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Abstract—This survey presents an overview of the autonomous
development of mental capabilities in computational agents. It
does so based on a characterization of cognitive systems as systems
which exhibit adaptive, anticipatory, and purposive goal-directed
behavior. We present a broad survey of the various paradigms
of cognition, addressing cognitivist (physical symbol systems)
approaches, emergent systems approaches, encompassing con-
nectionist, dynamical, and enactive systems, and also efforts
to combine the two in hybrid systems. We then review several
cognitive architectures drawn from these paradigms. In each of
these areas, we highlight the implications and attendant problems
of adopting a developmental approach, both from phylogenetic
and ontogenetic points of view. We conclude with a summary of
the key architectural features that systems capable of autonomous
development of mental capabilities should exhibit.

Index Terms—Artificial cognitive systems, cognitive architec-
tures, development.

I. INTRODUCTION

T
HE SCIENCE and engineering of artificial systems that ex-

hibit mental capabilities has a long history, stretching back

over 60 years. The term mental is not meant to imply any du-

alism of mind and body; we use the term in the sense of the com-

plement of physical to distinguish mental development from

physical growth. As such, mental faculties entail all aspects of

robust behavior, including perception, action, deliberation, and

motivation. As we will see, the term cognition is often used in

a similar manner [1].

Cognition implies an ability to understand how things might

possibly be, not just now but at some future time, and to take this

into consideration when determining how to act. Remembering

what happened at some point in the past helps in anticipating

future events, so memory is important: using the past to predict

the future [2] and then assimilating what does actually happen

to adapt and improve the system’s anticipatory ability in a vir-

tuous cycle that is embedded in an ongoing process of action and
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perception. Cognition breaks free of the present in a way that al-

lows the system to act effectively, to adapt, and to improve.

But what makes an action the right one to choose? What type

of behavior does cognition enable? These questions open up

another dimension of the problem: What motivates cognition?

How is perception guided? How are actions selected? What

makes cognition possible? Cognitive skills can improve, but

what do you need to get started? What drives the developmental

process? In other words, in addition to autonomous perception,

action, anticipation, assimilation, and adaptation, there are the

underlying motivations to consider. These motivations drive

perceptual attention, action selection, and system development,

resulting in the long-term robust behavior we seek from such

systems.

From this perspective, a cognitive system exhibits effective

behavior through perception, action, deliberation, communica-

tion, and through either individual or social interaction with the

environment. The hallmark of a cognitive system is that it can

function effectively in circumstances that were not planned for

explicitly when the system was designed. That is, it has some

degree of plasticity and is resilient in the face of the unexpected

[3].

Some authors in discussing cognitive systems go even fur-

ther. For example, Brachman [4] defines a cognitive computer

system as one which, in addition to being able to reason, to learn

from experience, to improve its performance with time, and to

respond intelligently to things it is never encountered before,

would also be able to explain what it is doing and why it is doing

it. This would enable it to identify potential problems in fol-

lowing a given approach to carrying out a task or to know when

it needed new information in order to complete it. Hollnagel [5]

suggests that a cognitive system is able to view a problem in

more than one way and to use knowledge about itself and the

environment so that it is able to plan and modify its actions on

the basis of that knowledge. Thus, for some, cognition also en-

tails a sense of self-reflection in addition to the characteristics

of adaptation and anticipation.

Cognition then can be viewed as the process by which the

system achieves robust adaptive, anticipatory, autonomous be-

havior, entailing embodied perception and action. This view-

point contrasts with those who see cognition as a distinct com-

ponent or subsystem of the brain—a module of mind—con-

cerned with rational planning and reasoning, acting on the repre-

sentations produced by the perceptual apparatus and “deciding”

what action(s) should be performed next. The adaptive, antici-

patory, autonomous viewpoint reflects the position of Freeman
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and Núñez who, in their book Reclaiming Cognition [6], reassert

the primacy of action, intention, and emotion in cognition. In

the past, as we will see, cognition has been viewed by many

as disembodied in principle and a symbol-processing adjunct

of perception and action in practice. However, this is changing

and even proponents of these early approaches now see a much

tighter relationship between perception, action, and cognition.

For example, consider Anderson et al. who say that “There is

reason to suppose that the nature of cognition is strongly de-

termined by the perceptual-motor systems, as the proponents of

embodied and situated cognition have argued” [7], and Langley

who states that “mental states are always grounded in real or

imagined physical states, and problem-space operators always

expand to primitive skills with executable actions” [8]. Our goal

in this paper is to survey the full spectrum of approaches to the

creation of artificial cognitive systems with a particular focus on

embodied developmental agents.

We begin with a review of the various paradigms of cogni-

tion, highlighting their differences and common ground. We

then review several cognitive architectures drawn from these

paradigms and present a comparative analysis in terms of the

key characteristics of embodiment, perception, action, anticipa-

tion, adaptation, motivation, and autonomy. We identify several

core considerations shared by contemporary approaches of all

paradigms of cognition. We conclude with a summary of the

key features that systems capable of autonomous development

of mental capabilities should exhibit.

II. DIFFERENT PARADIGMS OF COGNITION

There are many positions on cognition, each taking a signif-

icantly different stance on the nature of cognition, what a cog-

nitive system does, and how a cognitive system should be ana-

lyzed and synthesized. Among these, however, we can discern

two broad classes: the cognitivist approach based on symbolic

information processing representational systems, and the emer-

gent systems approach, embracing connectionist systems, dy-

namical systems, and enactive systems, all based to a lesser or

greater extent on principles of self-organization [9], [10].

Cognitivist approaches correspond to the classical and still

common view that “cognition is a type of computation” defined

on symbolic representations, and that cognitive systems “instan-

tiate such representations physically as cognitive codes and …

their behavior is a causal consequence of operations carried out

on these codes” [11]. Connectionist, dynamical, and enactive

systems, grouped together under the general heading of emer-

gent systems, argue against the information processing view, a

view that sees cognition as “symbolic, rational, encapsulated,

structured, and algorithmic,” and argue in favour of a position

that treats cognition as emergent, self-organizing, and dynam-

ical [12], [13].

As we will see, the emphasis of the cognitivist and emergent

positions differ deeply and fundamentally, and go far beyond

a simple distinction based on symbol manipulation. Without

wishing to preempt what is to follow, we can contrast the

cognitivist and emergent paradigms on twelve distinct grounds:

computational operation, representational framework, semantic

grounding, temporal constraints, inter-agent epistemology,

embodiment, perception, action, anticipation, adaptation, mo-

tivation, and autonomy.1 Let us look briefly at each of these in

turn.

1) Computational Operation: Cognitivist systems use rule-

based manipulation (i.e., syntactic processing) of symbol to-

kens, typically but not necessarily in a sequential manner. Emer-

gent systems exploit processes of self-organization, self-pro-

duction, self-maintenance, and self-development, through the

concurrent interaction of a network of distributed interacting

components.

2) Representational Framework: Cognitivist systems use

patterns of symbol tokens that refer to events in the external

world. These are typically the descriptive2 product of a human

designer, usually, but not necessarily, punctate and local. Emer-

gent systems representations are global system states encoded

in the dynamic organization of the system’s distributed network

of components.

3) Semantic Grounding: Cognitivist systems symbolic rep-

resentations are grounded through percept-symbol identication

by either the designer or by learned association. These represen-

tations are accessible to direct human interpretation. Emergent

systems ground representations by autonomy-preserving antic-

ipatory and adaptive skill construction. These representations

only have meaning insofar as they contribute to the continued

viability of the system and are inaccessible to direct human in-

terpretation.

4) Temporal Constraints: Cognitivist systems are not neces-

sarily entrained by events in the external world. Emergent sys-

tems are entrained and operate synchronously in real-time with

events in their environment.

5) Inter-Agent Epistemology: For cognitivist systems an

absolute shared epistemology between agents is guaranteed by

virtue of their positivist view of reality: each agent is embedded

in an environment, the structure and semantics of which are

independent of the system’s cognition. The epistemology of

emergent systems is the subjective outcome of a history of

shared consensual experiences among phylogentically compat-

ible agents.

6) Embodiment: Cognitivist systems do not need to be em-

bodied, in principle, by virtue of their roots in functionalism

(which states that cognition is independent of the physical plat-

form in which it is implemented [6]). Emergent systems are in-

trinsically embodied and the physical instantiation plays a direct

constitutive role in the cognitive process [3], [16], [17].

7) Perception: In cognitivist systems perception provides an

interface between the external world and the symbolic repre-

sentation of that world. Perception abstracts faithful spatio-tem-

poral representations of the external world from sensory data.

In emergent systems perception is a change in system state in

response to environmental perturbations in order to maintain

stability.

1There are many possible definitions of autonomy, ranging from the ability of
a system to contribute to its own persistence [14] through to the self-maintaining
organizational characteristic of living creatures—dissipative far from equilib-
rium systems—that enables them to use their own capacities to manage their
interactions with the world, and with themselves, in order to remain viable [15].

2Descriptive in the sense that the designer is a third-party observer of the
relationship between a cognitive system and its environment so that the repre-
sentational framework is how the designer sees the relationship.



VERNON et al.: A SURVEY OF ARTIFICIAL COGNITIVE SYSTEMS 153

TABLE I
A COMPARISON OF COGNITIVIST AND EMERGENT PARADIGMS OF COGNITION; REFER TO THE TEXT FOR A FULL EXPLANATION

8) Action: In cognitivist systems actions are causal conse-

quences of symbolic processing of internal representations. In

emergent systems actions are perturbations of the environment

by the system.

9) Anticipation: In cognitivist systems anticipation typically

takes the form of planning using some form of procedural or

probabilistic reasoning with some a priori model. Anticipation

in the emergent paradigm requires the system to visit a number

of states in its self-constructed perception-action state space

without commiting to the associated actions.

10) Adaptation: For cognitivism, adaptation usually implies

the acquisition of new knowledge whereas in emergent systems,

it entails a structural alteration or reorganization to effect a new

set of dynamics [18].

11) Motivation: Motivations impinge on perception (through

attention), action (through action selection), and adaptation

(through the factors that govern change), such as resolving

an impasse in a cognitivist system or enlarging the space of

interaction in an emergent system [19], [20].

12) Relevance of Autonomy: Autonomy is not necessarily

implied by the cognitivist paradigm whereas it is crucial in the

emergent paradigm since cognition is the process whereby an

autonomous system becomes viable and effective.

Table I summarizes these points very briefly. The sections

that follow discuss the cognitivist and emergent paradigms, as

well as hybrid approaches, and draw out each of these issues in

more depth.

A. Cognitivist Models

1) An Overview of Cognitivist Models: Cognitive science has

its origins in cybernetics (1943–1953) in the first efforts to for-

malize what had up to that point been metaphysical treatments

of cognition [9]. The intention of the early cyberneticians was

to create a science of mind, based on logic. Examples of pro-

genitors include McCulloch and Pitts and their seminal paper

“A Logical Calculus Immanent in Nervous Activity” [21]. This

initial wave in the development of a science of cognition was

followed in 1956 by the development of an approach referred to

as cognitivism. Cognitivism asserts that cognition involves com-

putations defined over internal representations qua knowledge,

in a process whereby information about the world is abstracted

by perception, and represented using some appropriate symbolic

data-structure, reasoned about, and then used to plan and act in

the world. The approach has also been labelled by many as the

information processing (or symbol manipulation) approach to

cognition [9], [12], [13], [22]–[26].

Cognitivism has undoubtedly been the predominant ap-

proach to cognition to date and is still prevalent. The discipline

of cognitive science is often identified with this particular

approach [6], [13]. However, as we will see, it is by no means

the only paradigm in cognitive science and there are indica-

tions that the discipline is migrating away from its stronger

interpretations [10].

For cognitivist systems, cognition is representational in a

strong and particular sense: it entails the manipulation of ex-

plicit symbolic representations of the state and behavior of the

external world to facilitate appropriate, adaptive, anticipatory,

and effective interaction, and the storage of the knowledge

gained from this experience to reason even more effectively in

the future [5]. Perception is concerned with the abstraction of

faithful spatio-temporal representations of the external world

from sensory data. Reasoning itself is symbolic: a procedural

process whereby explicit representations of an external world
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are manipulated to infer likely changes in the configuration of

the world (and attendant perception of that altered configura-

tion) arising from causal actions.

In most cognitivist approaches concerned with the creation

of artificial cognitive systems, the symbolic representations (or

representational frameworks, in the case of systems that are

capable of learning) are the descriptive product of a human

designer. This is significant because it means that they can be

directly accessed and understood or interpreted by humans and

that semantic knowledge can be embedded directly into and

extracted directly from the system. However, it has been argued

that this is also the key limiting factor of cognitivist systems:

these programmer-dependent representations effectively bias

the system (or “blind” the system [27]) and constrain it to an

idealized description that is dependent on and a consequence

of the cognitive requirements of human activity. This approach

works as long as the system does not have to stray too far

from the conditions under which these descriptions were for-

mulated. The further one does stray, the larger the “semantic

gap” [28] between perception and possible interpretation,

a gap that is normally plugged by the embedding of (even

more) programmer knowledge or the enforcement of expecta-

tion-driven constraints [29] to render a system practicable in a

given space of problems.

Cognitivism makes the positivist assumption that “the world

we perceive is isomorphic with our perceptions of it as a geo-

metric environment” [30]. The goal of cognition, for a cogni-

tivist, is to reason symbolically about these representations in

order to effect the required adaptive, anticipatory, goal-directed,

behavior. Typically, this approach to cognition will deploy an

arsenal of techniques including machine learning, probabilistic

modeling, and other techniques in an attempt to deal with the in-

herently uncertain, time-varying, and incomplete nature of the

sensory data that is being used to drive this representational

framework. However, this does not alter the fact that the rep-

resentational structure is still predicated on the descriptions of

the designers. The significance of this will become apparent in

later sections.

2) Cognitivism and Artificial Intelligence: Since cognitivism

and artificial intelligence research have very strong links,3 it

is worth spending some time considering the relationship be-

tween cognitivist approaches and classical artificial intelligence,

specifically Newell’s and Simon’s “Physical Symbol System”

approach to artificial intelligence [23] which has been extraor-

dinarily influential in shaping how we think about intelligence,

both natural and computational.

In Newell’s and Simon’s 1976 paper, two hypotheses are pre-

sented.

1) The Physical Symbol System Hypothesis: A physical

symbol system has the necessary and sufficient means for

general intelligent action.

2) Heuristic Search Hypothesis. The solutions to problems

are represented as symbol structures. A physical-symbol

system exercises its intelligence in problem-solving by

3Some view AI as the direct descendent of cognitivism: “ … the positivist
and reductionist study of the mind gained an extraordinary popularity through
a relatively recent doctrine called Cognitivism, a view that shaped the creation
of a new field, Cognitive Science, and its most hard core offspring: Artificial
Intelligence” (emphasis in the original). [6]

Fig. 1. The essence of a physical symbol system [23].

search, that is, by generating and progressively modifying

symbol structures until it produces a solution structure.

The first hypothesis implies that any system that exhibits gen-

eral intelligence is a physical symbol system and any physical

symbol system of sufficient size can be configured somehow

(“organized further”) to exhibit general intelligence.

The second hypothesis amounts to an assertion that symbol

systems solve problems by heuristic search, i.e., “successive

generation of potential solution structures” in an effective and

efficient manner. “The task of intelligence, then, is to avert the

ever-present threat of the exponential explosion of search.”

A physical symbol system is equivalent to an automatic

formal system [24]. It is “a machine that produces through time

an evolving collection of symbol structures.” A symbol is a

physical pattern that can occur as a component of another type

of entity called an expression (or symbol structure): expres-

sions/symbol structures are arrangements of symbols/tokens.

As well as the symbol structures, the system also comprises

processes that operate on expressions to produce other expres-

sions: “processes of creation, modification, reproduction, and

destruction.” An expression can designate an object and thereby

the system can either “affect the object itself or behave in ways

depending on the object,” or, if the expression designates a

process, then the system interprets the expression by carrying

out the process (see Fig. 1).

In the words of Newell and Simon:

“Symbol systems are collections of patterns and pro-

cesses, the latter being capable of producing, destroying,

and modifying the former. The most important properties

of patterns is that they can designate objects, processes,

or other patterns, and that when they designate processes,

they can be interpreted. Interpretation means carrying out

the designated process. The two most significant classes of

symbol systems with which we are acquainted are human

beings and computers.”

What is important about this explanation of a symbol system

is that it is more general than the usual portrayal of symbol-ma-

nipulation systems where symbols designate only objects,

in which case we have a system of processes that produces,

destroys, and modifies symbols, and no more. Newell’s and

Simon’s original view is more sophisticated. There are two

recursive aspects to it: processes can produce processes, and

patterns can designate patterns (which, of course, can be pro-

cesses). These two recursive loops are closely linked. Not only
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can the system build ever more abstract representations and

reason about those representations, but it can modify itself as a

function both of its processing, qua current state/structure, and

of its representations.

Symbol systems can be instantiated and the behavior of these

instantiated systems depend on the details of the symbol system,

its symbols, operations, and interpretations, and not on the par-

ticular form of the instantiation.

The physical symbol system hypothesis asserts that a phys-

ical symbol system has the necessary and sufficient means for

general intelligence. From what we have just said about symbol

systems, it follows that intelligent systems, either natural or ar-

tificial ones, are effectively equivalent because the instantiation

is actually inconsequential, at least in principle.

To a very great extent, cognitivist systems are identically

physical symbol systems.

3) Some Cognitivist Systems: Although we will survey

cognitivist systems from an architectural point of view in

Section III, we mention here a sample of cognitivist systems to

provide a preliminary impression of the approach.

The use of explicit symbolic knowledge has been used in

many cognitivist systems, e.g., a cognitive vision system [31]

developed for the interpretation of video sequences of traffic be-

havior and the generation of a natural language description of

the observed environment. It proceeds from signal representa-

tions to symbolic representations through several layers of pro-

cessing, ultimately representing vehicle behavior with situation

graph trees (SGTs). Automatic interpretation of this representa-

tion of behavior is effected by translating the SGT into a logic

program (based on fuzzy metric temporal Horn logic). See also

[32]–[36] for related work.

The cognitivist assumptions are also reflected well in the

model-based approach described in [37], [38] which uses

Description Logics, based on First-Order Predicate Logic,

to represent and reason about high-level concepts such as

spatio-temporal object configurations and events.

Probabilistic frameworks have been proposed as an al-

ternative (or sometimes an adjunct [37]) to these types of

deterministic reasoning systems. For example, Buxton et al.

describe a cognitive vision system for interpreting the activ-

ities of expert human operators. It exploits dynamic decision

networks (DDNs), an extension of Bayesian belief networks to

incorporate dynamic dependencies and utility theory [39], for

recognizing and reasoning about activities, and both time delay

radial basis function networks (TDRBFNs) and hidden markov

models (HMMs) for recognition of gestures. Although this

system does incorporate learning to create the gesture models,

the overall symbolic reasoning process, albeit a probabilistic

one, still requires the system designer to identify the contextual

constraints and their causal dependencies (for the present at

least: ongoing research is directed at automatically learning the

task-based context dependent control strategies) [40]–[42].4

Recent progress in autonomously constructing and using sym-

bolic models of behavior from sensory input using inductive

logic programming is reported in [43].

The dependence of cognitivist approaches on designer-ori-

ented world-representations is also well exemplified by

4See [39] for a survey of probabilistic generative models for learning and
understanding activities in dynamic scenes.

knowledge-based systems such as those based on ontologies.

For example, Maillot et al. [44] describe a framework for

an ontology-based cognitive vision system which focuses on

mapping between domain knowledge and image processing

knowledge using a visual concept ontology incorporating

spatio-temporal, textural, and color concepts.

Another architecture for a cognitive vision system is de-

scribed in [45]. This system comprises a subsymbolic level,

exploiting a viewer-centered representation based on

sensory data, an intermediate prelinguistic conceptual level

based on object-centered 3-D superquadric representations, and

a linguistic level which uses a symbolic knowledge base. An

attentional process links the conceptual and linguistic level.

An adaptable system architecture for observation and inter-

pretation of human activity that dynamically configures its pro-

cessing to deal with the context in which it is operating is de-

cribed in [46], while a cognitive vision system for autonomous

control of cars is described in [47].

Town and Sinclair present a cognitive framework that com-

bines low-level processing (motion estimation, edge tracking,

region classification, face detection, shape models, percep-

utal grouping operators) with high-level processing using a

language-based ontology and adaptive Bayesian networks.

The system is self-referential in the sense that it maintains

an internal representation of its goals and current hypotheses.

Visual inference can then be performed by processing sentence

structures in this ontological language. It adopts a quintessen-

tially cognitivist symbolic representationalist approach, albeit

that it uses probabilistic models, since it requires that a designer

identify the “right structural assumptions” and prior probability

distributions.

B. Emergent Approaches

Emergent approaches take a very different view of cogni-

tion. Here, cognition is the process whereby an autonomous

system becomes viable and effective in its environment. It

does so through a process of self-organization through which

the system is continually reconstituting itself in real-time to

maintain its operational identity through moderation of mutual

system-environment interaction and co-determination [48].

Co-determination implies that the cognitive agent is specified

by its environment and at the same time that the cognitive

process determines what is real or meaningful for the agent.

In a sense, co-determination means that the agent constructs

its reality (its world) as a result of its operation in that world.

In this context, cognitive behavior is sometimes defined as the

automatic induction of an ontology: such an ontology will be

inherently specific to the embodiment and dependent on the

system’s history of interactions, i.e., its experiences. Thus,

for emergent approaches, perception is concerned with the

acquisition of sensory data in order to enable effective action

[48] and is dependent on the richness of the action interface

[49]. It is not a process whereby the structure of an absolute

external environment is abstracted and represented in a more or

less isomorphic manner.

Sandini et al. have argued that cognition is also the comple-

ment of perception [50]. Perception deals with the immediate
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and cognition deals with longer timeframes. Thus, cognition re-

flects the mechanism by which an agent compensates for the

immediate nature of perception and can, therefore, adapt to and

anticipate environmental action that occurs over much longer

time-scales. That is, cognition is intrinsically linked with the

ability of an agent to act prospectively: to operate in the future

and deal with what might be, not just what is.

In contrast to the cognitivist approach, many emergent ap-

proaches assert that the primary model for cognitive learning is

anticipative skill construction rather than knowledge acquisition

and that processes that both guide action and improve the ca-

pacity to guide action while doing so are taken to be the root ca-

pacity for all intelligent systems [15]. While cognitivism entails

a self-contained abstract model that is disembodied in principle,

the physical instantiation of the systems plays no part in the

model of cognition [3], [51]. In contrast, emergent approaches

are intrinsically embodied and the physical instantiation plays a

pivotal role in cognition.

1) Connectionist Models: Connectionist systems rely on par-

allel processing of nonsymbolic distributed activation patterns

using statistical properties, rather than logical rules, to process

information and achieve effective behavior [52]. In this sense,

the neural network instantiations of the connectionist model

“are dynamical systems which compute functions that best cap-

ture the statistical regularities in training data” [53].

A comprehensive review of connectionism is beyond the

scope of this paper. For an overview of the foundation of the

field and a selection of seminal papers on connectionism, see

Anderson’s and Rosenfeld’s Neurocomputing: Foundations of

Research [54] and Neurocomputing 2: Directions of Research

[55]. Medler provides a succinct survey of the development of

connectionism in [52], while Smolensky reviews the field from

a mathematical perspective, addressing computational, dynam-

ical, and statistical issues [53], [56]–[58]. Arbib’s Handbook

of Brain Theory and Neural Networks provides very accessible

summaries of much of the relevant literature [59].

The roots of connectionism reach back well before the

computational era. Although Feldman and Ballard [60] are nor-

mally credited with the introduction of the term “connectionist

models” in 1982, the term connectionism has been used as

early as 1932 in psychology by Thorndike [61], [62] to signal

an expanded form of associationism based, for example, on

the connectionist principles clearly evident in William James’

model of associative memory,5 but also anticipating such mech-

anisms as Hebbian learning. In fact, the introduction to Hebb’s

book The Organization of Behavior [64], in which he presents

an unsupervised neural training algorithm whereby the synaptic

strength is increased if both the source and target neurons are

active at the same time, contains one of the first usages of the

term connectionism [54, p. 43].

We have already noted that cognitivism has some of its roots

in earlier work in cognitive science and in McCulloch and Pitts

seminal work in particular [21]. McCulloch and Pitts showed

that any statement within propositional logic could be repre-

sented by a network of simple processing units and, further-

5Anderson’s and Rosenfeld’s collection of seminal papers on neurocom-
puting [54] opens with Chapter XVI “Association” from William James’ 1890
Psychology, Briefer Course [63].

more, that such nets have, in principle, the computational power

of a Universal Turing Machine. Depending on how you read this

equivalence, McCulloch and Pitts contributed to the foundation

of both cognitivism and connectionism.

The connectionist approach was advanced significantly in

the late 1950s with the introduction of Rosenblatt’s perceptron

[65] and Selfridge’s Pandemonium model of learning [66].

Rosenblatt showed that any pattern classification problem

expressed in binary notation can be solved by a perceptron

network. Although network learning advanced in 1960 with

the introduction of the Widrow–Hoff rule, or delta rule for su-

pervised training in the Adeline neural model [67], the problem

with perceptron networks was that no learning algorithm ex-

isted to allow the adjustment of the weights of the connections

between input units and hidden associative units. Consequently,

perceptron networks were effectively single-layer networks

since learning algorithms could only adjust the connection

strength between the hidden units and the output units, the

weights governing the connection strength between input and

hidden units being fixed by design.

In 1969, Minsky and Papert [68] showed that these percep-

trons can only be trained to solve linearly separable problems

and could not be trained to solve more general problems. As

a result, research on neural networks and connectionist models

suffered.

With the apparent limitations of perceptions clouding work

on network learning, research focused more on memory and in-

formation retrieval and, in particular, on parallel models of asso-

ciative memory (e.g., see [69]). Landmark contributions in this

period include McClelland’s Interactive Activation and Compe-

tition (IAC) model [70] which introduced the idea of competi-

tive pools of mutually inhibitory neurons and demonstrated the

ability of connectionist systems to retrieve specific and general

information from stored knowledge about specific instances.

During this period, two alternative connectionist models

were being put forward in, for example, Grossberg’s Adaptive

Resonance Theory (ART) [71] and Kohonen’s self-organizing

maps (SOMs) [72], often referred to simply as Kohonen net-

works. ART, introduced in 1976, has evolved and expanded

considerably in the past 30 years to address real-time supervised

and unsupervised category learning, pattern classification, and

prediction (see [73] for a summary). Kohonen networks pro-

duce topological maps in which proximate points in the input

space are mapped by an unsupervised self-organizing learning

process to an internal network state which preserves this

topology: that is, input points (points in pattern space) which

are close together are represented in the mapping by points (in

weight space) which are close together. Once the unsupervised

self-organization is complete, the Kohonen network can be

used as either an autoassociative memory or a pattern classifier.

Perceptron-like neural networks underwent a resurgence in

the mid 1980s with the development of the parallel distributed

processing (PDP) architecture [74] in general and with the in-

troduction by Rumelhart et al. of the backpropagation algorithm

[75], [76]. The backpropagation learning algorithm, also known

as the generalized delta rule or GDR as it is a generalization of

the Widrow–Hoff delta rule for training Adaline units, overcame

the limitation cited by Minsky and Papert by allowing the con-
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nections weights between the input units and the hidden units to

be modified, thereby enabling multilayer perceptrons to learn

solutions to problems that are not linearly separable. Although

the backpropagation learning rule made its great impact through

the work of Rumelhart et al., it had previously been derived in-

dependently by Werbos [77], among others [52].

In cognitive science, PDP made a significant contribution

to the move away from the sequential view of computational

models of mind, towards a view of concurrently operating

networks of mutually cooperating and competing units, and

also in raising an awareness of the importance of the structure

of the computing system on the computation.

The standard PDP model represents a static mapping between

the input vectors as a consequence of the feedforward configu-

ration. On the other hand, recurrent networks which have con-

nections that loop back to form circuits, i.e., networks in which

either the output or the hidden units’ activations signals are fed

back to the network as inputs, exhibit dynamic behavior.6 Per-

haps the best known type of recurrent network is the Hopfield

net [78]. Hopfield nets are fully recurrent networks that act as

autoassociative memory7 or content-addressable memory that

can effect pattern completion. Other recurrent networks include

Elman nets [79] (with recurrent connections from the hidden to

the input units) and Jordan nets [80] (with recurrent connections

from the output to the input units). Boltzman machines [81] are

variants of Hopfield nets that use stochastic rather than deter-

ministic weight update procedures to avoid problems with the

network becoming trapped in local minima during learning.

Multilayer perceptrons and other PDP connectionist net-

works typically use monotonic functions, such as hard-limiting

threshold functions or sigmoid functions, to activate neurons.

The use of nonmonotonic activation functions, such as the

Gaussian function, can offer computational advantages, e.g.,

faster and more reliable convergence on problems that are not

linearly separable.

Radial basis function (RBF) networks [82] also use Gaussian

functions but differ from multilayer perceptrons in that the

Gaussian function is used only for the hidden layer, with the

input and output layers using linear activation functions.

Connectionist systems continue to have a strong influence on

cognitive science, either in a strictly PDP sense such as McClel-

land’s and Rogers’ PDP approach to semantic cognition [83])

or in the guise of hybrid systems such as Smolensky’s and Le-

gendre’s connectionist/symbolic computational architecture for

cognition [84], [85].

One of the original motivations for work on emergent

systems was disaffection with the sequential, atemporal, and

localized character of symbol-manipulation-based cognitivism

[9]. Emergent systems, on the other hand, depend on parallel,

real-time, and distributed architectures. Of itself, however, this

shift in emphasis is not sufficient to constitute a new paradigm

and, as we have seen, there are several other pivotal character-

istics of emergent systems. Indeed, Freeman and Núñez have

argued that more recent systems—what they term neo-cogni-

6This recurrent feedback has nothing to do with the feedback of error signals
by, for example, backpropagation to effect weight adjustment during learning

7Heteroassociative memory, or simply associative memory, produces an
output vector that is different from the input vector

tivist systems—exploit parallel and distributed computing in

the form of artificial neural networks and associative memories

but, nonetheless, still adhere to the original cognitivist assump-

tions [6]. A similar point was made by Van Gelder and Port

[86]. We discuss these hybrid systems in Section II-C.

One of the key features of emergent systems, in general, and

connectionism, in particular, is that “the system’s connectivity

becomes inseparable from its history of transformations, and re-

lated to the kind of task defined for the system” [9]. Further-

more, symbols play no role.8 Whereas in the cognitivist ap-

proach the symbols are distinct from what they stand for, in the

connectionist approach, “meaning relates to the global state of

the system” [9]. Indeed, meaning is something attributed by an

external third-party observer to the correspondence of a system

state with that of the world in which the emergent system is em-

bedded. Meaning is a description attributed by an outside agent:

it is not something that is intrinsic to the cognitive system except

in the sense that the dynamics of the system reflect the effective-

ness of its ability to interact with the world.

Examples of the application of associative learning systems

in robotics can be found in [87] and [88] where hand-eye coor-

dination is learned by a Kohonen neural network from the asso-

ciation of proprioceptive and exteroceptive stimuli. As well as

attempting to model cognitive behavior, connectionist systems

can self-organize to produce feature-analyzing capabilities sim-

ilar to those of the first few processing stages of the mammalian

visual system (e.g., center-surround cells and orientation-selec-

tive cells) [89]. An example of a connectionist system which

exploits the co-dependency of perception and action in a de-

velopmental setting can be found in [90]. This is a biologically

motivated system that learns goal-directed reaching using color-

segmented images derived from a retina-like log-polar sensor

camera. The system adopts a developmental approach: begin-

ning with innate in-built primitive reflexes, it learns sensori-

motor coordination. Radial basis function networks have also

been used in cognitive vision systems, for example, to accom-

plish face detection [41].

2) Dynamical Systems Models: Dynamical systems theory

has been used to complement classical approaches in artificial

intelligence [91] and it has also been deployed to model natural

and artificial cognitive systems [12], [13], [86]. Advocates of the

dynamical systems approach to cognition argue that motoric and

perceptual systems are both dynamical systems, each of which

self-organizes into metastable patterns of behavior.

In general, a dynamical system is an open dissipative non-

linear nonequilibrium system: a system in the sense of a large

number of interacting components with a large number of de-

grees of freedom, dissipative in the sense that it diffuses energy

(its phase space decreases in volume with time implying pref-

erential subspaces), nonequilibrium in the sense that it is un-

able to maintain structure or function without external sources

of energy, material, information (and, hence, open). The non-

linearity is crucial: as well as providing for complex behavior, it

means that the dissipation is not uniform and that only a small

number of the system’s degrees of freedom contribute to its be-

8It would be more accurate to say that symbols should play no role since it has
been noted that connectionist systems often fall back in the cognitivist paradigm
by treating neural weights as a distributed symbolic representation [86].



158 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 2, APRIL 2007

havior. These are termed order parameters (or collective vari-

ables). Each order parameter defines the evolution of the system,

leading to metastable states in a multistable state space (or phase

space). It is this ability to characterize the behavior of a high-di-

mensional system with a low-dimensional model that is one of

the features that distinguishes dynamical systems from connec-

tionist systems [13].

Certain conditions must prevail before a system qualifies as

a cognitive dynamical system. The components of the system

must be related and interact with one another: any change in

one component or aspect of the system must be dependent on

and only on the states of the other components: “they must be

interactive and self contained” [86]. As we will see shortly, this

is very reminiscent of the requirement for operational closure in

enactive systems, the topic of the next section.

Proponents of dynamical systems point to the fact that they

provide one directly with many of the characteristics inherent

in natural cognitive systems such as multistability, adaptability,

pattern formation, and recognition, intentionality, and learning.

These are achieved purely as a function of dynamical laws

and consequent self-organization. They require no recourse to

symbolic representations, especially those that are the result of

human design.

However, Clark [10] has pointed out that the antipathy which

proponents of dynamical systems approaches display toward

cognitivist approaches rests on rather weak ground insofar as

the scenarios they use to support their own case are not ones

that require higher level reasoning: they are not “representa-

tion hungry” and, therefore, are not well suited to be used in

a general anti-representationalist (or anti-cognitivist) argument.

At the same time, Clark also notes that this antipathy is actu-

ally less focused on representations per se (dynamical systems

readily admit internal states that can be construed as represen-

tations) but more on objectivist representations which form an

isomorphic symbolic surrogate of an absolute external reality.

It has been argued that dynamical systems allow for the

development of higher order cognitive functions, such as

intentionality and learning, in a straightforward manner, at

least in principle. For example, intentionality—purposive or

goal-directed behavior—is achieved by the superposition of

an intentional potential function on the intrinsic potential

function [13]. Similarly, learning is viewed as the modifica-

tion of already-existing behavioral patterns that take place in

a historical context whereby the entire attractor layout (the

phase-space configuration) of the dynamical system is modi-

fied. Thus, learning changes the whole system as a new attractor

is developed.

Although dynamical models can account for several non-

trivial behaviors that require the integration of visual stimuli

and motoric control, including the perception of affordances,

perception of time to contact, and figure-ground bistability [13],

[92]–[95], the principled feasibility of higher order cognitive

faculties has yet to be validated.

The implications of dynamical models are many: as noted

in [12], “cognition is nonsymbolic, nonrepresentational and all

mental activity is emergent, situated, historical, and embodied.”

It is also socially constructed, meaning that certain levels of cog-

nition emerge from the dynamical interaction between cognitive

agents. Furthermore, dynamical cognitive systems are, of neces-

sity, embodied. This requirement arises directly from the fact

that the dynamics depend on self-organizing processes whereby

the system differentiates itself as a distinct entity through its

dynamical configuration and its interactive exploration of the

environment.

With emergent systems in general, and dynamical systems

in particular, one of the key issues is that cognitive processes

are temporal processes that “unfold” in real-time and synchro-

nously with events in their environment. This strong require-

ment for synchronous development in the context of its envi-

ronment again echoes the enactive systems approach set out in

the next section. It is significant for two reasons. First, it places

a strong limitation on the rate at which the ontogenetic9 learning

of the cognitive system can proceed: it is constrained by the

speed of coupling (i.e., the interaction) and not by the speed at

which internal changes can occur [27]. Natural cognitive sys-

tems have a learning cycle measured in weeks, months, and

years and, while it might be possible to collapse it into minutes

and hours for an artificial system because of increases in the rate

of internal adaptation and change, it cannot be reduced below

the time-scale of the interaction (or structural coupling; see next

section). If the system has to develop a cognitive ability that,

e.g., allows it to anticipate or predict action and events that occur

over an extended time-scale (e.g., hours), it will take at least that

length of time to learn. Second, taken together with the require-

ment for embodiment, we see that the consequent historical and

situated nature of the systems means that one cannot short-cir-

cuit the ontogenetic development. Specifically, you cannot boot-

strap an emergent dynamical system into an advanced state of

learned behavior.

With that said, recall from Section I that an important char-

acteristic of cognitive systems is their anticipatory capability:

their ability to break free of the present. There appears to be a

contradiction here. On the one hand, we are saying that emer-

gent cognitive systems are entrained by events in the environ-

ment and that their development must proceed in real-time syn-

chronously with the environment, but at the same time that they

can break free from this entrainment. In fact, as we will see in

Section III, there is not a contradiction. The synchronous en-

trainment is associated with the system’s interaction with the

environment, but the anticipatory capability arises from the in-

ternal dynamics of the cognitive system: its capacity for self-or-

ganization and self-development involving processes for mir-

roring and simulating events based on prior experience (brought

about historically by the synchronous interaction) but operating

internally by self-perturbation and free from the synchronous

environmental perturbations of perception and action.

Although dynamical systems theory approaches often differ

from connectionist systems on several fronts [12], [13], [86],

it is better perhaps to consider them complementary ways of

describing cognitive systems, dynamical systems addressing

macroscopic behavior at an emergent level and connectionist

systems addressing microscopic behavior at a mechanistic

level [96]. Connectionist systems themselves are, after all,

dynamical systems with temporal properties and structures

9Ontogeny is concerned with the development of the system over its lifetime.
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such as attractors, instabilities, and transitions [97]. Typically,

however, connectionist systems describe the dynamics in a very

high-dimensional space of activation potentials and connection

strengths, whereas dynamical systems theory models describe

the dynamics in a low-dimensional space where a small number

of state variables capture the behavior of the system as a whole.

Schöner argues that this is possible because the macroscopic

states of high-dimensional dynamics and their long-term evolu-

tion are captured by the dynamics in that part of the space where

instabilities occur: the low-dimensional center-manifold [18].

Much of the power of dynamical perspectives comes from this

higher level abstraction of the dynamics [57]. The complemen-

tary nature of dynamical systems and connectionist descriptions

is emphasized by Schöner and by Kelso [13], [98] who argue

that nonlinear dynamical systems should be modeled simul-

taneously at three distinct levels: a boundary constraint level

that determines the task or goals (initial conditions, nonspecific

conditions), a collective variables level which characterize

coordinated states, and a component level which forms the

realized system (e.g., nonlinearly coupled oscillators or neural

networks). This is significant because it contrasts strongly with

the cognitivist approach, best epitomized by Marr’s advocacy

of a three-level hierarchy of abstraction (computational theory,

representations and algorithms, and hardware implementation),

with modeling at the computational theory level being effected

without strong reference to the lower and less abstract levels

[99]. This complementary perspective of dynamical systems

theory and connectionism enables the investigation of the

emergent dynamical properties of connectionist systems in

terms of attractors, metastability, and state transition, all of

which arise from the underlying mechanistic dynamics, and,

vice versa, it offers the possibility of implementing dynamical

systems theory models with connectionist architectures.

3) Enactive Systems Models: Enactive systems take the

emergent paradigm even further. In contradistinction to cog-

nitivism, which involves a view of cognition that requires the

representation of a given objective predetermined world [9],

[86], enaction [9], [27], [48], [100]–[103] asserts that cognition

is a process whereby the issues that are important for the con-

tinued existence of a cognitive entity are brought out or enacted:

co-determined by the entity as it interacts with the environment

in which it is embedded. Thus, nothing is “pregiven,” and hence

there is no need for symbolic representations. Instead there is

an enactive interpretation: a real-time context-based choosing

of relevance.

For cognitivism, the role of cognition is to abstract objec-

tive structure and meaning through perception and reasoning.

For enactive systems, the purpose of cognition is to uncover

unspecified regularity and order that can then be construed as

meaningful because they facilitate the continuing operation and

development of the cognitive system. In adopting this stance,

the enactive position challenges the conventional assumption

that the world as the system experiences it is independent of the

cognitive system (“the knower”). Instead, knower and known

“stand in relation to each other as mutual specification: they

arise together” [9].

The only condition that is required of an enactive system is ef-

fective action: that it permit the continued integrity of the system

involved. It is essentially a very neutral position, assuming only

that there is the basis of order in the environment in which the

cognitive system is embedded. From this point of view, cogni-

tion is exactly the process by which that order or some aspect

of it is uncovered (or constructed) by the system. This imme-

diately allows that there are different forms of reality (or rele-

vance) that are dependent directly on the nature of the dynamics

making up the cognitive system. This is not a solipsist position

of ungrounded subjectivism, but neither is it the commonly held

position of unique—representable—realism. It is fundamentally

a phenomenological position.

The enactive systems research agenda stretches back to the

early 1970s in the work of computational biologists Maturana

and Varela and has been taken up by others, including some in

the mainstream of classical AI [9], [27], [48], [100]–[103].

The goal of enactive systems research is the complete treat-

ment of the nature and emergence of autonomous, cognitive,

social systems. It is founded on the concept of autopoiesis – lit-

erally self-production – whereby a system emerges as a coherent

systemic entity, distinct from its environment, as a consequence

of processes of self-organization. However, enaction involves

different degrees of autopoeisis and three orders of system can

be distinguished.

First-order autopoietic systems correspond to cellular enti-

ties that achieve a physical identity through structural coupling

with their environment. As the system couples with its environ-

ment, it interacts with it in the sense that the environmental per-

turbations trigger structural changes “that permit it to continue

operating.”

Second-order systems are metacellular systems that engage

in structural coupling with their environment, this time through

a nervous system that enables the association of many internal

states with the different interactions in which the organism is

involved. In addition to processes of self-production, these sys-

tems also have processes of self-development. Maturana and

Varela use the term operational closure for second-order sys-

tems instead of autopoiesis to reflect this increased level of flex-

ibility [48].

Third-order systems exhibit coupling between second-order

(i.e., cognitive) systems, i.e., between distinct cognitive agents.

It is significant that second- and third-order systems possess

the ability to perturb their own organizational processes and

attendant structures. Third-order couplings allow a recurrent

(common) ontogenetic drift in which the systems are recipro-

cally coupled. The resultant structural adaptation – mutually

shared by the coupled systems – gives rise to new phenomono-

logical domains: language and a shared epistemology that

reflects (but not abstracts) the common medium in which

they are coupled. Such systems are capable of three types of

behavior: 1) the instinctive behaviors that derive from the orga-

nizational principles that define it as an autopoietic system (and

that emerge from the phylogenetic evolution of the system);

2) ontogenetic behaviors that derive from the development of

the system over its lifetime; and 3) communicative behaviors

that are a result of the third-order structural coupling between

members of the society of entities.

The core of the enactive approach is that cognition is a process

whereby a system identifies regularities as a consequence of
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co-determination of the cognitive activities themselves, such

that the integrity of the system is preserved. In this approach,

the nervous system (and a cognitive agent) does not abstract or

“pick up information” from the environment and therefore the

metaphor of calling the brain an information processing device

is “not only ambiguous but patently wrong” [48]. On the con-

trary, knowledge is the effective use of sensorimotor contingen-

cies grounded in the structural coupling in which the nervous

system exists. Knowledge is particular to the system’s history

of interaction. If that knowledge is shared among a society of

cognitive agents, it is not because of any intrinsic abstract uni-

versality, but because of the consensual history of experiences

shared between cognitive agents with similar phylogeny and

compatible ontogeny.

As with dynamical systems, enactive systems operate in

synchronous real-time: cognitive processes must proceed syn-

chronously with events in the systems environment as a direct

consequence of the structural coupling and co-determination

between system and environment. However, exactly the same

point we made about the complementary process of anticipation

in dynamical systems applies equally here. Again, enactive

systems are necessarily embodied systems. This is a direct

consequence of the requirement of structural coupling of en-

active systems. There is no semantic gap in emergent systems

(connectionist, dynamical, or enactive): the system builds its

own understanding as it develops and cognitive understanding

emerges by co-determined exploratory learning. Overall, enac-

tive systems offer a framework by which successively richer

orders of cognitive capability can be achieved, from autonomy

of a system through to the emergence of linguistic and commu-

nicative behaviors in societies of cognitive agents.

The emergent position, in general, and the enactive position,

in particular, are supported by recent results which have shown

that a biological organism’s perception of its body and the di-

mensionality and geometry of the space in which it is embedded

can be deduced (learned or discovered) by the organism from an

analysis of the dependencies between motoric commands and

consequent sensory data, without any knowledge or reference to

an external model of the world or the physical structure of the

organism [104], [105]. Thus, the perceived structure of reality

could, therefore, be a consequence of an effort on the part of

brains to account for the dependency between their inputs and

their outputs in terms of a small number of parameters. Thus,

there is, in fact, no need to rely on the classical idea of an a priori

model of the external world that is mapped by the sensory appa-

ratus to “some kind of objective archetype.” The conceptions of

space, geometry, and the world that the body distinguishes itself

from arises from the sensorimotor interaction of the system, ex-

actly the position advocated in developmental psychology [12].

Furthermore, it is the analysis of the sensory consequences of

motor commands that gives rise to these concepts. Significantly,

the motor commands are not derived as a function of the sen-

sory data. The primary issue is that sensory and motor informa-

tion are treated simultaneously, and not from either a stimulus

perspective or a motor control point of view. As we will see

in Sections II-D and V-3, this perception-action co-dependency

forms the basis of many artificial cognitive systems.

The enactive approach is mirrored in the work of others. For

example, Bickhard [14] introduces the ideas of self-maintenant

system and recursive self-maintenant systems. He asserts that

“The grounds of cognition are adaptive far-from-equilib-

rium autonomy—recursively self-maintenant autonomy—not

symbol processing nor connectionist input processing. The

foundations of cognition are not akin to the computer foun-

dations of program execution, nor to passive connectionist

activation vectors.”

Bickhard defines autonomy as the property of a system to

contribute to its own persistence. Since there are different grades

of contribution, there are therefore different levels of autonomy.

Bickhard introduces a distinction between two types of self-

organizing autonomous systems.

1) Self-Maintenant Systems that make active contributions to

their own persistence but do not contribute to the main-

tenance of the conditions for persistence. Bickhard uses a

lighted candle as an example. The flame vaporizes the wax

which in turn combusts to form the flame.

2) Recursive Self-Maintenant Systems that do contribute ac-

tively to the conditions for persistence. These systems can

deploy different processes of self-maintenance depending

on environmental conditions: “they shift their self-main-

tenant processes so as to maintain self-maintenance as the

environment shifts”.

He also distinguishes between two types of stability: 1) en-

ergy well stability which is equivalent to the stability of systems

in thermodynamic equilibrium, no interaction with its environ-

ment is required to maintain this equilibrium and 2) far from

equilibrium stability which is equivalent to nonthermodynamic

equilibrium. Persistence of this state of equilibrium requires that

the process or system does not go to thermodynamic equilib-

rium. These systems are completely dependent for their con-

tinued existence on continued contributions of external factors:

they require environmental interaction and are necessarily open

processes (which nonetheless exhibit closed self-organization).

Self-maintenant and recursive self-maintenant systems are

both examples of far from equilibrium stability systems.

On the issue of representations in emergent systems, he notes

that recursive self-maintenant systems do, in fact, yield the

emergence of representation. Function emerges in self-main-

tenant systems and representation emerges as a particular type

of function (“indications of potential interactions”) in recur-

sively self-maintenant systems.

C. Hybrid Models

Considerable effort has also gone into developing approaches

which combine aspects of the emergent systems and cognitivist

systems [49], [106], [107]. These hybrid approaches have their

roots in arguments against the use of explicit programmer-based

knowledge in the creation of artificially intelligent systems

[108] and in the development of active “animate” perceptual

systems [109] in which perception-action behaviors become the

focus, rather than the perceptual abstraction of representations.

Such systems still use representations and representational

invariances but it has been argued that these representations

should only be constructed by the system itself as it interacts
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with and explores the world rather than through a priori speci-

fication or programming so that objects should be represented

as “invariant combinations of percepts and responses where the

invariances (which are not restricted to geometric properties)

need to be learned through interaction rather than specified or

programmed a priori” [49]. Thus, a system’s ability to interpret

objects and the external world is dependent on its ability to flex-

ibly interact with it and interaction is an organizing mechanism

that drives a coherence of association between perception and

action. There are two important consequences of this approach

of action-dependent perception. First, one cannot have any

meaningful direct access to the internal semantic representa-

tions and second, cognitive systems must be embodied (at least

during the learning phase) [106]. According to Granlund, for

instance, action precedes perception and “cognitive systems

need to acquire information about the external world through

learning or association”… “Ultimately, a key issue is to achieve

behavioral plasticity, i.e., the ability of an embodied system

to learn to do a task it was not explicitly designed for.” Thus,

hybrid systems are in many ways consistent with emergent

systems, while still exploiting programmer-centered represen-

tations (for example, see [110]).

Recent results in building a cognitive vision system on these

principles can be found in [111]–[113]. This system architecture

combines a neural-network-based perception-action component

(in which percepts are mediated by actions through exploratory

learning) and a symbolic component (based on concepts, in-

variant descriptions stripped of unnecessary spatial context, can

be used in more prospective processing such as planning or com-

munication).

A biologically motivated system, modeled on brain function

and cortical pathways and exploiting optical flow as its primary

visual stimulus, has demonstrated the development of object

segmentation, recognition, and localization capabilities without

any prior knowledge of visual appearance though exploratory

reaching and simple manipulation [114]. This hybrid extension

of the connectionist system [90] also exhibits the ability to learn

a simple object affordance and use it to mimic the actions of an-

other (human) agent.

An alternative hybrid approach, based on subspace learning,

is used in [115] to build an embodied robotic system that can

achieve appearance-based self-localization using a catadioptric

panoramic camera and an incrementally constructed robust

eigenspace model of the environment.

D. Relative Strengths

The foregoing paradigms have their own strengths and weak-

nesses, their proponents and critics, and they stand at different

stages of scientific maturity. The arguments in favour of dynam-

ical systems and enactive systems are compelling but the current

capabilities of cognitivist systems are actually more advanced.

However, cognitivist systems are also quite brittle.

Several authors have provided detailed critiques of the

various approaches. These include, for example, Clark [10],

Christensen and Hooker [116], and Crutchfield [117].

Christiansen and Hooker argued [116] that cognitivist

systems suffer from three problems: the symbol grounding

problem, the frame problem (the need to differentiate the

significant in a very large data-set and then generalize to ac-

commodate new data),10 and the combinatorial problem. These

problems are one of the reasons why cognitivist models have

difficulties in creating systems that exhibit robust sensorimotor

interactions in complex, noisy, dynamic environments. They

also have difficulties modeling the higher order cognitive

abilities such as generalization, creativity, and learning [116].

According to Christensen and Hooker, and as we have remarked

on several occasions, cognitivist systems are poor at functioning

effectively outside narrow, well-defined problem domains.

Enactive and dynamical systems should in theory be much

less brittle because they emerge through mutual specification

and co-development with the environment, but our ability to

build artificial cognitive systems based on these principles is ac-

tually very limited at present. To date, dynamical systems theory

has provided more of a general modeling framework rather than

a model of cognition [116] and has so far been employed more

as an analysis tool than as a tool for the design and synthesis

of cognitive systems [116], [119]. The extent to which this will

change, and the speed with which it will do so, is uncertain. Hy-

brid approaches appear to some to offer the best of both worlds:

the adaptability of emergent systems (because they populate

their representational frameworks through learning and expe-

rience) but the advanced starting point of cognitivist systems

(because the representational invariances and representational

frameworks do not have to be learned but are designed in). How-

ever, it is unclear how well one can combine what are ultimately

highly antagonistic underlying philosophies. Opinion is divided,

with arguments both for (e.g., [10], [112], [117]) and against

(e.g., [116]).

A cognitive system is inevitably going to be a complex system

and it will exhibit some form of organization, even if it is not the

organization suggested by cognitivist approaches. Dynamical

systems theory does not, at present, offer much help in identi-

fying this organization since the model is a state-space dynamic

which is actually abstracted away from the physical organiza-

tion of the underlying system [116]. The required organization

may not necessarily follow the top–down functional decomposi-

tion of AI but some appropriate form of functional organization

may well be required. We will return to this issue and discuss it

in some depth in Section III on cognitive architectures.

Clark suggests that one way forward is the development of a

form of “dynamic computationalism” in which dynamical ele-

ments form part of an information-processing system [10]. This

idea is echoed by Crutchfield [117] who, while agreeing that

dynamics are certainly involved in cognition, argues that dy-

namics per se are “not a substitute for information processing

and computation in cognitive processes” but neither are the two

approaches incompatible. He holds that a synthesis of the two

can be developed to provide an approach that does allow dynam-

ical state space structures to support computation. He proposes

“computational mechanics” as the way to tackle this synthesis of

dynamics and computation. However, this development requires

10In the cognitivist paradigm, the frame problem has been expressed in
slightly different but essentially equivalent terms: how can one build a program
capable of inferring the effects of an action without reasoning explicitly about
all its perhaps very many noneffects [118]?



162 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 2, APRIL 2007

that dynamics itself needs to be extended significantly from one

which is deterministic, low-dimensional, and time asymptotic,

to one which is stochastic, distributed and high-dimensional,

and reacts over transient rather than asymptotic time scales. In

addition, the identification of computation with digital or dis-

crete computation has to be relaxed to allow for other interpre-

tations of what it is to compute.

III. COGNITIVE ARCHITECTURES

Although used freely by proponents of the cognitivist, emer-

gent, and hybrid approaches to cognitive systems, the term cog-

nitive architecture originated with the seminal cognitivist work

of Newell et al. [120]–[122]. Consequently, the term has a very

specific meaning in this paradigm where cognitive architectures

represent attempts to create unified theories of cognition [7],

[121], [123], i.e., theories that cover a broad range of cognitive

issues, such as attention, memory, problem solving, decision

making, learning, from several aspects including psychology,

neuroscience, and computer science. Newell’s Soar architecture

[122], [124]–[126], Anderson’s ACT-R architecture [7], [127],

and Minsky’s Society of Mind [128] are all candidate unified

theories of cognition. For emergent approaches to cognition,

which focus on development from a primitive state to a fully

cognitive state over the lifetime of the system, the architecture

of the system is equivalent to its phylogenetic configuration: the

initial state from which it subsequently develops.

In the cognitivist paradigm, the focus in a cognitive architec-

ture is on the aspects of cognition that are constant over time

and that are relatively independent of the task [8], [129], [130].

Since cognitive architectures represent the fixed part of cogni-

tion, they cannot accomplish anything in their own right and

need to be provided with or acquire knowledge to perform any

given task. This combination of a given cognitive architecture

and a particular knowledge set is generally referred to as a cog-

nitive model. In most cognitivist systems the knowledge incor-

porated into the model is normally determined by the human de-

signer, although there is an increasing use of machine learning to

augment and adapt this knowledge. The specification of a cog-

nitive architecture consists of its representational assumptions,

the characteristics of its memories, and the processes that op-

erate on those memories. The cognitive architecture defines the

manner in which a cognitive agent manages the primitive re-

sources at its disposal [131]. For cognitivist approaches, these

resources are the computational system in which the physical

symbol system is realized. The architecture specifies the for-

malisms for knowledge representations and the memory used to

store them, the processes that act upon that knowledge, and the

learning mechanisms that acquire it. Typically, it also provides a

way of programming the system so that intelligent systems can

be instantiated in some application domain [8].

For emergent approaches, the need to identify an architec-

ture arises from the intrinsic complexity of a cognitive system

and the need to provide some form of structure within which to

embed the mechanisms for perception, action, adaptation, an-

ticipation, and motivation that enable the ontogenetic develop-

ment over the system’s lifetime. It is this complexity that distin-

guishes an emergent developmental cognitive architecture from

a simple connectionist robot control system that typically learns

associations for specific tasks, e.g., the Kohonen self-organized

net cited in [87]. In a sense, the cognitive architecture of an

emergent system corresponds to the innate capabilities that are

endowed by the system’s phylogeny and which do not have to

be learned but of course which may be developed further. These

resources facilitate the system’s ontogensis. They represent the

initial point of departure for the cognitive system and they pro-

vide the basis and mechanism for its subsequent autonomous

development, a development that may impact directly on the ar-

chitecture itself. As we have stated already, the autonomy in-

volved in this development is important because it places strong

constraints on the manner in which the system’s knowledge is

acquired and by which its semantics are grounded (typically by

autonomy-preserving anticipatory and adaptive skill construc-

tion) and by which an interagent epistemology is achieved (the

subjective outcome of a history of shared consensual experi-

ences among phylogenetically compatible agents); see Table I.

It is important to emphasize that the presence of innate capa-

bilities in emergent systems does not in any way imply that the

architecture is functionally modular: that the cognitive system

is comprised of distinct modules each one carrying out a spe-

cialized cognitive task. If a modularity is present, it may be be-

cause it develops this modularity through experience as part of

its ontogenesis or epigenesis rather than being prefigured by the

phylogeny of the system (e.g., see Karmiloff–Smith’s theory of

representational redescription, [132], [133]). Even more impor-

tant, it does not necessarily imply that the innate capabilities are

hard-wired cognitive skills as suggested by nativist psychology

(e.g., see Fodor [134] and Pinker [135]).11 At the same time, nei-

ther does it necessarily imply that the cognitive system is a blank

slate, devoid of any innate cognitive structures as posited in

Piaget’s constructivist view of cognitive development [137];12

at the very least there must exist a mechanism, structure, and or-

ganization which allows the cognitive system to be autonomous,

to act effectively to some limited extent, and to develop that

autonomy.

Finally, since the emergent paradigm sits in opposition to the

two pillars of cognitivism, the dualism that posits the logical

separation of mind and body, and the functionalism that posits

that cognitive mechanisms are independent of the physical plat-

form [6], it is likely that the architecture will reflect or recognize

in some way the morphology of the physical body of which it is

embedded and of which it is an intrinsic part.

Having established these boundary conditions for cognitivist

and emergent cognitive architectures (and implicitly for hybrid

architectures), for the purposes of this review the term cognitive

architecture will the taken in the general and nonspecific sense.

By this we mean the minimal configuration of a system that is

necessary for the system to exhibit cognitive capabilities and

behaviors: the specification of the components in a cognitive

system, their function, and their organization as a whole. That

11More recently, Fodor [136] asserts that modularity applies only to local cog-
nition (e.g., recognizing a picture of Mount Whitney) but not global cognition
(e.g., deciding to trek the John Muir Trail).

12Piaget founded the constructivist school of cognitive development whereby
knowledge is not implanted a priori (i.e., phylogenetically) but is discovered
and constructed by a child through active manipulation of the environment.
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TABLE II
COGNITIVE ARCHITECTURES REVIEWED IN THIS SECTION

said, we do place particular emphasis on the need of systems that

are developmental and emergent, rather than preconfigured.

Below, we will review several cognitive architectures drawn

from the cognitivist, emergent, and hybrid traditions, beginning

with some of the best known cognitivist ones. Table II lists the

cognitive architectures reviewed under each of these three head-

ings. Following this review, we present a comparative analysis

of these architectures using a subset of the 12 paradigm char-

acteristics we discussed in Section II: computational operation,

representational framework, semantic grounding, temporal con-

straints, interagent epistemology, role of physical instantiation,

perception, action, anticipation, adaptation, motivation, embod-

iment, and autonomy.

A. The Soar Cognitive Architecture

The Soar system [122], [124]–[126] is Newell’s candidate

for a Unified Theory of Cognition [121]. It is a production (or

rule-based) system13 that operates in a cyclic manner, with a pro-

duction cycle and a decision cycle. It operates as follows. First,

all productions that match the contents of declarative (working)

memory fire. A production that fires may alter the state of declar-

ative memory and cause other productions to fire. This continues

until no more productions fire. At this point, the decision cycle

begins in which a single action from several possible actions

is selected. The selection is based on stored action preferences.

Thus, for each decision cycle there may have been many pro-

duction cycles. Productions in Soar are low-level; that is to say,

knowledge is encapsulated at a very small grain size.

One important aspect of the decision process concerns a

process known as universal subgoaling. Since there is no

guarantee that the action preferences will be unambiguous or

that they will lead to a unique action or indeed any action,

the decision cycle may lead to an “impasse.” If this happens,

Soar sets up an new state in a new problem space, subgoaling,

with the goal of resolving the impasse. Resolving one impasse

may cause others and the subgoaling process continues. It is

assumed that degenerate cases can be dealt with (e.g., if all

else fails, choose randomly between two actions). Whenever

an impasse is resolved, Soar creates a new production rule

which summarizes the processing that occurred in the substate

in solving the subgoal. Thus, resolving an impasse alters the

system superstate, i.e., the state in which the impasse originally

occurred. This change is called a result and becomes the out-

come of the production rule. The condition for the production

13A production is effectively an IF-THEN condition-action pair. A production
system is a set of production rules and a computational engine for interpreting
or executing productions.

rule to fire is derived from a dependency analysis: finding what

declarative memory items matched in the course of determining

the result. This change in state is a form of learning, and it is

the only form that occurs in Soar, i.e., Soar only learns new

production rules. Since impasses occur often in Soar, learning

is pervasive in Soar’s operation.

B. Executive Process Interactive Control (EPIC)

EPIC [138] is a cognitive architecture that was designed to

link high-fidelity models of perception and motor mechanisms

with a production system. An EPIC model requires both knowl-

edge encapsulated in production rules and perceptual-motor pa-

rameters. There are two types of parameter: standard or system

parameters which are fixed for all tasks (e.g., the duration of

a production cycle in the cognitive processor: 50 ms) and typ-

ical parameters which have conventional values but can vary be-

tween tasks (e.g., the time required to effect recognition of shape

by the visual processor: 250 ms).

EPIC comprises a cognitive processor (with a production rule

interpreter and a working memory), and auditory processor, a

visual processor, an oculomotor processor, a vocal motor pro-

cessor, a tactile processor, and a manual motor processor. All

processors run in parallel. The perceptual processors simply

model the temporal aspects of perception: they do not perform

any perceptual processing per se. For example, the visual pro-

cessor does not do pattern recognition. Instead, it only models

the time it takes for a representation of a given stimulus to be

transferred to the declarative (working) memory. A given sen-

sory stimulus may have several possible representations (e.g.,

color, size, etc. ) with each representation possibly delivered to

the working memory at different times. Similarly, the motor pro-

cessors are not concerned with the torques required to produce

some movement; instead, they are only concerned with the time

it takes for some motor output to be produced after the cognitive

processor has requested it.

There are two phases to movements: a preparation phase and

an execution phase. In the preparation phase, the timing is in-

dependent of the number of features that need to be prepared

to effect the movement but may vary depending on whether the

features have already been prepared in the previous movement.

The execution phase is concerned with the timing for the imple-

mentation of a movement and, for example, in the case of hand

or finger movements the time is governed by Fitt’s Law.

Like Soar, the cognitive processor in EPIC is a production

system in which multiple rules can fire in one production cycle.

However, the productions in EPIC have a much larger grain size

than Soar productions.

Arbitration of resources (e.g., when two tasks require a single

resource) is handled by “executive” knowledge: productions

which implement executive knowledge do so in parallel with

productions for task knowledge.

EPIC does not have any learning mechanism.

C. Adaptive Control of Thought–Rational (ACT-R)

The ACT-R [7], [127] cognitive architecture is another ap-

proach to creating an unified theory of cognition. It focuses on

the modular decomposition of cognition and offers a theory of

how these modules are integrated to produce coherent cognition.
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Fig. 2. The ACT-R cognitive architecture [7].

The architecture comprises five specialized modules, each de-

voted to processing a different kind of information (see Fig. 2).

There is a vision module for determining the identity and posi-

tion of objects in the visual field, a manual module for control-

ling hands, a declarative module for retrieving information from

long-term information, and a goal module for keeping track of

the internal state when solving a problem. Finally, it also has

a production system that coordinates the operation of the other

four modules. It does this indirectly via four buffers into which

each module places a limited amount of information.

ACT-R operates in a cyclic manner in which the patterns

of information held in the buffers (and determined by external

world and internal modules) are recognized, a single production

fires, and the buffers are updated. It is assumed that this cycle

takes approximately 50 ms.

There are two serial bottlenecks in ACT-R. One is that the

content of any buffer is limited to a single declarative unit

of knowledge, called a “chunk.” This implies that only one

memory can be retrieved at a time and indeed that a single

object can be encoded in the visual field at any one time. The

second bottle-neck is that only one production is selected to

fire in any one cycle. This contrasts with both Soar and EPIC

both of which allow many productions to fire. When multiple

production rules are capable of firing, an arbitration procedure

called conflict resolution is activated.

While early incarnations of ACT-R focused primarily on the

production system, the importance of perceptuomotor processes

in determining the nature of cognition is recognized by An-

derson et al. in more recent versions [7], [123]. That said, the

perceptuomotor system in ACT-R is based on the EPIC archi-

tecture [138] which does not deal directly with real sensors or

motors but simply models the basic timing behavior of the per-

ceptual and motor systems. In effect, it assumes that the percep-

tual system has already parsed the visual data into objects and

associated sets of features for each object [127]. Anderson et

al. recognize that this is a shortcoming, remarking that ACT-R

implements more a theory of visual attention than a theory of

perception, but hope that the ACT-R cognitive architecture will

be compatible with more complete models of perceptual and

motor systems. The ACT-R visual module differs somewhat

from the EPIC visual system in that it is separated into two sub-

modules, each with its own buffer, one for object localization

and associated with the dorsal pathway, and the other for object

recognition and associated with the ventral pathway. Note that

this sharp separation of function between the ventral and dorsal

pathways has been challenged by recent neurophysiological ev-

idence which points to the interdependence between the two

pathways [139], [140]. When the production system requests

information from the localization module, it can supply con-

straints in the form of attribute-value pairs (e.g., color-red) and

the localization module will then place a chunk in its buffer with

the location of some object that satisfies those constraints. The

production system queries the recognition system by placing a

chunk with location information in its buffer; this causes the vi-

sual system to subsequently place a chunk representing the ob-

ject at that location in its buffer for subsequent processing by

the production system. This is a significant idealization of the

perceptual process.

The goal module keeps track of the intentions of the system

architecture (in any given application) so that the behavior of

the system will support the achievement of that goal. In effect,

it ensures that the operation of the system is consistent in solving

a given problem (in the words of Anderson et al. “it maintains

local coherence in a problem-solving episode”).

On the other hand, the information stored in the declarative

memory supports long-term personal and cultural coherence.

Together with the production system, which encapsulates pro-

cedural knowledge, it forms the core of the ACT-R cognitive

system. The information in the declarative memory augments

symbolic knowledge with subsymbolic representations in that

the behavior of the declarative memory module is dependent of

several numeric parameters: the activation level of a chunk, the
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probability of retrieval of a chunk, and the latency of retrieval.

The activation level is dependent on a learned base level of ac-

tivation reflecting its overall usefulness in the past, and an as-

sociative component reflecting its general usefulness in the cur-

rent context. This associative component is a weighted sum of

the element connected with the current goal. The probability of

retrieval is an inverse exponential function of the activation and

a given threshold, while the latency of a chunk that is retrieved

(i.e., that exceeds the threshold) is an exponential function of

the activation.

Procedural memory is encapsulated in the production system

which coordinates the overall operation of the architecture.

While several productions may qualify to fire, only one pro-

duction is selected. This selection is called conflict resolution.

The production selected is the one with the highest utility, a

factor which is a function of an estimate of the probability that

the current goal will be achieved if this production is selected,

the value of the current goal, and an estimate of the cost of

selecting the production (typically, proportional to time), both

of which are learned in a Bayesian framework from previous

experience with that production. In this way, ACT-R can adapt

to changing circumstances [123].

Declarative knowledge effectively encodes things in the envi-

ronment, while procedural knowledge encodes observed trans-

formations; complex cognition arises from the interaction of

declarative and procedureal knowledge [127]. A central feature

of the ACT-R cognitive architecture is that these two types of

knowledge are tuned in specific application by encoding the sta-

tistics of knowledge. Thus, ACT-R learns subsymbolic informa-

tion by adjusting or tuning the knowledge parameters. This sub-

symbolic learning distiguishes ACT-R from the symbolic (pro-

duction-rule) learning of Soar.

Anderson et al. suggest that four of these five modules and

all four buffers correspond to distinct areas in the human brain.

Specifically, the goal buffer corresponds to the dorsolateral pre-

frontal cortex (DLPFC), the declarative module to the temporal

hippocampus, the retrieval buffer (which acts as the interface

between the delarative module and the production system) to

the ventrolateral prefrontal cortex (VLPFC), the visual buffer

to the parietal area, the visual module to the occipital area, the

manual buffer to the motor system, the manual module to the

motor system and cerebellum, the production system to the basal

ganglia. The goal module is not associated with a specific brain

area. Anderson et al. hypothesize that part of the basal ganglia,

the striatum, performs a pattern recognition function. Another

part, the pallidium, performs a conflict resolution function, and

the thalamus controls the execution of the productions.

Like Soar, ACT-R has evolved significantly over several years

[127]. It is currently in Version 5.0 [7].

D. The ICARUS Cognitive Architecture

The ICARUS cognitive architecture [8], [141]–[143] fol-

lows in the tradition of other cognitivist architectures, such as

ACT-R, Soar, and EPIC, exploiting symbolic representations

of knowledge, the use of pattern matching to select relevant

knowledge elements, operation according to the conventional

recognize-act cycle, and an incremental approach to learning.

In this, ICARUS adheres strictly to the Newell and Simon’s
physical symbol system hypothesis [23] which states that

symbolic processing is a necessary and sufficient condition

for intelligent behavior. However, ICARUS goes further and

claims that mental states are always grounded in either real or

imagined physical states, and vice versa that problem-space

symbolic operators always expand to actions that can be

effected or executed. Langley refers to this as the symbolic

physical system hypothesis. This assertion of the importance of

action and perception is similar to recent claims by others in

the cognitivist community such as Anderson et al. [7].

There are also some other important difference between

ICARUS and other cognitivist architectures. ICARUS distin-

guishes between concepts and skills, and devotes two different

types of representation and memory for them, with both

long-term and short-term variants of each. Conceptual memory

encodes knowledge about general classes of objects and rela-

tions among them, whereas skill memory encodes knowledge

about ways to act and achieve goals. ICARUS forces a strong

correspondence between short-term and long-term memories,

with the latter containing specific instances of the long-term

structures. Furthermore, ICARUS adopts a strong hierar-

chical organization for its long-term memory, with conceptual

memory directing bottom-up inference and skill memory struc-

turing top-down selection of actions.

Langley notes that incremental learning is central to most

cognitivist cognitive architectures, in which new cognitive

structures are created by problem solving when an impasse is

encountered. ICARUS adopts a similar stance so that when

an execution module cannot find an applicable skill that is

relevant to the current goal, it resolves the impasse by backward

chaining.

E. ADAPT—A Cognitive Architecture for Robotics

Some authors, e.g., Benjamin et al. [144], argue that ex-

isting cognitivist cognitive architectures such as Soar, ACT-R,

and EPIC, do not easily support certain mainstream robotics

paradigms such as adaptive dynamics and active perception.

Many robot programs comprise several concurrent distributed

communicating real-time behaviors and consequently these

architectures are not suited since their focus is primarily on

“sequential search and selection”, their learning mechanisms

focus on composing sequential rather than concurrent actions,

and they tend to be hierarchically organized rather than dis-

tributed. Benjamin et al. do not suggest that you cannot address

such issues with these architectures but that they are not cen-

tral features. They present a different cognitive architecture,

adaptive dynamics and active perception for thought (ADAPT),

which is based on Soar but also adopts features from ACT-R

(such as long-term declarative memory in which sensorimotor

schemas to control perception and action are stored) and EPIC

(all the perceptual processes fire in parallel) but the low-level

sensory data is placed in short-term working memory where

it is processed by the cognitive mechanism. ADAPT has two

types of goals: task goals (such as “find the blue object”) and

architecture goals (such as “start a schema to scan the scene”). It

also has two types of actions: task actions (such as “pick up the

blue object”) and architectural actions (such as “initiate a grasp

schema”). While the architectural part is restricted to allow only

one goal or action at any one time, the task part has no such
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restrictions and many task goals and actions—schemas—can

be operational at the same time. The architectural goals and

actions are represented procedurally (with productions), while

the task goals and actions are represented declaratively in

working memory as well as procedurally.

F. Autonomous Agent Robotics (AARs)

Autonomous agent robotics (AARs) and behavior-based

systems represents an emergent alternative to cognitivist ap-

proaches. Instead of a cognitive system architecture that is

based on a decomposition into functional components (e.g.,

representation, concept formation, reasoning), an AAR ar-

chitecture is based on interacting whole systems. Beginning

with simple whole systems that can act effectively in simple

circumstances, layers of more sophisticated systems are added

incrementally, each layer subsuming the layers beneath it. This

is the subsumption architecture introduced by Brooks [145].

Christensen and Hooker [116] argue that AAR is not sufficient

either as a principled foundation for a general theory of situated

cognition. One limitation includes the explosion of systems

states that results from the incremental integration of subsys-

tems and consequently the difficulty in coming up with an

initial well-tuned design to produce coordinated activity. This

in turn imposed a need from some form of self-management,

something not included in the scope of the original subsumption

architecture. A second limitation is that it becomes increasingly

problematic to rely on environmental cues to achieve the right

sequence of actions or activities as the complexity of the task

rises. AAR is also insufficient for the creation of a comprehen-

sive theory of cognition: as the subsumption architecture cannot

be scaled to provide higher order cognitive faculties (it cannot

explain self-directed behavior) and even though the behavior

of an AAR system may be very complex it is still ultimately a

reactive system.

Christensen and Hooker note that Brooks has identified a

number of design principles to deal with these problems. These

include motivation, action selection, self-adaption, and devel-

opment. Motivation provides context-sensitive selection of pre-

ferred actions, while coherence enforces an element of consis-

tency in chosen actions. Self-adaption effects continuous self-

calibration among the subsystems in the subsumption architec-

ture, while development offers the possibility of incremental

open-ended learning.

We see here a complementary set of self-management pro-

cesses, signaling the addition of system-initiated contributions

to the overall interaction process and complementing the en-

vironmental contributions that are typical of normal subsump-

tion architectures. It is worth remarking that this quantum jump

in complexity and organization is reminiscent of the transition

from level one autopoietic systems to level two, where the cen-

tral nervous system then plays a role in allowing the system to

perturb itself (in addition to the environmental perturbations of

a level 1 system).

G. A Global Workspace Cognitive Architecture

Shanahan [118], [146]–[148] proposes a biologically plau-

sible brain-inspired neural-level cognitive architecture in which

cognitive functions such as anticipation and planning are real-

ized through internal simulation of interaction with the environ-

ment. Action selection, both actual and internally simulated, is

mediated by affect. The architecture is based on an external sen-

sorimotor loop and an internal sensorimotor loop in which in-

formation passes though multiple competing cortical areas and

a global workspace.

In contrast to manipulating declarative symbolic represen-

tations as cognitivist architectures do, cognitive function is

achieved here through topographically organized neural maps

which can be viewed as a form of analogical or iconic repre-

sentation whose structure is similar to the sensory input of the

system whose actions they mediate.

Shanahan notes that such analogical representations are

particularly appropriate in spatial cognition which is a crucial

cognitive capacity but which is notoriously difficult with tra-

ditional logic-based approaches. He argues that the semantic

gap between sensory input and analogical representations is

much smaller than with symbolic language-like representations

and, thereby, minimizes the difficulty of the symbol grounding

problem.

Shanahan’s cognitive architecture is founded also upon

the fundamental importance of parallelism as a constituent

component in the cognitive process as opposed to being a

mere implementation issue. He deploys the global workspace

model [149], [150] of information flow in which a sequence of

states emerges from the interaction of many separate parallel

processes (see Fig. 3). These specialist processes compete and

co-operate for access to a global workspace. The winner(s) of

the competition gain(s) controlling access to the global access

and can then broadcast information back to the competing spe-

cialist processes. Shanahan argues that this type of architecture

provides an elegant solution to the frame problem.

Shanahan’s cognitive architecture is comprised of the fol-

lowing components: a first-order sensorimotor loop, closed

externally through the world, and a higher order sensorimotor

loop, closed internally through associative memories (see

Fig. 3). The first-order loop comprises the sensory cortex and

the basal ganglia (controlling the motor cortex), together pro-

viding a reactive action-selection subsystem. The second-order

loop comprises two associative cortex elements which carry

out offline simulations of the system’s sensory and motor

behavior, respectively. The first associative cortex simulates a

motor output, while the second simulates the sensory stimulus

expected to follow from a given motor output. The higher order

loop effectively modulates basal ganglia action selection in

the first-order loop via an affect-driven amygdala component.

Thus, this cognitive architecture is able to anticipate and plan

for potential behavior through the exercise of its “imagina-

tion” (i.e., its associative internal sensorimotor simulation).

The global workspace does not correspond to any particular

localized cortical area. Rather, it is a global communications

network.

The architecture is implemented as a connectionist system

using G-RAMs: generalized random access memories [151]. In-

terpreting its operation in a dynamical framework, the global

workspace and competing cortical assemblies each define an

attractor landscape. The perceptual categories constitute attac-

tors in a state space that reflects the structure of the raw sensory
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Fig. 3. The global workspace theory cognitive architecture: “winner-take-all” coordination of competing concurrent processes [146].

data. Prediction is achieved by allowing the higher order senso-

rimotor loop to traverse along a simulated trajectory in that state

space so that the global workspace visits a sequence of attrac-

tors. The system has been validated in a Webot [152] simulation

environment.

H. Self-Directed Anticipative Learning

Christensen and Hooker propose a new emergent interac-

tivist-constructivist (I-C) approach to modeling intelligence

and learning: self-directed anticipative learning (SDAL) [15].

This approach falls under the broad heading of dynamical

embodied approaches in the noncognitivist paradigm. They

assert first the primary model for cognitive learning is antic-

ipative skill construction and that processes that both guide

action and improve the capacity to guide action while doing

so are taken to be the root capacity for all intelligent systems.

For them, intelligence is a continuous management process

that has to support the need to achieve autonomy in a living

agent, distributed dynamical organization, and the need to

produce functionally coherent activity complexes that match

the constraints of autonomy with the appropriate organization

of the environment across space and time through interaction.

In presenting their approach, they use the term “explicit norm

signals” for the signals that a system uses to differentiate an

appropriate context performing an action. These norm signals

reflect conditions for the (maintenance) of the system’s au-

tonomy (e.g., hunger signals depleted nutritional levels). The

complete set of norm signals is termed the norm matrix. They

then distinguish between two levels of management: low-order

and high-order. Low-order management employs norm signals

which differentiate only a narrow band of the overall interac-

tion process of the system (e.g., a mosquito uses heat tracking

and gradient tracking to seek blood hosts). Since it uses

only a small number of parameters to direct action, success

ultimately depends on simple regularity in the environment.

These parameters also tend to be localized in time and space.

On the other hand, high-order management strategies still

depend to an extent on regularity in the environment but exploit

parameters that are more extended in time and space and use

more aspects of the interactive process, including the capacity

to anticipate and evaluate the system’s performance, to produce

effective action (and improve performance). This is the essence

of self-directedness. “Self-directed systems anticipate and

evaluate the interaction process and modulate system action

accordingly”. The major features of self-directedness are action

modulation (“generating the right kind of extended interaction

sequences”), anticipation (“who will/should the interaction

go?”, evaluation (“how did the evaluation go?”), and construc-

tive gradient tracking (“learning to improve performance”).

I. A Self-Aware Self-Effecting (SASE) Cognitive Architecture

Weng [153]–[155] introduced an emergent cognitive archi-

tecture that is specifically focused on the issue of development

by which he means that the processing accomplished by the ar-

chitecture is not specified (or programmed) a priori but is the

result of the real-time interaction of the system with the envi-

ronment including humans. Thus, the architecture is not specific

to tasks, which are unknown when the architecture is created or

programmed, but is capable of adapting and developing to learn

both the tasks required of it and the manner in which to achieve

the tasks.

Weng refers to his architecture as a self-aware self-effecting

(SASE) system (see Fig. 5). The architecture entails an impor-

tant distinction between the sensors and effectors that are asso-

ciated with the environment (including the system’s body and

thereby including proprioceptive sensing) and those that are as-

sociated with the system’s “brain” or central nervous system

(CNS). Only those systems that have explicit mechanisms for

sensing and affecting the CNS qualify as SASE architectures.

The implications for development are significant: the SASE ar-

chitecture is configured with no knowledge of the tasks it will

ultimately have to perform, its brain or CNS are not directly ac-

cessible to the (human) designers once it is launched, and after

that the only way a human can affect the agent is through the ex-

ternal sensors and effectors. Thus, the SASE architecture is very

faithful to the emergent paradigms of cognition, especially the

enactive approach: its phylogeny is fixed and it is only through

ontogenetic development that the system can learn to operate

effectively in its environment.

The concept of SASE operation is similar to the level 2

autopoietic organizational principles introduced by Matura and

Varela [48] (i.e., both self-production and self-development)
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Fig. 4. The global workspace theory cognitive architecture: achieving prospec-
tion by sensorimotor simulation [146].

Fig. 5. The SASE architecture [155].

and is reminiscent of the recursive self-maintenant systems

principles of Bickhard [14] and Christensen’s and Hooker’s

interactivist-constructivist approach to modeling intelligence

and learning: self-directed anticipative learning (SDAL) [15].

Weng’s contribution differs in that he provides a specific com-

putational framework in which to implement the architecture.

Weng’s cognitive architecture is based on Markov decision

processes (MDPs), specifically a developmental observa-

tion-driven self-aware self-effecting Markov decision process

(DOSASE MDP). Weng places this particular architecture in

a spectrum of MDPs of varying degrees of behavioral and

cognitive complexity [154]; the DOSASE MDP is type 5 of

six different types of architecture and is the first type in the

spectrum that provides for a developmental capacity. Type

6 builds on this to provide additional attributes, specifically

greater abstraction, self-generated contexts, and a higher degree

of sensory integration.

The example DOSASE MDP vision system detailed in [153]

further elaborates on the cognitive architecture, detailing three

types of mapping in the information flow within the architec-

ture: sensory mapping, cognitive mapping, and motor mapping.

It is significant that there is more than one cognitive pathway

between the sensory mapping and the motor mapping, one of

which encapsulates innate behaviors (and the phylogically en-

dowed capabilities of the system), while the other encapsulates

learned behaviors (and the ontogenetically developed capabili-

ties of the system). These two pathways are mediated by a sub-

sumption-based motor mapping which accords higher priority

to the ontogenetically developed pathway. A second significant

feature of the architecture is that it facilitates what Weng refers

to as “primed sensations” and “primed action.” These corre-

spond to predictive sensations and actions and thereby provide

the system with the anticipative and prospective capabilities that

are the hallmark of cognition.

The general SASE schema, including the associated concept

of autonomous mental development (AMD), has been devel-

oped and validated in the context of two autonomous develop-

mental robotics systems, SAIL and DAV [153], [154], [156],

[157].

J. Darwin: Neuromimetic Robotic Brain-Based Devices

Kirchmar et al. [16], [158]–[162] have developed a series

of robot platforms called Darwin to experiment with develop-

mental agents. These systems are “brain-based devices” (BBDs)

which exploit a simulated nervous system that can develop spa-

tial and episodic memory, as well as recognition capabilities

through autonomous experiential learning. As such, BDDs are

a neuromimetic approach in the emergent paradigm that is most

closely aligned with the enactive and the connectionist models.

It differs from most connectist approaches in that the architec-

ture is much more strongly modeled on the structure and organ-

ization of the brain than are conventional artificial neural net-

works, i.e., they focus on the nervous system as a whole, its

constituent parts, and their interaction, rather than on a neural

implementation of some individual memory, control, or recog-

nition function.

The principal neural mechanisms of the BDD approach

are synaptic plasticity, a reward (or value) system, reentrant

connectivity, dynamic synchronization of neuronal activity,

and neuronal units with spatiotemporal response properties.

Adaptive behavior is achieved by the interaction of these neural

mechanisms with sensorimotor correlations (or contingencies)

which have been learned autonomously by active sensing and

self-motion.

Darwin VIII is capable of discriminating reasonably simple

visual targets (colored geometric shapes) by associating it with

an innately preferred auditory cue. Its simulated nervous system

contains 28 neural areas, approximately 54,000 neuronal units,

and approximately 1.7 million synaptic connections. The archi-

tecture comprises regions for vision (V1, V2, V4, IT), tracking

(C), value or saliency (S), and audition (A). Gabor filtered im-

ages, with vertical, horizontal, and diagonal selectivity, and red-

green color filters with on-center off-surround and off-center

on-surround receptive fields, are fed to V1. Subregions of V1

project topographically to V2 which in turn projects to V4. Both

V2 and V4 have excitatory and inhibitory reentrant connections.

V4 also has a nontopographical projection back to V2 as well

as a nontopographical projection to IT, which itself has reen-

trant adaptive connections. IT also projects nontographically



VERNON et al.: A SURVEY OF ARTIFICIAL COGNITIVE SYSTEMS 169

back to V4. The tracking area (C) determines the gaze direc-

tion of Darwin VIII’s camera based on excitatory projections

from the auditory region A. This causes Darwin to orient toward

a sound source. V4 also projects topographically to C causing

Darwin VIII to center its gaze on a visual object. Both IT and the

value system S have adaptive connections to C which facilitates

the learned target selection. Adaptation is effected using the

Hebbian-like Bienenstock–Cooper–Munroe (BCM) rule [163].

From a behavioral perspective, Darwin VIII is conditioned to

prefer one target over others by associating it with the innately

preferred auditory cue and to demonstrate this preference by ori-

enting towards the target.

Darwin IX can navigate and categorize textures using artifi-

cial whiskers based on a simulated neuroanatomy of the rat so-

matosensory system, comprising 17 areas, 1101 neuronal units,

and approximately 8400 synaptic connections.

Darwin X is capable of developing spatial and episodic

memory based on a model of the hippocampus and surrounding

regions. Its simulated nervous system contains 50 neural areas,

90,000 neural units, and 1.4 million synaptic connections. It

includes a visual system, head direction system, hippocampal

formation, basal forebrain, a value/reward system based on

dopaminegic function, and an action selection system. Vision

is used to recognize objects and then compute their position,

while odometry is used to develop head direction sensitivity.

K. A Humanoid Robot Cognitive Architecture

Burghart et al. [164] present a hybrid cognitive architecture

for a humanoid robot. It is based on interacting parallel be-

havior-based components, comprising a three-level hierarchical

perception subsystem, a three-level hierarchical task handling

system, a long-term memory subsystem based on a global

knowledge database (utilizing a variety of representational

schemas, including object ontologies and geometric models,

Hidden Markov Models, and kinematic models), a dialogue

manager which mediates between perception and task planning,

an execution supervisor, and an “active models” short-term

memory subsystem to which all levels of perception and task

management have access. These active models play a central

role in the cognitive architecture: they are initialized by the

global knowledge database and updated by the perceptual sub-

system and can be autonomously actualized and reorganized.

The perception subsystem comprises a three-level hierarchy

with low, mid, and high-level perception modules. The low-level

perception module provides sensor data interpretation without

accessing the central system knowledge database, typically to

provide reflex-like low-level robot control. It communicates

with both the mid-level perception module and the task ex-

ecution module. The mid-level perception module provides

a variety of recognition components and communicates with

both the system knowledge database (long-term memory), as

well as the active models (short-term memory). The high-level

perception module provides more sophisticated interpretation

facilities such as situation recognition, gesture interpretation,

movement interpretation, and intention prediction.

The task handling subsystem comprises a three-level hier-

archy with task planning, task coordination, and task execution

levels. Robot tasks are planned on the top symbolic level using

task knowledge. A symbolic plan consists of a set of actions,

represented either by XML-files or Petri nets, and acquired ei-

ther by learning (e.g., through demonstration) or by program-

ming. The task planner interacts with the high-level perception

module, the (long-term memory) system knowledge database,

the task coordination level, and an execution supervisor. This

execution supervisor is responsible for the final scheduling of

the tasks and resource management in the robot using Petri nets.

A sequence of actions is generated and passed down to the task

coordination level which then coordinates (deadlock-free) tasks

to be run a the lowest task execution (control) level. In general,

during the execution of any given task, the task coordination

level works independently of the task planning level.

A dialogue manager, which coordinates communication with

users and interpretation of communication events, provides a

bridge between the perception subsystem and the task sub-

system. Its operation is effectively cognitive in the sense that

it provides the functionality to recognize the intentions and

behaviors of users.

A learning subsystem is also incorporated with the robot cur-

rently learning tasks and action sequences offline by program-

ming by demonstration or teleoperation; online learning based

on imitation is envisaged. As such, this key component repre-

sents work in progress.

L. The Cerebus Architecture

Horswill [165], [166] argues that classical artificial intelli-

gence systems such as those in the tradition of Soar, ART-R,

and EPIC, are not well suited for use with robots. Traditional

systems typically store all knowledge centrally in a symbolic

database of logical assertions and reasoning is concerned mainly

with searching and sequentially updating that database. How-

ever, robots are distributed systems with multiple sensory, rea-

soning, and motor control processes all running in parallel and

often only loosely coupled with one another. Each of these pro-

cesses maintains its own separate and limited representation of

the world and the task at hand and he argues that it is not re-

alistic to require them to constantly synchronize with a central

knowledge base.

Recently, much the same argument has been made by neuro-

scientists about the structure and operation of the brain. For ex-

ample, evidence suggests that space perception is not the result

of a single circuit, and in fact derives from the joint activity of

several fronto-parietal circuits, each of which encodes the spa-

tial location and transforms it into a potential action in a dis-

tinct and motor-specific manner [139], [140]. In other words,

the brain encodes space not in a single unified manner—there

is no general purpose space map—but in many different ways,

each of which is specifically concerned with a particular motor

goal. Different motor effectors need different sensory input: de-

rived in different ways and differently encoded in ways that are

particular to the different effectors. Conscious space perception

emerges from these different preexisting spatial maps.

Horswill contends also that the classical reasoning systems do

not have any good way of directing perceptual attention: they ei-

ther assume that all the relevant information is already stored in

the database or they provide a set of actions that fire task-specific

perceptual operators to update specific parts of the database (just
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as happens, for example, in ACT-R). Both of these approaches

are problematic: the former falls foul of the frame problem (the

need to differentiate the significant in a very large data-set and

then generalize to accommodate new data) and the second re-

quires that the programmer design the rule base to ensure that

the appropriate actions are fired in the right circumstances and

at the right time; see also similar arguments by Christensen and

Hooker [116].

Horswill argues that keeping all of the distinct models or rep-

resentations in the distributed processes or subsystems consis-

tent needs to be a key focus of the overall architecture and that it

should be done without sychronizing with a central knowledge

base. They propose a hybrid cognitive architecture, Cerebus,

that combines the tenets of behavior-based architectures with

some features of symbolic AI (forward- and backward-chaining

inference using predicate logic). It represents an attempt to scale

behavior-based robots (e.g., see Brooks [145] and Arkin [167])

without resorting to a traditional central planning system. It

combines a set of behavior-based sensory-motor systems with

a marker-passing semantic network and an inference network.

The semantic network effects long-term declarative memory,

providing reflective knowledge about its own capabilities, and

the inference network allows it to reason about its current state

and control processes. Together, they implement the key fea-

ture of the Cerebus architecture: the use of reflective knowledge

about its perceptual-motor systems to perform limited reasoning

about its own capabilities.

M. Cog: Theory of Mind

Cog [168] is an upper-torso humanoid robot platform for re-

search on developmental robotics. Cog has a pair of six de-

gree-of-freedom arms, a three degree-of-freedom torso, and a

seven degree-of-freedom head and neck. It has a narrow and

wide angle binocular vision system (comprising four color cam-

eras), an auditory system with two microphones, a three-degree

of freedom vestibular system, and a range of haptic sensors.

As part of this project, Scassellati has put forward a proposal

for a Theory of Mind for Cog [169] that focuses on social in-

teraction as a key aspect of cognitive function in that social

skills require the attribution of beliefs, goals, and desires to other

people.

A robot that possesses a theory of mind would be capable of

learning from an observer using normal social signals and would

be capable of expressing its internal state (emotions, desires,

goals) though social (nonlinguistic) interactions. It would also

be capable of recognizing the goals and desires of others and,

hence, would be able to anticipate the reactions of the observer

and modify its own behavior accordingly.

Scassellati’s proposed architecture is based on Leslie’s

model of Theory of Mind [170] and Baron–Cohen’s model of

Theory of Mind [171] both of which decompose the problem

into sets of precursor skills and developmental modules, albeit

in a different manner. Leslie’s Theory of Mind emphasizes

independent domain-specific modules to distinguish: 1) me-

chanical agency; 2) actional agency; and 3) attitudinal agency;

roughly speaking the behavior of inanimate objects, the be-

havior of animate objects, and the beliefs and intentions of

animate objects. Baron–Cohen’s Theory of Mind comprises

three modules, one of which is concerned with the interpretation

of perceptual stimuli (visual, auditory, and tactile) associated

with self-propelled motion, and one of which is concerned with

the interpretation of visual stimuli associated with eye-like

shapes. Both of these feed a shared attention module which in

turn feed a Theory of Mind module that represents intentional

knowledge or “epistemic mental states” of other agents.

The focus Scassellati’s Theory of Mind for Cog, at least ini-

tially, is on the creation of the precursor perceptual and motor

skills upon which more complex theory of mind capabilities can

be built: distinguishing between inanimate and animate motion

and identifying gaze direction. These exploit several built-in vi-

sual capabilities such as color saliency detection, motion de-

tection, skin color detection, and disparity estimation, a visual

search and attention module, and visuomotor control for sac-

cades, smooth-pursuit, vestibular-ocular reflex, as well as head

and neck movement and reaching. The primitive visuomotor be-

haviors, e.g., for finding faces and eyes, are based on embedded

motivational drives and visual search strategies.

N. Kismet

The role of emotion and expressive behavior in regulating

social interaction between humans and robots has been ex-

amined by Breazeal using an articulated anthropomorphic

robotic head called Kismet [172], [173]. Kismet has a total of

21 degree-of-freedom, three to control the head orientation,

three to direct the gaze, and 15 to control the robots facial

features (e.g., eyelids, eyebrows, lips, and ears). Kismet has a

narrow and wide angle binocular vision system (comprising

four color cameras), and two microphones, one mounted in

each ear. Kismet is designed to engage people in natural and

expressive face-to-face interaction, perceiving natural social

cues and responding through gaze direction, facial expression,

body posture, and vocal babbling.

Breazeal argues that emotions provide an important mecha-

nism for modulating system behavior in response to environ-

mental and internal states. They prepare and motivate a system

to respond in adaptive ways and serve as reinforcers in learning

new behavior, and act as a mechanism for behavioral home-

ostasis. The ultimate goal of Kismet is to learn from people

though social engagement, although Kismet does not yet have

any adaptive (i.e., learning or developmental) or anticipatory

capabilities.

Kismet has two types of motivations: drives and emotions.

Drives establish the top-level goals of the robot: to engage

people (social drive), to engage toys (stimulation drive), and to

occasionally rest (fatigue drive). The robot’s behavior is focused

on satiating its drives. These drives have a longer time constant

compared with emotions and they operate cyclically: increasing

in the absence of satisfying interaction and diminishing with

habituation. The goal is to keep the drive level somewhere

in a homeostatic region between under stimulation and over

stimulation. Emotions—anger and frustration, disgust, fear and

distress, calm, joy, sorrow, surprise, interest, boredom—elicit

specific behavioral responses such as complain, withdraw,

escape, display pleasure, display sorrow, display startled re-

sponse, reorient, and seek, in effect tending to cause the robot to

come into contact with things that promote its “wellbeing” and
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Fig. 6. The Kismet cognitive architecture [173].

avoid those that do not. Emotions are triggered by prespecified

antecedent conditions which are based on perceptual stimuli,

as well as the current drive state and behavioral state.

Kismet has five distinct modules in its cognitive architecture:

a perceptual system, an emotion system, a behavior system, a

drive system, and a motor system (see Fig. 6).

The perceptual system comprises a set of low-level pro-

cesses which sense visual and auditory stimuli, perform feature

extraction (e.g., color, motion, frequency), extract affective

descriptions from speech, orient visual attention, and localize

relevant features such as faces, eyes, objects, etc. These are

input to a high-level perceptual system where, together with

affective input from the emotion system, input from the drive

system and the behavior system, they are bound by releaser

processes that encode the robot’s current set of beliefs about the

state of the robot and its relation to the world. There are many

different kinds of releasers, each of which is “handcrafted” by

the system designer. When the activation level of a releaser

exceeds a given threshold (based on the perceptual, affective,

drive, and behavioral inputs) it is output to the emotion system

for appraisal. Breazeal says that “each releaser can be thought

of as a simple ‘cognitive’ assessment that combines lower-level

perceptual features with measures of its internal state into

behaviorally significant perceptual categories” [173]. The ap-

praisal process tags the releaser output with prespecified (i.e.,

designed-in) affective information on their arousal (how much

it stimulates the system), valence (how much it is favored),

and stance (how approachable it is). These are then filtered by

“emotion elicitor” to map each AVS (arousal, valence, stance)

triple onto the individual emotions. A single emotion is then

selected by a winner-take-all arbitration process, and output

to the behavior system and the motor system to evoke the

appropriate expression and posture.

Kismet is a hybrid system in the sense that it uses quintessen-

tially cognitivist rule-based schemas to determine, e.g., the

antecedent conditions, the operation of the emotion releasers,

the affective appraisal, etc., but allows the system behavior to

emerge from the dynamic interaction between these subsys-

tems.

IV. COMPARISON

Table III shows a summary of all the architectures reviewed

vis-à-vis a subset of the 12 characteristics of cognitive systems

which we discussed in Section II. We have omitted the first
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TABLE III
COGNITIVE ARCHITECTURES VIS-à-VIS THE 7 OF THE 12 CHARACTERISTICS OF

COGNITIVE SYSTEMS

five characteristics: Computation Operation, Representational

Framework, Semantic Grounding, Temporal Constraints, and

Interagent Epistemology because these can be inferred directly

by the paradigm in which the system is based: cognitivist,

emergent, or hybrid, denoted by a C, E, or H in Table III. A

“ ” indicates that the characteristic is strongly addressed in

the architecture, “ ” indicates that it is weakly addressed,

and a space indicates that it is not addressed at all in any

substantial manner. A “ ” is assigned under the heading of

Adaptation only if the system is capable of development (in the

sense of creating new representational frameworks or models)

rather than simple learning (in the sense of model parameter

estimation) [153].

V. THE DEVELOPMENTAL STANCE: AUTONOMY, ADAPTATION,

LEARNING, AND MOTIVATION

1) Development: Development implies the progressive ac-

quisition of predictive anticipatory capabilities by a system over

its lifetime through experiential learning. As we have seen, de-

velopment requires some ground from which to develop (i.e., a

phylogenetic configuration), as well as motivations to drive the

development.

In the emergent paradigm, the phylogeny must facilitate the

autonomy of the system and, in particular, the coupling of the

system with its environment, through perception and action, and

the self-organization of the system as a distinct entity. This com-

plementary perception/action coupling and self-organization is

termed co-determination. Co-determination arises from the au-

tonomous nature of a cognitive system and it reflects the fact that

an autonomous system defines itself through a process of self-

organization and subjugates all other processes to the preserva-

tion of that autonomy [103]. However, it also reflects the fact

that all self-organizing systems have an environment in which

they are embedded, from which they make themselves distinct,

Fig. 7. Maturana and Varela’s ideograms to denote autopoietic and op-
erationally closed systems. These systems exhibit co-determination and
self-development, respectively. The diagram on the left denotes an autopoietic
system: the arrow circle denotes the autonomy, self-organization, and self-pro-
duction of the system, the rippled line the environment, and the bidirectional
half-lines the mutual perturbation, i.e., structural coupling, between the two.
The diagram on the right denotes an operationally closed autonomous system
with a central nervous system. This system is capable of development by means
of self-perturbation, i.e., self-modification, of its the nervous system, so that it
can accommodate a much larger space of effective system action.

and which is conceived by the autonomous system in whatever

way is supportive of this autonomy-preserving process. In this

way, the system and the environment are co-specified: the cogni-

tive agent is determined by its environment by its need to sustain

its autonomy in the face of environmental perturbations and at

the same time the cognitive process determines what is real or

meaningful for the agent, for exactly the same reason. In a sense,

co-determination means that the agent constructs its reality (its

world) as a result of its operation in that world.

Maturana and Varela introduced a diagrammatic way of

conveying the self-organized autonomous nature of a co-de-

termined system, perturbing and being perturbed by its

environment [48]: see Fig. 7. The arrow circle denotes the

autonomy and self-organization of the system, the rippled line

the environment, and the bidirectional half-arrows the mutual

perturbation.

Co-determination requires then that the system is capable

of being autonomous as an entity. That is, it has a self-orga-

nizing process that is capable of coherent action and percep-

tion: that it possesses the essentials of survival and development.

This is exactly what we mean by the phylogenetic configuration

of a system: the innate capabilities of an autonomous system

with which it is equipped at the outset. This, then, forms the

ground for subsequent self-development. A co-determined au-

tonomous system has a restricted range of behavioral capabili-

ties and hence a limited degree of autonomy.

Self-development is identically the cognitive process of es-

tablishing and enlarging the possible space of mutually con-

sistent couplings in which a system can engage or withstand,

while maintaining (or increasing) its autonomy. It is the devel-

opment of the system over time in an ecological and social con-

text as it expands its space of structural couplings that nonethe-

less must be consistent with the maintenance of self-organi-

zation. Self-development requires additional plasticity of the

self-organizational processes. The space of perceptual possibil-

ities is predicated not on an absolute objective environment, but

on the space of possible actions that the system can engage in,

while still maintaining the consistency of the coupling with the

environment. These environmental perturbations do not control

the system since they are not components of the system (and, by

definition, do not play a part in the self-organization) but they

do play a part in the ontogenetic development of the system.
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Through this ontogenetic development, the cognitive system de-

velops its own epistemology, i.e., its own system-specific his-

tory- and context-dependent knowledge of its world, knowledge

that has meaning exactly because it captures the consistency and

invariance that emerges from the dynamic self-organization in

the face of environmental coupling. Put simply, the system’s ac-

tions define its perceptions but subject to the strong constraints

of continued dynamic self-organization. Again, it comes down

to the preservation of autonomy, but this time doing so in an

every increasing space of autonomy-preserving couplings.

This process of development is achieved through self-modifi-

cation by virtue of the presence of a central nervous system: not

only does environment perturb the system (and vice versa) but

the system also perturbs itself and the central nervous system

adapts as a result. Consequently, the system can develop and

accommodate a much larger space of effective system action.

This is captured in a second ideogram of Maturana and Varela

(see Fig. 7) which adds a second arrow circle to the autopoiesis

ideogram to depict the process of self-perturbation and self-

modification.

Self-development and co-determination together correspond

to Thelen’s view that perception, action, and cognition form a

single process of self-organization in the specific context of en-

vironmental perturbations of the system [174]. Thus, we can see

that, from this perspective, cognition is inseparable from “bodily

action” [174]: without physical embodied exploration, a cogni-

tive system has no basis for development. Emergent systems,

by definition, must be embodied and embedded in their envi-

ronment in a situated historical developmental context [12].

It is important to emphasize that development occurs in a

very special way. Action, perception, and cognition are tightly

coupled in development: not only does action organize percep-

tion and cognition, but perception and cognition are also es-

sential for organizing action. Actions systems do not appear

ready made. Neither are they primarily determined by experi-

ence. They result from both the operation of the central nervous

system and the subject’s dynamic interactions with the environ-

ment. Perception, cognition, and motivations develop at the in-

terface between brain processes and actions. Consequently, cog-

nition can be viewed as the result of a developmental process

through which the system becomes progressively more skilled

and acquires the ability to understand events, contexts, and ac-

tions, initially dealing with immediate situations and increas-

ingly acquiring a predictive or prospective capability. This de-

pendency on exploration and development is one of the reasons

why some argue that the embodied system requires a rich space

of manipulation and locomotion actions [50].

We note in passing that the concept of co-determination is

rooted in the Maturana’s and Varela’s idea of structural coupling

of level one autopoietic systems14 [48], is similar to Kelso’s

circular causality of action and perception (each a function of

the other as the system manages its mutual interaction with

the world [13]), and reflects the organizational principles in-

herent in Bickhard’s self-maintenant systems [14]. The concept

14Autopoiesis is a special type of self-organization: an autopoietic system is a
homeostatic system (i.e., self-regulating system) but one in which the regulation
applies not to some system parameter but to the organization of the system itself
[103].

of self-development is mirrored in Bickhard’s concept of recur-

sive self-maintenance [14] and has its roots in Maturana’s and

Varela’s level two and level three autopoietic systems [48].

In summary, the development of action and perception,

the development of the nervous system, and the develop-

ment (growth) of the body, all mutually influence each other

as increasingly sophisticated and increasingly prospective

(future-oriented) capabilities in solving action problems are

learned [20].

2) Learning and Motivation: Development depends cru-

cially on motivations which define the goals of actions. The

two most important motives that drive actions and development

are social and explorative. Social motives include comfort,

security, and satisfaction. There are at least two exploratory

motives, one involving the discovery of novelty and regularities

in the world, and one involving finding out about the potential

of one’s own actions.

Expanding one’s repertoire of actions is a powerful motiva-

tion, overriding efficacy in achieving a goal (e.g., the develop-

ment of bipedal walking, and the retention of head motion in

gaze even in circumstances when ocular control would be more

effective). Equally, the discovery of what objects and events af-

ford in the context of new actions is a strong motivation.

The view that exploration is crucial to ontogenetic develop-

ment is supported by research findings in developmental psy-

chology. For example, von Hofsten has pointed out that it is not

necessarily success at achieving task-specific goals that drives

development in neonates but rather the discovery of new modes

of interaction: the acquisition of a new way of doing something

through exploration [19], [20]. In order to facilitate exploration

of new ways of doing things, one must suspend current skills.

Consequently, ontogenetic development differs from learning in

that: 1) it must inhibit existing abilities and 2) it must be able

to cater for (and perhaps effect) changes in the morphology or

structure of the system [175]. The inhibition does not imply a

loss of learned control but an inhibition of the link between a

specific sensory stimulus and a corresponding motor response.

In addition to the development of skills through exploration

(reaching, grasping, and manipulating what is around it), there

are two other very important ways in which cognition de-

velops. These are imitation [176], [177] and social interaction,

including teaching [178].

Unlike other learning methods such as reinforcement learning

and imitation, the ability to learn new behaviors by observing

the actions of others allows rapid learning [177]. Metzoff and

Moore [179], [180] suggest that infants learn through imitation

in four phases:

1) body babbling, involving playful trial-and-error move-

ments;

2) imitation of body movements;

3) imitation of actions on objects;

4) imitation based on inferring intentions of others.

Neonates use body babbling to learn a rich “act space” in which

new body configurations can be interpolated although it is sig-

nificant that even at birth newborn infants can imitiate body

movements [177]. The developmental progress of imitation fol-

lows tightly that of the development of other interactive and

communicative skills, such as joint attention, turn taking and
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language [181]–[183]. Imitation is one of the key stages in the

development of more advanced cognitive capabilities.

It is important to understand what exactly we mean here by

the term “interaction.” Interaction is a shared activity in which

the actions of each agent influence the actions of the other agents

engaged in the same interaction, resulting in a mutually con-

structed pattern of shared behavior [184]. This definition is con-

sistent with the emergent cognition paradigm discussed above,

especially the co-constructed nature of the interaction, inspired

by concepts of autopoiesis and structural coupling [102]. This

aspect of mutually constructed patterns of complementary be-

havior is also emphasized in Clark’s notion of joint action [185].

According to this definition, explicit meaning is not necessary

for anything to be communicated in an interaction, it is simply

important that the agents are mutually engaged in a sequence

of actions. Meaning emerges through shared consensual expe-

rience mediated by interation.

Development and motivation aside, mechanisms to effect

self-modification, or learning, are still required.

Three types of learning can be distinguished: supervised

learning in which the teaching signals are directional error

signals, reinforcement learning in which the teaching signals

are scalar rewards or reinforcement signals, and unsupervised

learning with no teaching signals. Doya argues that the cere-

bellum is specialized for supervised learning, basal ganglia for

reinforcement learning, and the cerebral cortex for unsuper-

vised learning [186]. He suggests that in developing (cognitive)

architectures, the supervised learning modules in the cere-

bellum can be used as an internal model of the environment

and as shortcut models of input–output mappings that have

been acquired elsewhere in the brain. Reinforcement learning

modules in the basal ganglia are used to evaluate a given state

and thereby to select an action. The unsupervised modules in

the cerebral cortex represent the state of the external environ-

ment as well as internal context, providing also a common

representational framework for the cerebellum and the basal

ganglia which have no direct anatomical connections.

Irrespective of the exact details of Doya’s model, what is

significant is that different regions facilitate different types of

learning and that these regions and the learning processes are

interdependent. For example, McClelland et al. have suggested

that the hippocampal formation and the neocortex form a com-

plementary system for learning [187]. The hippocampus facili-

tates rapid autoassociative and heteroassociative learning which

is used to reinstate and consolidate learned memories in the

neocortex in a gradual manner. In this way, the hippocampal

memory can be viewed not just as a memory store but as a

“teacher of the neocortical processing system.” Note also that

the reinstatement can occur online, thereby enabling the overt

control of behavioral responses, as well as offline in, e.g., active

rehearsal, reminiscence, and sleep.

In a similar vein, Rougier has proposed and validated an

architecture for an autoassociative memory based on the or-

ganization of the hippocampus, involving the entorhinal cortex,

the dentate gyrus, CA3, and CA1 [188]. A feature of this archi-

tecture is that it avoids the catastrophic interference problem

normally linked to associative memories through the use of

redundancy, orthogonalization, and coarse coding representa-

tions. Rougier too notes that the hippocampus plays a role in

“teaching” the neocortex, i.e., in the formation of neocortical

representations.

Different types of development require different learning

mechanisms. Innate behaviors are honed through continuous

knowledge-free reinforcement-like learning in a process some-

what akin to parameter estimation. On the other hand, new skills

develop through a different form of learning, driven not just by

conventional reward/punishment cost functions (positive and

negative feedback) but through spontaneous unsupervised play

and exploration which are not directly reinforced [189], [190].

In summary, cognitive skills emerge progressively through

ontogenetic development as it learns to make sense of its world

through exploration, through manipulation, imitation, and so-

cial interaction, including communication [50]. Proponents of

the enactive approach would add the additional requirement that

this development take place in the context of a circular causality

of action and perception, each a function of the other as the

system manages its mutual interaction with the world: essen-

tially self-development of action and perception, and co-deter-

mination of the system through self-organization in an ecolog-

ical and social context.

To conclude, Winograd and Flores [27] capture the essence

of developmental emergent learning very succinctly:

“Learning is not a process of accumulation of represen-

tations of the environment; it is a continuous process of

transformation of behavior through continuous change in

the capacity of the nervous system to synthesize it. Re-

call does not depend on the indefinite retention of a struc-

tural invariant that represents an entity (an idea, image,

or symbol), but on the functional ability of the system to

create, when certain recurrent conditions are given, a be-

havior that satisfies the recurrent demands or that the ob-

server would class as a reenacting of a previous one.”

3) Perception/Action Co-Dependency: An Example of Self-

Development: It has been shown that perception and action in

biological systems are co-dependent. For example, spatial atten-

tion is dependent on oculomotor programming: when the eye is

positioned close to the limit of its rotation, and therefore cannot

saccade in any further in one direction, visual attention in that

direction is attenuated [191]. This premotor theory of attention

applies not only to spatial attention but also to selective atten-

tion in which some object rather than others are more apparent.

For example, the ability to detect an object is enhanced when

features or the appearance of the object coincide with the grasp

configuration of a subject preparing to grasp an object [192].

In other words, the subject’s actions conditions its perceptions.

Similarly, the presence of a set of neurons—mirror neurons—is

often cited as evidence of the tight relationship between percep-

tion and action [193], [194]. Mirror neurons are both activated

when an action is performed and when the same or similar ac-

tion is observed being performed by another agent. These neu-

rons are specific to the goal of the action and not the mechanics

of carrying it out [20]. Furthermore, perceptual development is

determined by the action capabilities of a developing child and

on what observed objects and events afford in the context of

those actions [20], [195].
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A practical example of a system which exploits this co-depen-

dency in a developmental setting can be found in [90]. This is a

biologically motivated system that learns goal-directed reaching

using color-segmented images derived from a retina-like log-

polar sensor camera. The system adopts a developmental ap-

proach: beginning with innate inbuilt primitive reflexes, it learns

sensorimotor coordination. The system operates as follows. By

assuming that a fixation point represents the object to be reached

for, the reaching is effected by mapping the eye-head proprio-

ceptive data to the arm control parameters. The control itself

is implemented as a multijoint synergy by using the control pa-

rameters to modulate a linear combination of basis torque fields,

each torque field describing the torque to be applied to an actu-

ator or group of actuators to achieve some distinct equilibrium

point where the acuator position is stable. That is, the eye-hand

motor commands which direct the gaze towards a fixation point

are used to control the arm motors, effecting what is referred to

in the paper as “motor-motor coordination”. The mapping be-

tween eye-head proprioceptive data (joint angular positions) and

the arm control parameters is learned by fixating on the robot

hand during a training phase.

A similar but more extensive biologically motivated system,

modeled on brain function and cortical pathways and exploiting

optical flow as its primary visual stimulus, demonstrates the de-

velopment of object segmentation, recognition, and localization

capabilities without any prior knowledge of visual appearance

though exploratory reaching and simple manipulation [114].

The system also exhibits the ability to learn a simple object

affordance and use it to mimic the actions of another (human)

agent. The working hypothesis is that action is required for

object recognition in cases where the system has to develop

the object classes or categories autonomously. The inherent

ambiguity in visual perception can be resolved by acting upon

the environment that is perceived. Development starts with

reaching, and proceeds through grasping, and ultimately to

object recognition. Training the arm-gaze controller is effected

in much the same way as in [90] but in this case, rather than

using color segmentation, the arm is segmented by seeking

optical flow that is correlated with arm movements (specif-

ically, during training, by correlating discontinuities in arm

movement as it changes direction of motion with temporal

discontinuities in the flow field. Segmentation of (movable)

objects is also effected by optical flow by poking the object and

detecting regions in the flow field that are also correlated with

arm motion, but which cannot be attributed to the arm itself.

Objects that are segmented by poking can then be classified

using color histograms of the segmented regions. A simple

affordance—rolling behavior when poked—is learned by com-

puting the probability of a normalized direction of motion when

the object is poked (normalization is effected by taking the

difference between the principal axis of the object and the angle

of motion). The effect of different poking gestures on objects

is then learned for each gesture by computing the probability

density function (a histogram, in effect) of the direction of

motions averaged over all objects. There are four gestures in

all: pull in, push away, backslap, and side tap. When operating

in a nonexploratory mode, object recognition is effected by

color histogram matching, localization by histogram backpro-

jection, and orientation by estimating the principal axis by

comparison of the segmented object with learned prototypes.

The robot then selects an action (one of the four gestures) by

finding the preferred rolling direction (from its learned affor-

dances) adding it to the current orientation and then choosing

the gesture which has the highest probability associated with

resultant direction. Mimicry (which differs from imitation, the

latter being associated with learning new behavior, and the

former with repeating known behavior [176]) is effected by

presenting the robot with an object and performing an action on

it. This “action to be imitated” activity is flagged by detecting

motion in the neighborhood of the fixation point, reaching by

the robot is then inhibited, and the effect of the action of the

object is observed using optical flow and template matching.

When the object is presented again a second time, the poking

action that is most likely to reproduce the rolling affordance

is selected. It is assumed that this is exactly what one would

expect of a mirror-neuron type of representation of perception

and action. Mirror neurons can be thought of as an “associative

map that links together the observation of a manipulative action

performed by someone else with the neural representation of

one’s own actions.”

VI. IMPLICATIONS FOR THE AUTONOMOUS DEVELOPMENT OF

MENTAL CAPABILITIES IN COMPUTATIONAL SYSTEMS

We finish this survey by drawing together the main issues

raised in the foregoing and we summarize some of the key fea-

tures that a system capable of autonomous mental development,

i.e., an artificial cognitive system, should exhibit, especially

those that adhere to a developmental approach. However,

before doing this, it might be opportune to first remark on the

dichotomy between cognitivist and emergent systems. As we

have seen, there are some fundamental differences between

these two general paradigms, the principaled disembodiment

of physical symbol systems versus the mandatory embodiment

of emergent developmental systems [51], and the manner in

which cognitivist systems often preempt development by em-

bedding externally derived domain knowledge and processing

structures, for example—but the gap between the two shows

some signs of narrowing. This is mainly due 1) to a fairly

recent movement on the part of proponents of the cognitivist

paradigm to assert the fundamentally important role played by

action and perception in the realization of a cognitive system;

2) to the move away from the view that internal symbolic rep-

resentations are the only valid form of representation [10]; and

3) to the weakening of the dependence on embedded a priori

knowledge and the attendant increased reliance on machine

learning and statistical frameworks both for tuning system

parameters and the acquisition of new knowledge both for the

representation of objects and the formation of new representa-

tions. However, cognitivist systems still have some way to go to

address the issue of true ontogenetic development with all that

it entails for autonomy, embodiment, architecture plasticity,

and system-centered construction of knowledge mediated by

exploratory and social motivations and innate value systems.

Krichmar et al. identify six design principles for systems that

are capable of development [16], [158], [161]. Although they

present these principles in the context of their brain-based de-
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vices, most are directly applicable to emergent systems in gen-

eral. First, they suggest that the architecture should address the

dynamics of the neural element in different regions of the brain,

the structure of these regions, and especially the connectivity

and interaction between these regions. Second, they note that

the system should be able to effect perceptual categorization:

i.e., to organize unlabeled sensory signals of all modalities into

categories without a priori knowledge or external instruction.

In effect, this means that the system should be autonomous and,

as noted by Weng [153, p. 206], a developmental system should

be a model generator, rather than a model fitter (e.g., see [196]).

Third, a developmental system should have a physical instan-

tiation, i.e., it should be embodied, so that it is tightly coupled

with its own morphology and so that it can explore its environ-

ment. Fourth, the system should engage in some behavioral task

and, consequently, it should have some minimal set of innate

behaviors or reflexes in order to explore and survive in its ini-

tial environmental niche. From this minimum set, the system

can learn and adapt so that it improves15 its behavior over time.

Fifth, developmental systems should have a means to adapt.

This implies the presence of a value system (i.e., a set of mo-

tivations that guide or govern its development). These should

be nonspecific16 modulatory signals that bias the dynamics of

the system so that the global needs of the system are satisfied:

in effect, so that its autonomy is preserved or enhanced. Such

value systems might possibly be modeled on the value system of

the brain: dopaminergic, cholinergic, and noradrenergic systems

signaling, on the basis of sensory stimuli, reward prediction, un-

certainty, and novelty. Krichmar et al. also note that brain-based

devices should lend themselves to comparison with biological

systems.

And so, with both the foregoing survey and these design prin-

ciples, what conclusions can we draw?

First, a developmental cognitive system will be constituted

by a network of competing and cooperating distributed mul-

tifunctional subsystems (or cortical circuits), each with its

own limited encoding or representational framework, together

achieving the cognitive goal of effective behavior, effected

either by some self-synchronizing mechanism or by some mod-

ulation circuit. This network forms the system’s phylogenetic

configuration and its innate abilities.

Second, a developmental cognitive architecture must be ca-

pable of adaptation and self-modification, both in the sense of

parameter adjustment of phylogenetic skills through learning

and, more importantly, through the modification of the very

structure and organization of the system itself so that it is ca-

pable of altering its system dynamics based on experience, to ex-

pand its repertoire of actions, and thereby adapt to new circum-

stances. This development should be driven by both explorative

and social motives, the first concerned with both the discovery of

novel regularities in the world and the potential of the system’s

own actions, the second with interagent interaction, shared ac-

tivities, and mutually constructed patterns of shared behavior. A

variety of learning paradigms will need to be recruited to effect

development, including, but not necessarily limited to, unsuper-

vised, reinforcement, and supervised learning.

15Krichmar et al. say “optimizes” rather than “improves.”

16nonspecific in the sense that they do not specify what actions to take.

Third, and because cognitive systems are not only adaptive

but also anticipatory and prospective, it is crucial that they

have (by virtue of their phylogeny) or develop (by virtue of

their ontogeny) some mechanism to rehearse hypothetical

scenarios—explicitly like Anderson’s ACT-R architecture [7]

or implicitly like Shanahan’s global workspace dynamical ar-

chitecture [146]—and a mechanism to then use this to modulate

the actual behavior of the system.

Finally, developmental cognitive systems have to be em-

bodied, at the very least in the sense of stuctural coupling with

the environment and probably in some stronger organismoid

form [197], [198], if the epistemological understanding of the

developed systems is required to be consistent with that of other

cognitive agents such as humans [3]. What is clear, however, is

that the complexity and sophistication of the cognitive behavior

is dependent on the richness and diversity of the coupling, and

therefore the potential richness of the system’s actions.

Ultimately, for both cognitivist and emergent paradigms, de-

velopment (i.e., ontogeny), is dependent on the system’s phylo-

genetic configuration, as well as its history of interactions and

activity. Exactly what phylogenetic configuration is required for

the autonomous development of mental capabilities, i.e., for the

construction of artificial cognitive systems with mechanisms for

perception, action, adaptation, anticipation, and motivation that

enable its ontogenetic development over its lifetime, remains an

open question. Hopefully, this survey will go some way towards

answering it.
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