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Microsoft Kinect, a low-cost motion sensing device, enables users to interact with com-
puters or game consoles naturally through gestures and spoken commands without any
other peripheral equipment. As such, it has commanded intense interests in research and

development on the Kinect technology. In this article, we present a comprehensive survey
on Kinect applications, and the latest research and development on motion recognition
using data captured by the Kinect sensor. On the applications front, we review the ap-
plications of the Kinect technology in a variety of areas, including healthcare, education
and performing arts, robotics, sign language recognition, retail services, workplace safety
training, as well as 3D reconstructions. On the technology front, we provide an overview
of the main features of both versions of the Kinect sensor together with the depth sens-

ing technologies used, and review literatures on human motion recognition techniques
used in Kinect applications. We provide a classification of motion recognition techniques

to highlight the different approaches used in human motion recognition. Furthermore,
we compile a list of publicly available Kinect datasets. These datasets are valuable re-
sources for researchers to investigate better methods for human motion recognition and
lower-level computer vision tasks such as segmentation, object detection, and human
pose estimation.

Keywords: Human Motion Recognition; Machine Learning; Microsoft Kinect

1. Introduction

Launched in 2010, Microsoft Kinect is one of the most popular game controllers in

recent years, having sold more than 24 million units as of February 2013.34 Kinect

allows users to naturally interact with a computer or game console with gestures

and/or voice commands. With such widespread popularity in the market, Microsoft

Kinect has attracted many researchers to investigate its applications beyond video

gaming, as well as to study fundamentals in computer vision-based human motion

tracking and recognition.

In late 2011, Microsoft released a Software Development Kit (SDK) for its Kinect



sensors. The SDK enables users to develop sophisticated computer-based human

motion tracking applications in C# and C++ programming languages. The immer-

sive Kinect technology from both hardware design and the SDK makes it possible to

detect, track and recognize human motion dynamically in real-time. Applications of

Microsoft Kinect have been extended to many fields beyond video games, including

healthcare, education, retail, training, virtual reality, robotics, sign languages, and

other areas. Moreover, researchers have intensively studied fundamental techniques

for human motion tracking and analysis using Microsoft Kinect.

In this article, we present a comprehensive review of the applications of the

Microsoft Kinect sensor in various domains and recent studies on human motion

recognition that power these applications. The main difference between our study

and the existing reviews of the Kinect technology in Ref. 50, 146 lies in the com-

prehensiveness of our review in two specific areas: (1) Kinect applications, and (2)

human motion recognition.

The primary objective of Ref. 146 is to illustrate the technology embedded in-

side the Kinect device and its SDK, such as the hardware design, sensor calibration,

human skeletal tracking techniques, and head pose and facial-expression tracking

mechanisms. It also presents a prototype system that utilizes multiple Kinect sen-

sors in an immersive teleconferencing application. The review provided in Ref. 50

covers a broad topics related to the Kinect technology, including object detection,

human activities, hand gestures, and in door 3D mapping. Our work has a number

of major differences from Ref. 50:

• We provide a comprehensive review of the application of the Kinect tech-

nology in many different areas, which is not included in Ref. 50.

• Our survey focuses on human motion recognition. Even though some over-

lap is inevitable with Ref. 50, our survey provides a much more in-depth

coverage on methods of human motion recognition. For example, in addition

to Hidden Markov Model (HMM) and Dynamic Time Warping (DTW),

which are briefly covered in Ref. 50, we survey several other algorithms and

techniques such as artificial neural networks, randomized decision forests,

Adaboost, least squares regression, kernel regression, rule-based realtime

gesture and gesture state recognition. Furthermore, we provide a classifica-

tion of common approaches used in human motion recognition, and review

each approach accordingly.

• We intentionally omit the literature on low-level object tracking and detec-

tion, and the work on human pose and skeleton estimation, because these

topics have been well reviewed in Ref. 50.

• We compile a list of most recent publicly available Kinect datasets with

URL to each dataset. Even though a list of datasets are also included

in Ref. 50, no efforts were made to ensure that each dataset is actually

available publicly. As such, many cited datasets are in fact not available

publicly.



The remainder of this article is organized as follows: Section 2 introduces the

main features of the two versions of Kinect sensors and the underlying depth sensing

technologies. Section 3 reviews various applications of the Microsoft Kinect sensor.

Section 4 surveys the models and algorithms used for recognizing human gestures

and activities with Kinect. Section 5 compiles a list of publicly available Kinect

datasets. Finally in section 6, we conclude the article.

2. The Kinect Technology

The Kinect sensor, together with the Microsoft Kinect SDK, or a third-party soft-

ware toolkit such as OpenNI (http://structure.io/openni), provides a user with

several streams of information. The most common streams include:

• A stream of 2D color image frames.

• A stream of 3D depth image frames.

• A stream of 3D skeletal frames for at least one human subject in the view. A

skeletal frame may contain the 3D position information for various number

of joints.

The availability of the skeletal frames with extensive joint 3D positions has

greatly facilitated Kinect application development because it frees the application

developers from dealing with the complicated task of human pose estimation. Nev-

ertheless, the availability of the RGB frames and the 3D depth frames facilitates

researchers and software developers to perform their own pose estimation instead

of using the built-in skeletal frames provided by the SDK. As shown in Figure 1, in

general, to develop a useful Kinect application involving human motion recognition,

the following steps are typically needed:

• Human skeleton estimation. A version of skeleton estimation is incorpo-

rated in the Kinect SDK and one can obtain a stream of skeleton frames

directly. To accomplish realtime human skeleton estimation, a model is de-

veloped to represent a full human skeleton. Then, the model is trained with

extensive labeled data. The trained model is incorporated in the SDK for

realtime skeleton tracking. The following shows the main steps for human

skeleton estimation:

– Retrieve the stream of depth frames containing one or more human

subjects.

– Perform human subject foreground extraction (i.e., background sub-

traction) and detection from depth frames.

– Match the extracted human subject against the trained model to es-

timate the current pose.

– Infer the skeleton joint positions once the current pose is estimated

and subsequently refined.
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Fig. 1. Typical steps of motion tracking and analysis with Kinect.

• Motion recognition. In this step, the semantics of the activity or gesture

formed by the motion is recognized.

• Feedback to users and/or actions triggered by the detection of the partic-

ular motion.

Kinect has gone through two versions for far. The first version of the Kinect

sensor (referred to as Kinect v1) was released for the Xbox 360 game console in

November 2010. A minor revised version, called Kinect for Windows, was released

for application development on computers in February 2012. The Kinect for Win-

dows sensor offers a near mode for depth sensing, but all other hardware specifica-

tion remains the same as the original Kinect sensor. The second version of Kinect

(referred to as Kinect v2) was officially released in summer 2014. Kinect v2 uses

a completely different depth sensing technology and offers much improved depth

sensing accuracy as well as color image resolution. The main features for the two

versions of the Kinect sensor are summarized in Table 1.

The depth-sensing technology used in Kinect v1 was developed by

PrimeSense.143 The depth of each pixel is calculated by a form of triangulation.

Normally, two cameras are needed to facilitate the triangulation calculation. In-

stead, in Kinect v1, a structured light method is used to enable the use of a single

infrared (IR) emitter and a single depth sensor to calculate the depth of each pixel.

As shown in Figure 2, the IR emitter beams structured light with predefined pat-



Table 1. Comparison of main features of the two versions of the Kinect sensor.

Feature Kinect v1 Kinect v2

Depth Sensing Technology Triangulation Time of flight
with structured light

Color Image Resolution 640x480 30fps 1920x1080 30fps
1280x960 12fps (12fps low light)

IR Image Resolution 640x480 30fps 512x424 30fps

Depth Sensing Resolution 640x480 30fps 512x424 30fps
320x240 30fps

80x60 30fps

Field of View 43◦ vertical > 43◦ vertical
57◦ horizontal 70◦ horizontal 60

Depth Sensing Range 0.4m - 3m (near mode) 0.5m - 4.5m
0.8m - 4m (default mode) Up to 8m without skeletonization

Skeleton Tracking Up to 2 subjects Up to 6 subjects
(with full skeleton) 20 joints per skeleton 25 joints per skeleton

Built-in Gestures None Hand state (open, close, lasso)

Hand pointer controls; lean

Unity Support Third party Yes

Face APIs Basic Extended massively

Runtime Design Can run multiple Kinect At most one Kinect per computer;

sensors per computer; Multiple apps share
One app per Kinect same Kinect

Windows Store Cannot publish to Yes

terns to the objects in the field of view. By observing the unique pattern, the depth

sensor can infer the line from the IR emitter to the pixel with the pattern, hence,

the depth sensor can calculate the vertical distance between the IR emitter-depth

sensor line to the pixel using trigonometry, which is the depth reading of the pixel.

While this is a very clever scheme, the fidelity of the depth measurement is

quite low because for the depth sensing to work perfectly, there has to be a visible

unique pattern for each pixel. Because there has to be some space between two

adjacent dots as part of the structured light and this space has to be wide enough

for the depth sensor to distinguish, only about 1 in every 20 pixels has a true

depth measurement in typical situations and the depths for other pixels must be

interpolated.64 Hence, the depth sensing resolution is actually significantly below

the nominal 640x480 for Kinect v1. Furthermore, due to the use of IR light patterns,

the depth sensing fidelity may also be compromised in the presence of strong light.

The depth-sensing technology used in Kinect v2 is completely different and the

depth is calculated based on time of flight.29 It appears that the technology is based

on that developed by Canesta, which was acquired by Microsoft in late 2010.62 As

shown in Figure 3, Kinect v2 is also equipped with an IR emitter and a depth

sensor. However, the IR emitter consists of a IR laser diode to beam modulated IR

light to the field of view. The reflected light will be collected by the depth sensor. A

timing generator is used to synchronize the actions of the IR emitter and the depth

sensor. The depth of each pixel can be calculated based on the phase shift between
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Fig. 3. Kinect v2 uses the time-of-flight method for depth sensing.

the emitted light and the reflected light. A clever design in Kinect v2 is that the IR

emitter is periodically turned on and off, and the output from the depth sensor is

sent to two different ports when the light is on and off, respectively. Let the output

when the light is on be A, and the output when the light is off be B. A contains

the light from both the emitted IR light and ambient light (i.e., the light already

in the field of view), and B contains only the ambient light. Hence, subtracting B

from A (i.e., A-B) gives only the reflected modulated light from the IR emitter,

which can be used to calculate the depth accurately. Furthermore, the magnitude

of (A-B) gives a high quality IR image without ambient lighting. This design makes

Kinect v2 produce much better IR images and depth images, as shown in Figure 4.

Another major change is the Kinect runtime design. For Kinect v1, a Kinect

sensor is exclusively used for a single application, and multiple Kinect sensors can be

used and controlled by a single application. The application has full control over the

Kinect sensors it connects to, including various settings on the resolution in color
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Fig. 4. Comparison of the IR and depth image quality between Kinect v1 and Kinect v2. The
two sets of images were taken with the maximum resolutions and with the same Kinect-to-user
distance. As can be seen, not only the quality of Kinect v2 images is obviously higher, the field of
view is wider as well.

and depth frames. However, it is not possible for different applications to share the

same Kinect sensor on the same computer. For Kinect v2, the Kinect runtime is

elevated to a system-level service to facilitate the use of the various data collected

by the Kinect sensor by multiple different applications. As a tradeoff, an application

can no longer choose the resolution settings and at most one Kinect sensor can be

used at a computer (i.e., one cannot connect two or more Kinect v2 sensors to

the same computer). Furthermore, due to the maturity of the Kinect technology,

developers can now publish Kinect v2 applications to the Windows store. Kinect

v2 SDK also provides official support for Unity, which is a development platform

for 3D games.

Finally, Kinect v2 SDK provides a tool to develop gesture recognition based on

machine learning. The details of the algorithms used will be elaborated in Section 4.

The availability of this tool might greatly facilitate the development of gesture-based

Kinect v2 applications.
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3. Applications of the Kinect Technology

Microsoft Kinect was originally released exclusively for the Xbox gaming and enter-

tainment consoles. It allows Xbox game players to interactively control the console

through body gestures and voice commands without using any other peripheral

equipment. With the introduction of the free Microsoft Kinect SDK in 2011, the

Kinect technology opened a huge door for developing other applications beyond

Xbox games. Figure 5 shows major Kinect application categories, spanning from

healthcare, to education, retail, training, gaming, robotics control, natural user in-

terface, sign language recognition, as well as 3D reconstruction, which is a great fit

for the 3D printing revolution. Except for 3D reconstruction applications, virtually

all other Kinect applications require motion recognition so that the semantics of

a human gesture or action can be interpreted automatically. Hence, motion recog-

nition is the fundamental enabling technology, which we will review in the next

Section in detail. Among all these applications, healthcare related applications have

attracted the most research and development effort.

3.1. Healthcare Applications

In this section we review the applications of the Kinect technology in healthcare.

We focus on physical rehabilitation exercises, medical operating room assistance,

and fall detection and prevention. The summary of the literatures reviewed is given

in Table 2.



Table 2. Summary of Kinect applications in healthcare.

Applications Main Contributions References

Assessment of Kinect motion tracking accuracy 19
for healthcare applications

An interactive game-based rehabilitation tool 67, 68
for adults with neurological injury

Full-body control in virtual reality applications 118

Integration of Kinect and a smart glove for 53
patients with upper extremity impairment

Physical An interactive rehabilitation system for 2

Therapy and disabled children

Rehabilitation A rehabilitating program for young adults 20
with motor impairments

Cognitive rehabilitation for Alzheimer’s patients 21
using a Kinect-based game

A Kinect-based game for stroke rehabilitation 107

An exercise rehabilitation program for 46
individuals with spinal cord injury

Integration of Kinect with rehabilitation robotics 94

Integration of inertial sensors with Kinect 14
An at-home exercise monitoring system 148, 149

Medical A Kinect-based intra-operative medical image viewer 13
Operating A system that enables touchless controlling of 42
Room Assistance medical images with hand and arm gestures

A real-time fall monitoring and detection system 81
Overcoming occlusions for human body fall detection 104

Fall Fall detection based on Kinect skeletal data 12
Detection Human fall detection using two Kinect 147
and Capturing variations of stride-to-stride gait 114, 113
Prevention for elderly adults

Detecting falls and other abnormal events on stairs 92
Fall prevention in hospital ward environment 88

3.1.1. Physical Therapy and Rehabilitation

Traditional physical therapy rehabilitation training programs typically involve ex-

tensive, repetitive range-of-motion and coordination exercises, and require medical

professionals to supervise patients’ movements and assess their progress. In order

to meet increasing demands and reduce the cost, physical therapy and rehabilita-

tion providers are looking for computer technology that can assist them to provide

services to patients in an affordable, convenient and user-friendly way. An essen-

tial requirement for such technology is that it helps patients learn and perform

preventive and rehabilitative movement patterns repetitively and correctly.

Human motion recognition technologies have been used to monitor physical

rehabilitation exercises and other patients’ activities long before the release of Mi-

crosoft Kinect. However, most of them rely on motion tracking tools that are intru-

sive because patients either have to wear markers or attach inertial sensors. With

the introduction of Kinect, it is possible to provide markerless full-body tracking.



A research group at the University of Southern California Institute for Creative

Technologies (ICT) has successfully used Kinect to develop a virtual reality simu-

lation technology for clinical purposes. Through extensive evaluation, assessment,

and analysis, researchers at ICT have proved that the Kinect technology can make a

major contribution to the quality of traditional intervention training programs that

specialize in mental health therapy, motor skills rehabilitation, cognitive assessment

and clinical skills training.19,53,67,68,118

Chang et al. presented a comprehensive assessment of using Kinect for mo-

tion tracking with an OptiTrack optical system as comparison.19 The experimental

results show that Kinect can achieve competitive motion tracking performance com-

pared to the OptiTrack system, and it can also provide “pervasive” accessibility to

patients so that they can take rehabilitation treatment in clinic and as well as in

home environments.

Lange et al. developed and assessed an interactive game-based rehabilitation

tool for balance training for adults with neurological injuries.67 Furthermore, Lange

developed a video game called “JewelMine” to use in balance training.68

Suma et al. developed the Flexible Action and Articulated Skeleton Toolkit

(FAAST) to facilitate the integration of full-body control with virtual reality ap-

plications and video games using Kinect.118

Huang et al. designed a motion and angle extraction device for patients with

upper extremity impairment by integrating Kinect and a smart glove.53 This ap-

proach overcomes the limitation of Kinect when testing subjects who are out of

camera range or whose upper extremities are occluded by their body.

Rahman et al. presented an interactive rehabilitation system for disabled

children.2 This system utilizes Kinect to record rehabilitation exercises performed

by a physiotherapist or a disabled child. The exercise session can be synchronously

played in an on-line virtual system, which provides patients with visual guidance

for performing correct movements.

Chang et al. described a study that assesses the possibility of rehabilitating two

young adults with motor impairments using a Kinect.20

Cervantes et al. presented their work on cognitive rehabilitation for Alzheimer’s

patients using a Kinect-based video game.21 The interactive body motion controlled

game increases patients’ motivation to participate in exercises. In a similar research

work, Saini et al. aimed at increasing patients’ motivation for therapy using a

Kinect-based game for stroke rehabilitation.107 They studied the feasibility and

effect of new game technology to improve the accuracy of stroke exercises for hand

and leg rehabilitation. Gotsis et al. demonstrated a mixed reality game for upper

body exercise and rehabilitation using Kinect.46

Pedro et al. proposed to use Kinect in conjunction with rehabilitation robotics.94

The benefit of combining the Kinect device with a robot is the reduction of hardware

cost when multiple cameras are needed to overcome occlusions.

Although Kinect has been proven to be a good replacement for the commonly

used inertial sensor for tracking human body motion, the combination of using



Fig. 6. An at-home exercise monitoring system with Kinect.

both devices may achieve more satisfying results. Bo et al. proposed a method

to combine Kinect with portable sensors, such as accelerometers, gyrometers, and

magnetometers, for measuring human motion for rehabilitation purposes.14 In this

study, Kinect was used to temporarily correct the overall estimate and to calibrate

the inertial sensors for long-term operations.

Providing interactive feedbacks to patients is an important requirement for reha-

bilitation exercise monitoring applications. During rehabilitation training, patients

are required to perform an exercise in a specific manner to meet the objectives

of rehabilitation. The output of human motion recognition should be presented as

feedbacks to patients in realtime to inform them about any incorrect movement.

Velloso et al. developed a system aimed to facilitate at-home rehabilitation exer-

cise monitoring.127 The system employed a kinematic model to identify static and

dynamic axis in a prescribed exercise. The model parameters are automatically

fitted using an exemplar. This finalized model enables the system to continuously

monitor violations of static axes in realtime, and to count the repetitions for dy-

namic joints.

Su developed a similar system. However, fuzzy logic is employed to capture the

clinician’s subjective requirements on performing the exercises.117 After the gesture

recognition step on individual features, a single score is given to the patient after

combining the fuzzy rules.

In our recent work in Ref. 149, we proposed a set of extensive/adaptable rules

(with error bounds to capture the fuzziness of requirements) for each exercise, such

that specific feedback on rule violations can be provided directly to the patients.

Unlike playing games, which a user normally only expects a total score, a patient
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Fig. 7. A medical image viewer based on Kinect.

who is carrying out a rehabilitation exercise expects to be informed exactly what is

not done right to ensure proper recovery. The proposed rules have been incorporated

into an at-home exercise monitoring system.148 The system has a 3D user interface

implemented using Unity3D. As shown in Figure 6, the left side of the user interface

shows a 3D avatar demonstrating the correct movement, while the right side of the

interface mirrors the patient’s movement. A visual target ball for the leg in a hip

abduction exercise is provided. The target ball changes color depending on whether

or not any correctness rule is violated. If the patient does one iteration correctly,

the ball shows the green color. Otherwise, it shows yellow and the specific rule

that is violated is displayed in text on the interface. The target ball also shows the

repetition count for correct iterations.

3.1.2. Medical Operating Room Assistance

The growing use of advanced imaging devices and image guided procedures in sur-

gical settings has imposed an increasing need for interaction under high sterile con-

ditions between medical professionals and images.58 Kinect provides an appealing

opportunity to control medical images or image-guided devices without touching.

Some researchers have developed Kinect-based gesture recognition systems to ad-

dress the needs in medical surgical rooms.13,42.

Bigdelou et al. developed a Kinect-based intra-operative medical image viewer

for use in a surgical environment.13 The system incorporates a gesture recognizer

based on kernel regression such that both the categorical information and the state

of the gesture can be recognized. A doctor could manipulate a medical image with-

out touch using the system during a surgery, such as zooming in, moving the image

around, add a label at the specific place in the image, as shown in Figure 7.



Gallo et al. developed a Kinect-based open-source system that allows interac-

tive exploration of medical digital images, such as CT, MRI, or PET in operating

rooms.42 The interface utilizes hand and arm gestures to execute basic tasks such

as image selection, zooming, translating, rotating and pointing, and some complex

tasks such as the manual selection and extraction of a region of interest as well as

interactive modification of the transfer function used to visualize medical images.

3.1.3. Fall Detection and Prevention

Kinect has been used to detect and prevent falls and other dangerous activities for

elderly people in a number of studies.12,81,88,92,104,113,147

Bian et al. presented an approach to detecting falls by extracting skeleton data

from Kinect depth images based on the fast randomized decision forest algorithm.12

This algorithm produces more accurate detection by properly rotating frames to

match human orientation.

Mastorakis et al. introduced a Kinect-based real-time fall monitoring and de-

tection system that can automatically detect a range of falls including backward,

forward and sideways, without pre-knowledge of the floor plane coordinates or pre-

defined particular body parts.81

Ni et al. developed a Kinect-based system to prevent potential falls in the hos-

pital ward environments.88 This system automatically detects the event of patient

getting up out of a bed. The nursing staff is alarmed immediately to provide as-

sistance once the getting up event is detected. The detection algorithm combines

multiple features from multiple modalities via an MKL framework to achieve high

accuracy and efficiency.

Parra-Dominguez et al. proposed a method to detect falls and other abnormal

events on stairways instead of at flat level using Kinect.92 This method automat-

ically estimates walking speed and extracts a set of features that encode human

motion during stairway descent.

Rougier et al. introduced an approach to addressing the occlusion issue in de-

tecting human body falls using Kinect.104 The method is based on human centroid

height relative to the ground and body velocity. With the help of computing 3D

personal velocity just before occlusion occurs, this method can accurately detect

falls by measuring human centroid height, as the vast majority of falls end on the

ground or near the ground.

Stone and Skubic developed a Kinect-based system for capturing the variations

of stride-to-stride gait in home environments for elderly adults.114 By measuring

the changes in gait, falls can be predicted. If the motion of joints of a specific body

subject is detected in an unusual time sequence, a prevention message is generated

as a caution.

Zhang et al. proposed a viewpoint-independent statistical method for fall

detection.147 They used 5 features, including the duration of a fall in frames, the

total head drop during the fall, the maximum speed of the fall, the smallest head



height (after the fall has happened), and the fraction of frames where head drops.

The fall probability was calculated using the Bayes rule.

3.2. Virtual Reality and Gaming

The innovative human motion tracking and recognition technology enabled by

Kinect allows users to interact with augmented objects freely in real-time for

computer-based virtual reality applications and augmented reality games. The list

of work in this area is summarized in Table 3.

Aitpayev et al. applied the Kinect technology to make the human body a physi-

cal part of augmented reality for interaction without wearing a special suit with in-

frared LEDs or attaching special markers.4 Furthermore, they presented two meth-

ods, the Ragdoll method and the rotation angle method, for animating the collision

of objects in real-time.

Tong et al. studied computational algorithms to calculate join rotation angles

from Kinect for skeleton animation.123 The resulting data is saved in the Biovision

Hierarchy character animation file format, which can be represented in future study

and analysis.

Franke et al. proposed mathematical foundations for using Kinect depth images

in mixed reality applications.39 Tong and his colleagues demonstrated a system that

can scan 3D full human body shapes by using multiple Kinect devices in a more

convenient way.122

Kinect has also been widely used in augmented reality games. A computer game

developed by Nakachi et al. can express “individuality” in their proprietary software

package using Kinect.86 Hai et al. developed an interaction system for treadmill

games based on Kinect depth maps.49 The HoloDesk is an interactive augmented

reality system combining an optical see-through display and a Kinect to create the

illusion that users can directly interact with 3D graphics.51 The Wizard-of-Oz is

a guessability game to examine child-defined gestures using Kinect.27 This game

can simulate on-screen whole-body interaction for prototyping touch-free interactive

games for children. There is also research on reducing the volume of data transferred

over the network for cloud-based games using Kinect.90

3.3. Natural User Interface

A natural user interface refers to a new type of human computer interface where a

user can command and interact with a computer naturally using hand gestures or

body poses, as well as voice commands, instead of a keyboard or mouse pointing de-

vice. Kinect is a critical enabling device for the development of various novel natural

user interfaces. The literature on Kinect-based natural user interface development

is summarized in Table 4.

Farhadi-Niaki et al. proposed an input system using Kinect for performing typi-

cal desktop tasks through arm gestures.36 The system shows that gestures are more

natural and pleasant to use than a mouse and a keyboard.



Table 3. Summary of Kinect applications in virtual reality and gaming.

Applications Main Contributions References

A markerless virtual reality system 4
VR A computational algorithm for skeleton animation 123
Foundamentals Mixed reality applications based on 39

Kinect depth imaging
3D full human body scan using multiple Kinect 122

A game expressing “individuality“ 86
A treadmill game based on Kinect depth maps 49

VR A HoloDesk game combining an optical 51

Games display & Kinect
A game examining child-defined gestures 27

A cloud-hosted Kinect-based game 90

Table 4. Summary of Kinect applications in natural user interface.

Applications Main Contributions References

Performing desktop tasks via arm gestures 36

3D object manipulation on a desktop display 97
Natural 3D control method based on Kinect 61

User A 3D navigation user interaction system 38

Interface A group meeting application based on Kinect 17
Controlling virtual globes via Kinect 15

Web browsing via natural user interfaces 71
Automatic camera control based on Kinect 136

Raj et al. presented a different approach to 3D object manipulation on a desktop

display.97 They examined a number of aspects of this approach: (1) the advantage in

response time for the self-avatar versus the generic sphere display as a representation

of the user’s rotational device; (2) the differences in the user’s preference to either

use an arm gesture or a wrist rotation to manipulate objects; and (3) whether the

gender and/or gaming experience would influence task performance.

Kang et al. conducted a study on the control method of 3D applications using

Microsoft Kinect.61 They introduced a control method that naturally regulates the

use of distance information and joints location information. They showed that the

recognition rate using the natural user interface with Kinect is 27% better than

that using a mouse.

Francese et al. presented a 3D navigation user interaction application.38 The

proposed system allows users to interact with desktop computers via new forms

of natural interfaces and new actions. The system is specifically designed for 3D

gestural user interaction on 3D geographical maps.

A Code Space software application developed by Bragdon et al. combines touch

and air gesture hybrid interactions to access, control, and share information through

different hardware devices for a group meeting.17 The devices include multi-touch

screens, mobile touch devices, and Microsoft Kinect sensors.



Boulos et al. developed an application called “Kinoogle” to control virtual

globes, such as Google Earth, Bing Maps 3D, and NASA World Wind using

Kinect.15 The Kinoogle allows the user to control Google Earth through a series of

hand and full-body gestures.

Liebling et al. introduced a “Kinected Browser” for Web browsing through

touch-free technologies.71 The developed toolkit can be used to augment web pages

with speech input and gesture input via Kinect, it is designed to enable Web inter-

actions for new form-factors such as large display walls, and TV sets.

Winkler et al. introduced a low-cost, non-intrusive solution for automatic cam-

era control for tracking a presenter during a talk using Kinect.136 The approach

enables video cameras to automatically follow a presenter on different premises with

different geometries.

3.4. Education and Performing Arts

In education, especial K-12 education, the natural user interface enabled by Kinect

offers an opportunity to engage students in a new level. Similarly, it also enables

a new powerful way of teaching and assessing the quality of performing arts. The

literature reviewed in this section is summarized in Table 5.

Table 5. Summary of Kinect applications in education and performing arts.

Applications Main Contributions References

Education A classroom teaching system with Kinect 129

and A interactive music conductor generation system with Kinect 23
Performing A puppetry control application with Kinect 70

Arts A MotionDraw tool for enhancing art performance 102

Villaroman et al. proposed a classroom teaching system that uses Kinect for

classroom instruction on natural user interaction.129 Examples are presented to

demonstrate how Kinect-assisted instruction can be utilized to accomplish adequate

and beneficial learning results in Human Computer Interaction courses.

Chen et al. proposed an interactive music conductor generation system. It allows

the music to be arranged under the human music conductor’s hand gestures in real-

time.23

Leite et al. developed a puppetry control application through body motion with

Kinect.70 The animating shadow puppets are controlled by the virtual silhouette

instead of pulling strings or handling rods.

Rodrigues et al. introduced a tool called “MotionDraw” for enhancing art per-

formance using Kinect.102 This tool can track live movements of users and enable

artists, performers, dancers and the audience to design, create and control hybrid

digital performances.



3.5. Robotics Control and Interaction

Kinect has also been used to control robots. In recent studies, traditional robotics

controlling sensors including laser, ultra-sonic and radar sensors, have been either

directly replaced by or integrated with Kinect. In this section we review the ap-

plications of the Kinect technology in navigating and controlling mobile devices,

interactively controlling humanoid robots, and remotely controlling robotic devices.

The summary of the review is given in Table 6.

Table 6. Summary of Kinect applications in robotics control and interaction.

Applications Main Contributions References

Robotics Robot navigation using Kinect and inertial sensors 33
Navigation Feasibility on using gestures to control industrial robots 52
& Control A human imitation system 87

Interactively Navigating a robot using hand gestures 140
Controlling A human-robot interactive demonstration system 24
Robotics with a gesture recognizer

An athletic training speed skating system using Kinect 16

Robotics A Kinect on-board system that enables the control 76
Remote of velocity and attitude of a mobile robot
Control Controlling altitude of a quadrotor helicopter via Kinect 115

A real-time human imitation system for robotics 131
Tele-operating a humanoid robot using Kinect 150

3.5.1. Navigating and Controlling Robotics

Humanoid robots have gradually entered our life in many ways, performing house

chores, assisting elderly people, providing education, and completing tasks in se-

vere conditions. Researchers now face a challenge of how to naturally navigate this

human-body shape device effectively without using wearable devices. The emerging

Kinect technology provides an ideal interface to accomplish such a task.

El-Iaithy et al. developed an application to navigate an indoor robot.33 This

application integrates Kinect with inertial sensors to optimize indoor navigation,

particularly for obstacle detection and avoidance. Through the experiments con-

ducted in both indoor and outdoor environments, it shows that Kinect is ideal for

indoor robotic applications, but not suitable for outdoor applications or when the

robot is under strong lighting sources. In addition, it also shows that Kinect can-

not detect glass or transparent plastic well because the IR light from IR emitter is

refracted and therefore is not able to enable proper depth estimation.

Hoilund et al. evaluated the feasibility of using gestures to control industrial

robots via Kinect.52 Such a technique can enhance a mobile robot with the ability

to interpret human actions, so that the robot can be controlled through human

actions. The experimental results show that Kinect data is more noisy than more



expensive motion capture systems. However, the authors believe that the quality of

the data is sufficient for action recognition using parametric hidden Markov models.

Nguye et al. presented a human imitation system that can map different kine-

matic structures.87 The objective of this system is to reproduce imitated human

motions during continuous and online observation with a humanoid robot using

Kinect. Using straight-forward geometry and clavicle, the proposed method re-

quires less time for computation of the kinematics. The experimental results show

that this system could feasibly adjust the robot motions to satisfy the mechanical

constraints and dynamics consistency.

3.5.2. Interactively Controlling Robotics

Recent advances in the Kinect technology on human computer interaction make it

attractive to use Kinect for interactively controlling humanoid robotics.

Xu et al. proposed a system that can navigate a robot using dynamic hand

gestures in real-time via Kinect.140 The system recognizes human hand gestures

based on a Hidden Markov Model and converts them to control commands for

the robot. Seven hand gestures are used to sufficiently navigate the robot and

experiments show that the proposed system can work effectively in the complex

environment with an average real-time recognition rate of 98.4%. Furthermore, the

robot navigation experiments show a high robustness of human-robot interaction

in real-world scenarios.

Cheng et al. developed a human-robot interactive demonstration system.24 The

core of the system is a body gesture recognizer. The recognizer provides a visual

interpretation of gestures and sends it to robots to enable natural interaction be-

tween a human and a robot. The prototype system was built with a NAO humanoid

robot, a Kinect sensor, and a computer. The human gesture modules are loaded

into NAO’s behavior manager to simplify the control process.

3.5.3. Remote Control

The Kinect technology has also been used to remotely control robotic devices in a

number of applications, such as a mobile robotic motion capture system, a mobile

robot tracking system, and a quadrotor helicopter controller.

Boyd et al. developed an athletic training speed skating system by placing Kinect

on a mobile robotic platform to capture motion in situ.16 The system can follow

a speed skater on the ice to capture the full-body motion. The moving robotic

platform addresses the limited viewing area of Kinect and provides a visual guidance

for athletes.

Machida et al. introduced a tracking control system with Kinect on-board of

a mobile robot.76 The human gestures obtained via Kinect are used to control

the velocity and altitude of the mobile robot. The Kalman filter algorithm is used

to reduce the noise and to estimate the human’s motion state. The experiments



show that the estimation and tracking are effective and the image processing is

adequately fast.

Stowers et al. used Kinect’s depth images to control the altitude of a flying

quadrotor helicopter.115 The proposed system is capable of maintaining a steady

altitude during flight of the quadrotor helicopter in dynamic environments via a

special calibration process. The system demonstrates that Kinect is an attractive

motion sensing device for use on real-time robotic platforms due to its low cost,

sufficient frame rate and depth sensing accuracy.

Wang et al. developed an application using Kinect and the Aldebaran NAO

humanoid robot.131 The motion data captured via Kinect is transmitted to the

NAO robot wirelessly, in which the data is further processed for controlling the

joints of the robot. The testing results show that the system is robust and flexible

enough to imitate various human motions.

Zuher et al. showed that a humanoid robot can be tele-operated through the

recognition of human motions (such as neck, arms, and leg movements) using

Kinect.150 The proposed system focuses on two major tasks: a real-time imitation

of human movements and the recognition of such movements to make the robot

perform. The evaluation results from teleoperation show that the average accuracy

among the four aspects is 80%.

3.6. Speech and Sign Language Recognition

Visual automatic speech recognition has significant impact on our society. Taking

advantage of the Kinect technology, researchers extended existing work to use depth

information for improving the robustness of speech recognition. Galatas et al. in-

corporated facial depth data of a speaker as a third data stream in an audio-visual

automatic speech recognizer.41 The results demonstrate that the system perfor-

mance is improved due to the depth modality, and the accuracy is increased when

using both visual and depth modalities over audio-only speech recognition.

Agarwal and Thakur developed a method to recognize sign language gestures

using the Kinect depth frames.3 Depth and motion profiles are extracted from the

Kinect depth frames and used to build a feature matrix for each gesture. The sup-

port vector machine (SVM) classifier is used for recognition. The Chinese Number

Sign Language dataset from the ChaLearn Gesture Dataset was used in their ex-

periments.

Almeida et al. presented a methodology to extract features in Brazilian Sign

Language for recognition based on phonological structure.7 This structure consists

of the configuration, movement, and orientation of the hand, as well as the articu-

lation points, which represent the location of the sign. For sign recognition, SVM

is used as the classifier.

Anjo et al. developed a system to recognize static gestures representing 10 letters

in the Brazilian Sign Language in real-time.8 The hand shape, which is represented

as a 25x25 binary image, is used as the feature vector, and the multi-layer percep-



Table 7. Summary of Kinect applications in speech and sign language recognition. In the table,
ASL refers to American Sign Language, Libras refers to the Brazilian Sign Language, CSL refers
to Chinese Sign Language, GSL refers to German Sign Language, ISL refers to Indian Sign
Language, PSL refers to Pakistani Sign Language, PSL1 refers to Polish Sign Language, PSL2
refers to Portuguese Sign Language, SIBI refers to the Sign System for Indonesian Language,
TSL refers to Taiwanese Sign Language, and TSL1 refers to Turkish Sign Language.

What is Recognized Feature Set Recognition Methods References

Speech Face and mouth HMM 41

10 numbers in CSL Depth and motion profiles SVM 3

34 signs in Libras Phonological structure SVM 7

10 words in Libras hand shape MLP 8

10 signs in ISL hand position Direct comparison 43
and trajectory

20 words in CSL Position and trajectory ELM and SVM 44
of right hand

34 words in CSL hand trajectories Sparse coding 57

and hand shapes

25 signs in GSL 9-dimension joints HMM 66
based on Kinect joints

25 words in TSL hand positions, SVM 69
movement, and shapes

4 signs in PSL and Kinect joints DTW 80
3 generic signs

111 words in TSL1 DCT coefficients KNN clustering 83

30 words in PSL1 Kinect joints and hand DTW and clustering 91
isolated words shapes from color images

ASL alphabet Hand shapes Random forests 96

10 SIBI words Kinect joint orientation and GLVQ and 98

features from depth images Random Forest

24 ASL letters Hand features from Deep believe network 101
color and depth images

PSL2 alphabet Hand angular pose Direct comparison 124

using 3D voxel
occupancy

150 gestures Arm postures and Clustering and HMM 128

finger-related features

19 ASL words hand shapes, motion, HMM 142
and pose

tron (MLP), which is a feed-forward neural network, is used as a classifier for the

recognition task.

Geetha et al. reported a method to recognize Indian Sign Language gestures.43

To increase the recognition accuracy, both the local feature, based on a set of 7 key

points of the hand, and the global feature, based on the hand trajectory, are used.

The recognition of the gestures is based on direct comparison and the similarity

between the testing gesture and the template is calculated using the Euclidean

distances of feature vectors.

Geng et al. proposed an approach to the recognition of 20 Chinese Sign Language

gestures based on both the position and trajectory of the right hand using the



extreme learning machine (ELM) as a classifier.44 Their experiments show that by

combining the features, the recognition accuracy is improved. Furthermore, ELM,

which is a variation of neural networks, is shown to perform better than SVM on

recognition accuracy.

Jiang et al. developed another approach to the recognition of 34 Chinese Sign

Language gestures.57 The feature vector is based on the combination of hand tra-

jectories and hand shapes. A sparse coding based method is used for gesture recog-

nition. Furthermore, the proposed method was validated with 8 human subjects

and the recognition is consistently at close to or better than 90%.

Lang et al. developed a system for recognizing 25 signs of the German Sign

Language using Hidden Markov Model (HMM). A 9-dimension feature vector, which

is derived from the left/right hand, neck, and right elbow, is used to train the model

and for recognition. Their system also allows the definition of new signs.

Lee et al. presented a Kinect-based system to recognize 25 words in the Tai-

wanese Sign Language.69 Hand positions, hand moving directions, and hand shapes

are used as the feature set, and SVM is used as the classifier for sign recognition.

Massod et al. developed a system for sign language translation based on dy-

namic time warping (DTW).80 The system consists of two modes of operations,

the recording mode and the translation mode. The recording mode enables the

recording of a predefined sign gesture, and during the translation mode, the cur-

rent gesture is compared with the recorded gesture for recognition using DTW.

Eight joint positions from the Kinect skeletal data are used for the comparison.

Seven gestures were experimented with, among which, four are from the Pakistani

Sign Language, and three are generic signs.

Memes and Albayrak reported a system for the recognition of 111 words in the

Turkish Sign Language (with 1002 dynamic signs) using spatio-temporal features

and the K-Nearest Neighbor (KNN) clustering classifier.83 The spatio-temproal

features are obtained by applying a 2D discrete cosine transform (DCT) to the

accumulated Kinect color and depth images.

Oszust and Wysocki Studied the Polish sign gesture recognition problem by

experimenting with several clustering algorithms and two different feature sets.91

One set is entirely based the Kinect joint data and the other set is the combination

of Kinect joint data and features extracted from color images. The recognition is

accomplished first by calculating DTW matrices, and then applying various clus-

tering methods. Consistent with other research results, the recognition accurate is

higher when the combination of features is employed.

Pugeault and Bowden presented an interactive user interface for the recognition

of American Sign Language finger-spelling alphabet.96 Hand shapes are extracted

from the kinect color and depth images and used as the feature set for recognition,

which is based on random forests.

Rakun et al. described their work on the recognition of the Sign System for

Indonesian Language at the individual word level using both the skeleton joint ori-



entation data and hand features extracted from the Kinect depth images.98 Two

different classifiers are used in their experiments, namely, generalized learning vector

quantization (GLVQ) and random forest, with the latter producing higher recogni-

tion accuracy.

Rioux-Maldague and Giguere proposed an approach to the recognition of static

hand poses for 24 letters in the American sign language using a deep learning

method called deep belief network.101 The feature set is based on the combination

of hand intensity features (from color images) and hand depth features (from depth

frames).

Trindade et al. enhanced the Kinect data with an inertial sensor based pose

sensor to help determine the hand angular pose, which is used as the feature set

to recognize the Portuguese Sign Language alphabet.124 The recognition is accom-

plished via direct comparison with a hand gesture template database. The similarity

calculation is based on matching 3D voxel occupancy.

Verma et al. described a two-stage feature extraction scheme for sign language

gesture recognition.128 In the first stage, the arm posture is calculated based on

Kinect shoulder, elbow and hand joints. In second stage, features regarding fingers,

such as the number of open fingers in the hand, are extracted based on depth

images. The HMM is used for recognition. Although the authors stated that 150

gestures were used in their experiment, no details regarding exactly what gestures

are used and in the context of which sign language.

Zafrulla et al. pioneered the study on American sign language recognition using

Kinect.142 Furthermore, different from other work reviewed earlier, they aimed to

not only perform word-level recognition with HMM, but sentence-level as well based

on a pre-defined grammar in the context of an education game. Features used for

recognition include hand shapes, hand motion trajectory, and hand poses.

As can be seen from the literatures we have reviewed in this section (which

are summarized in Table 7), the sign language recognition research is still in its

infancy. Except the work from Zafrulla et al.,142 the current research focuses on the

recognition of isolated words and numbers in various sign languages. Furthermore,

only a small fraction of the vocabulary has been attempted to be recognized. The

limitation of the current research may be partially attributed to the low resolution

of depth images and the lack of finger tracking support in the Microsoft SDK for

the Kinect v1 sensor. We anticipate that with the much superior depth resolution

and finger tracking support of Microsoft Kinect v2, new exciting research on sign

language recognition will soon emerge.

3.7. Retail Services

The Kinect technology could also be beneficial to retail services. Popa et al. pro-

posed a system for analyzing human behavior patterns related to products inter-

action, such as browsing through a set of products, examining, picking products,

trying products on, interacting with the shopping cart, and looking for support



by waving one hand.95 Kinect was used to capture the motions that would help

assess customers’ shopping behavior and detect when there is a need for support or

a selling opportunity. This application aims to increase customer satisfaction and

improve services productivities.

Wang et al. proposed an augmented reality system that allows the users to

virtually try on different handbags at home in front of a TV screen.134 The users can

interact with the virtual handbags naturally, such as sliding a handbag to different

positions on their arms and rotating a handbag to see it from different angles. Users

can also see how the handbags fit them in different virtual environments other than

the current real background.

The literatures reviewed in this subsection, together with those in all the re-

maining subsections are summarized in Table 8.

Table 8. Summary of Kinect applications in retail, training, speech and sign language

recognition, and 3D reconstruction.

Applications Main Contributions References

Human behavior pattern recognition 95
Retail on products interaction

Augmented reality system for virtual handbags 134

Training Back injury prevention 79
Musculoskeletal injury prevention 32

3D human body reconstruction 22
3D Reconstructing 3D mesh skeleton 35
Reconstruction Realtime 3D reconstructing of moving human body 6

Integrate Kinect with high resolution webcam 56
for 3D image reconstruction

3.8. Workplace Safety Training

Work place safety training could also be benefited by the Kinect technology. Mar-

tin et al. proposed a Kinect-based automated system to aid in the prevention of back

injuries by notifying the worker about dangerous movements in real-time at the lift

location.79 The system can also be used as a training tool due to its capability of

recognizing lift skills.

Dutta et al. utilized Kinect to record postures and movements for determin-

ing the risk of musculoskeletal injury in the workplace.32 The Kinect-based system

was shown to have comparable accuracy versus existing lab-based systems. It pro-

vides a compact, portable motion capture system allowing workplace ergonomic

assessments to be done simply and inexpensively.

3.9. 3D Reconstruction

It is a challenging task to build geometrically consistent 3D models because of

individual pairwise errors. Chatterjee et al. proposed to use Kinect for 3D human



body reconstruction.22 A challenge for doing this is that the depth images obtained

via Kinect have high noise levels. The proposed approach addresses both the issues

of depth image noise as well as the convergence of scan alignment to build accurate

3D models.

Farag et al. proposed an algorithm to efficiently calculate a vertex antipodal

point for reconstructing a skeleton of a 3D mesh for mesh animation.35 The al-

gorithm was successfully tested on different classes of 3D objects and produced

efficient results. It is capable of producing high quality skeletons, which makes it

suitable for applications where the mesh skeleton mapping is required to be kept

as much as possible.

Alexiadis et al. proposed an algorithm to reconstruct an accurate, realistic, full

3D moving human body in real-time.6 The approach is based on the generation of

separate textured meshes from multiple RGB-Depth streams, accurate ICP-based

alignment, and a fast zippering algorithm for the creation of a single full 3D mesh.

Jia et al. introduced a novel 3D image reconstruction method using the 2D

images from a high resolution webcam combined with Kinect depth images.56 The

proposed system provides a 3D live image without glasses or any other display

devices.

4. Human Motion Recognition with Microsoft Kinect

Human motion recognition aims to understand the semantics of the human ges-

tures and activities. A gesture typically involves one or two hands, and possibly

body poses, to convey some concrete meaning, such as waving the hand to say

goodbye. An activity usually refers to a sequence of full body movements that a

person performs, such as walking, running, brushing teeth, etc., which not neces-

sary conveys a meaning to the computer or other persons. Rehabilitation exercises

form a special type of activities.

As shown in Figure 8, the approaches used in gesture and activity recognition

can be roughly divided into two categories:

(1) Template based: In this approach, the classification of an unknown gesture or

activity is done by comparing with a pre-recorded template motion automati-

cally via pattern recognition.

(2) Algorithmic based: In this approach, a gesture or an activity is recognized based

on a set of manually defined rules.

The template based approach can be further divided into two categories:

– Direct matching: In this approach, the template motion is compared directly

with the unknown motion to be classified. The most dominating algorithm

used for direct matching is dynamic time warping (DTW).11 However, other

algorithms have been used for direct matching as well.99,100,137

– Modeled based matching: In this approach, a kinematic model or a statistical

model is used. The template is used to determine the parameters of the model.
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Fig. 8. Classification of gesture recognition methods.

Then, the fitted model is used to classify an unknown gesture or activity. The

method used to train the model varies significantly, from simple ones such as

obtaining average joint angles as in Ref. 127, to sophisticated machine learning

methods such as hidden Markov models as in Ref. 125 and artificial neural

networks as in Ref. 89.

The algorithmic-based recognition does not rely on exemplar training data.

Instead, it depends on a well-defined specification of the gesture or activity that can

be translated into a set of implementable rules for the gesture, and it requires the

tuning of the parameters for the rules. On the other hand, the algorithmic based

approach can recognize both the type of the gesture or activity and the state of the

gesture or activity.

The main benefit of the template-based approach is the automatic classification

of unknown gestures or activities. As a tradeoff, most of such model-based matching

methods require large amount of training data, and the direct matching method

is computational expensive and not suitable for realtime gesture recognition. Fur-

thermore, the feature sets used in the template-based methods usually have to

be carefully selected manually to reflect the most distinctive characteristics of the

gesture and activity for good classification accuracy. Some machine-learning-based

methods require the manual tuning of the model parameters as well.

The various approaches used for motion recognition with Kinect that we survey

in this section is summarized in Table 9.



Table 9. Summary of motion recognition techniques.

Method Major Contributions References

Rules based on trunk flexion angle and distance traversed 25
Rules based on knee angle 5

Algorithmic Rules based on hip angle and smoothness of head movement 135
Recognition Developed a Gesture Description Language 47

Rules for static poses, dynamic movements, 149

and movement invariance

Hand gesture recognition using DTW with depth image 30
Hand gesture recognition using DTW with skeleton data 130

Direct Quality assessment of rehab exercises using DTW 117
Matching 3D signature recognition for authentication using DTW 121

Matching using maximum correlation coefficient 137
Matching using earth mover’s distance 100, 99

Kinematic Programming by demonstration with kinematic modeling 127
Modeling

Use dynamic features instead of kinematic ones 78
HMM Use orientation of hand centroid as feature 140

Activity recognition using MEMM 119
Classify individual features using HMM 144

Neural Static gesture recognition using MLP 8

Newtorks Quality assessment of rehab exercises using NN-ANARX 89
Static gesture recognition using complex-valued neural network 48

SVM Finding best features for SVM classification 77
Recognition of key poses using SVM 84

Decision Modeling sequences of key poses for gesture recognition 84
Forest Human fall detection using Randomized Decision Forest 12, 45

Adaboost Used in Kinect v2 SDK for categorical classification 1

of simple gestures

Kernel regression using skeleton data 13
Regression Least square regression for one shot learning 75

Randomized forest regressor for gesture state estimation 1

Formulate as a document classification problem 120
Others Recognition baed on ATC and the action graph model 72

Trajectory-based classification 110

4.1. Algorithmic-Based Recognition

Algorithmic-based recognition is popular in gaming and healthcare applications be-

cause the gestures and/or activities are usually very well defined, relatively simple,

and repetitive in nature. Each gesture or activity normally has a pre-defined start-

ing and ending pose that can be used to delineate an iteration of the gesture or

activity. Naturally, the algorithmic-based motion recognition approach is a good fit

in such application domains.

Furthermore, in some cases, such as rehabilitation exercises, the rules are pri-

marily defined to assess the correctness of movements rather than to classify them

because it is assumed that the user already knows or is informed which particular

exercise to perform. Hence, it is not necessary for the rules to completely define the

exercise as long as they are in line with the therapeutic objectives of the exercise



and are sufficient to automatically carry out correctness assessment and repetition

count. Consequently, most such studies focus on a small set of rules and they are

predominately expressed in terms of joint angles.

Compared with other approaches mentioned previously, the algorithmic based

approach has a number of limitations:

• The rules for each gesture or activity have to be carefully defined by experts

and expressed in an implementable form. This would incur additional financial

cost and prevent a regular user from defining his/her own gestures or activities.

For rehabilitation exercises and therapeutic games, however, this is largely not

an issue because the clinician who prescribes an exercise, or the game designer,

is an expert in defining the exercise or the game.

• The gesture has to be simple enough to be defined in terms of a set of imple-

mentable rules.

• The parameters used in the rules for the boundary conditions must be manually

tuned carefully.

In Ref. 25 and Ref. 26, the rules are expressed in terms of the trunk flexion angle

and the distance traversed of a set of joints for postural control, and in terms of the

trunk lean angle for gait retraining. In Ref. 14, the knee angle and the ankle angle

are used to assess the quality of sit-to-stand and squat, and the shoulder angle is

used to assess the shoulder abduction/adduction quality. In Ref. 5, the rules are

expressed in terms of the knee angle in a robotic system for knee rehabilitation.

In Ref. 135, two metrics are used to evaluate the quality of the sit-to-stand

exercise: (1) the minimum hip angle, in which a younger healthier person would

typically have a larger value than an older person; and (2) the smoothness of the

head movement, which is quantified as the area of the triangle that is determined

by the second highest peak, the valley and lines that are parallel to the axes on the

head-speed-versus-time plot.

Far more comprehensive rules have been developed for the purpose of recognizing

hand and body gestures.47 In Ref. 47, a Gesture Description Language (GDL) is

introduced, in which a gesture is determined by a set of key frames. A frame contains

joint positions reported by the Kinect sensor. All rules are expressed in terms of

one or more key frames except the final rule, which defines the gesture in terms of

a sequence of basic rules. The rules are written as text files and are parsed with an

LALR-1 grammar. During runtime, a gesture is recognized with the following steps

executed in a loop:

(1) When a new frame arrives, the new motion data is stored in a memory heap.

The set of rules that have been satisfied so far are also stored in the heap.

(2) Examine the new data to see if any new rule is now satisfied.

(3) If a new rule is satisfied, the rule name is placed at the top of heap with a

timestamp. If the final rule that defines a gesture is satisfied, then the gesture

is recognized.



(4) If a new rule is satisfied in the previous step, go to step 2 to see if any other

rule is now satisfied as well. Otherwise, go back to step 1 waiting for the next

frame.

Because GDL is designed to be based on a set of key frames, it is resilient to motion

sensing errors. However, as a tradeoff, it lacks the support for rules that depend on

the entire trajectory of a gesture. It also lacks a guideline as to how to identify the

key frames for each gesture.

Recently, we proposed an algorithmic-based approach to assessing the quality

of rehabilitation exercises.149 Our approach is inspired by Ref. 10 in that dynamic

movements in each rehabilitation exercise are defined in terms of monotonic seg-

ments. However, we also include rules regarding invariance requirements, which

may not be important for general purpose motion recognition, but critical for the

effectiveness of rehabilitation exercises. For example, for hip abduction, it is im-

portant that the abducting leg should remain within the frontal plane the entire

time, which deserves a separate invariance rule. We also accommodate rules that

define static poses. A finite state machine based approach is used in dynamic rule

specification and realtime assessment. In addition to the typical advantages of the

algorithmic-based approach, such as realtime motion assessment with specific feed-

back, our approach has the following advantages: (1) increased reusability of the

defined rules as well as the rule assessment engine facilitated by a set of generic rule

elements; (2) increased customizability of the rules for each exercise enabled by the

use of a set of generic rule elements and the use of extensible rule encoding method;

and (3) increased robustness without relying on expensive statistical algorithms to

tolerate motion sensing errors and subtle patient errors.

4.2. Direct-Matching-Based Recognition

In this approach, the unknown gesture or activity is directly compared with a set

of templates. DTW is perhaps the most well-known technique to analyze the simi-

larity between two temporal sequences that may vary in time and speed by finding

an optimal alignment between them.85 Typically one sequence is an unknown se-

quence to be classified and the other sequence is a pre-classified reference sequence

(i.e., the template, also referred to as the exemplar). The difference between the

two sequences is expressed in terms of the distance between the two. In addition

to DTW, other direct matching methods have also been used in the literature, for

example, the matching can be done via the calculation of the maximum correla-

tion coefficient.137 For static gestures, the distance between two gestures can be

calculated using an algorithm called Earth Mover’s Distance. 105

4.2.1. DTW

Doliotis et al. proposed to use DTW to recognize hand gestures (digits recognition

in particular).30 Kinect depth frames were used to detect the hand instead of using



the Kinect skeleton frames. The normalized 2D position is used as the feature vector

for DTW matching.

Waithayanon et al. presented a study using DTW to recognition 7 hand

gestures.130 The left/right hands and wrists joints obtained directly from Kinect

skeleton frames are used as the feature vectors for DTWmatching, and the distances

between each test run and all the reference gestures are reported. The experimen-

tal result shows that 100% accuracy is achieved with the limited set of gesture

vocabulary.

In a Kinect-based system for in-home rehabilitation exercises, DTW was used

to determine the similarity between the exercise done at the direct supervision of a

clinician, and that done at home.117 The trajectory and speed of individual joints

involved in each exercise are used as the feature vector and compared separately

using DTW. The joint position information was obtained from the Kinect skeleton

frames. The quality of the exercise done at home was evaluated using a set of fussy

logic rules in terms of the similarity (or dissimilarity) of the trajectory and speed

of each joint involved.

Tian et al. proposed a system using 3D signatures for authentication.121 In the

system, DTW was used to compare a test signature with a reference signature. The

signatures were recorded using Kinect. Instead of using the hand or wrist joint data

reported by Kinect skeleton tracking, the finger tip position of the signing hand was

extracted from each depth frame for better accuracy. A 14-dimension feature vector

was used for the DTW comparison, including 3D positions, velocity, acceleration

of the finger tip, the distance traveled between two consecutive frames, the slop

angle, path angle, and the log radius of the curvature of the trajectory of the finger

tip. The features are normalized and weighted based on their criticality to correct

verification of the signatures. The finger tip positions are also filtered and smoothed

using Kalman Filter to reduce the spatial noise of the recorded signatures.

4.2.2. Maximum Correlation Coefficient

In the context of the one-shot learning challenge for Kinect, the classification of an

unknown gesture based on a single exemplar gesture set can be done by finding a

known gesture that has the maximum correlation coefficient of the corresponding

feature vectors, as reported by Wu et al., where motion energy images and motion

history images are used as the feature vector.137

4.2.3. Earth Mover’s Distance

Ren et al. used an improved version of the Earth Mover’s Distance to calculate

the similarity in hand shapes between an unknown static hand gesture and a set

of templates.99,100 To distinguish hand gestures with slight differences, the finger

parts instead of the whole hand, are used for the similarity calculation. The hand

shape is detected based on the Kinect depth and color images.



4.3. Non-Machine-Learning-Based Kinematic Modeling

In MotionMA, the assessment of the quality of an exercise is achieved via building

a kinematic model using exemplar data, and comparing the observed parameters

and the fitted ones. No machine learning method is used to train the model and to

classify the observed motion.127 The kinematic model consists of a collection of joint

angles, which are sufficient in the context of rehabilitation exercise monitoring. The

training data is first filtered using a low-pass filter to remove noise and feature data

is extracted on zero-derivatives (peaks, valleys, and inflexion points). The feature

data is merged using k-means clustering. The merged data serves as the model for

the gesture and is used to identify static and dynamic axes. This simple model

enables the system to monitor violations in static axes continuously in realtime,

and to count the repetitions for dynamic joints.

4.4. Machining-Learning-Based Motion Recognition

Machine-learning-based motion recognition typically relies on one or more sophis-

ticated statistical models, such the Hidden Markov Model (HMM),9 Artificial Neu-

ral Networks (ANNs),82,103 Support Vector Machine (SVM),28 etc. to capture the

unique characteristics of a gesture or an activity. Most of such models consist of a

large number of parameters, which have to be determined in a training step based

on pre-labeled motion data (including both data for the gesture to be recognized,

and other motion data that are known not be the specific gesture). In general,

the larger of the feature set used for classification, the larger training dataset is

required. For some models, such as ANNs, additional modeling parameters have to

be manually tuned to achieve good classification accuracy.

Typically, machine-learning-based motion recognition is framed as a classifica-

tion problem. Hence, the trained model is usually referred to as a classifier. However,

motion recognition could also be formulated as the regression problem. In this case,

the trained model is referred to as a regressor. Unlike the classifier, which outputs a

discrete value (regarding which class the testing gesture or activity belongs to with

the highest probability), the output of a regressor is usually a continuous value

within some predefined range. To use the regressor as a classifier, a threshold can

be used so that when the output of the regressor exceeds the threshold, the class

of the testing gesture can be determined. Using a regressor has the advantage of

providing not only the classification (by using a heuristic threshold), but may also

give the information regarding the state of the gesture or activity, i.e., the progress

has made so far in the context of the gesture or activity, which is important for

many interactive applications.13

In the following, we review machine-learning-based motion recognition work

using data collected via a single Kinect sensor. We divide the literatures based

on the specific machine learning methods used. Most of methods use a feature set

extracted from Kinect skeletal data, which the 3D positions of the joints of interest

are readily available, whereas some methods operate directly on depth images,
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particularly for research works on the one-shot learning as part of the ChaLearn

challenge (http://www.kaggle.com/c/GestureChallenge). The models reported in

the literature differ significantly. While some of them require larger training data

set than others, it is hard to characterize which model works better than others

fundamentally and we do not see any discussion in the surveyed literature regarding

why a particular model works better for a particular motion recognition context.

4.4.1. The Hidden Markov Model

The Hidden Markov Model (HMM)9 is perhaps the most popular model used for

motion recognition with Kinect data. HMM is applicable to any dynamic system

that is governed by a Markov chain where only its output values are observable and

not its states. A system that is modeled by HMM is defined by the following pa-

rameters: (1) the number of states; (2) the number of distinct observation symbols

per state; (3) the initial state distribution vector; (4) the state transition proba-

bility distribution matrix, which defines the probability of the transition from one

state to another; (5) the observation probability distribution matrix, which defines

the probability of observing each output symbol given each state. The first three

parameters must be determined manually and they are application-dependent. To

use HMM in the context of machine learning, the last 2 parameters are determined

based on training data. It is apparent that the larger the state size and the ob-

servation symbol size, the larger amount of training data is required. Once, all

parameters are set, one can perform classification by calculating the most likely

state sequence given a sequence of output values.

Because a human motion (i.e., a gesture or an activity) consists of a sequence

of poses, it is quite natural to use HMM to model a gesture or an activity for

the purpose of recognition. The number of states and number of output symbols

depends on the motions to be recognized. Typically, large amount of training data

is required for HMM to be accurate for human motion recognition.

To reduce the size of the required training dataset, Mansur et al. proposed to

use the dynamic features instead of kinematic features for human action recognition

using HMM.78 Dynamic features are derived from the physics-based representation

of the human body, such as the torques from some joints. Dynamic features have

lower dimension than kinematic features, which is why less pre-labeled motion data

are required to train the HMM classifier.

Xu et al. employed HMM to classify hand gesture sequences for real-time nav-

igation of a robot using human hand gestures.140 The feature vector used in the

HMM classification is based on the orientation of the hand centroid extracted di-

rectly from the Kinect depth images. Because of the nature of the gestures involved

(such as move forward, move back, turn left and turn right), the modeling is re-

stricted to the 2D frontal plane space, which limits the size of the feature set and

improves the accuracy of the recognition.

A sophisticated activity may contain several subactivities. For example, the



brushing teeth activity consists of subactivities including “squeezing toothpaste,”

“bringing tooth brush close to the head,” and “brushing”. In this case, it is com-

mon to use hierarchical HMM to recognize such activities. Sung et al. presented a

study that tackles the recognition problem of such activities.119 The main challenge

in hierarchical HMM is to associate subactivities represented by a layer of hidden

variables with the activity, which is represented as a node in the higher layer. To

accommodate the fact that a single state may connect to different parents only

for periods of time, which the traditional hierarchical HMM is incapable of dealing

with, a hierarchical maximum entropy Markov model (MEMM) is used instead in

the study. Furthermore, various features are compared regarding the final recogni-

tion accuracy, including body pose features in the form of joint orientations, hand

position with respect to the torso and the head, motion based features in the form

of orientation changes across 9 frames within the last three seconds, and finally

the image and point-cloud features in the form of Histogram of Oriented Gradients

(HOG).

Zhang et al. developed a system to recognize golf swings.144 HMM is used to

classify individual features. The output of HMM of several feature sets are combined

using fuzzy logic rules with a single score after a defuzzification step. The main

feature set used in the study consists of the joint angles derived from the Kinect

skeletal data.

4.4.2. Artificial Neural Networks

Artificial neural networks (ANNs) refer to a collection of statistical learning algo-

rithms inspired by biological neural networks.82,103 An ANN models the system as

a network of neurons with several layers. The first layer consists of input neurons

that send signal to the second layer of neurons. The last layer consists of output

neurons, which takes input from other neurons. There could also be intermediate

layers.

Prior to training the model, the number of input and output neurons, as well

as the activation function must be determined based on the recognition problem.

Typically, the number of input neurons depends on the dimension of the feature

set, and the number of output neurons depends on the number of classes to be

recognized. The total number of neurons needed is typically a tunable parameter.

Once the network topology is decided, the weights of the interconnections can be

learned with pre-labeled training data.

There are many ANN models. Among them, the multi-layer perceptron (MLP)

model106 has been used to classify static gestures using Kinect data.8 Another

model, referred to as NN-based additive nonlinear auto regressive exogenous (NN-

ANARX in short), has been used to determine the quality of a rehabilitation exercise

in terms of the difference between the observed motion and the predicted motion

with the trained model.89

Hafiz et al. used a single-layered complex-valued neural network (CVNN) for



static hand gesture recognition.48 A hand tree (with key parameters of length and

angles of the lines that form the tree) is constructed via both the color and depth

images captured from Kinect, and used as the feature set for classification. The

feature set is represented using a complex number and is used as the input to the

CVNN. The output of the network consists of 26 neurons, which maps to the 26

English characters as the final classification of the testing hand gesture. It shows

that CVNN works faster and achieves better accuracy than traditional real-value

based neural networks.

4.4.3. Support Vector Machines

The Support Vector Machines (SVMs) are supervised learning models for linear

as well as nonlinear classification.28 For linear classification, the training data is

used to determine a plane that separates the data belonging to different classes as

further away as possible. This plane then can be used to classify unknown data

into one of the two classes. For nonlinear classification, a kernel function is used

to make higher dimension classifications (the plane derived from the training data

is referred to as hyperplane).126 The key advantage of SVM is that it guarantees

maximum-margin separation using relatively little training data.

Madeo et al. proposed to segment a gesture into a sequence of units and formu-

late the gesture analysis problem into a classification task using SVM.77 In addition,

they applied several pre-processing methods to extract time-domain and frequency-

domain features. The study aims at finding the best parameters for a SVM classifier

in order to distinguish the rest positions from a gesture unit. The features used for

classification are based on the 3D positions of 6 joints reported by Kinect, including

two hands, two wrists, head and spine. First, a normalized vector is derived from

the 6 joints, which is followed by the velocity and acceleration information.

SVM was used in Ref. 84 to identify key poses in a sequence of body motion

where the joint angles are used as features. The actual gesture recognition was

accomplished via a decision forest. Similarly, SVM was used as one of the models in

a comparison study in Ref. 93 for a set of static gestures including stand, sit down,

and lie down using the 3D positions of the skeletal joints as the feature vector.

4.4.4. Decision Tree, Decision Forest, and Random Decision Forest

A decision tree consists of a collection of nodes connected to a tree structure.18

Each internal node (often referred to as the split node) in the tree represents a test

on one of the features with a threshold, and each branch represents the outcome of

the test. A leaf node in the tree represents a class label. A decision can be taken

using the decision tree by computing all attributes. The test at the split node is

essentially a weak classifier. Hence, a decision tree is an ensemble of weak classifiers

on different features, which could lead to a better overall classification than any

individual weak classifier. In the context of machine learning, a decision tree is



constructed using pre-classified training data. The constructed decision tree can

then be used for the purpose of classification of unknown data or regression.

To implement a multi-class classifier, a collection of decision trees is usually

used. The collection of decision trees are referred to as a decision forest. To reduce

the correlation among the trees in a decision forest, a random subset of the features

is selected at each split during the learning process. This method is referred to as

randomized decision forest, or randomized forest for short.116

Miranda et al. used the decision forest algorithm to identify gestures in real-time

on Kinect motion data.84 A gesture is modeled as a sequence of key poses. During

training, a decision forest is constructed based on the key poses. Each path from

a leaf node to the root represents a gesture (the gesture identifier is stored at the

leaf node). Gesture recognition is reduced to a simple searching problem based on

the decision forest.

Several groups of researchers have used randomized forest in fall detection,

with the aim to recognize skeleton shape deformation caused by the human body

falling.12,45 However, due to changes in the orientation of the body during move-

ment, the accuracy of recognition is reduced.

4.4.5. Adaboost

Adaboost refers to a meta-algorithm for machine learning called Adaptive

Boosting.40 Unlike previously introduced models and algorithms, Adaboost is a

higher-level algorithm that works with a set of lower-level classifiers, and selects

the most optimal ones that lead to a more accurate classification. Specifically, the

learning step of Adaboost is not to fit unknown parameters for a model, but instead,

to find the best lower-level classifiers. Hence, weak classifiers such as decision dumps

(i.e., 1-level decision tree) can be used with Adaboost to form a strong classifier

that produces highly accurate classification. Another benefit for using Adaboost is

that it can be used to facilitate knowledge discovery in that the user can see which

lower-level classifiers are most appropriate for each gesture. As a tradeoff, Adaboost

requires high quality training data to achieve good classification accuracy.

Adaboost is used to provide categorical gesture recognition in the Microsoft

Kinect v2 SDK.1 Decision dumps are used as the low-level weak classifiers, which

are automatically generated based on the skeleton joint positions (in the form of

angles between body segments and angle velocities). A drawback of using decision

dumps as the weak classifiers is that a complex gesture or activity must be manually

separated into a set of simple actions and the classification has to done on each

simple action to be effective.

4.4.6. Regression-Based Methods

Kernel regression maps an input variable to an output value by averaging the

outputs of a kernel function based on a set of predefined set of data and the input



variable. Typically, the Gaussian kernel is used in the calculation. Bigdelou et al.

proposed a gesture recognition method based on kernel regression.13 All 20 joints

that are obtained from Kinect skeleton tracking are considered. The feature set

used in the study includes the distances of the joints with respect to the spine

joint, the displacements vectors of the joints with respect to the spine, and those

with respect to the parent joint. A gesture is defined as a sequence of control poses.

Via principal component analysis (PCA),59 the set of feature vectors together with

their classification are mapped to a one-dimensional signal. Given a test feature

vector of an unknown gesture, the kernel regression mapping is used to produce a

one-dimensional value with the trained data. This value predicts the state of the

gesture. The category of the unknown gesture is obtained via an arg max operation

on a Gaussian kernel with respect to the unknown gesture and each of the labeled

gesture in the training set.

A benefit of using kernel regression is that the method allows simultaneous

recognition of the type of a gesture as well as the relative poses within a gesture

(i.e., the state of the gesture). In many interactive applications, the state of the

gesture is essential for the system to react to the user’s gesture input in realtime.

Least squares regression aims to fit parameters for a linear or nonlinear function

with minimum squared errors. This function can then be used for the purpose of

classification. This method has been used by Lui in Ref. 75 for the purpose of gesture

recognition as part of the one-shot gesture recognition challenge. The idea is to build

a product manifold representation based on the Kinect depth data, where a gesture

would be located as a point on the product manifold. Least squares regression is

used to produce a smooth decision boundary for classification. The reason why this

approach is viable is that a gesture has a unique underlying geometry. A main

advantage of this approach is that it works for a small training dataset.

Randomized decision forest regression has been used to determine the progress

of a gesture as part of the recently released Kinect v2 SDK.1 The continuous value

given by the regressor is meaningful only when the current gesture has already been

identified.

4.4.7. Other Approaches

Thanh et al. formulated activity recognition as the problem of classifying documents

into the right categories.120 Each activity consists of a sequence of subactivities.

Here, a subactivity assumes the role of a word in a document, and an activity is

analogous to a document containing a sequence of words. The first step is to identify

key frames, which are representative of subactivities. The second step is to establish

patterns formed by the key frames. The final step aims to identify discriminative

patterns, which can be used to classify an unknown activity. This is accomplished

by using an adapted weighting method, which is based on finding the frequencies

of patterns.

Lin et al. proposed to use the action graph model based on Action Trait Code



(ATC) to classify human actions.72 The ATC uses the average velocity of body

parts to yield a code describing the actions. The average velocity of each body

part in an action sequence is labeled as action elements. Then an action graph is

constructed based on the training data, which is used to classify unknown actions.

Sivalingam et al. proposed to classify human actions using their trajectories.110

Consequently, how to effectively represent the action trajectories is key. In their

study, two different representation schemes, one based on raw multivariate time-

series data, and the other based on the covariance descriptors of the trajectories.

These features are then coded using the orthogonal matching pursuit algorithm.

The classification can then be classified by calculating the reconstruction residuals.

5. Publicly Available Kinect Datasets

In this section, we compile a list of Kinect datasets that are publicly available.

These datasets may be very valuable resources for other researchers to carry out

additional computer vision and motion analysis work. The datasets are introduced

in a reverse-chronological order. For each dataset, we briefly elaborate the content

of the dataset and the original research on the dataset. We also summarize the

datasets in Table 10 with the URL of each dataset Webpage.

Table 10. Summary of publicly available datasets.

Dataset Dataset Webpage

Indoor scenes109,108 http://cs.nyu.edu/ silberman/datasets/

Human actions65,132,133,141 http://research.microsoft.com/en-us/
um/people/zliu/actionrecorsrc/

Hand gestures73 http://lshao.staff.shef.ac.uk/data/
SheffieldKinectGesture.htm

Object tracking111 http://tracking.cs.princeton.edu/dataset.html

3D reconstruction139 http://sun3d.cs.princeton.edu/

Category modeling145 http://shiba.iis.u-tokyo.ac.jp/song/?page id=343

3D scans31 http://vcl.iti.gr/3d-scans/

Gestures37 http://research.microsoft.com/en-us/um/
cambridge/projects/msrc12/

Human actions138 http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html

Unstructured human activity63,119 http://pr.cs.cornell.edu/humanactivities/data.php

Scene in hall way74,112 http://www2.informatik.uni-freiburg.de/
˜spinello/RGBD-dataset.html

Various objects54,55 http://kinectdata.com/

The latest publicly available datasets were released by Silberman et al at New

York University. Unlike other datasets, they provided data taken using both Kinect

v1 and Kinect v2. The content of the datasets is summarized in Table 11. The

original research was focused on scene segmentation without the presence of human

subjects.108,109



Table 11. Details of the datasets from Silberman et

al.

Type Kinect v1 Kinect v2

Types of indoor scenes 7 26
Number of scenes 64 464
Unlabeled frames 108,617 407,024
Densely labeled frames 2347 1449
Number of classes Over 1000 Over 1000

The MSR action recognition datasets were released by Liu at Microsoft Re-

search. Apparently the datasets have been compiled over several years. The datasets

contain the following:

• The 3D online action dataset: It includes matching color and depth data for

continuous online human action. It was originally used to study realtime recog-

nition of human-object interaction.141

• The MSRGesture3D dataset: It contains 12 American sign language gesture

performed by 10 human subjects.65,132

• The MSR daily activity 3D dataset: It consists of 16 activities such as drink,

eat, read book, etc. It was originally used to study action recognition by mining

actionlet ensembles.133

• Several other datasets recorded using devices other than Kinect.

The Sheffield Kinect gesture dataset was made available by Liu and Song at

The University of Sheffield. The dataset contains 2160 hand gesture sequences with

1080 color image frames and 1080 depth image frames collected from 6 human

subjects. The original research on the dataset was on automated feature extraction

of spatio-temporal features using an adaptive learning method.73

The Princeton tracking benchmark dataset contains 100 sets of matching color

and depth video. Five of them are validation video with ground truth and the

remaining 95 are evaluation video. In addition to the dataset, Matlab code is also

provided for benchmarking. The original research on the dataset was to establish a

uniform benchmark and baseline for object tracking.111

The SUN3D database contains a large-scale matching color and depth videos

with camera poses and object labels. The database is also hosted by Princeton

University. The original research aimed at capturing the full 3D extend of the scene

by combining object labels and the structure from motion.139

The dataset from Zhang et al. at The University of Tokyo contains color and

depth images with 900 objects. The dataset was collected both indoors and out-

doors. It contains objects of 7 categories, including basket, bucket, bicycle, scanner,

fridge, notebook PC, sprayer, dustpan, and platform lorry. The original research on

the dataset was to exploit the depth information in images to guide the learning of

2D models.145



The CERTH/ITI dataset was built for 3D scans of small-sized objects.31 It

contains multi-view range scans of 59 objects. For each object, it contains color

and depth information for each view with registered point clouds for all views. In

addition, the range scans from an accurate laser scanner were included to establish

the ground truth.

The MSRC-12 Kinect gesture dataset was released by Microsoft Research Cam-

bridge in 2012. It contains 594 sequences and 719,359 frames collected from 30

people, each performing 12 gestures (6,244 gesture instances total). The original

research was on how to instructing people to perform the gestures to be recorded

as the training set.37

The UTKinect-Action dataset was released by Xia et al. at University of Texas.

The dataset contains a set of videos for actions performed by 10 human subjects.

The actions performed include 10 action types, such as walk, sit down, stand up,

pick up, carry, throw, push, pull, wave hands, clap hands. The color and depth

images, as well as skeleton frames are included in each recording. The original

research was to investigate view invariant human action recognition.138

The Cornell activity dataset contains 180 videos with matching color and

depth frames. It contains activities recorded in various environments such as of-

fice, kitchen, bedroom, bathroom, and living room. There are two subsets. The

first contains 60 videos with 12 activities performed by 4 human subjects. The

second contains 120 videos with 10 activities performed also by 4 human subjects,

where the activities are divided into subactivities with labels. In addition to the

dataset, source code on feature extraction, activity labeling, activity anticipation,

and skeleton visualization, is also provided. The original research on the dataset

was to investigate unstructured human activity detection.63,119

The RGB-D people dataset was released by Spinello at University of Freiburg in

2011. The dataset contains over 3000 matching color and depth frames recorded in

a University hall. The activities recorded include walking and standing with various

orientations and different levels of occlusions. The dataset was originally used to

study people detection and tracking.74,112

The Berkeley 3D object dataset was released in 2011 by University of California,

Berkeley. In 2014, the dataset was updated with annotations of the 3D center points

of all objects. The dataset contains large amount of objects with matching color and

depth images. The original research on the dataset was to perform category-level

object detection.54,55

6. Conclusion

In this article, we presented a comprehensive survey on the applications of the

Kinect technology, and the latest research and development on motion recognition

using data captured by the Kinect sensor. On the applications front, we reviewed

the applications of the Kinect technology in a variety of areas, including healthcare,

education and performing arts, robotics, sign language recognition, retail services,



workplace safety training, as well as 3D reconstructions. On the technology front,

we provided an overview of the main features of both versions of the Kinect sen-

sor together with the depth sensing technologies used, and reviewed literatures on

human motion recognition techniques used in Kinect applications. We provided a

classification of motion recognition techniques to highlight the different approaches

used in motion recognition. Each approach has their advantages and disadvan-

tages. Nevertheless, the predominate approach is based on machine learning, such

as HMM, ANN, SVM, randomized decision forests, and Adaboost. To achieve high

recognition accuracy, the feature set and the model parameters must be carefully

selected. Furthermore, we compiled a list of publicly available Kinect datasets.

These datasets are valuable resources for researchers to investigate better methods

for motion recognition and lower-level computer vision tasks such as segmentation,

object detection, and human pose estimation.
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