely to be the key in a
binary search, or that every permutation
is equally likely to be the input to Quick-
sort, or that every n-vertex graph is
equally likely), this assumption really
only makes sense if the problem space is
finite. It clearly makes no sense, for ex-
ample, to say that every integer program
is equally likely. Furthermore, even when
it does have meaning, the assumption of a
uniform distribution over all possible in-
puts may not be at all realistic if we have

prior knowledge about the likelihood of
various inputs. While a uniform distribu-
tion is not the only possible assumption, it
is the one most often encountered. Excep-
tions are Spira [70] on the expected time
for finding all shortest paths in a graph,
and Bentley and Shamos [4] on the ex-
pected behavior of some geometric algo-
rithms. In both of these cases, the only
important assumptions deal with inde-
pendence of the random variables involved
and not with their distribution. The as-
sumptions made in analyzing scheduling
algorithms or parallel computations often
include exponentially distributed or Er-
langian distributed services times for
tasks [8, 2].

In one at tempt to answer this objection,
Yuval [79] has suggested that algorithms
might ~randomize" their inputs in order
to make the assumption appear valid. He
has pointed out that if suitable random
steps were being taken at certain stages,
an algorithm could have good expected
behavior for every input, and thereby as-
sure good expected-case solution times re-
gardless of the probability distribution
being assumed (see also [55]). For exam-
ple, Quicksort could choose the partition-
ing element randomly (this idea was of-
fered by Hoare [28] in his original paper
on Quicksort). Even though this might
seem a case of the tail wagging the dog,
there is some justification for such an
approach in this instance. In order to
make the analysis of the algorithm tract-
able, Sedgewick [64] assumes that the files
~o be sorted are random, and presents
evidence that the algorithm works better
if they are! Clearly, not all algorithms can
be modified in this manner. The key ele-
ment in binary search cannot be ~'random-
ized"; it is given as the sole input. Simi-
larly, the array in which the search is to
be made is certainly fixed during the
search, so there is no room to manipulate
the algorithm in this way.

Despite the shaky basis for assuming
random inputs, the results of analysis us-
ing this assumption may be reasonable
approximations for other distributions.
Moreover, nonuniform distributions com-
plicate the recurrences.

Knowing the average behavior of an

Computing Surveys, Vol. 9, No 4, December 1977

Analysis Techniques for Discrete Algori thms • 305

algorithm is helpful, but knowing the var-
iance as well would be even more so. Few
average-case analyses have considered
higher moments of the solution time. One
notable exception is Sedgewick's analysis
of Quicksort [64] (see also Knuth [46]), in
which he shows that the average number
of comparisons is about p = 1.39n log n,
and the standard deviation is approxi-
mately ~ = 0.65n. Since ~//z diminishes
with increasing n, our confidence that the
algorithm will be efficient grows with n.
This explains in part why Quicksort works
so well in practice. Spira [70] also finds
the variance of the time required by his
all-shortest-paths algorithm.

Some Examples of Average-Case Analysis

There is a large and growing number of
algorithms that have been subjected to
analysis of average-case complexity.
While only a few will be discussed here,
many others can be found in the litera-
ture.

Surely the single most comprehensive
analysis of any algorithm is presented for
Quicksort by Sedgewick in his PhD thesis
[64]. He analyzes the average number of
comparisons, exchanges, and partitioning
stages through the use of recurrences, just
as for the simple worst-case analysis of
the number of comparisons described in
Section 3. Along with Sedgewick's Appen-
dix B, Knuth [43, 46] is a good reference
for these techniques.

Obviously, not all recurrences are easy
to solve. In analyzing radix exchange sort-
ing, Knuth [46] uses properties of the
gamma function and complex-variable
theory to derive asymptotic results for a
recurrence that looks fairly simple, but
cannot be solved with traditional tech-
niques.

One algorithm that has been analyzed
in at least three different ways is the
alpha-beta search algorithm for game
trees. The problem which the algorithm
solves is a search through a game tree.
There are two players who alternately
make moves, the first trying to maximize
some function of the position, the other
trying to minimize it. The classical exam-
ple is the game of chess; all sophisticated

chess-playing programs use alpha-beta
search. Good descriptions of the algorithm
can be found in Fuller, Gaschnig, and
Gillogly [23] and in Knuth and Moore
[48]. Fuller, et al., assume that the game
tree is a complete tree with branching
factor N and depth D, and that each per-
mutation of the ranks of the values of the
leaf nodes is equally likely. They derive
expressions for the probability of expand-
ing individual nodes, and the expected
number of evaluated bottom positions.
While the answers in this case look simple
enough because of concise notation, the
authors point out the computational in-
feasibility of calculating these quantities
for any but very small values of N and D.
However, they surmise from simulation
results that the average number of nodes
examined is about O(N°'72D).

Knuth and Moore [48] make the same
assumptions about the tree and the ran-
dom ordering of leaf-node values, and
show that the average behavior of the
algorithm is O((N/log N) ') . They suggest
that the simulation results by Fuller, et
al., result in a fit to N °'~2~ because N is so
small.

Newborn [53] uses a model in which the
branch (rather than the node) values are
randomly ranked; he obtains results for
the cases D = 2, 3, 4, and in each case
they differ from those of Knuth and Moore.
This is yet another example of the depend-
ence of results on the assumptions of the
model being used in the analysis: the three
different analyses for D = 2 give complex-
ities of O(N 144), O((N/log N)2), and O(N

log N), respectively.
Other examples of average-case analysis

include Guibas and Szemeredi [27] on dou-
ble hashing, O'Neil and O'Neil [54] on
Boolean matrix multiplication, and Knuth
[45] and Floyd and Rivest [20] on selection.

5. APPROXIMATE ALGORITHMS

Trouble creates a capacity to handle st.
-Oliver Wendell Holmes, Jr.

Until very recently, the focus of attention
in algorithmic analysis has been on "tract-
able" combinatorial problems such as
searching, sorting, and matrix multiplica-

Computing Surveys, VoL 9, No. 4, December 1977

306 • B. Weide

tion, which have been mentioned above.
These are among the "easy" problems
(which in current terminology means that
their complexity is bounded by a polyno-
mial in n); on the other hand, many opti-
mization and graph problems are "hard"
(i.e., their complexity is apparently not
bounded by any such polynomial). Since
so many important problems are, unfortu-
nately, in the latter category, an entire
new group of algorithms that find approx-
imate solutions to hard problems has been
developed. They are known as "approxi-
mation" or "heuristic" algorithms. With
these algorithms have come new measures
of "goodness" as well as techniques for
their design and analysis. Two classes of
approximation, one guaranteeing a near-
optimal solution always, and the other
producing an optimal or near-optimal so-
lution "almost everywhere," are discussed.

Problem Classes and Reducibility

For the discussion that follows we require
some concepts regarding Turing machines
(TM) and formal languages. It is some-
what artificial, but convenient, to pose a
problem in terms of a language-recogni-
tion task. This is done by formulating it
to require a yes-no solution; for example,
"Does this traveling salesman problem
have a solution with cost less than k?" A
TM can be asked to accept the input prob-
lem description if the answer is "yes." To
solve the problem, such a TM then accepts
only input strings from some language L
which comprises precisely those problem
instances with "yes" answers. It is helpful
to refer to the original problem and the
language L interchangeably in the context
of the classes P and NP (see [1] for more
details).

Formally, the class P (for "Polynomial")
is the set of languages which are recog-
nized by some deterministic TM that al-
ways halts in a number of steps which is
bounded by a fixed polynomial in the
length of the input (i.e., in "polynomial
time"). Similarly, the class NP (for "Non-
deterministic Polynomial") is the set of
languages which are recognized by some
nondeterministic TM in polynomial time.
A nondeterministic TM operates in poly-

nomial time if all sequences of choices of
moves are of polynomial bounded length;
a string is accepted by such a machine if
there exists any such sequence of steps
which leads to an accepting state (see
Hopcroft and Ullman [31]).

That P C NP is clear from the defini-
tions. Undoubtedly the most intriguing
open question in the complexity area is
whether P = NP, or whether there are
problems in NP which cannot be solved in
polynomial time by a deterministic TM.
Problems known to be in P include the
"easy" problems previously discussed.
Other problems in NP which might also
be in P are most of the so-called optimiza-
tion and graph problems, such as 0/1 inte-
ger programming, certain scheduling
problems, finding Hamiltonian circuits,
graph coloring, and many others (see Karp
[39, 40]). So far as is known, there is no
deterministic polynomial-time algorithm
for solving any of these "hard" problems;
all known algorithms have a worst-case
complexity that is not bounded by a poly-
nomial function of the input size.

One method of proving the equivalence
P = NP might be to demonstrate a deter-
ministic polynomial-time simulation of a
nondeterministic TM. Since this would
amount to a systematic search through a
tree of move sequences of polynomial
depth, the total number of nodes (and
hence the time for the simulation) could
be exponential. Hence, it appears that it
is not possible to simulate an arbitrary
nondeterministic TM operating in polyno-
mial time by a deterministic TM operating
in polynomial time. Of course this does
not by any means show that P ~ NP;
there might well be other approaches, not
resembling a deterministic simulation,
which could solve one of the hard problems
in NP in polynomial time.

Fortunately, it is sufficient to consider
solving these problems in polynomial time
on a normal random-access computer
rather than on a TM; the problems in P
remain the same [1], because each ma-
chine can simulate the other in polynomial
time. Roughly speaking, problems that
seem to require some sort of backtrack-
searching through a tree of polynomially
bounded depth are the difficult problems

Computing Surveys, Vol. 9, No. 4, December 1977

I

Analysis Techniques for Discrete Algorithms • 307

of NP. While there is overwhelming cir-
cumstantial evidence that such problems
are not also in P, no proof of this conjecture
has yet been produced.

A language L1 is "polynomially reduci-
ble" to L2 if there is a deterministic poly-
nomial-time algorithm which transforms
a string x into a string f(x) such that x is
in LI iff f(x) is in L2. Among the conse-
quences of reducibility is the fact that if
there is a polynomial-time deterministic
algorithm to recognize L2 and L1 is reduci-
ble to L2, then a polynomial-time deter-
ministic algorithm to recognize L~ can be
constructed. It consists of applying the
transformation f to the input x and then
checking whether f(x) is in L~, all of which
can be done deterministically in polyno-
mial time.

The key to the argument that P ~ NP
is a remarkable theorem by Cook [12]
stating that every problem in NP can be
polynomially reduced to Boolean satisfia-
bility. This problem is very simply stated:
Is there an assignment of t ruth values to
the literals of a Boolean expression which
makes the expression true? This means
that every problem which can be solved in
polynomial time on a nondeterministic TM
can also be solved by subjecting the input
string to a transformation (done determin-
istically in polynomial time) that converts
it to an instance of satisfiability, and then
solving the resulting satisfiability prob-
lem. Many other problems have subse-
quently been shown to have the same
property. A problem such as satisfiability
is called "NP-complete." One way to prove
that a problem is NP-complete is to dem-
onstrate that the problem is in NP, and
that another NP-complete problem is re-
ducible to it. All NP-complete problems
are also ~'P-complete" (see Sahni [60]), i.e.,
in the class of problems solvable in deter-
ministic polynomial time iff P = NP. The
distinction between these definitions has
all but disappeared in the literature, and
the term "NP-complete" has come to be
used for either one. Under either defini-
tion, if there is a polynomial-time deter-
ministic algorithm for any NP-complete
problem, then P = NP.

Karp [39] shows reducibilities among
problems which demonstrate that the class

of NP-complete problems is quite large,
and includes all the optimization and
graph problems mentioned above. This
fact forms the basis for believing (even if
one cannot prove) that P ~ NP, since
none of the hundreds of algorithms for the
scores of problems that are NP-complete
runs in polynomial time. If any of these
problems could be solved quickly, all of
them could be; the fact that so far none of
them can be is a convincing argument
(although not a proof) that they never will
be.

Whether P = NP is not the only open
question in this area. Some problems re-
main unclassified. For example, deciding
whether two regular expressions are
equivalent, or whether a string is in a
given context-sensitive language, are
problems at least as hard as any problems
in NP, but are not known to be in NP
themselves (see Aho, Hopcroft, and Ull-
man [1]). Such problems are called "NP-
hard" because their inclusion in P would
imply that P = NP. On the other hand,
deciding whether two given graphs are
isomorphic, whether a given integer is a
prime, or whether a given integer is not a
prime, have not been shown to be NP-
complete, even though they are in NP and
cannot currently be solved in polynomial
time. Hence, these may be problems in
NP but not in P, whose solutions will not
help solve the other problems in NP. Lad-
her [50] has shown that P @ NP implies
the existence of such '~intermediate" prob-
lems, but it is not known whether the
above problems are in this class.

"Guaranteed" Approximation Algorithms

All known algorithms for solving NP-com-
plete problems run in nonpolynomial de-
terministic time. It is therefore impracti-
cal to solve very large instances of these
problems, even though some of them are
among the most important problems of
graph theory and operations research.
Fortunately many applications requiring
solution of such problems do not require
exact solutions. To take advantage of this
fact, algorithm designers have developed
many new approximation methods. Most
of these algorithms seek near-optimal so-
lutions to all instances of a problem.

Computing Surveys, Vol. 9, No. 4, December 1977

308 • B . Weide

A generally accepted error measure for
these algorithms is the maximum relative
error over all problem instances [37]. Nor-
mally, the quantities from which the rela-
tive error is computed are obvious: an
integer program's objective function value,
a graph's chromatic number for the graph
coloring problem, or a schedule's length.
Sometimes, as for the satisfiability prob-
lem, the original problem must be re-
phrased as an optimization problem in
order to study approximate solutions. The
ratio of the absolute error to the exact
solution value is given the symbol ~.

In designing approximation algorithms
of this type, one is concerned with guar-
anteeing that the relative error ~ is never
larger than some prescribed maximum,
which essentially means that e is taken as
given. The goal is to develop an algorithm
that always solves the problem to within
a factor of 1 -+ ~. For this reason, many of
these algorithms tend to resemble the pat-
terns commonly encountered in calculus
proofs, with strange functions of ~ appear-
ing, as if by magic, in the early stages of
the algorithm in order to assure that the
final solution will be within a factor of 1
- ~ of optimal. Recognizing this takes
much of the mystery out of what can
appear to be very complicated algorithms.

Because error analysis is par t of the
design of such algorithms, understanding
the analysis is tantamount to understand-
ing the operation of the algorithm. Sahni
[62] nicely summarizes the techniques in
this class, dividing the methods into three
categories. These are especially useful for
the knapsack problem, packing problems,
and certain scheduling problems. The
worst-case complexities they produce are
usually like O(na/~) for constants a and b
which depend on the problem.

An example of one of Sahni's tech-
niques, called interval partitioning, is a
simple algorithm for solving the 0/1 knap-
sack problem:

maximize: c" x

subject to: a. x <- b
x ~ { 0 , 1} n

Here, c and a are n-vectors of positive

~'utilities" and ~weights", respectively, and
b is a scalar representing the capacity of a
knapsack. The objective is to fill the knap-
sack with a subset of the n items so that
the total utility c -x is maximized without
violating the capacity constraint a.x -< b.
Item i is to be included iffx, = 1.

The problem can be solved by a straight-
forward tree-search method. For any par-
tial assignment to the variables xl, x2, ""
x, which we may have at level i of the
tree, there correspond two more assign-
ments (letting x,+l be either 0 or 1) at
level i + 1. A feasible solution is one for
which a.x -< b, and a partial assignment
at level i consists of the fixed variables x~
through xz, with the remaining ones set to
0. The key observation is that the infeasi-
bility of a partial assignment implies the
infeasibility of every completion; accord-
ingly, we may prune the tree at that point.
However, even with such pruning rules,
the total number of solution candidates
generated may be exponential in n.

An approximation scheme using inter-
val partitioning is constucted as follows:
let P~ be the maximum total utility of
partial solutions on level ~. Divide the
interval [0, P,] into subintervals of size
P,~/n, and discard all candidates with total
utility in the same interval except that
one with the least total weight. There are
now at most Inlet + 1 nodes on each level,
and therefore only O(n2/E) nodes in the
entire tree. The errors introduced at each
stage are additive, so the total error is
bounded by E. This means that in O(n2/e)

time we can solve the 0/1 knapsack prob-
lem to within E, for every ~ > 0. By
another approach, Ibarra and Kim [35]
have shown that this can be reduced to
O(n log n) + O((3/e)41og(3/~)).

Shamos and Yuval [67] have demon-
strated an interesting approximation al-
gorithm for a problem which is relatively
easy. It finds an ~-approximation to the
mean distance between n points in the
plane in O(n) time although an optimal
solution requires O(n 2) time.

Not all NP-complete problems lend
themselves equally well to approximation,
even though they are, in a certain sense,
of the same time complexity. D. S. John-

Computing Surveys, Vol. 9, No 4, December 1977

A n a l y s i s T e c h n i q u e s f o r D t scre t e A l g o r i t h m s • 309

son [37] points out that for some problems,
including those to which Sahni's tech-
niques can be applied, the relative error e
can be bounded by a constant independent
of problem size. However, for others (such
as the maximum clique problem) no algo-
rithm has yet been found for which • does
not grow at least as fast as n c for some
c > 0. Garey and Johnson [24] show that
approximating the chromatic number of a
graph to within a factor of two is NP-
complete; in fact, no known polynomial-
time algorithm solves the problem to
within any bounded ratio. Similarly dis-
couraging is another result reported in
the same paper: if there is a polynomial-
time algorithm for approximating the size
of the maximum clique of a graph to
within s o m e bounded ratio, then there is
a polynomial-time algorithm for approxi-
mating it to within a n y bounded ratio.

Examples of approximation algorithms
and analysis of errors and complexitms
have also been given by Johnson [38],
Sahni [61], and Coffman and Sethi [10],
among many others. Garey and Johnson
[25] have compiled a fine annotated bibli-
ography for this area.

Probabilistic Behavior of Approximation
Algorithms

It is not easy to guarantee good approxi-
mate solutions to certain NP-complete
problems. This fact has motivated a search
for alternatives to the guaranteed approx-
imation approach. One alternative is to
make such a sophisticated guess about the
solution that the likelihood of error is
negligibly small. If we define Pn to be the
probability that such an algorithm gives
an unacceptably bad answer to a randomly
chosen problem of size n - s o m e distribu-
tion of problem instances is a s s u m e d -
then the algorithm is said to work cor-
rectly "almost everywhere" if ~ pn is fi-
nite, where the sum is over all problem
sizes n = 1, 2, -...

Optimality or near-optimality "almost
everywhere" is theoretically a strong con-
dition. Were we to randomly choose one
problem instance of each size n, for n = 1,
2, ..., and run the algorithm on each of
them, then not only would the algorithm

give good answers infinitely often, but
(with probability one) it would fail to give
good answers only finitely often.

Karp [41] illustrates such algorithms.
He demonstrates an O (n log n) algorithm
for solving random Euclidean traveling
salesman problems which, for every e > 0,
finds a solution within a factor of 1 + • of
being optimal almost everywhere. The
analysis depends heavily on an interesting
theorem by Beardwood, Halten, and Ham-
mersley [3], stating that for n points cho-
sen at random in a plane figure of area A,
there is a constant c such that the length
of the shortest tour is within e of (cnA) 112

almost everywhere.
Karp's example, which uses results from

geometry and probability, is typical of
these algorithms. Results and techniques
from a large number of fields of mathemat-
ics seem to apply in the area of probabilis-
tic algorithms. More examples can be
found in the theory of random graphs [17],
which contains many useful theorems re-
garding connectedness, maximum cliques,
and chromatic numbers. Rabin [55] and
Solovay and Strassen [69] describe a differ-
ent kind of probabilistic algorithm for test-
ing whether a number is prime; the prob-
ability of error (guessing that a composite
number is prime) is halved at each step
regardless of the size of the number being
tested.

Many probabilistic algorithms are re-
markably simple, yet have been shown to
work extremely well. However, the proba-
bilistic approach suffers from the same
basic objections as average-case analysis,
especially with regard to the question of
assuming a meaningful underlying distri-
bution over problem instances. Even so,
the approach does give some assurances
that an approximation algorithm will not
fail very often; the user may confidently
expect few "surprises."

CONCLUSIONS
He that takes up conclusions on the trust

o f authors . . loses h~s labour, and does

not know anything, but only beheveth.

-Thomas Hobbes

There is a clear need for development of
more sophisticated tools for proving lower

Computing Surveys, Vol. 9, No. 4, December 1977

310 • B . W e i d e

bounds. Techniques for proving upper
bounds will not change significantly, and
algorithm design will continue to advance
with more unified principles. Average-
case analyses must be extended to include
estimates of the variance and the nature
of the distribution of solution times, and
should be made more robust by requiring
fewer unreasonable assumptions.

An area which has hardly been explored
is that of realistic models for complexity
analysis of parallel programs. Most prior
work has dealt with parallel computation
at the single-instruction level, and then
essentially only for algebraic or numerical
problems; see, for example, Traub [73] and
Borodin and Munro [7]. There are practi-
cally no parallel algorithms and associated
analysis techniques for combinatorial
problems. The proliferation of parallel
hardware makes this a particularly attrac-
tive area for exploration.

Possibly the most exciting and poten-
tially rewarding area for research in the
near future will be in designing and ana-
lyzing algorithms for very hard problems.
Of course, the interesting theoretical ques-
tions include the now-infamous P = NP
problem. Since presumably P # NP, ap-
proximate algorithms will predominate.
For those problems which are not amena-
ble to guaranteed approximate solutions,
the probabilistic approach may be pre-
ferred. However, the "almost everywhere"
concept is too restrictive and says too little
about problems of a particular size; a new
definition of what constitutes an accepta-
ble approximation algorithm might result
in a new family of practical algorithms for
some NP-complete problems. Such results
can be expected to heavily apply concepts
from probability and statistics.

APPENDIX

Glossary of Problems

Biconnected components: Given a graph
G, determine whether G remains con-
nected when any vertex and its incident
edges are removed. (Sometimes, find all
such vertices.)

Context-free language recognition: Given

a context-free language L and a string
x, determine whether x is in L.

Context-sensitive language recognition:
Given a context-sensitive language L
and a string x, determine whether x is
inL .

Convex hull: Find the smallest convex set
containing n given points.

Element uniqueness: Determine whether
any two of n given elements are equal.

Equivalence of regular expressions: De-
termine whether two given regular
expressions denote the same set.

Graph coloring (chromatic number): For
a graph G, find an assignment of
"colors" to the vertices of G such that no
adjacent vertices are the same color,
and such that the number of different
colors used is a minimum. The number
of colors used is called the "chromatic
number" of G.

Graph isomorphism: Determine whether
two given graphs are isomorphic.

Hamiltonian circuit: Determine whether
a given graph contains a cycle passing
through each node exactly once.

Integer programming: Given an n-vector
c, an m × n matrix A, and an m-vector
b, find an n-vector x (of integers) which
maximizes c.x subject to Ax -< b and x
>- O. For the 0/1 version, each xt must
be either 0 or 1.

Knapsack problem: Given n-vectors c
("utilities") and a ("weights"), and a
scalar b ("capacity"), find an n-vector x
(of integers) which maximizes c.x sub-
ject to a.x -< b and x - 0. For the 0/1
version, each x, must be either 0 or 1.

Linear programming: Given an n-vector
c, an m × n matrix A, and an m-vector
b, find an n-vector x (of reals) which
maximizes c.x subject to Ax <- b and x
~ O .

Matrix multiplication: Given matrices A
and B, compute the matrix product AB.

Maximum clique: Determine the size of
the largest complete subgraph of a given

graph.
Maximum element: Find the largest of n

elements of a linearly ordered set.
Mean distance: Find the average of all

the pairwise distances between n points
in space.

Computing Surveys, Vol. 9, No. 4, December 1977

Analysis Techniques for Discrete Algorithms • 311

Median: Find the median of a list of n
elements of a linearly ordered set. (The
median is one which is at least as large
as half the elements, and as small as
the others).

Merging: Coalesce two ordered lists into
one.

Minimum spanning tree: For a given
graph G with edge weights, find the
minimum-cost set of edges which con-
nects all the vertices of G without form-
ing any cycles. For the Euclidean ver-
sion, the vertices are points in space
and the edge weights are Euclidean in-
terpoint distances.

Nonprimes: Determine whether a given
integer is a composite number (i.e., can
be factored).

Planarity of a graph: Determine whether
a given graph can be drawn in the plane
without any crossing edges.

Primes: Determine whether a given inte-
ger is a prime number.

Satisfiability: For a given Boolean expres-
sion, determine whether there Is any
assignment of values to the literals for
which the expression is true.

Scheduling: Given n tasks and some con-
straints on the order in which they may
be done, find the best sequence in which
to perform them. There are many vari-
ations which involve number of proces-
sors, processing times, precedence,
deadlines, and penalties for late comple-
tion.

Search: Given a set of n elements and a
"key" element, determine whether the
key element is in the given set. Many
variations of this problem have been
defined.

Selection: Find the kth-smallest element
from a given list of n linearly ordered
elements.

Set identity: Determine whether two
given n-element sets are identical.

Set manipulation (UNION-FIND): A UNION
operation forms the union of two sets; a
FIND operation determines which set
contains a particular element. Perform
a sequence of n such operations.

Shortest path: Given a graph G with non-
negative edge weights, and a distin-
guished vertex v, find the minimum-

weight path from v to every other vertex
of G. A modified version of this single-
source problem allows negative edge
weights. The all-pairs version requires
minimum-weight paths between all
pairs of vertices of G.

Sorting: Arrange a list of n elements {x~}
from a linearly ordered set so that x l <

X 2 ~ ... ~ X n.

Transitive closure: Given a Boolean ma-
trix A, compute A + A 2 + A 3 +

Traveling salesman: Given a graph G
with nonnegative edge weights, find the
minimum-cost cycle which passes
through each vertex exactly once. For
the Euclidean version of this problem,
the vertices are points in space, and the
edge weights are Euclidean interpoint
distances.

ACKNOWLEDGMENTS

The author would hke to thank Michael I. Shamos,
H T Kung, Samuel H Fuller, Jon L. Bentley, and
Richard M Karp for their helpful critiques, and
Peter Denning for also suggesting the problem glos-
sary.

REFERENCES

[1] AHo, A. V ; HOPCROFT, J. E ; AND ULLMAN, J
D The design and analys~s of computer al-
gorithms, Addison-Wesley, Reading, Mass,
1974

[2] BAUDET, G Numerical computatmns on
asynchronous multiprocessors, Carnegie-Mel-
lon Unlv, Dept Computer Sci., Pittsburgh,
Penn, Apml 1976

[3] BEARDWOOD, J., HALTON, J. H.; AND HAMMER-
SLEY, J M. "The shortest path through
many points," Proc. Cambridge Phdosoph~cal
Soc. 55, 4 (Oct. 1959), 299-327.

[4] BENTLEY, J L, AND SHAMOS, M. I. Dwzde
and conquer for l~near expected time, Carne-
gin-Mellon Univ, Dept. Computer Scl., Pitts-
burgh, Penn., March 1977; to appear in Inf.
Process. Lett

[5] BLUM, M.; FLOYD, R. W.; PRATT, V ; RIVEST,
R. L, AND TARJAN, R E. "Time bounds for
selection," J Comput. Syst. Se~. 7, 4 (Aug.
1973), 448-461.

[6] BORODIN, A. "Computational complexity
theory and practice" in Currents ~n the theory
of computzng, A. V. Aho, lEd.I, Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1973, pp.
35-89.

[7] BORODIN, A.; AND MUNRO, I. The computa-
tional complexity of algebraw and numeric
problems, American Elsevier, N.Y., 1975

[8] CHANDY, K M, AND REYNOLDS, P.
F. "Scheduling partially ordered tasks with
probablllStIC execution times," m Proc. 5th

~ mp. Operating Systems Pnnctples, ACM,
Y , 1975, pp 169-177

Computing Surveys, Vol. 9, No. 4, December 1977

• B . W e i d e 312

[9] COFFM~, E. G. [Ed.] Computerandjob shop
scheduling theory, John Wiley and Sons, Inc.,
N.Y., 1976.

[10] COVFMAN, E. G.; AND SETHI, R. "A general-
ized bound on LPT sequencing," in Proc. Int.
Syrup. Computer Performance Modeling, Mea-
surement, and Evaluation, ACM, N.Y., 1976,
pp. 306-310.

[11] COHEN, J.; AND RCerH, M. "On the implemen-
tation of Strassen's fast multlphcation algo-
rithm,"Acta Inf. 6, 4 (1976), 341-355.

[12] CooK, S. A. ~'The complexity of theorem
OVmgprocedures," in Proc. 3rd Ann. ACM
rap. Theory of Computing, ACM, N.Y.,

1971, pp. 151-158.
[13] DAHLQUIST, G.; ANY BJOECK, A. Numerwal

methods, Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1974.

[14] DrJKSTRA, E.W. "A note on two problems in
connexmn with graphs," Numer. Math. 1,
(1959), 269-271.

[15] DORKIN, D.; ANDLIPrON, R., On the complex-
~ty of computations under varying sets of prim-
itives, Tech. Rep no. 42, Yale Univ., Dept
Computer Sci., New Haven, Conn., 1975.

[16] EDMONDS, J.; AND KAY, R.M. "Theoretical
improvements in algorithmic efficiency for
network flow problems," J. ACM 19, 2 (April
1972), 248-264.

[17] ERDOS, P.; AND SPENCER, J. Probabdzstw
methods ~n comb~natoncs, Academic Press,
N Y, 1974.

[18] FISCHER, M. J.; ANn MZYER, A.R. "Boolean
matrix multiphcation and transitive closure,"
in Conf. Record, IEEE 12th Ann Syrup
Sw~tchzng Automata Theory, IEEE, N.Y.,
1971, pp. 129-131.

[19] FLOYD, R.W. "Algorithm 245' Treesort 3,"
Commun ACM 7, 12 (Dec. 1964), 701.

[20] FLoYn, R. W.; AND RIVEST, R.L. "Expected
time bounds for selection," Commun ACM
18, 3 (March 1975), 165-172.

[21] FORD, L. R.; AND JOHNSON, S.M. "A tourna-
ment problem," Am Math. Monthly 66,
(1959), 387-389.

[22] FRAZER, W D. "Analysm of combinatory al-
gorlthms--a sample of current methodology,"
in Proc. AFIPS 1972 Spr~ng Jr. Computer
Conf., Vol. 40, AFIPS Press,-Montvale, N.J.,
pp. 483-491.

[23] FULLER, S. H; GASCHNIG, J. G.; AND GIL-
LOGLY, d. d Analysis of the alpha-beta prun-
ing algorithm, Carnegqe-Mellon Univ , Dept
Computer SCL, Pittsburgh, Penn., July 1973.

[24] GAREY, M. R.; AND JOHNSON, D. S. The
complexity of near-optimal graph coloring,"
J. ACM 23, 1 (Jan. 1976), 43-49.

[25] GARRY, M. R.; AND JOHNSON, D. S. "Approxi-
mation algorithms for combinatorial prob-
lems: an annotated bibliography," in Algo-
rithms and complexity: New dwectmns and re-
cent results, J. F. Traub, [Ed.], Academic
Press, N.Y., 1976, pp. 41-52

[26] GRAHAM, R L. "An efficient algorithm for
determining the convex hull of a finite planar
set," Inf. Process Lett. 1, (1972), 132-133.

[27] GUmAS, L. J.; AND SZEMRREDI, E. "The anal-
ysis of double hashing," extended abstract in
Proc. 8th Ann. ACM Syrup Theory Comput-
ing, ACM, N.Y., 1976, pp. 187-191.

[28] HOARE, C. A.R. "Quicksort," Comput. J 5,
(1962), 10-15.

[29] HOPCROF'r, J E. "Complexity of computer

computations," in Proc. IF1P Congress 74,
Vol. 3, North-Holland Publ. Co., Amsterdam,
The Netherlands, 1974, pp. 620-626.

[30] HOPCROI~r, J. E.; ANDTARJAN, R.E. "Efficient
algorithms for graph manlpulatmn," Com-
mun. ACM 16, 6 (June 1973), 372-378.

[31] HoPcROrr, J. E.; ANY ULLMAN, J. D Formal
languages and their relatwn to automata, Ad-
dison-Wesley, Reading, Mass, 1969

[32] HOPCROFT, J E., ANn ULLMAN, J. D. "Set
merging algorithms," SIAM J. Comput. 2, 4
(Dec. 1973), 294-303.

[33] HYAFIL, L. "Bounds on selection," SIAM J.
Comput. 5, 1 (March 1976), 109-114.

{34] HYAFIL, L.; AND KUN6, H. T "The complex-
ity of parallel evaluation of linear recur-
rences," inProc 7th Ann. ACM Syrup. Theory
Computing, ACM, N.Y., 1975, pp. 12-22.

[35] IBARRA, O.; "AND KIM, C. "Fast approxima-
tion algorithms for the knapsack and sum of
subsets problems," J. ACM 22, 4 (Oct. 1975),
463-468

[36] JOHNSON, D.B. "A note on Dijkstra's short-
est path algorithm," J. ACM 20, 3 (July 1973),
385-388.

[37] JOHNSON, D.S. "Approximation algorithms
for combinatorial problems," in Proc. 5th Ann.
ACM Syrup. Theory Computing, ACM, N.Y.,
1973, pp. 38-49; also in J. Comput. Syst. Sc~
9, 3 (Dec. 1974), 256-278

[38] JOHNSON, D. S. "Fast algorithms for bin
packing," J. Comput. Syst Scz. 8, 3 (June
1974), 272-314.

[39] KARP, R M. "Reducibility among combina-
torial problems," in Complexity of computer
computatmns, R. E. Miller, and J W.
Thatcher, [Eds.], Plenum Press, N.Y, 1972,
pp. 85-103

[40] KARP, R M "On the computational com-
plexity of combinatorial problems," Networks
5, 1 (Jan 1975), 45-68.

[41] KARP, R. M "The probabilistic analysis of
some combinatorial search algorithms," inAl-
gorithrns and complexity New dtrectmns and
recent results, J F. Traub, lEd.l, Academic
Press, N.Y., 1976, 1-19.

[42] KLEINROCK, L. Queue~ng systems, Vol. I:
Theory, John Wiley and Sons, Inc., N Y.,
1975.

[43] KNUTH, D.E. The art of computer program-
ruing, Vol. I" Fundamental algorzthms, Addi-
son-Wesley, Reading, Mass., 1968

[44] KNUTH, D.E. The art of computer program-
m~ng, Vol. H" Sem~numerwal algorithms, Ad-
dison-Wesley, Reading, Mass., 1969.

[45] KNUTH, D E "Mathematical analysis of al-
orithms," in Proc IFIP Congress 71, Vol 1,
orth-Holland Publ Co., Amsterdam, The

Netherlands, 1971, pp. 135-143.
[46] KNUTH, D E The art of computer program-

mzng, Vol. l lI Sortzng and searchtng, Addi-
son-Wesley, Reading, Mass, 1973

[47] KNUTH, D.E. "Big omicron and big omega
and big theta," SIGACT News 8, 2 (April/
June 1976), 18-24.

[48] KNUTH, D. E.; ANn MOORE, R W. "An anal-
ysis of alpha-beta pruning," Artff Intell 6,
(1975), 293-326.

[49] KNUTH, D. E, MORRIS, J H.; ANn PRATT,
V R. Fastpattern matching zn strings, Tech.
Rep STAN-CS-74-440, Computer Scl Dept.,
Stanford Umv., Stanford, Calif., Aug. 1974,
also Knuth, D. E.; Morns, J. H.; and Pratt,

Computing Surveys, Vol. 9, No. 4, December 1977

Analysis Techniques for Discrete Algorithms • 313

V. R. "Fast pattern matching In strings,"
SIAM J. Comput. 6, 2 (June 1977), 323-350.

[50] LADNER, R E. "On the structure of polyno-
mial time reducibility," J ACM 22, 1 (Jan.
1975), 155-171.

[51] LAWLER, E. L. "Algorithms, graphs, and
complexity," Networks 5, 1 (Jan 1975), 89-92.

[52] LIU, C L. Introductmn to combinatorial
mathematics, McGraw-Hill, N.Y., 1968.

[53] NEWBORN, M. M. "The efficiency of the al-
pha-beta search on trees with branch-depend-
ent terminal node scores," abstract in Algo-
rithms and complexzty. New d~rectlons and
recent results, J. F. Traub, lEd.], Academic
Press, N.Y, 1976, p. 483.

[54] O'NEIL, P. E ; AND O'NEIL, E J. "A fast
expected-time algorithm for Boolean matrix
multiplication and transitive closure," Inf
Control 22, 2 (March 1973), 132-138.

[55] RABIN, M.O. "ProbabIlistIc algorithms," in
Algorithms and complex~t~ New d~rectmns
and recent results, J F. lraub, [Ed.], Aca-
demic Press, N.Y., 1976, pp. 21-39.

[56] REINGOLD, E M. "Estabhshlng lower bounds
on algorithms- a survey," in AFIPS 1972
Spr,ng Jr. Computer Conf, Vol 40, AFIPS

ress, Montvale, N J , 1972, pp 471-481.
[57] REINGOLD, E M "On the optimality of

some set algorithms," J ACM 19, 4 (Dec.
1972), 649-659.

[58] RIVEST, R. L.; AND VUILLEMIN, J "A gener-
alization and proof of the Aanderaa/Rosen-
berg conjecture," in Proc 7th Ann. ACM
Symp Theory Computing, ACM, N.Y., 1975,
[p. 6-11.

[59] KOSENBERG, A L. "On the time required to
recognize properties of graphs, a problem,"
SIGACT News 5, 4 (Oct. 1973).

[60] SAHNI, S. "Computatlonally related prob-
lems," SIAM J Comput. 3, 4 (Dec 1974),
262-279

[61] SAHNI, S. "Approximate algorithms for the
0/1 knapsack problem," J ACM 22, 1 (Jan
1975), 115-124.

[62] SAHNI, S. General techniques for combinato-
rial approx~matmn, Tech. Rep. 76-6, Dept.
Computer Sci., Univ Minnesota, Minneapo-
hs, Minn., June 1976.

[63] SCHONHAGE, A.; PATERSON, M.; AND PIPPEN-
GER, N. "Finding the median," J Comput.
Syst Sc~. 13, (Oct 1976), 184-199

[64] SEDGEWICK, R. "Quicksort," PhD Thesis,
Stanford Univ., Stanford, Califi, Tech. Rep.
STAN-CS-75-492, May 1975; for a summary
see Sedgewlck R., ~'The analysis of Quicksort
programs," Acta Inf. 7, 4 (1977), 327-355.

[65] SHAMOS, M I "Geometric complexity," in
Proc. 7th Ann. ACM Syrup Theory Comput-
ing, 1975, ACM, N.Y., pp. 224-233.

[66] SHAMOS, ,M,. I ; AND HOEY, D. Closest point
problems, In Proc 16th Ann. IEEE Syrup.
Foundatwns Computer Sc~, IEEE, N.Y,
1975, pp. 151-162.

[67] SHAMOS, M. I ; AND YUVAL, G. "Lower
bounds from complex function theory," in
Proc 17th Ann. IEEE Symp. Foundatmns
Computer Sci., IEEE, N.Y., 1976, pp. 268-273.

[68] SLOANE, N. J. A. A handbook of integer
sequences, Academic Press, N.Y., 1973

[69] SOLOVAY, R.; AND STRASSEN, V. "A fast
Monte-Carlo test for prlmality," SIAM J
Comput 6, 1 (March 1977), 84-85

[70] SPIRA, P .M. A new algomthm for finding
all shortest paths in a graph of pomtlve arcs
in average time O(n21og2n), '' SIAM J. Corn-
put. 2, 1 (March 1973), 28-32.

[71] STRASSEN, V "Gaussian elimination is not
optimal," Numer Math. 13, (1969), 345-356.

[72] TARJAN, R.E. "Depth first search and linear
graph algomthms," SIAM J. Comput 1, 2
(June 1972), 146-160.

[73] TRAUB, J. F. [Ed], Complexity of sequential
and parallel numerical algorithms, Academic
Press, N.Y., 1973.

[74] VALIANT, L. G "General context-free recog-
nition in less than cubic time," J. Comput
Syst. Scz. 10, 2 (April 1975), 308-315.

[75] VALIANT, L. G On non-linear lower bounds
in computational complexity," m Proc. 7th
Ann ACM Symp, Theory Computing, ACM,
N Y, 1975, pp 45-53.

[76] WELLS, M.B. Apphcations of a language
for computing m combinatorics," mProc IFIP
Congress 65, Vol. 2, Spartan Books, Washing-
ton, D. C., 1965, pp. 497-498.

[77] WELLS, M. B Elements of combinatorial
computing, Pergamon Press, Elmsford, N.Y.,
1971.

[78] WILLIAMS, J. W. J "Algomthm 232: heap-
sort," Commun ACM 7, 6 (June 1964), 347-
348.

[79] YUVAL, G personal communication, 1975.

RECEIVED NOVEMBER 1976; FINAL REVISION ACCEPTED AUGUST 1977

Computing Surveys, Vol. 9, No. 4, December 1977

