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Abstract—A growing trend for information technology is to not
just react to changes, but anticipate them as much as possible.
This paradigm made modern solutions, such as recommendation
systems, a ubiquitous presence in today’s digital transactions.
Anticipatory networking extends the idea to communication tech-
nologies by studying patterns and periodicity in human behavior
and network dynamics to optimize network performance. This
survey collects and analyzes recent papers leveraging context
information to forecast the evolution of network conditions and,
in turn, to improve network performance. In particular, we
identify the main prediction and optimization tools adopted in
this body of work and link them with objectives and constraints
of the typical applications and scenarios. Finally, we consider
open challenges and research directions to make anticipatory
networking part of next generation networks.

Index Terms—Anticipatory, Prediction, Optimization, 5G, Mo-
bile Networks.

I. INTRODUCTION

Evolving from one generation to the next, wireless networks

have been constantly increasing their performance in many

different ways and for diverse purposes. Among them, commu-

nication efficiency has always been paramount to increase the

network capabilities without updating the entire infrastructure.

This survey investigates anticipatory networking, a recent

research direction that supports network optimization through

system state prediction.

The core concept of anticipatory networking is that, nowa-

days, tools exist to make reliable prediction about network

status and performance. Moreover, information availability is

increasing every day as human behavior is becoming more

socially and digitally interconnected. In addition, data centers

are becoming more and more important in providing services

and tools to access and analyze huge amounts of data.

As a consequence, not only can researchers tailor their

solutions to specific places and users, but also they can

anticipate the sequence of locations a user is going to visit or
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to forecast whether connectivity might be worsening, and to

exploit the forecast information to take action before the event

happens. This enables the possibility to take full advantage of

good future conditions (such as getting closer to a base station

or entering a less loaded cell) and to mitigate the impact of

negative events (e.g., entering a tunnel).

This survey covers a body of recent works on anticipatory

networking, which share two common aspects:

• Anticipation: they either explore prediction techniques

directly or consider some future knowledge as given.

• Networking: they aim to optimize communications in

mobile networks.

In addition, this survey delves into the following questions:

How can prediction support wireless networks? Which type

of information is possible to predict and which applications

can take advantage of it? Which tools are the best for a

given scenario or application? Which scenarios, among the

ones envisioned for 5G networks, can benefit the most from

anticipatory networking? What is yet to be studied in order for

anticipatory networking to be implemented in 5G networks?

The main contributions of this survey are the following:

• A thorough context-based analysis of the literature

classified according to the information exploited in the

predictive framework.

• Two handbooks on the prediction and optimization

techniques used in the literature, which allow the reader

to get familiar with them and critically assess the different

approaches.

• An analysis of the applicability of anticipatory network-

ing techniques to different types of wireless networks

and at different layers of the protocol stack.

• Summaries of all the main parts of the survey, highlight-

ing most popular choices and best practices.

• A final section analyzing open challenges and potential

issues to the adoption of anticipatory networking solu-

tions in future generation mobile networks.

A. Background and Guidelines

Anticipatory networking is the engineering branch that fo-

cuses on communication solutions that leverage the knowledge

of the future evolution of a system to improve its operation. For

instance, while a standard networking solution would answer

the question “which is the best user to be served?”, an antici-

patory equivalent would answer “which are the best users to
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Ideal: [95-97, 111, 112, 115, 118, 138] ConvOpt: [103-107, 111, 118-120, 138]
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be served in the next time frames given the predicted evolution

of their channel condition and service requirements?”

A typical anticipatory networking solution is usually charac-

terized by the following three attributes, which also determine

the structure of this survey:

• Context defines the type of information considered to

forecast the system evolution.

• Prediction specifies how the system evolution is forecast

from the current and past context.

• Optimization describes how prediction is exploited to

meet the application objectives.

To continue with the access selection example, the an-

ticipatory networking solution might exploit the history of

Global Positioning System (GPS) information (the context)

to train an AutoRegressive (AR) model (the prediction) to

predict the future positions of the users and their channel

conditions to solve an Integer Linear Programming (ILP)

problem (the optimization) that maximizes their Quality-of-

Experience (QoE).

The main body of the anticipatory networking literature

can be split into four categories based on the context used to

characterize the system state and to determine its evolution:

geographic, such as human mobility patterns derived from

location-based information; link, such as channel gain, noise

and interference levels obtained from reference signal feed-

back; traffic, such as network load, throughput, and occupied

physical resource blocks based on higher-layer performance

indicators; social, such as user’s behavior, profile, and informa-

tion derived from user-generated contents and social networks.

In order to determine which techniques are the most suitable

to solve a given problem, it is important to analyze the

following:

• Properties of the context:

1) Dimension describes the number of variables predicted

by the model, which can be uni- or multivariate.

2) Granularity and precision define the smallest variation

of the parameter considered by the context and the

accuracy of the data: the lower the granularity, the higher

the precision and vice versa. Temporal and spatial granu-

larities are crucial to strike a balance between efficiency

and accuracy.

3) Range characterizes the distance (usually time or

space) between known data samples and the farthest

predicted sample. It is also known as prediction (or

optimization) horizon.

• Constraints of the prediction or optimization model:

1) Availability of physical model states whether a closed-

form expression exists to describe the phenomenon.

2) Linearity expresses the quality of the functions linking

inputs and outputs of a problem.

3) Side information determines whether the main context

can be supported by auxiliary information.

4) Reliability and validity of information specifies the

noisiness of the data set, depending on which the pre-

diction robustness should be calibrated.

The classification section will help the reader to understand

the link between the different contexts and the solutions

adopted to satisfy the given application requirements. Also,

it is meant to provide a complete panorama of anticipatory

networking. The two handbooks have the twofold objective of

providing the reader with a short overview of the tools adopted

in the literature and to analyze them in terms of variables of

interest and constraints of the models. We believe that not only

will this survey help researchers studying anticipatory net-

working, but also it will ease its adoption in future generation

networks by providing a comprehensive overview of research

directions, available solutions and application scenarios.

Table I provides a mapping between the techniques de-

scribed in Section IV and V (columns) and the context

discussed in Section III (rows). Each main category is further

split into subcategories according to its internal structure.

Namely, the prediction category is subdivided into ideal (per-

fect prediction is assumed to be available), time series pre-

dictive modeling, similarity-based classification and regression

analysis, and probabilistic methods. The optimization category

is split into Convex Optimization (ConvOpt), Markov Decision

Process (MDP) and Model Predictive Control (MPC), game

theoretic and, heuristic approaches.

The rest of the survey consists of a quick overview of other

surveys on related topics in Section II, a context-based classi-
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TABLE II
RELATED WORKS

Topic Content

Big Data [1] studies big data analytics for network optimization.

Context Information [2], [3] discuss acquisition, modeling, exchange and usage of contextual information for different
scenarios.

Data Classification [4] surveys a variety of classifiers and uses them to predict unknown data.

Traffic & Throughput
[5] uses trace-driven simulation to compare prediction errors obtained using different techniques.
[6] uses real network traffic to evaluate prediction techniques and to discuss their practical challenges.

Social Patterns
[7] uses social network information to study traffic patterns.
[8] investigates the impact of prediction on QoE

Cognitive Radios
[9] investigates spectrum occupancy models and their reliability.
[10] focus on spectrum occupancy and channel status prediction.

fication of the anticipatory networking literature in Section III,

two handbooks on prediction and optimization techniques in

Section IV and Section V, respectively. Section VI and VII

discuss how the anticipatory networking paradigm can be

applied in a variety of network types and at different layers of

the protocol stack. Section VIII and IX conclude the survey

reporting the impact of anticipatory networking on future

networks, the envisioned hindrances to its implementation and

the open challenges.

II. RELATED WORK

This section discusses a few recent survey on topics close

to anticipatory networking and is summarized in Table II.

Applying big data analytics for network optimization is

studied in [1]. Based on the papers they reviewed, the authors

propose a generic framework to support big data based opti-

mization of mobile networks. Using traffic patterns derived

from case studies, they argue that their framework can be

used to optimize resource allocation, base station deployment,

and interference coordination in such networks. In [2], [3],

the ability to extract and process contextual information by

entities in a network is identified as a key factor in improving

network performance. In [2], the procedure of using context

information in wireless networks is broken down into acqui-

sition, modeling, exchanging and evaluating stages, where the

first two deal with gathering information and predicting the

future behavior, and the latter two perform self-optimization

and decision making. A similar taxonomy is provided in [3]

and various examples of different techniques are reviewed for

each phase. In addition to that, the authors provide a thorough

survey on potential use cases of anticipatory networks and

their respective challenges.

Predicting future states of network attributes is an essential

task in designing anticipatory networks. Data classification, a

popular prediction technique, has been thoroughly surveyed

in [4]. Among other attributes, the prediction of data traffic

and throughput has been the subject of [5], [6]. In [5], the

authors consider seven algorithms for throughput prediction,

ranging from mean-based and linear regression methods to Ar-

tificial Neural Networks (ANNs) and Support Vector Machines

(SVMs) and compare their performance using a trace-driven

simulator. Furthermore, they develop an information theoretic

lower bound for the prediction error. In a similar attempt, [6]

reviews real time Internet traffic classification. Here, the au-

thors not only review prediction algorithms, but also try to

shed light on practical challenges in deploying different kinds

of techniques under different network scenarios. For instance,

they argue that algorithms that require packet inspection either

in the form of port number or payload, might have limited

applicability due to potential encryption compared to methods

that rely on statistical traffic properties.

The capability to extract user behavior in online social

networks and use it to learn the evolution of traffic patterns

in mobile networks is the subject of another survey [7]. The

general approach of the papers included in that review is to

use social graphs and classify different types of interactions

between users on social networks in order to monitor the

corresponding network traffic. Another important attribute for

network performance is modeling the Quality of Experience

(QoE) or how the service is perceived by the user. The authors

of [8] provide a thorough survey including various methods for

modeling QoE for different applications and also discuss tools

for estimating and predicting QoE values by probing network

parameters.

Cognitive Radio (CR) and Radio Environment Map (REM)

are two very important technologies to measure, estimate and

predict spectrum availability and occupancy. For instance, [9],

[10] provide two independent taxonomies of methodologies,

campaigns and models. In addition, they review the reliability

of these types of measurements [9] and they illustrate how to

predict the system evolution thanks to available information

and regression analysis [10].

To the best of our knowledge, this survey is the first to

specifically address anticipatory techniques for mobile net-

works. We believe that, while the topic is undeniably hot, an

overarching review of the body of work is still missing and

greatly needed to facilitate the adoption of such a promising

direction.

III. A CONTEXT-BASED CLASSIFICATION OF

ANTICIPATORY NETWORKING SOLUTIONS

In this section, we classify the different types of context that

can be predicted and exploited. For each one, we highlight the

most popular prediction techniques as well as the applications

for which an anticipatory optimization is performed.

A. Geographic Context

Geographic context refers to the geographic area associated

to a specific event or information. In wireless communications,
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Fig. 1. Geographic context example: an example of estimated trajectories of
6 mobile users.

it refers to the location of the mobile users, often enriched

with speed information as well as past and future trajectories.

Understanding human mobility is an emergent research field

that especially in the last few years has significantly benefited

from the rapid proliferation of wireless devices that frequently

report status and location updates. Fig. 1 illustrates an example

of estimated trajectories of 6 mobile users.

The potential predictability in user mobility can be as high

as 93% [11]1. Along the same line, [12] investigates both the

maximal predictability and how close to this value practical

algorithms can come when applied to a large mobile phone

dataset. Those results indicate that human mobility is very

far from being random. Therefore, collecting, predicting and

exploiting geographic context is of crucial importance.

In the rest of this section we organize the papers dealing

with geographic context according to their main focus: the

majority of them deals with pure geographical prediction and

differs on secondary aspects such as whether they predict a

single future location, a sequence of places or a trajectory.

The second largest group of papers deals with multimedia

streaming optimization.

1) Next location prediction: The simplest approach is to

forecast where a given user will be at a predetermined instant

of time in the future. The authors of [13] propose to track

mobile nodes using topological coordinates and topology

preserving maps. Nodes’ location is identified with a vector

of distances (in hops) from a set of nodes called anchors and

a linear predictor is used to estimate the mobile nodes’ future

positions. Evaluation is performed on synthetic data and nodes

are assumed to move at constant speed. Results show that the

proposed method approaches an accuracy above 90% for a

prediction horizon of some tens of seconds.

A more general approach that exploits ANNs is discussed

in [14]. Extreme Learning Machines (ELMs), which do not

require any parameter tuning, are used to speed up the learning

1Value obtained for a high-income country with stable social conditions.
The percentage can decrease for different countries, e.g., low-income country
or natural disaster situation.

process. The method is evaluated using synthetic data over

different mobility models.

To extend the prediction horizon [15] exploits users’ loca-

tions and short-term trajectories to predict the next handover.

The authors use Channel State Information (CSI) and han-

dover history to solve a classification problem via supervised

learning, i.e., employing a multi-class SVM. In particular, each

classifier corresponds to a possible previous cell and predicts

the next cell. A real-time prediction scheme is proposed and

the feedback is used to improve the accuracy over time.

Simulation results have been derived using both synthetic and

real datasets. The longer moves along a given path, the higher

the accuracy of forecasting the rest.

Location information can be extracted from cellular network

records. In this way the granularity of the prediction is coarser,

but positioning can be obtained with little extra energy. In

particular, [16] aims at predicting a given user location from

those of similar users. Collective behavioral patterns and a

Markovian predictor are used to compute the next six locations

of a user with a one-hour granularity, i.e., a six-hour prediction

horizon. Evaluation is done using a real dataset and shows that

an accuracy of about 70% can be achieved in the first hour,

decreasing to 40− 50% for the sixth hour of prediction.

2) Space and time prediction: Prediction of mobility in a

combined space-time domain is often modeled using statistical

methods. In [17], the idea is to predict not only the future

location a user will reach, but also when and for how long

the user will stay there. To incorporate the sojourn time

during which a user remains in a certain location, mobility is

modeled as a semi-Markov process. In particular, the transition

probability matrix and the sojourn time distribution are derived

from the previous association history. Evaluation is done on a

real dataset and shows approximately 80% accuracy. A similar

approach is presented in [18], where the prediction is extended

from single to multi-transitions (estimating the likelihood of

the future event after an arbitrary number of transitions). Both

papers provide also some preliminary results on the benefits

of the prediction on resource allocation and balancing.

In [19], the authors represent the network coverage and

movements using graph theory. The user mobility is modeled

using a Continuous Time Markov (CTM) process where the

prediction of the next node to be visited depends not only on

the current node but also on the previous one (i.e., second-

order Markovian predictor). Considering both local as well as

global users’ profiles, [20] extends the previous Markovian

predictor and improves accuracy by about 30%. As pointed

out in [21], sojourn times and transition probabilities are

inhomogeneous. Thus, an inhomogeneous CTM process is

exploited to predict user mobility. Evaluation on a real dataset

shows an accuracy of 67% for long time scale prediction.

The interdependence between time and space is investi-

gated also in [22] by examining real data collected from

smartphones during a two-month deployment. Furthermore,

[23] shows the benefit of using a location-dependent Markov

predictor with respect to a location-independent model based

on nonlinear time series analysis. Additionally, it is shown that

information on arrival times and periodicity of location visits is

needed to provide accurate prediction. A system design, named
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SmartDC, is presented in [24]–[26]. SmartDC comprises a

mobility learner, a mobility predictor and an adaptive duty

cycling. The proposed location monitoring scheme optimizes

the sensing interval for a given energy budget. The system has

been implemented and tested in a real environment. Notably,

this is also one of the few papers that takes into account the

cost of prediction, which in this case is evaluated in terms

of energy. Namely, the authors detect approximately 90% of

location changes, while reducing energy consumption at the

expense of higher detection delay.

3) Location sequences and trajectories: A natural exten-

sion of the spatio-temporal perspective is the prediction of

the location patterns and trajectories of the users. User mo-

bility profiles have been introduced in [27] to optimize call

admission control, resource management and location updates.

Statistical predictors are used to forecast the next cell to which

a mobile phone is going to connect. The validation of the so-

lution is done via simulation. In [28], an approach for location

prediction based on nonlinear time series analysis is presented.

The framework focuses on the temporal predictability of users’

location, considering their arrival and dwell time in relevant

places. The evaluation is done considering four different real

datasets. The authors evaluate first the predictability of the

considered data and then show that the proposed nonlinear pre-

dictor outperforms both linear and Markov-based predictors.

Precision approaches 70 − 90% for medium scale prediction

(5 minutes) and decreases to 20 − 40% for long scale (up to

8 hours).

In order to improve the accuracy of time series techniques,

in [29] the authors exploit the movement of friends, people,

and, in general, entities, with correlated mobility patterns.

By means of multivariate nonlinear time series prediction

techniques, they show that forecasting accuracy approaches

95% for medium time scale prediction (5 to 10 minutes) and

is approximately 50% for 3 hour prediction. Confidence bands

show a significant improvement when prediction exploits

patterns with high correlation. Evaluation is done considering

two different real datasets.

Trajectory analysis and prediction also benefit from exploit-

ing specific constraints such as streets, roads, traffic lights

and public transportation routes. In [30] the authors adapt

the local Markovian prediction model for a specific coverage

area in terms of a set of roads, moving directions, and traffic

densities. When applying Markov prediction schemes, the

authors consider a road compression approach to avoid dealing

with a large number of locations, reduce the size of the state

space, and minimize the approximation error. A more attractive

candidate for trajectory prediction is the public transportation

system, because of known routes and stops, and the large

amount of generated mobile data traffic. In [31], the authors

investigate the predictability of mobility and signal variations

along public transportation routes, to examine the viability of

predictive content delivery. The analysis on a real dataset of

a bus route, covering both urban and sub-urban areas, shows

that modeling prediction uncertainty is paramount due to the

high variability observed, which depends on combined effects

of geographical area, time, forecasting window and contextual

factors such as signal lights and bus stops.

Moving from discrete to continuous trajectories, Kalman

filtering is used to predict the future velocity and moving

trends of vehicles and to improve the performance of broad-

casting [32]. The main idea is that each node should send

the message to be broadcast to the fastest candidate based on

its neighbors’ future mobility. Simulation results show modest

gains, in terms of percentage of packet delivery and end-to-end

delay, with respect to non-predictive methods.

An alternative to Kalman filters is the use of regression

techniques [33], which analyze GPS observations of past trips.

A systematic methodology, based on geometrical structures

and data-mining techniques, is proposed to extract meaningful

information for location patterns. This work characterizes the

location patterns, i.e., the set of locations visited, for several

millions of users using nationwide call data records. The

analysis highlights statistical properties of the typical covered

area and route, such as its size, average length and spatial

correlation.

Along the same line, [34] shows how the regularity of

driver’s behavior can be exploited to predict the current end-

to-end route. The prediction is done by exploiting clustering

techniques and is evaluated on a real dataset. A similar

approach, named WhereNext, is proposed in [35]. This method

predicts the next location of a moving object using past

movement patterns that are based on both spatial and temporal

information. The prediction is done by building a decision

tree, whose nodes are the regions frequently visited. It is then

used to predict the future location of a moving object. Results

are shown using a real dataset provided by the GeoPKDD

project [36]. The authors show the trade-off between the

fraction of predicted trajectories and the accuracy. Both [34]

and [35] show similar performance with an accuracy of

approximately 40% and medium time scale prediction (order

of minutes).

4) Dealing with errors: The impact of estimation and

prediction errors is modeled in [37]. The authors propose a

comprehensive overview of several mobility predictors and

associated errors and investigate the main error sources and

their impact on prediction. Based on this, they propose a

stochastic model to predict user throughput that accounts for

uncertainty. The method is evaluated using synthetic data while

assuming that prediction’s errors have a truncated Gaussian

distribution. The joint analysis on the predictability of location

and signal strength, which in this case is simply quantified

by the standard deviation of the random variable, shown

in [31] indicates that location-awareness is a key factor to

enable accurate signal strength predictions. Location errors

are also considered in [38] where both temporal and spatial

correlation are exploited to predict the average channel gain.

The proposed method combines an AR model with functional

linear regression and relies on location information. Results

are derived using real data taken from the MOMENTUM

project [39] and show that the proposed method outperforms

SVM and AR processes.

5) Mobility-assisted handover optimization: Seamless mo-

bility requires efficient resource reservation and context trans-

fer procedures during handover, which should not be sensi-

tive to randomness in user movement patterns. To guarantee
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the service continuity for mobile users, the conventional

in-advance resource reservation schemes make a bandwidth

reservation over all the cells that a mobile host will visit

during its active connection. With mobility pattern prediction,

it is possible to prepare resources in the most probable cells

for the moving users. Using a Markov chain-based pattern

prediction scheme, the authors in [30] propose a statistical

bandwidth management algorithm to handle proactive resource

reservations to reduce bandwidth waste. Along similar lines,

[19], [40] investigate mobility prediction schemes, considering

not only location information but also user profiles, time-of-

day, and duration characteristics, to improve the handover per-

formance in terms of resource utilization, handover accuracy,

call dropping and call blocking probabilities.

6) Geographically-assisted video optimization: One of the

main applications that has been used to show the benefits

of geographic context is video streaming. A pioneer work

showing the benefit of a long-term location-based scheduling

for streaming is [41]. The authors propose a system for

bandwidth prediction based on geographic location and past

network conditions. Specifically, the streaming device can use

a GPS-based bandwidth-lookup service in order to predict

the expected bandwidth availability and to optimally schedule

the video playout. The authors present simulation as well as

experimental results, where the prediction is performed for the

upcoming 100 meters. The predictive algorithm reduces the

number of buffer underruns and provides stable video quality.

Application-layer video optimization based on prediction

of user’s mobility and expected capacity, is proposed also

in [42]–[44]. In [42], the authors minimize a utility function

based on system utilization and rebuffering time. For the single

user case they propose an online scheme based on partial

knowledge, whereas the multiuser case is studied assuming

complete future knowledge. In [43], different types of traffic

are considered: full buffer, file download and buffered video.

Prediction is assumed to be available and accurate over a

limited time window. Three different utility functions are com-

pared: maximization of the network throughput, maximization

of the minimum user throughput, and minimization of the

degradations of buffered video streams. Both works show

results using synthetic data and assuming perfect prediction

of the future wireless capacity variations over a time window

with size ranging from tens to hundreds of seconds. In

contrast, [44] introduces a data rate prediction mechanism

that exploits mobility information and is used by an enhanced

Proportionally Fair (PF) scheduler. The performance gain is

evaluated using a real dataset and shows a throughput increase

of 15%-55%.

Delay tolerant traffic can also benefit from offloading and

prefetching as shown in [45]. The authors propose methods to

minimize the data transfer over a mobile network by increasing

the traffic offloaded to WiFi hotspots. Three different algo-

rithms are proposed for both delay tolerant and delay sensitive

traffic. They are evaluated using empirical measurements and

assuming errors in the prediction. Results show that offloaded

traffic is maximized when using prediction, even when this is

affected by errors.

A geo-predictive streaming system called GTube, is pre-

sented in [46]. The application obtains the user’s GPS loca-

tions and informs a server which provides the expected con-

nection quality for future locations. The streaming parameters

are adjusted accordingly. In particular, two quality adaptation

algorithms are presented, where the video quality level is

adapted for the upcoming 1 and n steps, respectively, based

on the estimated bandwidth. The system is tested using a real

dataset and shows that accuracy reaches almost 90% for very

short time scale prediction (few seconds), but it decreases very

fast approaching zero for medium time scale prediction (few

minutes). However, the proposed n-step algorithm improves

the stability of the video quality and increases bandwidth

utilization.

B. Link Context

Link context refers to the prediction of the evolution of

the physical wireless channel, i.e., the channel quality and

its specific parameters, so that it is possible either to take

advantage of future link improvements or to counter bad

conditions before they impact the system. As an example

of link context, Fig. 2 shows a pathloss map of the center

of Berlin realized with the data of the MOMENTUM [39]

project.

1) Channel parameter prediction: One possible approach

to anticipate the evolution of the physical channel state is to

predict the specific parameters that characterize it. In general,

the variations of the physical channel can be caused by large-

scale and small-scale fading. While predicting small-scale

fading is quite challenging, if not impossible, several papers

focuses on predicting path loss and shadowing effects. In [47],

the time-varying nonlinear wireless channel model is adopted

to predict the channel quality variation anticipating distance

and pathloss exponent. The performance evaluation is done

using both an indoor and an outdoor testbed. The goodput

obtained with the proposed bitrate control scheme can be

almost doubled compared to other approaches.

Pathloss prediction in urban environments is investigated

in [48]. The authors propose a two-step approach that com-

bines machine learning and dimensional reduction techniques.

Specifically, they propose a new model for generating the

input vector, the dimension of which is reduced by apply-

ing linear and nonlinear principal component analysis. The

reduced vector is then given to a trained learning machine. The

authors compare ANNs and SVMs using real measurements

and conclude that slightly better results can be achieved using

the ANN regressors.

Supporting the temporal prediction with spatial information

is proposed in, e.g., [49] to study the evolution of shadow fad-

ing. The authors suggest to implement a Kriged Kalman Filter

(KKF) to track the time varying shadowing using a network

of CRs. The prediction is used to anticipate the position of

the primary users and the expected interference and, conse-

quently, to maximize the transmission rate of CR networks.

Errors with the proposed model approach 2 dB (compared

to 10 dB obtained with the pathloss based model). Targeting

the same objective, but using a different methodology, [50]

formulates the CR throughput optimization problem as an
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Fig. 2. Link context example: a pathloss map of Berlin downtown obtained
from the data of the MOMENTUM project [39], where the triangles represent
base stations. Pathloss maps are frequently used to predict the evolution of
the connection quality in mobile networks.

MDP. In particular, the predicted channel availability is used

to maximize the throughput and to reduce the time overhead

of channel sensing. Predictors robust to channel variations are

investigated also in [51]. A clustering method with supervised

SVM classification is proposed. The performance is shown

for bulk data transport via Transport Control Protocol (TCP)

and it is also shown that the predictive approach outperforms

non-predictive ones.

Finally, maps can be used to summarize predicted infor-

mation; for instance, algorithms to build pathloss maps are

proposed in [52]. In this paper, the authors propose two kernel-

based adaptive algorithms, namely the adaptive projected sub-

gradient method and the multikernel approach with adaptive

model selection. Numerical evaluation is done for both a

urban scenario and a campus network scenario, using real

measurements. The performance of the algorithms is evaluated

assuming perfect knowledge of the users’ trajectories.

2) Combined channel and mobility context: Channel qual-

ity and mobility information are jointly predicted in [53].

The authors combine information on visited locations and

corresponding achieved link quality to provide connectivity

forecast. A Markov model is implemented in order to forecast

future channel conditions. Location prediction accuracy is

approximately 70% for a prediction window of 20 seconds.

However, the location information has quite a coarse granu-

larity (of about 100 m). In terms of bandwidth, the proposed

model, evaluated on a real dataset, shows an accuracy within

10 KB/s for over 50% of the evaluation period, and within 50
KB/s for over 80% of the time. In [54], prediction is employed

to adjust the routing metrics in ad hoc wireless networks. In

particular, the metrics considered in the paper are the average

number of retransmissions needed and the time expected to

transmit a data packet. The solution anticipates the future

signal strength using linear regression on the history of the

link quality measurements. Simulations show that the packet

delivery ratio is close to 100%, even though it drops to 20%
using classical methods.

When the information used to drive the prediction is affected

by errors, it is important to account for the magnitude of the

error. This has been considered, for instance, in [55] and [56],

where the impact of location uncertainties is taken into ac-

count. Namely, the authors of [55] show that classical Gaussian

Process (GP) wrongly predicts the channel gain in presence

of errors, while uncertain GP, which explicitly accounts for

location uncertainty, outperforms the former in both learning

and predicting the received power. Gains are shown also for

a simple proactive resource allocation scenario. Similarly, the

same authors propose in [57] a proactive scheduling mech-

anism that exploits the statistical properties of user demand

and channel conditions. Furthermore, the model captures the

impact of prediction uncertainties and assesses the optimal

gain obtained by the proactive resource scheduler. The authors

also propose an asymptotically optimal policy that attains the

optimal gain rapidly as the prediction window size increases.

Uncertainties are also dealt with in [58], where a resource

allocation algorithm for mobile networks that leverages link

quality prediction is proposed. Time series filtering techniques

(AutoRegressive and Moving Average (ARMA)) are used

to predict near term link quality, whereas medium to long

term prediction is based on statistical models. The authors

propose a resource allocation optimization framework under

imperfect prediction of future available capacity. Simulations

are done using a real dataset and show that the proposed

solution outperforms the limited horizon optimizer (i.e., when

the prediction is done only for the upcoming few seconds) by

10−15%. Resource allocation is also addressed in [44], which

extends the standard PF scheduler of 4G networks to account

for data rate prediction obtained through adaptive radio maps.

3) Channel-assisted video optimization: In [59], the authors

propose an adaptive mobile video streaming framework, which

stores video in the cloud and offers to each user a continuous

video streaming adapted to the fluctuations of the link quality.

The paper proposes a mechanism to predict the potential avail-

able bandwidth in the next time window (of a duration of a few

seconds) based on the measurements of the link quality done

in the previous time window. A prototype implementation of

the proposed framework is used to evaluate the performance.

This shows that the prediction has a relative error of about

10% for very short time windows (a couple of seconds) but

becomes relatively poor for larger time windows. The video

performance is evaluated in terms of “click-to-play” delay,

which is halved with the proposed approach. A Markov model

is used in [60], where information on both channel and buffer

states is combined to optimize mobile video streaming. Both

an optimal policy as well as a fast heuristic are proposed.

A drive test was conducted to evaluate the performance of

the proposed solution. In particular, the authors show the

proportional dependency between utility and buffer size, as

well as the complexity of the two algorithms. Furthermore,

a Markov model is adopted to represent different user’s

achievable rates [61] and channel states [62]. The transition

matrix is derived empirically to minimize the number of video

stalls and their duration over a 10-second horizon.

Video calls are considered in [63]. Namely, a cross-layer

design for proactive congestion control, named Rebera, is

proposed. The system measures the real-time available band-

width and uses a linear adaptive filter to estimate the future

capacity. Furthermore, it ensures that the video sending rate

never exceeds the predicted values, thereby preventing self-

congestion and reducing delays. Performance results with
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respect to today’s solutions are given for both a testbed

and a real cellular network. In [64], the authors propose

a hop-by-hop video quality adaptation scheme at the router

level to improve the performance of adaptive video streaming

in Content Centric Networks (CCNs). In this context, the

routers monitor network conditions by estimating the end-

to-end bandwidth and proactively decrease the video quality

when network congestion occurs. Performance is evaluated

considering a realistic large-scale network topology and it is

shown that the proposed solution outperforms state of the art

schemes in terms of both playback quality and average delay.

4) Video optimization under uncertainty: For the video

optimization use case, some works also assess the impact of

uncertain predictions. In [65], the authors propose a stochastic

model of prediction errors, based on [37], and introduce an

online scheduler that is aware of prediction errors. Namely,

based on the expected prediction accuracy, the algorithm de-

termines whether to consider or discard the predicted data rate.

A similar model for prediction errors is introduced in [66]. In

this case, a Linear Programming (LP) formulation is proposed

to trade off spectral efficiency and stalling time. The proposed

solution shows good gains with respect to the case without

prediction, even when errors occur. LP is used also in [67]

to minimize the base station airtime with the constraint of

no video interruption. In this case, uncertainties are modeled

by using a fuzzy approach. Furthermore, in order to keep

track of the previous values of the error, a Kalman filter is

used. Simulations are run using synthetic data and show the

effect of channel variability on video degradation and average

airtime. In [68], bandwidth prediction is exploited to increase

the quality of video streaming. Both perfect and uncertain

prediction are considered and a robust heuristic is proposed

to mitigate the effect of prediction errors when adapting the

video bitrate. In [69], [70], a predictive resource allocation

robust to rate uncertainties is proposed. The authors propose a

framework that provides quality guarantees with the objective

of minimizing energy consumption. Both optimal gradient-

based and real-time guided heuristic solutions are presented.

In [69] both Gaussian and Bernstein approximation are used

to model rate uncertainties, whereas [70] considers only the

former one. Similarly, [71] provides predictive Quality-of-

Service (QoS) over wireless Asynchronous Transfer Mode

(ATM) networks: given the TDMA nature of these networks,

these schemes optimize the number of allocated time slots

depending on the characteristics of the traffic stream and the

wireless link.

5) Efficiency bounds and approximations for multimedia

streaming applications: A few papers ([72]–[79]) investigate

resource allocation optimization assuming that the future

channel state is perfectly known. While addressing different

objectives, these papers share similar methods: they first devise

a problem formulation from which an optimal solution can

be obtained (using standard optimization techniques), then

they propose sub-optimal approaches and on-line algorithms to

obtain an approximation of the optimal solution. Furthermore,

all these papers leverage a buffer to counteract the randomness

of the channel. For instance, in case a given amount of

information has to be gathered within a deadline, the buffer

allows the system to optimize (for a given objective function)

the resource allocation while meeting the deadline.

In this regard, energy-efficiency is the primary objective

in [72], [73], which is optimized by allowing the network

base stations to be switched off once the users’ streaming

requirements have been satisfied. Simulations show that an

energy saving up to 80% with respect to the baseline approach

can be achieved and that the performance of the heuristic

solution is quite close to the optimal (but impractical) Mixed-

Integer Linear Programming (MILP) approach. Buffer size

is investigated in [78], where the author introduces a linear

formulation that minimizes the amount for resources assigned

to non-real time video streaming with constraints on the user’s

playout buffer. Results are shown for a scenario with both

video and best effort users and highlight the gain in terms of

required resources to serve the video users as well as data rate

for the best effort users.

The trade-off between streaming interruption time and av-

erage quality is investigated in [76], [77] by devising a mixed-

integer quadratically constrained problem which computes the

optimal download time and quality for video segments. Then,

the authors propose a set of heuristics tailored to greedily

optimize segment scheduling according to a specific objective

function, e.g., maximum quality, minimum streaming interrup-

tion, or fairness. Similar objectives are tackled in [74], [75] in a

lexicographic approach, so that streaming continuity is always

prioritized over quality. They first propose a heuristic for the

lateness-quality problem that performs almost as good as the

MILP formulation. Then, they extend the MILP formulation

to include QoS guarantees and they introduce an iterative

approximation based on a simpler LP formulation. A further

heuristic approach is devised in [79] and accounts for the

buffer and channel state prediction. The proposed approach

maximizes the streaming quality while guaranteeing that there

are no interruptions.

6) Cognitive radio maps: CRs are context-aware wireless

devices that adapt their functionalities to changes in the envi-

ronment. They have been recently used [80]–[82] to obtained

the so-called REM: a multi-dimensional database containing a

wide set of information ranging from regulations to spectrum

usage.

For instance, REM are used to predict spectrum availability

in CR [80]: the paper exploits cognitive maps to provide con-

textual information for predictive machine learning approaches

such as Hidden Markov Models (HMM), ANN and regression

techniques. The construction of these maps is discussed in [81]

and the references therein, while their use as enabler for CR

networks is analyzed in [82].

In the context of anticipatory networking, REMs are often

used as a source of contextual information for the actual

prediction technique adopted, rather than as prediction tools

themselves. [9], [10] present two surveys of methodolo-

gies and measurement campaigns of spectrum occupancy. In

particular, [9] proposes a conservative approach to account

for measurement uncertainty, while [10] exploits predictors

to provide the future channel status. In addition, prediction

through machine learning approaches is addressed in [83],

where different techniques are compared to assess future
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channel availability.

Imperfect measurements are dealt with in [84], which mod-

els the problem as a repeated game and maximizes the total

network payoff. However, in cognitive networks, the channel

status depends on the activity of primary users. [85] surveys

the models proposed so far to describe primary users activity

and that can be used to drive prediction in this area. Once

the activity of primary users is available or predicted, it is

possible to control the activity of secondary users in order

to guarantee the agreed QoS to the former [86], [87]. These

papers compute the feasible cognitive interference region in

order to allow secondary users’ communication respecting

primary users’ rights. The utilization of spectrum opportunity

describes the probability of a secondary user to exploit a free

communication slot [88].

A similar form of opportunistic spectrum usage goes under

the name of white space [89]: i.e., channels that are unused

at specific location and time. CRs can take advantage of these

frequencies thanks to dynamic spectrum access. Finally, [90]

describes how to exploit CR to realize a complete smart grid

scenario; [91] describes how to exploit channel bonding to

increase the bandwidth and decrease the delay of CR.

C. Traffic Context

This section overviews some of the approaches that focus

on traffic and throughput prediction. Although related to the

previous context, the papers discussed in this section leverage

information collected from higher layers of the protocol stack.

For instance, solutions falling in this category try to predict,

among other parameters, the number of active users in the

network and the amount of traffic they are going to produce.

Similarly, but from the perspective of a single user, the

prediction can target the data rate that a streaming application

is going to achieve in the near term.

We grouped these papers in three main classes: pure analysis

of mobile traffic; traffic prediction for networking optimiza-

tion; and direct throughput prediction.

1) Traffic analysis and characterization: The analysis of

mobile traffic is fundamental for long-term network optimiza-

tion and re-configuration. To this end, several pieces of work

have addressed such research topics in the recent past.

The work in [92] targets the creation of regressors for

different performance indicators at different spatio-temporal

granularity for mobile cellular networks. Namely, the authors

focus on the characterization of per-device throughput, base

station throughput and device mobility. A one-week nation-

wide cellular network dataset is collected through proprietary

traffic inspection tools placed in the operator network and are

used to characterize the per-user traffic, cell-aggregate traffic

and to perform further spatio-temporal correlation analysis.

A similar scope is addressed by [93] which, on the other

hand, focuses more on core network measurements. Flow

level mobile device traffic data are collected from a cellular

operator’s core network and are used to characterize the IP

traffic patterns of mobile cellular devices.

More recently, the authors of [94] studied traffic predic-

tion in cloud analytics and prove that optimizing the choice

of metrics and parameters can lead to accurate prediction

even under high latency. This prediction is exploited at the

application/TCP layer to improve the performance of the

application avoiding buffer overflows and/or congestion.

2) Traffic prediction: Several applications can benefit from

the prediction of traffic performance features. For instance, a

predictive framework that anticipates the arrival of upcoming

requests is used in [95] to prefetch the needed content at the

mobile terminal. The authors propose a theoretical framework

to assess how the outage probability scales with the prediction

horizon. The theoretical framework accounts for prediction

errors and multicast delivery. Along the same line, queue

modeling [96] and analysis [97] is used to predict the up-

coming workloads in a lookahead time window. Leveraging

the workload prediction, a multi-slot joint power control

and scheduling problem is formulated to find the optimal

assignment that minimizes the total cost [96] or maximizes

the QoS [97].

Multimedia optimization is the focus in [98]. By predicting

throughput, packet loss and transmission delay half a sec-

ond in advance, the authors propose to dynamically adjust

application-level parameters of the reference video streaming

or video conferencing services including the compression ratio

of the video codec, the forward error correction code rate

and the size of the de-jittering buffer. Traffic prediction is

also addressed in [99], where the authors propose to use

a database of events (concerts, gatherings, etc.) to improve

the quality of the traffic prediction in case of unexpected

traffic patterns and in [100], where a general predictive control

framework along with Kalman filter is proposed to counteract

the impact of network delay and packet loss. The objective

of [101] is to build a model for user engagement as a function

of performance metrics in the context of video streaming

services. The authors use a supervised learning approach based

on average bitrate, join time, buffering ratio and buffering to

estimate the user engagement. Finally, inter-download time

can be modeled [102] and subsequently predicted for quality

optimization.

The work in [103] targets energy-efficient resource schedul-

ing in mobile radio networks. The authors introduce a Mixed

Non-Linear Program (MNLP) which returns on a slot basis the

optimal allocation of resources to users and the optimal users-

cell association pattern. The proposed model leverages optimal

traffic predictors to obtain the expected traffic conditions in

the following slots. Radio resource allocation in mobile radio

networks is addressed also in [104] and later by the same

authors in [105]; the target is to design a predictive framework

to optimally orchestrate the resource allocation and network

selection in case one operator owns multiple access networks.

The predictive framework aims at minimizing the expected

time average power consumption while keeping the network

(user queues) stable. The core contribution of [106], [107] is

the use of deep learning techniques to predict the upcoming

video traffic sessions; the prediction outcome is then used to

proactively allocate the resources of video servers to these

future traffic demands.

3) Throughput prediction: Rather than predicting the ex-

pected traffic or optimizing the network based on traf-



1553-877X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2017.2694140, IEEE

Communications Surveys & Tutorials

10

fic prediction, the work in this section targets the predic-

tion/optimization based on the expected throughput. A com-

mon characteristic of the work described here is that the spatio-

temporal correlation is exploited in the prediction phase of the

expected throughput.

Quite a few early works studied how to effectively pre-

dict the obtainable data rate. In particular, long term pre-

diction [108] with 12-hour granularity allows to estimate

aggregate demands up to 6 months in advance. Shorter and

variable time scales are studied in [109], [110] adopting

AutoRegressive Integrated and Moving Average (ARIMA)

and Generalized AutoRegressive Conditionally Heteroskedas-

tic (GARCH) techniques.

In [111], the authors propose a dynamic framework to

allocate downlink radio resources across multiple cells of 4G

systems. The proposed framework leverages context informa-

tion of three types: radio maps, user’s location and mobility,

as well as application-related information. The authors assume

that a forecast of this information is available and can be

used to optimize the resource allocation in the network. The

performance of the proposed solution is evaluated through

simulation for the specific use case of video streaming. Geo-

localized radio maps are also exploited in [112]. Here the

optimization is performed at the application layer by letting

adaptive video streaming clients and servers dynamically

change the streaming rate on the basis of the current bandwidth

prediction from the bandwidth maps. The empirical collection

of geo-localized data rate measures is also addressed in [113]

which introduces a dataset of adaptive Hypertext Transfer

Protocol (HTTP) sessions performed by mobile users.

The work in [114] considers the problem of predicting

end-to-end quality of multi-hop paths in community WiFi

networks. The end-to-end quality is measured by a linear

combination of the expected transmission count across all the

links composing the multi-hop path. The authors resort to a

real data set of a WiFi community network and test several

predictors for the end-to-end quality.

The anticipation of the upcoming throughput values is

often applied to the optimization of adaptive video streaming

services. In this context, Yin et al. [115] leverage throughput

prediction to optimally adapt the bit rate of video encoders;

here, prediction is based on the harmonic mean of the last k
throughput samples.

In [116], [117] the authors build on the conjecture that

video sessions sharing the same critical features have similar

QoE (e.g., re-buffering, startup latency, etc.). Consequently,

first clustering techniques are applied to group similar video

sessions, and then throughput predictors based on HMMs are

applied to each cluster to dynamically adapt the bit rate of the

video encoder to the predicted throughput samples.

The work in [118] resorts to a model-based throughput

predictor in which the throughput of a Dynamic Adaptive

Streaming over HTTP (DASH)-based video streaming service

is assumed to be a random variable with Beta-like distribution

whose parameters are empirically estimated within an obser-

vation time window. Building on this estimate, the authors

propose a MNLP with a concave objective function and linear

constraints. The program is implemented as a multiple choice

knapsack problem and solved using commercial solvers. Along

the same lines, the optimization of a DASH-based video

streaming service is addressed in [119], where the authors

propose an adaptive video streaming framework based on a

smoothed rate estimate for the video sessions.

The work in [120] considers the scenario where a small

cell is used to deliver video content to a highly dense set of

users. The video delivery can also be supported in a distributed

way by end-user devices storing content locally. A control-

theoretic framework is proposed to dynamically set the video

quality of the downloaded content while enforcing stability of

the system.

D. Social Context

The work on anticipatory networking leveraging social

context exploits ex ante or ex post information on social-type

relationships between agents in the networking environment.

Such information may include: the network of social ties and

connections, the user’s preference on contents, measures on

user’s centrality in a social network, and measures on users’

mobility habits. The aforementioned context information is

leveraged in three main application scenarios: caching at the

edge of mobile networks, mobility prediction, and downlink

resource allocation in mobile networks.

1) Social-assisted caching: Motivated by the need of limit-

ing the load in the backhaul of 5G networks, references [121]–

[123] propose two schemes to proactively move contents closer

to the end users. In [121], caching happens at the small

cells, whereas in [122], [123] contents can be proactively

downloaded by a subset of end users which then re-distribute

them via device-to-device (D2D) communication. The authors

first define two optimization problems which target the load

reduction in the backhaul (caching at small cells) and in the

small cell (caching at end users), respectively, then heuristic

algorithms based on machine learning tools are proposed to

obtain sub-optimal solutions in reasonable processing time.

The heuristic first collects users’ content rating/preferences to

predict the popularity matrix Pm. Then, content is placed at

each small cell in a greedy way starting from the most popular

ones until a storage budget is hit. The first algorithmic step of

caching at the end users is to identify the K most connected

users and to cluster the remaining ones in communities. Then it

is possible to characterize the content preference distributions

within each community and greedily place contents at the

cluster heads. In [123], the prediction leverages additional

information on the underlying structure of content popularity

within the communities of users. Joint mobility and popularity

prediction for content caching at small cell base stations

is studied in [124]. Here, the authors propose a heuristic

caching scheme that determines whether a particular content

item should be cached at a particular base station by jointly

predicting the mobility pattern of users that request that item as

well as its popularity, where popularity prediction is performed

using the inter-arrival times of consecutive requests for that

object. They conclude that the joint scheme outperforms

caching with only mobility and only popularity models.

A similar problem is addressed in [125]: the authors con-

sider a distributed network of femto base stations, which can
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be leveraged to cache videos. The authors study where to

cache videos such that the average sum delay across all the

end users is minimized for a given video content popularity

distribution, a given storage capacity and an arbitrary model

for the wireless link. A greedy heuristic is then proposed to

reduce the computational complexity.

In [126], [127], it is argued that proactive caching of delay

intolerant content based on user preferences is subject to

prediction uncertainties that affect the performance of any

caching scheme. In [126], these uncertainties are modeled

as probability distributions of content requests over a given

time period. The authors provide lower bounds on the content

delivery cost given that the probability distribution for the

requests is available. They also derive caching policies that

achieve this lower bound asymptotically. It is shown that

under uniform uncertainty, the proposed policy breaks down to

equally spreading the amount of predicted content data over

the horizon of the prediction window. Another approach to

solve the same problem is used in [127], where personalized

content pricing schemes are deployed by the service provider

based on user preferences in order to enhance the certainty

about future demand. The authors model the pricing problem

as an optimization problem. Due to the non-convex nature of

their model, they use an iterative sub-optimal solution that

separates price allocation and proactive download decisions.

2) Social-assisted matching game theory: Matching game

theory [128] can be used to allocate networks resources

between users and base stations, when social attributes are

used to profile users. For instance, by letting users and base

stations rank one another to capture users’ similarities in terms

of interests, activities and interactions, it is possible to cre-

ate social utility functions controlling a distributed matching

game. In [129], a self-organizing, context-aware framework

for D2D resource allocation is proposed that exploits the like-

lihood of strongly connected users to request similar contents.

The solution is shown to be computationally feasible and to

offer substantial benefits when users’ social similarities are

present. A similar approach is used in [130] to deal with

joint millimeter and micro wave dual base station resource

allocation, in [131] for user base station association in small

cell networks, and in [132] to optimize D2D offloading tech-

niques. Caching in small cell networks can also be addressed

as a many-to-many matching game [133]: by matching video

popularity among users most frequently served by a given

server it is possible to devise caching policies that minimize

end-users’ delays. Simulations show the approach is effective

in small cell networks.

3) Social-assisted mobility prediction: Motivated by the

need to reduce the active scanning overhead in IEEE 802.11

networks, the authors of [40] propose a mobility prediction

tool to anticipate the next access point a WiFi user is moving

to. The proposed solution is based on context information on

the handoffs which were performed in the past; specifically, the

system stores centrally a time varying handoff table which is

then fed into an ARIMA predictor which returns the likelihood

of a given user to handoff to a specific access point. The

quality of the predictor is measured in terms of signaling

reduction due to active scanning.

The prediction of user mobility is also addressed in [134].

The authors leverage information coming from the social plat-

form Foursquare to predict user mobility on coarse granularity.

The next check-in problem is formulated to determine the

next place in an urban environment which will be most likely

visited by a user. The authors build a time-stamped dataset of

“check-ins” performed by Foursquare users over a period of

one month across several venues worldwide. A set of features

is then defined to represent user mobility including user

mobility features (e.g., number of historical visits to specific

venues or categories of venues, number of historical visits

that friends have done to specific venues), global mobility

features (e.g., popularity of venues, distance between venues,

transition frequency between couples of venues), and temporal

features which measures the historical check-ins over specific

time periods. Such a feature set is then used to train a

supervised classification problem to predict the next check-

in venue. Linear regression and M5 decision trees are used

in this regard. The work is mostly speculative and does not

address directly any specific application/use of the proposed

mobility prediction tool.

Along the same lines, the mobility of users in urban

environments is characterized in [135]. Different from the

previous work which only exploits social information, the

authors also leverage physical information about the current

position of moving users. A probabilistic model of the mobile

users’ behavior is built and trained on a real life dataset

of user mobility traces. A social-assisted mobility prediction

model is proposed in [136], where a variable-order Markov

model is developed and trained on both temporal features (i.e.,

when users were at specific locations) and social ones (i.e.,

when friends of specific users were at a given location). The

accuracy of the proposed model is cross-validated on two user-

mobility datasets.

4) Social-assisted radio resource allocation: The optimiza-

tion of elastic traffic in the downlink of mobile radio networks

is addressed in [137], [138]. The key tenet is to provide

to the downlink scheduler “richer” context to make better

decisions in the allocation of the radio resources. Besides

classical network-side context including the cell load and the

current channel quality indicator which are widely used in

the literature to steer the scheduling, the authors propose

to include user-side features which generically capture the

satisfaction degree of the user for the reference application.

Namely, the authors introduce the concept of a transaction,

which represents the atomic data download requested by the

end user (e.g., a web page download via HTTP, an object

download via HTTP or a file download via File Transfer

Protocol (FTP)). For each transaction and for each application,

a utility function is defined capturing the user’s sensitivity with

respect to the transmission delay and the expected completion

time. The functional form of this utility function depends on

the type of application which “generated” the transaction; as

an example, the authors make the distinction between trans-

actions from applications which are running in the foreground

and the background on the user’s terminal. For the sake of

presentation, a parametric logistic function is used to represent

the aforementioned utility. The authors then formulate an
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TABLE III
CONTEXT CLASSIFICATION SUMMARY: EACH CONTEXT IS ASSOCIATED TO ITS MOST POPULAR APPLICATIONS, PREDICTION TECHNIQUES,

OPTIMIZATION METHODS AND MAIN NOTABLE CHARACTERISTICS.

Context Applications Predictiona Optimization Remarks

Geographic

[11-26, 28,
29, 31-35, 37,
38, 41-46,
131]

Mobility prediction
Multimedia streaming
Broadcast
Resource allocation
Duty cycling

1st Probabilistic
2nd Regression
3rd Time series
4th Classification

1) Prediction to define convex
optimization problems
2) Prediction as the optimization
objective

1) Prediction accuracy is inversely proportional to
the time scale and granularity
2) High prediction accuracy can be obtained on long
time scales if periodicity and/or trends are present
3) Prediction is more effectively used in delay
tolerant applications

Link

[30, 47-70,
72-79, 129,
158]

Channel forecast
Resource allocation
Network mapping
Routing
Multimedia streaming

1st Regression
2nd Time series
3rd Probabilistic
4th Classification

1) Markov decision process is
used when statistical knowledge
of the system is available
2) Convex optimization is pre-
ferred when it is possible to per-
form accurate forecast

1) Channel quality maps can be effectively used to
improve networking
2) Mobility dynamics affect the prediction effective-
ness
3) Channel is most often predicted by means of
functional regression or Markovian models

Traffic

[92-102,
104-120, 138,
145, 156,
165]

Traffic analysis
Resource allocation
Multimedia streaming

1st Regression
2nd Classification
3rd Probabilistic

1) Maps are used to deterministi-
cally guide the optimization
2) Convex optimization prob-
lems can be formulated to obtain
bounds

1) Improved long-term network optimization and
reconfiguration
2) Traffic distribution is skewed both with regards
to users and locations
3) Traffic has a strong time periodicity
4) Geo-localized information can be used as inputs
for optimization

Social

[40, 121-140,
148, 149,
154, 157,
159]

Network caching
Mobility prediction
Resource allocation
Multimedia streaming

1st Classification
2nd Regression
3rd Time series
4th Probabilistic

1) Formal optimization problems
can be defined, but they are usu-
ally impractical to be solved
2) Game theory and heuristics are
the preferable online solutions

1) A fraction of social information can be accurately
predicted
2) Prediction obtained from social information is
usually coarse
3) Social information prediction can effectively im-
prove application performance

aRanking based on the number of papers reviewed in this survey using the predictor.

optimization problem to maximize the sum utility across all

the users and transactions in a given mobile radio cell and

design a greedy heuristic to obtain a sub-optimal solution

in reasonable computing time. The proposed algorithm is

validated against state-of-the-art scheduling solutions (PF /

weighted PF scheduling) through simulation on synthetic data

mimicking realistic user distributions, mobility patterns and

traffic patterns.

In order to predict the spatial traffic of base stations in a

cellular network, [139] applies the idea of social networks

to base stations. Here, the base stations themselves create a

social network and a social graph is created between them

based on the spatial correlation of the traffic of each of them.

The correlation is calculated using the Pearson coefficient.

Based on the topology of the social graph, the most important

base stations are identified and used for traffic prediction of

the entire network, which is done using SVM. The authors

conclude that with the traffic data of less than 10% of the

base stations, effective prediction with less than 20% mean

error can be achieved.

Social-oriented techniques related to the popularity of the

end users are leveraged also in [140] where the authors target

the performance optimization of downlink resource allocation

in future generation networks. The utility maximization prob-

lem is formulated with the utility being a combination (prod-

uct) of a network-oriented term (available bandwidth) and a

social-oriented term (social distance). The social-oriented term

is defined to be the degree centrality measure [141] for a

specific user. The proposed problem is sub-optimally solved

through a heuristic which is finally validated using synthetic

data.

E. Summary

Hereafter, we summarize the main takeaways of the section

in terms of application and objective for which different

context types can be used. Table III provides a synthesis of the

main considerations: each context is associated with its typical

applications, prediction methodologies (ordered by decreasing

popularity), optimization approaches and general remarks.

1) Mobility prediction: It has been shown that predictability

of user mobility can be potentially very high (93% potential

predictability in user mobility as stated in [11]), despite the

significant differences in the travel patterns. As a matter of

fact, many papers study how to forecast users’ mobility by

means of a variety of techniques. For predicting trajectories,

characterized by sequences of discretized locations indicated

by cell identities (IDs) or road segments, fixed-order Markov

models or variable-order Markov models are the most promis-

ing tools, while for continuous trajectories, regression tech-

niques are widely used. To enhance the prediction accuracy,

the most popular ones leverage geographic information: GPS

data, cell records and received signal strength are used to

obtain precise and frequent data sampling to locate users on

a map. However, the movements of an individual are largely

influenced by those of other individuals via social relations.

Several papers analyze social information and location check-

ins to find recurrent patterns. For this second case usually a

sparser dataset is available and may limit the accuracy of the

prediction.

2) Network efficiency: Predicting and optimizing network

efficiency (i.e., increasing the performance of the network

while using the same amount of resources) is the most

frequent objective in anticipatory networking. We found papers
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exploiting all four types of context to achieve this. As such,

objectives and constraints cover the whole attribute space.

Improving network efficiency is likely to become the main

driver for including anticipatory networking solutions in next

generation networks.

3) Multimedia streaming: The main source of data traffic in

4G networks has been multimedia streaming and, in particular,

video on demand. 5G networks are expected to continue and

even increase this trend. As a consequence, several anticipatory

networking solutions focus on the optimization of this service.

All the context types have been used to this extent and each has

a different merit: social information is needed to predict when

a given user is going to request a given content, combined

geographic and social information allows the network to cache

that content closer to where it will be required and physical

channel information can be used to optimize the resource

assignment.

4) Network offloading: Mobility prediction can be used to

handover communications between different technologies to

decrease network congestion, improve user experience, reduce

users’ costs and increase energy efficiency.

5) Cognitive networking: Physical channel prediction can

be exploited for cognitive networking and for network map-

ping. The former application allows secondary users to access

a shared medium when primary subscribers left resource un-

used, thus, predicting when this is going to happen will highly

improve the effectiveness of the solution. The latter, instead,

exploits link information to build networking maps that can

provide other applications with an estimate of communication

quality at a given time and place.

6) Throughput- and traffic-based applications: Traffic in-

formation is usually studied to be, first, modeled and, sub-

sequently, predicted. Traffic models and predictors are then

used to improve networking efficiency by means of resource

allocation, traffic shaping and network planning.

IV. PREDICTION METHODOLOGIES FOR ANTICIPATORY

NETWORKING

In this section, we present some selected prediction methods

for the types of context introduced in Section I-A. The selected

methods are classified into four main categories: time series

methods, similarity-based classification, regression analysis,

and statistical methods for probabilistic modeling. Their math-

ematical principles and the application to inferring and predict-

ing the aforementioned contextual information are introduced

in Sections IV-A, IV-B, IV-C, and IV-D, respectively.

The goal of the prediction handbook is to show which meth-

ods work in which situation. In fact, selecting the appropriate

prediction method requires to analyze the prediction variables

and the model constraints with respect to the application

scenario (see Section I-A). This section concludes with a

series of takeaways that summarize some general principles for

selection of prediction methods based on the scenario analysis.

A. Time Series Predictive Modeling

A time series is a set of time-stamped data entries which

allows a natural association of data collected on a regular or
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(a) Uplink and downlink traffic load in a cell grid in Rome, Italy.
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(b) Aggregated uplink and downlink traffic load in Rome, Italy.

Fig. 3. Example of time series: Traffic load (aggregated every 15 minutes)
for a week in March 2015 in Rome, Italy. Data source from Telecom Italia’s
Big Data Challenge [142].

irregular time basis. In wireless networks, large volumes of

data are stored as time series and frequently show temporal

correlation. For example, the trajectory of the mobile device

can be characterized by successive time-stamped locations

obtained from geographical measurements; individual social

behavior can be expressed through time-evolving events; traffic

loads modeled in time series can be leveraged for network

planning and controlling. Fig. 3(a) and 3(b) illustrate two time

series of per-cell and per-city aggregated uplink and downlink

data traffic, where temporal correlation is clearly recognizable.

In the following, we introduce the two most widely used

time series models based on linear dynamic systems: 1)

AutoRegressive and Moving Average (ARMA), and 2) Kalman

filters. Examples of context prediction in wireless networks

are given and their extensions to nonlinear systems are briefly

discussed.

1) Autoregressive and moving average models: Consider a

univariate time series {Xt : t ∈ T }, where T denotes the

set of time indices. The general ARMA model, denoted by

ARMA(p, q), has p AR terms and q Moving Average (MA)

terms, given by

Xt = Zt +

p
∑

i=1

φiXt−i +

q
∑

j=1

θjZt−j (1)

where Zt is the process of the white noise errors, and {φi}
p
i=1

and {θj}
q
j=1 are the parameters. The ARMA model is a

generalization of the simpler AR and MA models that can

be obtained for q = 0 and p = 0 respectively. Using the lag
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operator LiXt := Xt−i the model becomes

φ(L)Xt = θ(L)Zt (2)

where φ(L) := 1−
∑p

i=1 φiL
i and θ(L) := 1 +

∑q

j=1 θjL
j .

The fitting procedure of such processes assumes stationar-

ity. However, this property is seldom verified in practice and

non-stationary time series need to be stationarized through

differencing and logging. The ARIMA model generalizes

ARMA models for the case of non-stationary time series: a

non seasonal ARIMA model ARIMA(p, d, q) after d differ-

entiations reduces to an ARMA(p, q) of the form

φ(L)∆dXt = θ(L)Zt, (3)

where ∆d = (1− L)d denotes the dth difference operator.

Numerous studies have been done on prediction of traffic

load in wireless or IP backbone networks using autoregres-

sive models. The stationarity analysis often provides impor-

tant clues for selecting the appropriate model. For instance,

in [108] a low-order ARIMA model is applied to capture the

non-stationary short memory process of traffic load, while

in [109] a Gegenbauer ARMA model is used to specify

long memory processes under the assumption of stationarity.

Similar models are applied to mobility- or channel-related

contexts. In [40], an exponential weighted moving average,

equivalent to ARIMA(0, 1, 1), is used to forecast handoffs.

In [13], [47], AR models are applied to predict future signal-

to-noise ratio values and user positions, respectively. If the

variance of the data varies with time, as in [110] for data

traffic, and can be expressed using an ARMA, then the whole

model is referred to as GARCH.

2) Kalman filter: Kalman filters are widely applied in time

series analysis for linear dynamic systems, which track the

estimated system state and its uncertainty variance. In the

anticipatory networking literature, Kalman filters have been

mainly adopted to model the linear dependence of the system

states based on historical data.

Consider a multivariate time series {xt ∈ R
n : t ∈ T }, the

Kalman filter addresses the problem of estimating state xt that

is governed by the linear stochastic difference equation

xt = Atxt−1 +Btut +wt, t = 0, 1, . . . , (4)

where At ∈ R
n×n expresses the state transition, and Bt ∈

R
n×l relates the optional control input ut ∈ R

l to the state

xt ∈ R
n. The random variable wt ∼ N (0,Qt) represents

a multivariate normal noise process with covariance matrix

Qt ∈ R
n×n. The observation zt ∈ R

m of the true state xt is

given by

zt = Htxt + vt, (5)

where Ht ∈ R
m×n maps the true state space into the observed

space. The random variable vt is the observation noise process

following vt ∼ N (0,Rt) with covariance Rt ∈ R
n×n.

Kalman filters iterate between 1) predicting the system state

with Eq. (4) and 2) updating the model according to Eq. (5) to

refine the previous prediction. The interested reader is referred

to [143] for more details.

In [32], [144], Kalman filters are used to study users’

mobility. Wireless channel gains are studied in [49] with KKF,

while the authors of [145] adopt the technique to predict

short-term traffic volume. The extended Kalman filter adapts

the standard model to nonlinear systems via online Taylor

expansion. According to [146], this improves shadow/fading

estimation.

B. Similarity-based Classification

Similarity-based classification aims to find inherent struc-

tures within a dataset. The core rationale is that similarity

patterns in a dataset can be used to predict unknown data

or missing features. Recommendation systems are a typical

application where users give a score to items and the system

tries to infer similarities among users and scores to predict the

missing entries.

These techniques are unsupervised learning methods, since

categories are not predetermined, but are inferred from the

data. They are applied to datasets exhibiting one or more of

the following properties: 1) entries of the dataset have many

attributes, 2) no law is known to link the different features, and

3) no classification is available to manually label the dataset.

In what follows, we briefly review the similarity-based

classification tools that have been used in the anticipatory

networking literature accounted for in this survey.

1) Collaborative filtering: Recommendation systems usu-

ally adopt Collaborative Filtering (CF) to predict unknown

opinions according to user’s and/or content’s similarities.

While a thorough survey is available in [147], here, we just

introduce the main concepts related to anticipatory networking.

CF predicts the missing entries of a nc × nu matrix

Y ∈ Anc×nu , mapping nc users to nu contents through their

opinions which are taken from an alphabet A of possible

ratings. Thus, the entry yik, i ∈ {1, . . . , nc}, k ∈ {1, . . . , nu}
expresses how much user k likes content i. An auxiliary matrix

R ∈ [0, 1]nc×nu expresses whether user k evaluated content i
(rik = 1) or not (rik = 0).

To predict the missing entries of Y the feature learning ap-

proach exploits a set of nf features to represent contents’ and

users’ similarities and defines two matrices X ∈ [0, 1]nc×nf

and Θ ∈ Anu×nf , whose entries xij and θkj represent how

much content i is represented by feature j and how high

user k would rate a content completely defined by feature

j, respectively. The new matrices aim to map Y in the feature

space and they can be computed by:

argmin
X,Θ

∑

i,k:rik=1

(xi∗θ
T
k∗ − yik)

2, (6)

where xi∗ := (coliX
T )T denotes the i-th row of matrix

X. Note that in (6) the regularization terms are omitted.

Solving (6) amounts to obtain a matrix Ỹ = XΘT which

best approximates Y according to the available information

(i, k : rik = 1). Finally, ỹik = xi∗θ
T
k∗ predicts how user k

with parameters θk∗ rates content i having feature vector xi∗.

Other applications of CF are, for instance, network caching

optimization [148], [149], where communication efficiency

is optimized by storing contents where and when they are

predicted to be consumed. Similarly, location-based ser-

vices [134] predict where and what to serve to a given user.
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Fig. 4. Example of a functional dataset: WiFi traffic in Rome depending on
hour of the day. Data source from Telecom Italia’s Big Data Challenge [142].

2) Clustering: Clustering techniques are meant to group

elements that share similar characteristics. The following

provides an introduction to K-means, which is among the

most commonly-used clustering techniques in anticipatory

networking. The interested reader is referred to [150] for a

complete review.

K-means splits a given dataset into K groups without any

prior information about the group structure. The basic idea is

to associate each observation point from a dataset X := {xi ∈
R

n : i = 1, . . . ,M}, to one of the centroids in set M :=
{µj ∈ R

n : j = 1, . . . ,K}. The centroids are optimized by

minimizing the intra-cluster sum of squares (sum of distance

of each point in the cluster to the K centroids), given by

minimize
C,M

K
∑

j=1

M
∑

i=1

cij‖xi − µj‖
2, (7)

where C := {cij ∈ {0, 1} : i = 1, . . . ,M, j = 1, . . . ,K}
associates entry xi to centroid µj . No entry can be associated

to multiple centroids (
∑K

j=1 cij = 1, ∀i ∈ M).

Clustering is applied in anticipatory networking to build

a data-driven link model [51], to find similarities within

vehicular paths [34], to identify social events [99] that might

impact network performance, and to identify device types [93].

3) Decision Trees: A supervised version of clustering is

decision tree learning (the interested reader is referred to [151]

for a survey on the topic). Assuming that each input observa-

tion is mapped to a consequence on its target value (such as

reward, utility, cost, etc.), the goal of decision tree learning is

to build a set of rules to map the observations to their target

values. Each decision branches the tree into different paths

that lead to leaves representing the class labels. With prior

knowledge, decision trees can be exploited for location-based

services [134], for identifying trajectory similarities [35], and

for predicting the QoE for multimedia streams [101]. For

continuous target variables, regression trees can be used to

learn trends in network performance [98].

C. Regression Analysis

When the interest lies in understanding the relationship

between different variables, regression analysis is used to

predict dependent variables from a number of independent

variables by means of so-called regression functions. In the

following, we introduce three regression techniques, which
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Fig. 5. Examples of SVM, where different datasets are analyzed according
to a linear (left) and a Gaussian (right) kernel.

are able to capture complex nonlinear relationships, namely

functional regression, support vector machines and artificial

neural networks.

1) Functional regression: Functional data often arise from

measurements, where each point is expressed as a function

over a physical continuum (e.g., Fig. 4 illustrates the example

of aggregated WiFi traffic as a function of the hour of the

day). Functional regression has two interesting properties:

smoothness allows to study derivatives, which may reveal

important aspects of the processes generating the data, and

the mapping between original data and the functional space

may reduce the dimensionality of the problem and, as a con-

sequence, the computational complexity [152]. The commonly

encountered form of function prediction regression model

(scalar-on-function) is given by [153]:

Yi = B0 +

∫

Xi(z)B(z)dz + Ei (8)

where Yi, i = 1, . . . ,M is a continuous response, Xi(z) is a

functional predictor over the variable z, B(z) is the functional

coefficient, B0 is the intercept, and Ei is the residual error.

Functional regression methods are applied in [94] to pre-

dict traffic-related Long Term Evolution (LTE) metrics (e.g.,

throughput, modulation and coding scheme, and used re-

sources) showing that cloud analytics of short-term LTE

metrics is feasible. In [154], functional regression is used to

study churn rate of mobile subscribers to maximize the carrier

profitability.

2) Support vector machines: SVM is a supervised learning

technique that constructs a hyperplane or set of hyperplanes

(linear or nonlinear) in a high- or infinite-dimensional space,

which can be used for classification, regression, or other tasks.

In this survey we introduce the SVM for classification, and

the same principle is used by SVM for regression. Consider

a training dataset {(xi, yi) : xi ∈ R
n, yi ∈ {−1, 1}, i =

1, . . . ,M}, where xi is the i-th training vector and yi the

label of its class. First, let us assume that the data is lin-

early separable and define the linear separating hyperplane as

w · x − b = 0, where w · x is the Euclidean inner product.

The optimal hyperplane is the one that maximizes the margin

(i.e., distance from the hyperplane to the instances closest to it

on either side), which can be found by solving the following
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optimization problem:

minimize
1

2
||w||2

subject to yi(xi ·w + b)− 1 ≥ 0 ∀i ∈ {1, . . . ,M}.(9)

Fig. 5(a) shows an example of linear SVM classifier separating

two classes in R
2.

If the data is not linearly separable, the training points are

projected to a high-dimensional space H through a nonlinear

transformation φ : Rn → H. Then, a linear model in the

new space is built, which corresponds to a nonlinear model in

the original space. Since the solution of (9) consists of inner

products of training data xi · xj , for all i, j, in the new space

the solution is in the form of φ(xi) · φ(xj). The kernel trick

is applied to replace the inner product of basis functions by a

kernel function K(xi,xj) = φ(xi) ·φ(xj) between instances

in the original input space, without explicitly building the

transformation φ.

The Gaussian kernel K(x,y) := exp(γ||x−y||2) is one of

the most widely used kernels in the literature. For example,

it is used in [15] to predict user mobility. In [52], the authors

propose an algorithm for reconstructing coverage maps from

path-loss measurements using a kernel method. Nevertheless,

choosing an appropriate kernel for a given prediction task

remains one of the main challenges.

3) Artificial neural networks: ANN is a supervised machine

learning solution for both regression and classification. An

ANN is a network of nodes, or neurons, grouped into three

layers (input, hidden and output), which allows for nonlinear

classification. Ideally, it can achieve zero training error.

Consider a training dataset {(xi, yi) : xi ∈ R
n, i =

1, . . . ,M}. Each hidden node hl approximates a so-called

logistic function in the form hl = 1/(1 + exp(−ωl · x)),
where ωl is a weight vector. The outputs of the hidden nodes

are processed by the output nodes to approximate y. These

nodes use linear and logistic functions for regression and

classification, respectively. In the linear case, the approximated

output is represented as:

ŷ =
L
∑

l=1

hlvl =
L
∑

l=1

1

1 + exp(−ωl · x)
vl, (10)

where L is the number of hidden nodes and vl is the weight

vector of the output layer. The training of an ANN can be

performed by means of the backpropagation method that finds

weights for both layers to minimize the mean squared error

between the training labels y and their approximations ŷ. In the

anticipatory networking literature, ANNs have been used for

example to predict mobility in mobile ad-hoc networks [14],

[155].

For both SVMs and ANNs, as for other supervised learning

approaches, no prior knowledge about the system is required

but a large training set has to be acquired for parameter

setting in the predictive model. A careful analysis needs to

be performed while processing the training data in order to

avoid both overfitting and underlearning.

D. Statistical Methods for Probabilistic Forecasting

Probabilistic forecasting involves the use of information

at hand to make statements about the likely course of fu-

ture events. In the following subsections, we introduce two

probabilistic forecasting techniques: Markovian models and

Bayesian inference.

1) Markovian models: These models can be applied to any

system for which state transitions only depend on the current

state. In the following we briefly discuss the basic concepts of

discrete, and continuous time Markov Chains (MCs) and their

respective applications to anticipatory networking.

A Discrete Time Markov Chain (DTMC) is a discrete time

stochastic process Xn(n ∈ N), where a state Xn takes a

finite number of values from a set X in each time slot. The

Markovian property for a DTMC transitioning from any time

slot k to k + 1 is expressed as follows:

P (Xk+1 = j|Xk = i) = pij(k). (11)

For a stationary DTMC, the subscript k is omitted and the

transition matrix P, where pij represents the transition proba-

bility from state i to state j, completely describes the model.

Empirical measurements on mobility and traffic evolution can

be accurately predicted using a DTMC with low computational

complexity [19], [23], [26], [93], [136]. However, obtaining

the transition probabilities of the system requires a variable

training period, which depends on the prediction goal. In

practice, the data collection period can be in the order of

one [93] or even multiple weeks [20], [53].

A DTMC assumes the time the system spends in each state

is equal for all states. This time depends on the prediction

application and can range from a few hundred milliseconds

to predict wireless channel quality [62], to tens of seconds

for user mobility prediction [19], [53], to hours for Internet

traffic [93]. For tractability reason, the state space is often

compressed by means of simple heuristics [20], [53], [102],

K-means clustering [62], [136], equal probability classifica-

tion [102], and density-based clustering [136].

Eq. (11) defines a first order DTMC and can be extended

to the l-th order (i.e., transition probabilities depend on the l
previous states). By Using higher order, DTMCs can increase

the accuracy of the prediction at the expense of a longer

training time and an increased computational complexity [19],

[23], [136].

If the sojourn time of each state is relevant to the prediction,

the system can be modeled as a Continuous Time Markov

Chain (CTMC). The Markovian property is preserved in

CTMC when the sojourn time is exponentially distributed, as

in [21]. When the sojourn time has an arbitrary distribution, it

becomes a Markov renewal process as described in [17], [18].

If the transition probabilities cannot be directly measured,

but only the output of the system is quantifiable (dependent on

the state), hidden Markov models allow to map the output state

space to the unobservable model that governs the system. As

an example, the inter-download times of video segments are

predicted in [102], where the output sequences are the inter-

download times of the already downloaded segments and the

states are the instants of the next download request.
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TABLE IV
SELECTED PREDICTION METHODS: VARIABLES OF INTEREST AND CONSTRAINTS OF MODELING.

Prediction Method Properties of the Context Constraints

Class Methodology Dimension Granularity Range Type Linearity Side Info. Quality

Time series
ARIMA univariate M/L S data Y N weak
Kalman filter multivariate M/L S data Y N weak
References ARIMA: [13], [38], [40], [46], [47], [54], [58], [59], [63], [100], [119] Kalman: [32], [49]

Classification

CF multivariate L M/L data Y both robust
Clustering multivariate L M/L data both both robust
Decision trees multivariate L any data both Y robust
References CF: [16], [134], [149] Cluster: [15], [34], [51], [117], [122], [123], [148], [156] Decision trees: [35], [98], [101]

Regression

Functional multivariate any M/L models both Y robust
SVM multivariate any any both both both weak
ANN multivariate any any data both both weak
References Functional: [28], [29], [38], [64], [99], [104], [105] SVM: [51], [114], [139] ANN: [14], [48], [106], [107]

Probabilistic

Markovian multivariate M/L any both both both weak
Bayesian multivariate any any both both Y weak

References
Probabilistic: [12], [16]–[21], [23]–[26], [30], [50], [53], [60], [61], [93], [102], [116], [136], [157]
Bayesian: [33], [37], [58], [126], [127], [129], [130], [132], [135], [158], [159]

2) Bayesian inference: This approach allows to make state-

ments about what is unknown, by conditioning on what is

known. Bayesian prediction can be summarized in the follow-

ing steps: 1) define a model that expresses qualitative aspects

of our knowledge but has unknown parameters, 2) specify a

prior probability distribution for the unknown parameters, 3)

compute the posterior probability distribution for the param-

eters, given the observed data, and 4) make predictions by

averaging over the posterior distribution.

Given a set of observed data D := {(xi,yi) : i =
1, . . . ,M} consisting of a set of input samples X := {xi ∈
R

p : i = 1, . . . ,M} and a set of output samples Y := {yi ∈
R

q : i = 1, . . . ,M}, inference in Bayesian models is based

on the posterior distribution over the parameters, given by the

Bayes’ rule:

p(θ|D) =
p(Y|X ,θ)p(θ)

p(Y|X )
∝ p(Y|X ,θ)p(θ), (12)

where θ is the unknown parameter vector.

Two recent works adopting the Bayesian framework are [55]

and [38]. The former focuses on spatial prediction of the

wireless channel, building a 2D non-stationary random field

accounting for pathloss, shadowing and multipath. The latter

exploits spatial and temporal correlation to develop a general

prediction model for the channel gain of mobile users.

E. Summary

Hereafter, we provide some guidelines for selecting the

appropriate prediction methods depending on the application

scenario or context of interest.

1) Applications and data: The predicted context is the

most important information that drives decision making in

anticipatory optimization problems (see Section V). Thus, the

selection of the prediction method shall take into consideration

the objectives of the application and the constraints imposed

by the available data.

a) Choosing the outputs: Applications define the proper-

ties of the predicted variables, such as dimension, granularity,

accuracy, and range. For example, large granularity or high

data aggregation (such as frequently visited location, social be-

havior pattern) is best dealt with similarity-based classification

methods which provide sufficiently accurate prediction without

the complexity of other model-based regression techniques.

b) System model and data: The application environment

is equally important as its outputs, which determines the

constraints of modeling. Often, an accurate analysis of the

scenario might highlight linearity, deterministic and/or causal

laws among the variables that can further improve the predic-

tion accuracy. Moreover, the quality of dataset heavily affects

the prediction accuracy. Different methods exhibit different

level of robustness to noisy data.

2) Guidelines for selecting methods: To choose the correct

tool among the aforementioned set, we study the rationale for

adopting each of them in the literature and derive the following

practical guidelines.

a) Model-based methods: When a physical model exists,

model-based regression techniques based on closed-form ex-

pressions can be used to obtain an accurate prediction. They

are usually preferable for long-term forecast and exhibit good

resilience to poor data quality.

b) Time series-based methods: These are the most con-

venient tools when the information is abundant and shows

strong temporal correlation. Under these conditions, time

series methods provide simple means to obtain multiple scale

prediction of moderate to high precision.

c) Causal methods: If the data exhibits large and fast

variations, causality laws can be key to obtain robust predic-

tions. In particular, if a causal relationship can be observed

between the variables of interest and the other observable data,

causal models usually outperform pure data-driven models.

d) Probabilistic models: If the physical model of the

prediction variable is either unavailable or too complex to be

used, probabilistic models offer robust prediction based on the

observation of a sufficient amount of data. In addition, proba-

bilistic methods are capable of quantifying the uncertainty of

the prediction, based on the probability density function of the

predicted state.

3) Prediction summary: Table IV characterizes each pre-

diction method with respect to properties of the context and

constraints presented in Section I-A. Note that the methods for
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predicting a multivariate process can be applied to univariate

processes without loss of generality. The granularity of vari-

ables and the prediction range are described using qualitative

attributes such as Short, Medium, Large, and any instead of

explicit values. For example, for the time series of traffic load

per cell, S, M and L time scales are generally defined by

minutes, tens of minutes and hours, respectively, while for the

time series of channel gain, they can be seen as milliseconds,

hundreds of milliseconds and seconds, respectively. The sixth

column reports the prediction type, that can be driven by data,

models or both. Linearity indicates whether it is required (Y)

or not (N) or applicable in both cases. The side information

column states whether out-of-band information can (both),

cannot (N) or must (Y) be used to build the model. Finally,

the quality column reports whether the predictor is weak or

robust against insufficient or unreliable dataset.

V. OPTIMIZATION TECHNIQUES FOR ANTICIPATORY

NETWORKING

This section identifies the main optimization techniques

adopted by anticipatory networking solutions to achieve their

objectives. Disregarding the particular domain of each work,

the common denominator is to leverage some future knowl-

edge obtained by means of prediction to drive the system

optimization. How this optimization is performed depends

both on the ultimate objectives and how data are predicted

and stored.

In general, we found two main strategies for optimization:

(1) adopting a well-known optimization framework to model

the problem and (2) designing a novel solution (most often)

based on heuristic considerations about the problem. The two

strategies are not mutually exclusive and often, when known

approaches lead to too complex or impractical solutions, they

are mixed in order to provide feasible approximation of the

original problem.

Heuristic approaches usually consist of (1) algorithms that

allow for fast computation of an approximation of the solution

of a more complex problem (e.g., convex optimization) and

(2) greedy approaches that can be proven optimal under

some set of assumptions. Both approaches trade optimality

for complexity and most often are able to obtain performance

quite close to the optimal one. However, heuristic approaches

are tailored to the specific application and are usually difficult

to be generalized or to be adapted for different scenarios, thus

they cannot be directly applied to new applications if the new

requirements do not match those of the original scenario.

In what follows, we focus on optimization methods only

and we will provide some introductory descriptions of the

most relevant ones used for anticipatory networking. The

objective is to provide the reader with a minimum set of tools

to understand the methodologies and to highlight the main

properties and applications.

A. Convex Optimization

Convex optimization is a field that studies the problem of

minimizing a convex function over convex sets. The interested

reader can refer to [160] for convex optimization theory and

algorithms. Hereafter, we will adopt Boyd’s notation [160] to

introduce definitions and formulations that frequently appear

in anticipatory networking papers.

The inputs are often referred to as the optimization variables

of the problem and defined as the vector x = (x1, . . . , xn).
In order to compute the best configuration or, more precisely,

to optimize the variables, an objective is defined: this usually

corresponds to minimizing a function of the optimization vari-

ables, f0 : Rn → R. The feasible set of input configurations

is usually defined through a set of m constraints fi(x) ≤ bi,
i = 1, . . . ,m, with fi : R

n → R. The general formulation of

the problem is

minimize f0(x)

subject to fi ≤ bi, i = 1, . . . ,m. (13)

The solution to the optimization problem is an optimal

vector x∗ that provides the smallest value of the objective

function, while satisfying all the constraints.

The convexity property (i.e., objective and constraint func-

tions satisfy fi(ax+(1−a)y) ≤ afi(x)+(1−a)fi(y) for all

x,y ∈ R
n and a ∈ [0, 1]) can be exploited in order to derive

efficient algorithms that allows for fast computation of the

optimal solution. Furthermore, if the optimization function and

the constraints are linear, i.e., fi(ax+ by) = afi(x) + bfi(y)
for all x,y ∈ R

n and a, b ∈ R, the problem belongs to

the class of linear optimization. For this class, highly effi-

cient solvers exist, thanks to their inherently simple structure.

Within the linear optimization class, three subclasses are of

particular interest for anticipatory networking: least-squares

problems, linear programs and mixed-integer linear programs.

Least-squares problems can be thought of as distance min-

imization problems. They have no constraints (m = 0) and

their general formulation is:

minimize f0(x) = ||Ax− b||22, (14)

where A ∈ R
k×n, with k ≥ n and ||x||2 is the Euclidean

norm. Notably, problems of this class have an analytical

solution x = (ATA)−1ATb (where superscript T denotes

the transpose) derived from reducing the problem to the set of

linear equations ATAx = ATb.

Linear programming (LP) problems are characterized by

linear objective function and constraints and are written as

minimize cTx

subject to ATx ≤ b, (15)

where c ∈ R
n, A ∈ R

n×m and b ∈ R
n are the parameters

of the problem. Although, there is no analytical closed-form

solution to LP problems, a variety of efficient algorithms

are available to compute the optimal vector x∗. When the

optimization variable is a vector of integers x ∈ Z
n, the class

of problems is called integer linear programming (ILP), while

the class of mixed-integers linear programming (MILP) allows

for both integer and real variables to co-exist. These last two

classes of problems can be shown to be NP-hard (while LP

is P complete) and their solution often implies combinatorial

aspects. See [161] for more details on integer optimization.
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In anticipatory networking, we find that resource allocation

problems are often modeled as LP, ILP or MILP, by setting

the amount of resources to be allocated as the optimization

variable and accounting for prediction in the constraints of the

problem. In [72], prediction of the channel gain is exploited

to optimize the energy efficiency of the network. Time is

modeled as a finite number of slots corresponding to the look-

ahead time of the prediction. When dealing with multimedia

streaming, the data buffer is usually modeled in the constraints

of the problem by linking the state at a given time slot to

the previous slot. The solver will then choose whether to use

resources in the current slot or use what has been accumulated

in the buffer, as in, e.g., [77]. Admission control is often

used to enforce quality-of-service, e.g., [74], [156], with the

drawback of introducing integer variables in the optimization

function. In these cases, the optimal ILP/MILP formulation is

followed by a fast heuristic that enables the implementation

of real-time algorithms.

B. Model Predictive Control

Model Predictive Control (MPC) is a control theoretic

approach that optimizes the sequence of actions in a dynamic

system by using the process model of that system within a

finite time horizon. Therefore, the process model, i.e., the

process that turns the system from one state to the next, should

be known. In each time slot t, the system state, x(t), is defined

as a vector of attributes that define the relevant properties of

the system. At each state, the control action, u(t), turns the

system to the next state x(t + 1) and results in the output

y(t+ 1). In case the system is linear, both the next state and

the output can be determined as follows:

x(t+ 1) = Ax(t) +Bu(t) +ψ(t) (16)

y(t) = Cx(t) + ǫ(t), (17)

where ψ(t) and ǫ(t) are usually zero mean random variables

used to model the effect of disturbances on the input and

output, respectively, and A, B, and C are matrices determined

by the system model.

At each time slot, the next N states and their respective

outputs are predicted and a cost function J(·) is minimized to

determine the optimal control action u∗(t) at t = t0:

u∗(t0) = arg min
u(t0)

J(x̂(t0),u(t0)), (18)

where x̂(t0) is the set of all the predicted states from t = t0+1
to t = t0 + N , including the observed state at t = t0. The

expression in (18) essentially states that the optimal action

of the current time slot is computed based on the predicted

states of a finite time horizon in the future. In other words,

in each time slot the MPC sequentially performs a N step

lookahead open loop optimization of which only the first step

is implemented [162].

This approach has been adopted for on-line prediction and

optimization of wireless networks [100], [158]. Since the

process model (for the prediction of future states and outputs)

is available in this kind of systems, autoregressive methods can

be used along with Kalman filtering [100], or max-min MPC

formulation [159]. In [158], Kalman filtering is compared to

other methods such as mean and median value estimation,

Markov chains, and exponential averaging filters.

Optimization based on MPC relies on a finite horizon.

The length of the horizon determines the trade-off between

complexity and accuracy. Longer horizons need further look

ahead and more complex prediction but in turn result in a more

foresighted control action [159]. Reducing the horizon reduces

the complexity while resulting in a more myopic action. This

trade-off is examined in [158] by proposing an algorithm that

adaptively adjusts the horizon length. In general, the prediction

horizon is kept to a fairly low number (1 step in [159] and 6

steps in [100]) to avoid high computation overhead.

It is worth noting that MPC methods can be extended to the

nonlinear case. In this case, the prediction accuracy and control

optimality increase at the cost of more complex algorithms to

find the solution [162]. Another benefit of these approaches is

their applicability to non-stationary problems.

C. Markov Decision Process

Markov Decision Process (MDP) is an efficient tool for opti-

mizing sequential decision making in stochastic environments.

Unlike MPCs, MDPs can only be applied to stationary systems

where a priori information about the dynamics of the system

as well as the state-action space is available.

A MDP consists of a four tuple (X ,U ,P, r), where X
and U represent the set of all achievable states in the system

and the set of all actions that can be performed in each of

the states, respectively. Time is assumed to be slotted and in

any time slot t, the system is in state xt ∈ X from which

it can take an action ut from the set Uxt
∈ U . Due to the

assumption of stationarity, we can omit the time subscript for

states and actions. Upon taking action u in state x, the system

moves to the next state x′ ∈ X with transition probability

P(x′|x, u) and receives a reward equal to r(x, u, x′). The

transition probabilities are predicted and modeled as a Markov

Chain prior to solving the MDP and preserve the Markovian

behavior of the system.

The goal is to find the optimal policy π∗ : X → U (i.e.,

optimal sequence of actions that must be taken from any initial

state) in order to maximize the long term discounted average

reward E (
∑∞

t=0 γ
tr(xt, ut, xt+1)), where 0 ≤ γ < 1 is called

discount factor and determines how myopic (if closer to zero)

or foresighted (if closer to 1) the decision process should be.

In order to derive the optimal policy, each state is assigned

to a value function V π(x), which is defined as the long term

discounted sum of rewards obtained by following policy π
from state x onwards. The goal of MDP algorithms is to find

V π∗

(x)(∀x ∈ X ). Given that the Markovian property holds,

it has been proved that the optimal value functions follow the

Bellman optimality criterion described below [163] :

V π∗

(x) =

= max
u∈U

∑

x′∈X ′

(

r(x, u, x′) + γP(x′|x, u)V π∗

(x′)
)

∀x ∈ X , (19)
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where X ′ ⊂ X is the set of states for which P(x′|x, u) > 0.

In order to solve the above equation set, linear programming

or dynamic programming techniques can be used, in which the

optimal policy is derived by simple iterative algorithms such

as policy iteration and value iteration [163].

MDPs are very efficient for several problems, especially

in the framework of anticipatory networking, due to their

wide applicability and ease of implementation. MDP-based

optimized download policies for adaptive video transmission

under varying channel and network conditions are presented

in [60], [62], [157].

In order to avoid large state spaces (which limit the ap-

plicability of MDPs), there are cases where the accuracy of

the model must be compromised for simplicity. In [157],

a large video receiver buffer is modeled for storing video

on demand but only a small portion of the buffer is used

in the optimization, while the rest of the buffer follows a

heuristic download policy. [60], [62] solve this problem by

increasing the duration of the time slot such that more video

can be downloaded in each slot and, therefore, the buffer

is filled entirely based on the optimal policy. This, in turn,

comes at the cost of lower accuracy, since the assumption

is that the system is static within the duration of a time slot.

Heuristic approaches are also adopted for on-line applications.

For instance, creating decision trees with low depth from the

MDP outputs is proposed in [62]. Simpler heuristics are also

applied to the MDP outputs in [60], [149], [157].

If any of the assumptions discussed above does not hold,

or if the state space of the system is too large, MDPs and

their respective dynamic programming solution algorithms fail.

However, there are alternative techniques to solve this kind

of problems. For instance, if the system dynamics follow

a Markov Renewal Process instead of a MC, a semi MDP

is solved instead of the regular one [163]. In non-stationary

systems, for which the dynamics cannot be predicted a priori

or the reward function is not known beforehand, reinforcement

learning [164] can be applied and the optimization turns into

an on-line unsupervised learning problem. Large state spaces

can be dealt with using value function approximation, where

the value function of the MDP is approximated as a linear

function, a neural network, or a decision tree [164]. If different

subsets of state attributes have independent effects on the

overall reward, i.e., multi user resource allocation, the problem

can be modeled as a weakly coupled MDP [165] and can be

decomposed into smaller and more tractable MDPs.

D. Game theoretic approaches

Although small in number, the papers adopting a game

theoretic framework offer an alternative approach to optimiza-

tion. In fact, while the approaches described in the previous

subsections strive to compute the optimal solution of an often

complex problem formulation, game theory defines policies

that allow the system to converge towards a so-called equi-

librium, where no player can modify her action to improve

her utility. In mobile networks, game theory is applied in the

form of matching games [128], where system players (e.g.

users) have to be matched with network resources (e.g. base

stations or resource blocks).

Three types of matching games can be used depending on

the application scenario: 1) one-to-one matching, where each

user can be matched with at most one resource (as in [129],

which optimizes D2D communication in small cell scenarios);

2) many-to-one matching, where either multiple resources can

be assigned to a single user (as in [130] for small cell resource

allocation), or multiple users can be matched to a single

resource (as in [131] for user-cell association); 3) many-to-

many matching, where multiple users can be matched with

multiple resource (as in [133] where videos are associated to

caching servers).

E. Summary

This section (and Table VI) summarizes the main takeaways

of this optimization handbook.

1) Convex Optimization methods: These methods are often

combined with time series analysis or ideal prediction. The

main reason is that they are used to determine performance

bounds when the solving time is not a system constraint.

Thus, convex optimization is suggested as a benchmark for

large scale prediction. This may have to be replaced by fast

heuristics in case the optimization tool needs to work in real-

time. An exception to this is LP for which very efficient algo-

rithms exist that can compute a solution in polynomial time.

In contrast, convex optimization methods should be preferred

when dealing with high precision and continuous output. They

require the complete dataset and show a reliability comparable

to that of the used predictor.

2) Model Predictive Control: MPC combines prediction

and optimization to minimize the control error by tuning both

the prediction and the control parameters. Therefore, it can

be coupled with any predictor. The main drawback of this

approach is that, by definition, prediction and optimization

cannot be decoupled and must be evaluated at each iteration.

This makes the solution computationally very heavy and it

is generally difficult to obtain real-time algorithms based on

MPC. The close coupling between prediction and optimization

makes it possible to adopt the method for any application for

which a predictor can be designed with the only additional

constraint being the execution time. Objectives and constraints

are usually those imposed by the used predictor.

3) Markov Decision Processes: MDPs are characterized by

a statistical description of the system state and they usually

model the system evolution through probabilistic predictors.

As such, they best fit to scenarios that show similar objective

functions and constraints as those of probabilistic predictors.

Thus, MDPs are the ideal choice when the optimization

objective aims at obtaining stationary policies (i.e., policies

that can be applied independently of the system time). This

translates to low precision and high reliability. Moreover, even

though they require a computationally heavy phase to optimize

the policies, once the policies are obtained, fast algorithms can

easily be applied.

4) Game theory: Matching games prove to be effective

solutions that, without struggling to compute an overly com-

plex optimal configuration, let the system converge towards
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TABLE V
OPTIMIZATION METHODS SUMMARY

Methodology Properties of context Modeling constraints

ConvOpt Can support any context property, but larger system states
slow the solver performance. The solution accuracy is linked
to the context precision.

Linearity can be exploited to improve the solver efficiency,
while data reliability impacts the solution optimality.

MPC Usually offers the highest precision by coupling prediction
and optimization.

The most computationally intensive technique.

MDP Limited range and precision. The most robust approach to low data reliability. Although
the system setup can be computationally intensive, it allows
for lightweight policies to be implemented.

Game theory Limited granularity to allow the system to converge to an
equilibrium.

Very low computational complexity. Fast dynamics hinder the
system convergence.

a stable equilibrium which satisfies all the players (i.e., no

action can be taken to improve the utility of any player). These

are the preferable solutions for those applications where the

computational capability is a stringent constraint and where

fairness is important for the system quality.

VI. APPLICABILITY OF ANTICIPATORY NETWORKING TO

OTHER WIRELESS NETWORKS

So far this survey mainly focused on current cellular net-

works. In this section we analyze how different types of mobile

wireless networks can take advantage of anticipatory network-

ing solutions. Although each type would deserve a dedicated

survey, in what follows we provide brief summaries of the

distinctive features, the application scenarios, the expected

benefits and the challenges related to the implementation of

anticipatory networking for each of them. Table VI summa-

rizes the discussion of this section.

A. 5G Cellular Networks

LTE and LTE-advanced represent the fourth generation

of mobile cellular networks and, as it emerged from the

analyses of the previous sections, they can already benefit from

predictive optimization. Since the fifth generation is expected

to improve on its predecessors in every aspect [166], not only

is anticipatory networking applicable, but also it will provide

even greater benefits.

1) Characteristics: The next generation of mobile cellular

networks will provide faster communications, improved users

QoE, shorter communication delays, higher reliability and

improved energy savings. Among the solutions envisioned

to realize these improvements, cell densification, mm-wave

bands, massive MIMO, unified multi-technology frame struc-

ture and architecture and network function virtualization are

the ones that are going to have a substantial impact on existing

and future use case scenarios. In fact, a denser infrastructure

is going to decrease the average time mobile users spend

in a specific cell; the directionality of communications in

higher portion of the spectrum will increase the importance

of localization and tracking functionalities; while the increase

of communicating elements and the de-localization of radio

access functionalities are going to impact on channel models

and network resource management.

2) Advantages: The performance of 5G cellular networks

will strongly depend on their knowledge of the exact user

positions (e.g., localization for mm-wave, resource manage-

ment for network function virtualization). As a consequence,

predictive solutions that provide the system with accurate

information about users’ current and future positions, trajecto-

ries, traffic profiles and content request probabilities are likely

to be the most desirable aspects of anticipatory solutions.

For what concerns 5G applications, we believe network

caching and cloud Radio Access Network (RAN) will also

greatly benefit from this. In fact, the former can exploit

prediction to decide which content to store in which specific

part of the network to serve a given user profile, while the

latter can, for instance, forecast when to instantiate a number

of virtual machines to face an increase of the network traffic.

3) Challenges: The upcoming 5G technologies will also

bring new challenges to the basic mechanisms of anticipatory

networking. In particular, we see mm-wave, massive MIMO

and cell densification as disruptive technologies for the current

methods used for predictive optimization. In this regard, mm-

waves channel model is going to impact how to forecast future

signal quality and achievable data rates while network densi-

fication and massive MIMO will challenge the scalability of

prediction techniques due to the sheer size of the information

needed to describe and exchange them.

B. Mobile ad hoc networks

Mobile Ad-hoc Networks (MANET) consist of mobile

wireless devices connected to one another without a fixed

infrastructure [167]. As a consequence, they share some

characteristics with cellular networks but have some unique

features due to the variable topology. These networks are the

most practical form of communication when an infrastructure

is absent or it has been compromised by a disruptive event.

1) Characteristics: The dynamic nature of MANETs

causes the path between any two nodes to vary over time and

require adaptive routing mechanisms that allow, on one hand,

to maintain the connectivity among all the network nodes and,

on the other hand, to balance the load in the different areas of

the network. In addition, adaptive discovery and management

functionalities are needed to allow new devices and services

to be added to an existing network and to report problems

and missing links/nodes. When a MANET extends over an

area larger than the communication range of the devices,
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TABLE VI
ANTICIPATORY NETWORKING APPLICABILITY TO DIFFERENT NETWORK TYPES

Type Features Advantages Challenges

5G Cellular mm-waves
Massive MIMO
Cloud-RAN

Localization and tracking prediction
Load space-time distribution
Resource management

Channel models
Amount of data

MANET Variable topology
Multi-hop communication
Self-management

Routing improvement
Load balancing

Infrastructure absence
Distributed optimization
Variable topology

Cognitive Primary/Secondary users
Sensing capabilities

Spectrum availability prediction
Load prediction and management
Transmission/Sensing ratio

Impact on models

D2D Complex topology
Multi-RAN

Interference management
Resource allocation

Models complexity
Interference

IoT Mostly deterministic traffic
High overhead
Sparse communication
Low-latency control loops

Prediction for compression
Models for anomaly detection
Overhead decrease

Amount of data and devices
Scalability
Constrained devices

transmissions must be relayed from one node to another in

order to allow messages to reach their destinations.

2) Advantages: Knowing nodes’ positions in advance and

being able to track their trajectories enable advanced routing

functionalities: in fact, additional paths can be created before

a missing link interrupts a route without waiting for a new

discovery procedure to be performed. Also, routing tables can

be readily adapted when shorter routes appear. In a similar

way, management procedure can be enhanced by knowing in

advance the traffic being produced by a given node or area

of the network or by forecasting which service is going to be

needed in a given part of the network.

3) Challenges: The absence of a fixed infrastructure is the

main source of challenges that are distinctive of MANETs. For

instance, it is not possible to have known databases collecting

users’ and devices’ information to build prediction models nor

centralized optimization services can be provided or they may

suffer from delays in delivering solutions and/or information to

the whole network. Moreover, the topology variability makes

map-based prediction techniques difficult or impossible to

apply.

C. Cognitive Radio Networks

CR networks consist of devices that exploit channels that are

unused at specific locations and times [10], but that are usually

allocated to primary users (i.e. users that can legitimately

communicate using a given channel). CR devices are usually

referred to as secondary users as their operations must not

interfere with those performed by the primary users.

1) Characteristics: The main distinctive feature of CR

devices is that they need to scan for primary users’ activity

before attempting any communication in order not to disrupt

legitimate transmissions. This scanning/sensing activity de-

creases the amount of time secondary users’ can spend on

actual communications and, thus, it reduces their throughput.

On the other hand, a CR network is usually able to build

accurate spectrum occupancy models fusing the information

coming from different devices.

2) Advantages: Prediction capabilities are already envi-

sioned for CR networks, in fact, it is easily understandable

that being able to predict when primary users are going to

occupy their channel will decrease the amount of sensing

needed to decide when a secondary user is allowed to transmit.

Not only can spectrum occupancy maps be used to predict

the upcoming channel state, but also, content information and

predictive models available to primary users can be exploited

by secondary users to reduce their interference probability.

Therefore, allowing secondary users to access primary user

information is profitable for both: if CR are able to improve

their throughput by more precisely picking spectrum holes,

primary users will be more protected from secondary interfer-

ence.

3) Challenges: Although anticipatory CR can be seen as

symbiotic to primary users, their operations introduce a non

trivial feedback in the resulting system. In fact, those models

that are valid when primary users operate only may be no

longer valid when secondary users contribute. However, given

that those models are usually built using information about

primary users only, it will be impossible with the current

techniques to create or modify prediction and optimization

solutions that take into consideration secondary users. As such,

the whole anticipatory infrastructure needs to account for CR

in order to allow prediction-based schemes to work for primary

and secondary users.

D. Device-to-Device

D2D communication refers to the use of direct communi-

cation between mobile phones to support the operations of a

cellular network [168]. In addition, since D2D must not inter-

fere with the regular cellular network operations it can be seen

as secondary users to the main communications. Therefore,

they share characteristics that are specific to MANETs and

CR networks.

1) Characteristics: D2D communications are characterized

by a complex topology where the usual star network overlies

a mesh network. Also, the devices may use different RANs

in the mesh network: for instance they can exploit the same

cellular technology (inband) or other wireless solutions such

as direct-WiFi.

2) Advantages: Given the similarities to MANETs and

CRs, D2D communications can take advantage from anti-
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cipatory networking mostly to mitigate interference related

problems and to improve the resource and power allocation.

3) Challenges: While we do not expect D2D communica-

tions to pose distinctive challenges to the implementation of

anticipatory networking that are not listed in the previous sec-

tions, that will make the adoption of current prediction models

less straightforward. In fact, prediction-based optimization and

other anticipatory schemes will be made more complex due

to the possible coexistence of multiple technologies and the

primary/secondary interference and interactions, which will

require to also predict D2D channels, in addition to primary.

E. Internet of Things

Nowadays, thanks to the miniaturization and the progressive

decrease of computational and communicating chipsets, more

and more ordinary objects are being equipped with micro-

CPUs and are connected to the Internet [169]–[171]: in such

a way smart cities and smart industries, among a variety of

other enhanced scenarios, can be realized. The typical device

in the Internet-of-Things (IoT) is capable of performing one

or a set of measurements and/or actuations on the real world.

They are usually constrained in their capabilities: for instance,

they can be battery powered or equipped with low data rate

radios or their computational power may be limited.

1) Characteristics: Due to the wide definition of the enti-

ties that populate the IoT, many of its features have been al-

ready described in the preceding subsections. For instance, IoT

communications often involve D2D aspects, they can be CR if

they are able to sense spectrum and they can be considered part

of a MANET if they are mobile. However, the most unique

features that are only present in IoT devices are that they

involve Machine-to-Machine (M2M) type communication and

that devices are typically constrained. Moreover, although the

number of smart things is expected to grow exponentially in

the next decade, their traffic is not going to grow as fast as that,

e.g., the one generated by mobile cellular networks. In fact,

IoT traffic is expected to be mainly due to monitoring, control

and detection activities, which are characterized by limited

throughput and almost deterministic transmission frequency.

2) Advantages: Anticipatory networking and prediction-

based optimization can be applied to many aspects of the IoT.

For instance, devices that harvest their energy from renewable

sources may predict the source availability and optimize their

operations according to that. Furthermore, data prediction

models can be used to compress the data produced by devices

by sending only the difference from the forecast or the same

models can be used to identify anomalies or prevent disruptive

events before they can cause serious problems. Finally, due to

the almost deterministic periodicity of data production, their

communication can be easily modeled and accounted for to

mitigate their impact on the overall system.

3) Challenges: Scalability is one of the main challenges in

IoT. In fact, due to the variety of device types, the difference

in their capabilities, requirements and applications, the amount

of information needed to represent and model the IoT is huge

and the obtained benefits must more than compensate for the

cost related to its realization. Moreover, the IoT is impacted

by most of the challenges and problems discussed above for

the other network types.

VII. ON THE IMPACT OF ANTICIPATORY NETWORKING ON

THE PROTOCOL STACK

In this section, we address another important aspect of

anticipatory networking solutions: where to implement them in

the ISO/OSI protocol stack [172] and which layers contribute

to their realizations.

A. Physical

We do not expect anticipatory networking solutions to

modify how the physical layer is designed and managed. In

fact, in order to apply prediction-based schemes, some form

of interaction is required between two or more entities of the

system. As a consequence, the physical layer, which defines

how information is transferred to bits and wave-form [172],

might provide different profiles to allow for predictive tech-

niques to be applied in the higher layers, but will not directly

implement any of them.

B. Data Link

The data link layer is the first entry point for predictive

solutions. In particular, this layer implements Medium Access

Control (MAC) functionalities. Therefore, resource manage-

ment [42] and admission control [75] procedures are likely to

greatly benefit from anticipatory optimization. Also, we envi-

sion that anticipatory networking to be even more important

in next generation networks: in particular, channel estimation

and beam steering solutions are going to be key for the success

of mm-wave a massive MIMO communications [166].

C. Network

The network layer contains two of the functionalities that

can benefit the most from prediction: routing and caching [54],

[122]. In fact, by knowing users’ mobility and traffic in

advance it is possible to optimize routes and caching location

to maximize network performance and save resources. For

instance, it is possible to build alternative paths before the

existing ones deteriorate and break and popular contents may

be moved across the network according to where they will be

requested with higher probability.

D. Transport

This layer is mainly concerned with end-to-end message

delivery and the two most popular protocols are TCP and

User Datagram Protocol (UDP): the former guarantees reliable

communications, while the latter is a lightweight best-effort

solution. Anticipatory networking solutions are easily imple-

mented here [31], [135], in particular, when error correction

and retransmissions are driven by network metrics such as,

among others, Round Trip Time (RTT) and Bit Error Rate

(BER). Prediction models can be used to react to changes

in the network conditions before they reach a disruptive

state and recovery actions have to be taken. In addition,

modern transport solutions, such as multipath-TCP, can exploit

predictive optimization to manage the traffic flows along the

different routes and improve the QoS.
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E. Session, Presentation and Application

Since these layers are concerned with connection manage-

ment between end-points (session), syntax mapping between

different protocols (presentation) and interaction with users

and software (application), they are the least preferable to

implement anticipatory networking solutions. However, in

order to allow applications to exploit predictive mechanisms,

these three layers will act as a connection point to provide

application with the needed context information and to allow

them to configure the needed services and parameters for

the application requirements. For instance, in Section III.A.6

we described geographically-assisted video optimization [62],

[77] where mobile phone applications modulated the request

video bit rate to optimize the playback of the video itself,

or geo-assisted applications [134] that exploits social and

contextual information to enhance their services.

VIII. ISSUES, CHALLENGES, AND RESEARCH DIRECTIONS

We conclude the paper by providing some insights on how

anticipatory optimization will enable new 5G use cases and

by detailing the open challenges of anticipatory networking in

order to be successfully applied in 5G.

A. Context related analyses

1) Geographic context: Geographic context is essential

to achieve seamless service. Depending on the optimization

objective, a mobility state can be defined with different gran-

ularity in multiple dimensions (location, time, speed, etc.). For

example, for handover optimization it is sufficient to predict

the staying time in the current serving cell and the next serving

cell of the user. Medium to large spatial granularity such as

cell ID or cell coverage area can be considered as a state,

and a trajectory can be characterized by a discrete sequence

of cell IDs over time. State-space models such as Markov

chains, HMM and Kalman filters fit the system modeling,

while requiring large training samples and considerable insight

to make the model compact and tractable. An alternative is the

variable-order Markov models, including a variety of lossless

compression algorithms (some of the most used belong to

Lempel-Ziv family), where Shannon’s entropy measure is

identified as a basis for comparing user mobility models. Such

an information-theoretic approach enables adaptive online

learning of the model, to reduce update paging cost. Moving

from discrete to continuous models, which are applied to assist

the prediction of other system metrics with high granularity,

e.g., link gain or capacity, regression techniques are widely

used. To enhance the prediction accuracy, a priori knowledge

can be exploited to provide additional constraints on the

content and form of the model, based on street layouts, traffic

density, user profiles, etc. However, finding the right trade-off

between the model accuracy and complexity is challenging.

An effective solution is to decompose the state space and to

introduce localized models, e.g., to use distinct models for

weekdays and weekends, or urban and rural areas.

Although mobility prediction has been shown to be viable,

it has not been widely adopted in practical systems. This

is because, unlike location-aware applications with users’

permission to use their location information, mobile service

providers must not violate the privacy and security of mo-

bile users. To facilitate the next generation of user-centric

networks, new interaction protocols and platforms need to be

developed for enabling more user-friendly agreements on the

data usage between the service providers and the mobile users.

Furthermore, next generation wireless networks introduce

ultra-dense small cells and high frequencies such as mmWaves.

The transmission range gets shorter and transmission often oc-

curs in line-of-sight conditions. Thus, 2D geographic context

with a coarse level of accuracy is not sufficient to fully utilize

the future radio techniques and resources. This trend opens the

door for new research directions in inference and prediction

of 3D geographic context, by utilizing advanced feedback

from sensors in user equipments such as accelerometers,

magnetometers, and gyroscopes.

2) Link context: When predicting link context, i.e., channel

quality and its parameters, linear time series models have the

potential to provide the best tradeoff between performance and

complexity. When the channel changes slowly, e.g., because

users are static or pedestrian, it is convenient to exploit the

temporal correlation of historic measurements of the users’

channel and implement linear auto-regressive prediction. This

can be quite accurate for very short prediction horizons and at

the same time simple enough to be implemented in real time

systems. Kalman filters can also be used to track errors and

their variance, based on previous measurements, thus handling

uncertainties. However, time series and linear models are not

robust to fast changes. Therefore, in high mobility scenarios,

more complex models are needed. One possible approach is

to exploit the spatio-temporal correlation between location and

channel quality. By combining the prediction of the channel

qualities with the prediction of the user’s trajectory, regression

analysis, e.g., SVMs, can be employed to build accurate radio

maps to estimate the long term average channel quality, which

accounts for pathloss and slow fading, but neglects fast fading

variations. Ideally, one should have two predictions available:

a very accurate short term prediction and an approximate long

term prediction.

Usually, such prediction is exploited to optimize the

scheduling, i.e., resource allocation over time or frequency.

Convex and linear optimization are often used when prediction

is assumed to be perfect. In contrast, Markov models are

applied when a probabilistic forecasting is available. Despite

the great benefits that link context can potentially bring to

resource (and more generally network) optimization, today’s

networks do not yet have the proper infrastructure to collect,

share, process and distribute link context. Furthermore, proper

methods are needed not only to gather data from users, but

also, to discard irrelevant or redundant measurements as well

as to handle sparsity or gaps in the collected data.

3) Traffic context: Traffic and throughput prediction has a

concrete impact on the optimization of different services of

different networks at different time scales.

Network-wide and for long time scales, linear time series

models are already used to predict the macroscopic traffic

patterns of mobile radio cells for medium/long-term manage-

ment and optimization of the radio resources. At faster time
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scales and for specific radio cells or groups of radio cells,

the probabilistic forecasting of the upcoming traffic, e.g., by

using Markovian models, can be exploited to solve short-term

problems including the radio resource allocation among users

and the cell assignment problem.

Throughput prediction tools are then naturally coupled with

video streaming services in mobile radio networks which

have embedded rate adaptation capabilities. In this context,

a good practice is to use simple yet effective look-ahead

video throughput predictors based on time windows which

are often coupled with clustering approaches to group similar

video sessions. Deep learning techniques are also proposed to

predict the throughput of video sessions, which offer improved

performance at the price of a much higher complexity.

The data coming from traffic/throughput prediction can

be effectively coupled with application/scenario-specific opti-

mization frameworks. When targeting network-wide efficiency,

centralized optimization approaches seem to be superior and

more widely used. As an example, the problem of radio

resource allocation in mobile radio networks is effectively rep-

resentable and solvable though convex optimization techniques

in semi-real-time scenario. In contrast, when the optimization

has to be performed with the granularity of the technology-

specific time slot, sub-optimal heuristics are preferable. Be-

sides resorting to optimization approaches, control theoretic

modeling is extremely powerful in all those cases where the

optimization objective includes traffic (and queue) stability.

4) Social context: We can conclude that leveraging the

social context of data transmission results in gains for proac-

tive caching of multimedia content and can improve resource

allocation by predicting the social behavior of users. For

the former, determining the popularity of content plays a

crucial role. Collaborative filtering is a well-known approach

for this purpose. However, due to the heavy tail nature of

content popularity, trying to use this kind of models for a

broad class of content will usually not lead to good results.

However, for more specific and limited classes of content, i.e.,

localized advertisement, where a particular item is likely to be

requested by a large number of users, popularity prediction is

an appealing solution. In general, proactive caching requires

that content is stored on caches close to the edge network

in order not to put excessive load on the core network.

For optimizing resource allocation using social behavior, the

social interaction of different users can be used to create

social graphs that determine the level of activity of each

user and thereby make it possible to predict the amount of

resources each user will need. Network utility maximization

and heuristic methods are the most popular techniques for this

context. Due to the complexity of modeling the social behavior

of users, they are useful for wireless networks that either

expose a great deal of measurable social interaction (device-

to-device communication, dense cellular networks with small

cells, local wireless networks in a sports stadium), or when

resources are very scarce.

B. Anticipation-enabled use cases

Future networks are envisioned to cater to a large variety

of new services and applications. Broadband access in dense

areas, massive sensor networks, tactile Internet and ultra-

reliable communications are only a few of the use cases

detailed in [173]. The network capabilities of today’s systems

(i.e., 4G systems) are not able to support such requirements.

Therefore, 5G systems will be designed to guarantee an

efficient and flexible use (and sharing) of wireless resources,

supported by a native software defined network and/or network

function virtualization architecture [173]. Big data analysis

and context awareness are not only enablers for new value

added services but, combined with the power of anticipatory

optimization, can play a role in the 5G technology.

1) Mobility management: Network densification will be

used in 5G systems in order to cope with the tremendous

growth of traffic volume. As a drawback, mobility manage-

ment will become more difficult. Additionally, it is foreseen

that mobility in 5G will be on-demand [173], i.e., provided

for and customized to the specific service that needs it. In this

sense, being able to predict the user’s context (e.g., requested

service) and his mobility behavior can be extremely useful in

order to speed up handover procedures and to enable seamless

connectivity. Furthermore, since individual mobility is highly

social, social context and mobility information will be jointly

used to perform predictions for a group of socially related

individuals.

2) Network sharing: 5G systems will support resource and

network sharing among different stakeholders, e.g., operators,

infrastructure providers, service providers. The effectiveness of

such sharing mechanisms relies on the ability of each player

to predict the evolution of his own network, e.g., expected

network load, anticipated user’s link quality and prediction

of the requested services. Wireless sharing mechanisms can

strongly benefit from the added value provided by anticipation,

especially when prediction is available at fine granularity, e.g.,

in a multi-operator scheduler [174].

3) Extreme real-time communications: Tactile Internet is

only one of the applications that will require a very low

latency (i.e., in the order of some milliseconds). Allocating

resources and guaranteeing such low end-to-end delay will be

very challenging. 5G systems will support such requirements

by means of a new physical layer (e.g., a new air interface).

However, this will not be enough if not combined with context

information used to prioritize control information (e.g., used

to move virtual or real objects in real time) over content [175].

Knowledge about the information that is transmitted and

its specific requirements will be crucial in order to assign

priorities and meet the expected quality-of-experience in a

combined effort of physical and higher layers.

4) Ultra-reliable communications: Reliability is mentioned

in several 5G white papers, e.g. in [173], as necessary prere-

quisite for lifeline communications and e-health services, e.g.,

remote surgery. A recent work [176] proposed a quantified def-

inition of reliability in wireless access networks. As outlined

here, a posteriori evaluation of the achieved reliability is not

enough in order to meet the expected target, which in some

cases is as high as 99.999%. To this end, it is mandatory to

design resource allocation mechanisms that account for (and

are able to anticipate the impact on) reliability in advance.
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C. Open challenges

While the literature surveyed so far clearly points out how

anticipatory networking can enhance current networks, this

section discusses several problems that need to be solved for its

wider adoption. In particular, we identified four functionalities

that are going to play an important role in the adoption of

anticipatory networking in 5G networks:

• Measurements and information collection: in order to

provide means to obtain and share context information,

future networks need to provide trusted mechanisms to

manage the information exchange.

• Data analysis and prediction: information databases

need interoperable procedures to make sure that process-

ing and forecasting tools are usable with many possible

information sources .

• Optimization and decision making: data and procedures

are then exploited to derive system management policies.

• Execution: finally, in contrast to current procedures,

anticipatory execution engines need to take into account

the impact of the decisions made in the past and re-

evaluate their costs and rewards in hindsight of the actual

evolution of the system.

For instance, scheduling and load balancing are two processes

that greatly profit from anticipatory networking and cannot

be realized without a comprehensive integration of the four

aforementioned functionalities in future generation networks.

The realization of these functionalities poses the following

important challenges.

1) Privacy and security: In our opinion, one of the main

hindrances for anticipatory networking to become part of next

generation networks is related to how users feel about sharing

data and being profiled. While voluntarily sharing personal

information has become a daily habit, many disapprove that

companies create profiles using their data [177]. In a sim-

ilar way, there might be a strong resistance against a new

technology that, even though in an anonymous way, collects

and analyzes users’ behavior to anticipate users’ decisions.

Standards and procedures need to be studied to enforce users’

privacy, data anonymity and an adequate security level for

information storage. In addition, data ownership and control

need to be defined and regulated in order to allow users

and providers to interact in a trusted environment, where the

former can decide the level of information disclosure and the

latter can operate within shared agreements.

2) Network functions and interfaces: Many of the applica-

tions that are likely to benefit from anticipatory networking ca-

pabilities (i.e. decision making and execution) require unprece-

dented interactions among information producers, analyzers

and consumers. A simple example is provided by predictive

media streaming optimizers, which need to obtain content

information from the related database and user streaming

information from the user and/or the network operator. This

information is then analyzed and fed to a streaming provider

that optimizes its service accordingly. While ad hoc services

can be realized exploiting the current networking functional-

ities, next generation applications, such as the extreme real-

time communications mentioned above, will greatly benefit

from a tighter coupling between context information and

communication interfaces. We believe that the potential of

anticipatory functionalities can be used in communication

system and they could be applied to other domains, such as

public transportation and smart city management.

3) Next generation architecture: 5G networks are currently

being discussed and, while much attention is paid to in-

creasing the network capacity and virtualizing the network

functions, we believe that the current infrastructure should

be enhanced with repositories for context information and

application profiles [178] to assist the realization of novel

predictive applications. As per the previous concerns above,

sharing sensible information, even in an anonymized way, will

require particular care in terms of users’ privacy and database

accessibility. We believe that anticipatory networking can

potentially improve every kind of mobile networks: cellular

networks will likely be the first to exploit this paradigm,

because they already own the information needed to enable

the predictive frameworks and it is only a matter of time and

regulations to make it a reality. Once it will be integrated

in cellular networks, other systems, such as public WiFi

deployments, device-to-device solutions and the Internet of

Things, will be able to participate in the infrastructure to

exploit forecasting functionalities; in particular, we believe this

will be applied to smart cities and multi-modal transportation.

4) Impact of prediction errors: When making and using

predictions, one should carefully estimate its accuracy, which

is itself a challenge. It might be potentially more harmful

to use a wrong prediction than not using prediction at all.

Usually, a good accuracy can be obtained for a short prediction

horizon, which, however, should not be too short, otherwise

the optimization algorithms cannot benefit from it. Therefore,

a good balance between prediction horizon and accuracy

must be found in order to provide gains. In contrast, over

medium/long term periods, metrics can usually be predicted in

terms of statistical behavior only. Furthermore, to build robust

algorithms that are able to deal with uncertainties, proper

prediction error models should be derived. In the existing lit-

erature, uncertainties are mainly modeled as Gaussian random

variables. Despite the practicability of such an assumption,

more complex error models should be derived to take into

account the source (e.g., location and/or channel quality) as

well as the cause (e.g., GPS accuracy and/or fast fading effect)

of errors.

IX. CONCLUSIONS

This survey analyzed the literature on anticipatory network-

ing for mobile networks. We provided a thorough analysis

of application scenarios categorized by the contextual infor-

mation used to build the predictive framework. The most

relevant prediction and optimization techniques adopted in

the literature have been described and commented in two

handbooks that have the twofold objective of supporting re-

searchers to advance in the field and providing standardization

and regulation bodies with a common ground on anticipatory

networking solutions. While the core of this survey is devoted

to mobile cellular networks, we also analyzed applicability and
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advantages of anticipatory networking solution to other types

of wireless networks and at the different layers of the protocol

stack. Finally, we analyzed benefits and disadvantages of the

proposed solutions, the most promising application scenarios

for 5G networks, and the challenges that are yet to be faced

to adopt anticipatory networking paradigms.

To conclude, while the literature reviewed in this works

suggests that anticipatory networking is a quite mature ap-

proach to improve the performance of mobile networks, we

believe that issues (mainly at the system level) still need to be

solved to realize its potential. In particular, most of the work

which has been evaluated in this survey tends to focus on the

benefit of anticipation, while overlooking possible problems

and disadvantages in the anticipatory networking framework.

All the main components of anticipatory networking, the

context database and the prediction/anticipation intelligence,

must be effectively integrated into the mobile network archi-

tecture which poses challenges at different levels. First, new

interfaces and communication paradigms must be defined for

data collection from both end users and sources external to

the mobile network itself; second, the management of the

context databases brings an additional burden in terms of

required bandwidth and processing power for several network

elements which may lead to scalability issues as well as

security and privacy concerns. To this extent, a thorough and

comprehensive cost-benefit analysis for specific anticipatory

networking scenarios is, in our opinion, a required next step

for the research in the field.

X. LIST OF ACRONYMS

ANN Artificial Neural Network

AR AutoRegressive

ARIMA AutoRegressive Integrated and Moving Average

ARMA AutoRegressive and Moving Average

ATM Asynchronous Transfer Mode

BER Bit Error Rate

CCN Content Centric Network

CF Collaborative Filtering

ConvOpt Convex Optimization

CR Cognitive Radio

CSI Channel State Information

CTM Continuous Time Markov

CTMC Continuous Time Markov Chain

D2D device-to-device

DASH Dynamic Adaptive Streaming over HTTP

DTMC Discrete Time Markov Chain

ELM Extreme Learning Machine

FTP File Transfer Protocol

GARCH Generalized AutoRegressive Conditionally

Heteroskedastic

GP Gaussian Process

GPS Global Positioning System

HMM Hidden Markov Models

HTTP Hypertext Transfer Protocol

ID identity

ILP Integer Linear Programming

IoT Internet-of-Things

KKF Kriged Kalman Filter

LTE Long Term Evolution

LP Linear Programming

LZ Lempel-Ziv

M2M Machine-to-Machine

MA Moving Average

MAC Medium Access Control

MANET Mobile Ad-hoc Networks

MC Markov Chain

MILP Mixed-Integer Linear Programming

MNLP Mixed Non-Linear Program

MPC Model Predictive Control

MDP Markov Decision Process

PF Proportionally Fair

QoE Quality-of-Experience

QoS Quality-of-Service

RAN Radio Access Network

REM Radio Environment Map

RTT Round Trip Time

SVM Support Vector Machine

TCP Transmission Control Protocol

TCP Transport Control Protocol

UDP User Datagram Protocol
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