@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

A survey of automated timetabling
A. Schaerf
Computer Science/Department of Software Technology

CS-R9567 1995

Report CS-R9567
ISSN 0169-118X

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

A Survey of Automated Timetabling

Andrea Schaerf
CwiI
P.O. Bozx 94079, 1090 GB Amsterdam, The Netherlands

e-mail: aschaerf@cwi.nl

Abstract

The timetabling problem consists in fixing a sequence of meetings between teachers and
students in a prefixed period of time (typically a week), satisfying a set of constraints of var-
ious types. A large number of variants of the timetabling problem have been proposed in the
literature, which differ from each other based on the type of institution involved (university
or high school) and the type of constraints. This problem, that has been traditionally con-
sidered in the operational research field, has recently been tackled with techniques belonging
also to artificial intelligence (e.g. genetic algorithms, tabu search, simulated annealing, and
constraint satisfaction). In this paper, we survey the various formulations of the problem,
and the techniques and algorithms used for its solution.

AMS Subject Classification: 68M20, 68T20

CR Subject Classtfication: 1.2.8, F.2.2, G.2.1

Keywords & Phrases: Timetabling, Heuristics, Combinatorial optimization, Scheduling, Local
search techniques

Note: This work has been carried out as part of the ERCIM fellowship Programme and financed
by the Commission of the European Communities.

1 Introduction

The timetabling problem consists in fixing a sequence of meetings between teachers and students
in a prefixed period of time (typically a week), satisfying a set of constraints of various types.

The manual solution of the timetabling problem usually requires several days of work. In
addition, the solution obtained may be unsatisfactory to some respect; for example a student
may be not allowed to take the courses he/she wants because they are scheduled at the same
time.

For the above reason, a considerable attention has been devoted to automated timetabling.
During the last thirty years, starting with (Gotlieb, 1963), many papers related to automated
timetabling have appeared in conferences and journals. In addition, several applications have
been developed and employed with a quite good success.

In this section, we describe informally the timetabling problem and the issues associated to
it. In the subsequent sections, we state the problem precisely and discuss its solution techniques.

1.1 Different problems and formulations

A large number of variants of the timetabling problem have been proposed in the literature,
which differ from each other based on the type of institution involved (university or high school)

and the type of constraints. We classify the timetabling problems in three main classes:

School timetabling: The weekly scheduling for all the classes of a high school, avoiding teach-
ers meeting two classes in the same time, and vice versa;

Course timetabling: The weekly scheduling for all the lectures of a set of university courses,
minimizing the overlaps of lectures of courses having common students;

Examination timetabling: The scheduling for the exams of a set of university courses, avoid-
ing to overlap exams of courses having common students, and spreading the exams for the
students as much as possible.

Based of this classification, we develop a separate discussion for each of the three problems
and we devote a section to each of them. However, such classification is not strict, in the sense
that there are some specific problems that can fall in between two classes, and cannot be easily
placed within the above classification. For example, the timetabling of a specific high school
which gives large freedom to the student regarding the set of courses can be similar to a course
timetabling problem.

1.2 Feasibility, optimality, and complexity

In some cases, the timetabling problem consists in finding any timetable that satisfies all the
constraints. In these cases, the problem is formulated as a search problem.

In other cases, the problem is formulated as an optimization problem. That is, what is
required is a timetable that satisfies all the hard constraints and minimizes (or maximizes) a given
objective function which embeds the soft constraints. As shown later, in some approaches, the
optimization formulation is just a means to apply optimization techniques to a search problem.
In this case, what is minimized is the so-called distance to feasibility. Even when the problem is a
true optimization problem, the distance to feasibility may be included in the objective function.
This is generally done to facilitate the navigation of the search space.

In both cases (search and optimization), we define the underlying problem, which is the
problem of deciding if there exists a solution, in the case of a search problem, and the problem
of deciding if there exists a solution with a given value of the objective function, in the case
of an optimization problem. When we mention the complexity of the problem, we refer to the
complexity of the underlying decision problem.

As we will see later in the paper, the underlying problem is NP-complete in almost all
variants. Therefore, an exact solution is achievable only for small cases (e.g. less than 10 courses),
whereas real instances usually may involve a few hundreds of courses. It follows that only
heuristic methods (Pearl, 1984) are feasible, which do not guarantee to reach the (optimal)
solution.

1.3 Solution approaches

Most of the early techniques (see Schmidt & Strohlein, 1979) were based on a simulation of
the human way of solving the problem. All such techniques, that we call direct heuristics, were
based on a successive augmentation. That is, a partial timetable is extended, lecture by lecture,
until all lectures have been scheduled. The underlying idea of all approaches is “schedule the
most constrained lecture first”, and they differ only on the meaning they give to the expression
‘most constrained’.

Later on, researchers started to apply general techniques to this problem. We therefore see
algorithms based on integer programming, network flow, and others. In addition, the problem
has also been tackled by reducing it to a well-studied problem: graph coloring.

More recently, some approaches based on search techniques used also in Al appeared in
the literature; among others, we have simulated annealing, tabu search, genetic algorithms, and
constraint satisfaction.

In this paper, we survey the solution techniques, putting the emphasis on the most recent
approaches in general, and on Al techniques in particular.

Notice that we include in our list of techniques also some items, e.g. logic programming, that
are general tools for the development of the solution, rather than real solution techniques. In
that cases, we specify also the technique implemented using the given tool.

1.4 Previous surveys

The literature on timetabling includes several surveys. We now briefly discuss their scope and
contribution.

Schmidt and Strohlein (1979) provide an annotated bibliography including more than 200
entries, listing virtually all papers on the field appeared up to 1979.

Junginger (1986) describes the research in Germany on the school timetabling problem. In
particular, he describes the various software products implemented, and their actual utilization
by the staffs of the institutions. The paper also describes the underlying approaches, most of
which are based on direct heuristics.

de Werra (1985) states the various problems in a formal way, and provides different for-
mulations for them. He also describes the most important approaches to the problem (up to
date), stressing the graph-theoretic ones. We follow mostly his paper for the terminology and
the problem formulations of this paper.

Carter (1986) surveys the approaches to the examination timetable problem. He mainly
focuses on the approaches based on the reduction to the graph coloring problems.

Corne, Ross, and Fang (1994a) provide a survey of the application of genetic algorithms to
timetabling. The paper discusses also future perspectives of such approach, and compares its
results obtained so far with respect to some other approaches.

Other surveys are given in (Dempster, Lethridge, & Ulph, 1973; Hilton, 1981; Klein, 1983;
Vincke, 1984; Ferland, Roy, & Loc, 1986).

There is also a Web page and a mailing list for the timetabling community, which includes
bibliographies and papers.?

1.5 Interactive vs. batch timetabling

Many authors believe that the timetabling problem cannot be completely automated. The
reason is twofold: On one side, there are reasons that make one timetable better than another
one that cannot easily be expressed in an automatic system. On the other side, since the search
space is usually huge, a human intervention may bias the search toward promising directions
that the system by itself may be not able to find.

For the above reasons, most of the systems allow the user at least to adjust manually the
final output. Some systems however require a much larger human intervention, so that we call
them interactive (or semi-automatic) timetabling systems.

!The URL is http://tawny.cs.nott.ac.uk/ttg/ttp.htnl and the mail addresses are
ttp-request@Cs.Nott.AC.UK and ttp@Cs.Nott.AC.UK.

The systems described in (Klingen, 1981; Chahal & de Werra, 1989; Dinkel, Mote, &
Venkataramanan, 1989; Wong & Ng, 1990; Mathaisel & Comm, 1991) are examples of in-
teractive systems. In this paper, we do not deal with the issues specifically related to interactive
systems, and we concentrate on batch systems.

1.6 Outline of the paper

In Sections 2, 3, and 4 we discuss in detail school timetabling, course timetabling, and exami-
nation timetabling, respectively. In Section 5, we discuss some general issues that are common
to all three problems. In Section 6, we briefly describe some related problems. In Section 7 we
discuss some possible research directions.

Some of the techniques described in Sections 2, 3, and 4 are discussed in the appendices.
In particular, Appendix A describes the graph coloring problem and the main approaches to
its solution. Appendices B, C, and D illustrate three general techniques for the solution of
optimization problems, namely tabu search, simulated annealing, and genetic algorithms.

2

2 School timetabling

In this section, we describe in detail the high school timetabling problem, also known as
class/teacher model. We start describing a simplified version, which can be solved in poly-
nomial time; thereafter, we move to the basic formulation. Although that is still not a “real”
problem, it has the minimal set of constraints that makes it a hard problem, and its solution
requires the heuristic techniques employed also for the more complex cases. Subsequently, we
introduce the corresponding optimization problem, and describe some variants of it considered
in the literature. Finally, we discuss solution techniques and approaches.

2.1 Simplified polynomial problem

We have m classes ¢1,...,¢n, n teachers t1,...,t,, and p periods 1,...,p. We are also given
a non-negative integer matrix R, xn, called Requirements matriz, where r;; is the number of
lectures given by teacher ¢; to class c;.

The problem consists in assigning lectures to periods in such a way that no teacher or class
is involved in more than one lecture at a time. The mathematical formulation is as follows

(de Werra, 1985):

TTP1 find zij =1,....m;j=1,...,mk=1,...,p)

p
s.t. Zﬂﬁijkzrij i=1,....m;j=1,...,n) (1)
k=1
Zmijkgl (i=1,...,mk=1,...,p) (2)
i=1
=1
2y, =0o0r1 =1,....m;j=1,...,mk=1,...,p) (4)

where z;;;, = 1if class ¢; and teacher ¢; meet at period k, and z;;, = 0 otherwise.

2We discuss such topics in the appendices because such techniques are used for more than one case and we
want Sections 2, 3, and 4 to be independent of each other.

Constraints (1) ensure that each teacher gives the right number of lectures to each class.
Constraints (2) (resp. Constraints (3)) ensure that each teacher (resp. class) is involved in at
most one lecture for each period.

Even, Itai, and Shamir (1976) prove that there exists always a solution of this problem,
unless a teacher or a class is required to be involved in more than p lectures. More precisely,
there exists a solution if and only if

irijgp (j=1,...,n) (5)
irijép (i=1,...,m) (6)

In order to solve TTP1, we may associate to an instance of the problem a bipartite multi-
graph: Classes and teachers are associated to vertices, and each class ¢; is linked to each teacher
t; by r;; parallel edges. The solution technique employed in (Even et al., 1976) is based on find-
ing a sequence of maximal matchings in the resulting bipartite multigraph, where a matching is
a set of edges with no common nodes.

Regarding the complexity of the method, Hopcroft and Karp (1973) prove that the required
matching can be found in polynomial time with respect to the size of the multigraph. Since the
method in (Even et al., 1976) requires p matchings, and the size of the multigraph involved is
polynomial w.r.t. n, m, p, the whole method runs in polynomial time.

Alternatively, the problem can be reduced to a problem of edge coloring on graphs (de Werra,
1985): Given p colors (each period corresponding to a color), the problem consists of finding
an assignment of a color to each edge such that no two adjacent edges have the same color.
Thereafter, the variable z;;; gets value 1 if one of the edges between ¢; and t; gets color k.

de Werra considers also some variants of TTP1 which are still solvable in polynomial time.
He considers the possibility that a teacher (and a class) can be involved in more than one lecture
for each period. In such variant a period represents not an atomic time slot but a set of them
(for example, a day). He also considers the case in which the lectures are constrained so that
they must be spread as much as possible throughout all the periods.

2.2 Basic search problem

The problem TTP1 does not include any constraints on the possible scheduling of the lectures.
In real instances, instead, we must take into account the possibility that a teacher (or a class)
is unavailable at a given time.

We now introduce the school timetabling problem with wnavailabilities of teachers and
classes. The following formulation is due to (Junginger, 1986); alternative ones can be found for
example in (Even et al., 1976; de Werra, 1985). Junginger introduces two binary matrices Ty,
and Cpxp such that £;; = 1 (resp. cjr = 1) if teacher ¢; (resp. class ¢;) is available at period k,
and t;; = 0 (resp. cjr = 0) otherwise. Thereafter, he replaces Constraints (2) and (3) in TTP1
by Constraints (7) and (8) as below:

TTP2 find zij i=1,....m;j=1,...,nmk=1,...,p)

P
s.t. Zmijk:rij i=1,...,m;j=1,...,n)
k=1

Doeg<ta (i=1,...mk=1,...,p) (™)
i=1

Doagp<er (G=1,...mk=1,...p) (8)
=1
z;;rb=0o0r1 (i=1,....mj=1,...,mk=1,...,p)

de Werra (1985) considers also constraints due to preassignments: A particular lecture can
be imposed to be scheduled at a given time. Preassignments can be expressed adding a set of
constraints of the following form

i > pije (t=1,....m5=1,...,mk=1,...,p) (9)

where p;; = 0 if there is no preassignment, and p;;, = 1 when a lecture of teacher ¢; to class
¢; is preassigned to period k. de Werra also shows that unavailability can be expressed as
preassignments with dummy classes or teachers.

The problem TTP2 has been shown NP-complete by Even et al. (1976) through a reduction
from 3-SAT (Garey & Johnson, 1979, LO2, p. 259). Even et al. also prove that the problem is
polynomial for the special case in which classes are always available and each teacher is available
for exactly two periods.

2.3 Optimization problem

The problem TTP2 is a search problem, whose solution is any feasible timetable. However,
in real applications a feasible timetable can be better than another one, and the goal is to
find the optimal one. This consideration forces us to formulate the timetabling problem as an
optimization problem with an objective function to minimize (or maximize).

Junginger (1986) proposes to add to the basic problem TTP2 the following objective function

m n P
min Z Z Z di;rTijh (10)

=1 j=1k=1

where a large d;;;, is assigned to periods k in which a lecture of teacher ¢; to class ¢; is less
desirable.

Colorni, Dorigo, and Maniezzo (1992) introduce a more complex objective function, which
includes several aspects of the timetable. We don’t show such function in detail here, we just
mention that it is based on the following quantities (with decreasing weight):

o the didactic cost: e.g. spreading the lectures over the whole week;

e the organizational cost: e.g. having a teacher available for possible temporary teaching
posts;

o the personal cost: e.g. a specific day-off for each teacher.

A different approach is taken in (Yoshikawa, Kaneko, Nomura, & Watanabe, 1994). They
introduce a constraint language, and associate a penalty for each constraint violated. Their
objective is to minimize the overall penalty. As an example of constraint violation, they consider
the possibility that a teacher is forced to teach in a period in which he/she is not available.

2.4 Variants of the problem

Several variants of the above basic problem have been proposed in the literature so as to deal
with real-life problems. We now list some of the most popular ones.

2.4.1 Simultaneous lectures

Real timetables usually include some lectures that are simultaneously given to more than one
class. For example, in some high school a gymnastic lesson generally involves two classes to-
gether. Obviously, if a simultaneous lesson is scheduled at a given time, all the classes involved
cannot be scheduled for any other lectures at that time. Simultaneous lessons are taken into
account in Yoshikawa et al. (1994).

2.4.2 Teachers for more than one subject

So far we have assumed that a class must take a number of lectures with a set of specific
teachers. Cooper and Kingston (1993), instead, consider the case that a class must take some
specific subjects, and that different teachers may teach the same subject. In addition, a teacher
may teach different subjects. However, they assume that all the lectures to a specific class of a
given subject are given by the same teacher.

2.4.3 Special rooms

The availability of rooms is not taken into account in the basic problem because of the implicit
assumption that each class has a dedicated room. However, some particular lectures may re-
quire special equipments, such as science labs or music rooms. The number of special rooms is
obviously limited, and therefore, there is the additional constraint that no more than a given
number of lectures requiring a special room can be scheduled at the same period.

2.5 Solution techniques and approaches

We now list the solution techniques and approaches proposed in the literature. For this list, we
roughly follow the chronological order.

As mentioned in Section 1.3, we distinguish between techniques and approaches; with the
term technique we mean an algorithm or a set of algorithms for the solution of the problem
(e.g., genetic algorithms). An approach instead is a general framework for the development of a
solution algorithm (e.g., constraint logic programming).

2.5.1 Direct heuristics

Direct heuristics usually fill up the complete timetable with one lecture (or one group of lectures)
at a time as far as no-conflicts arise. At that point they start making some swapping so as to
accommodate other lectures.

A typical example of this method is the system SCHOLA by Uhlemann et al. (1969), which
is described also in (Junginger, 1986). The system is based on the following three strategies:

A: Assign the most urgent lecture to the most favorable period for that lecture.

B: When a period can be used only for one lecture, assign the period to that lecture.

C: Move an already-scheduled lecture to a free period so as to leave the period for the lecture
that we are currently trying to schedule.

A lecture is “urgent” when it is tightly constrained; that is, when the teacher (and the class)
has little availability and many lectures to give. A period is “favorable” when few other lectures
can be scheduled at that period based on the availability of the other teachers and classes.

The system SCHOLA schedules the lectures alternating Strategies A and B as much as
possible. When no more lecture can be scheduled in this way, it starts using Strategy C.

Strategy A is the core of the system, and it is employed almost in all systems, with different
way of defining urgency and favorableness. The use of Strategy B might prevent Strategy A
to enter in dead-ends. Strategy C provides a limited form of backtracking to recover from the
“mistakes” of Strategy A.

Many of the early papers propose some direct heuristics for the solution of the timetable
problem. We refer to (Schmidt & Strohlein, 1979) for a comprehensive list of such algorithms
up to that date.

The algorithm in (Papoulias, 1980) can also be considered a direct heuristics. Such paper
stresses on the requirement that lectures must be spread across days. The favorableness of a
period for a lecture is therefore based also on the fact that another lecture of the same teacher
to the same class has not been already assigned to a consecutive day.

2.5.2 Reduction to graph coloring

Neufeld and Tartar (1974) propose a reduction to the graph coloring problem (Appendix A). In
their reduction, each lecture is associated with a vertex in a graph, and there is an edge between
each pair of lectures that cannot be scheduled at the same time. In particular, lectures that share
a common teacher or a common class (or both) are joined. Unavailabilities and preassignments
are managed imposing some external constraints on the colorability of specific vertices of the
graph.

A coloration of the resulting graph, respecting the external constraints, can be easily turned
into a timetable, by assigning a period to each color, and consequently scheduling the lectures
corresponding to a vertex to the period corresponding to its color.

In addition, Neufeld and Tartar show that the problem of the coloration of a graph with the
given type of external constraints can be transformed into the colorability of a graph without
any constraints.

2.5.3 Network flow techniques

Ostermann and de Werra (1983) reduce the timetabling problem to a sequence of network flow
problems. The general network model can be formulated as follows:

min ZCjiI)j, (11)
7=1

st. Az =0, (12)
I<z<u (13)

where A, «,, is the vertex edge incidence matrix, b, x1 is the vector of supplies, and 41 xm, l1xm
are vectors of capacities and lower bounds.

Ostermann and de Werra create a network for each period so that the flow in the network
identifies the lectures given in that period. de Werra (1985) proposes a similar method creating
a network for each class. We now briefly describe the latter one.

For a given class ¢; do the following steps: (7) introduce a vertex for each period k and each
teacher t;; (4¢) connect k with ¢; if teacher ¢; is available at period k and he/she has not been
assigned to another class for period k in a previous network; (¢4¢) introduce a source vertex s
with edges (s, k) for all periods k and a sink vertex t with edges (¢;,t) for all teachers ¢;; (iv)
set both the capacities u(t;,t) and the lower bounds I(¢;,%) to r;;; (v) for all other edges v =1
and [= 0.

The solution of the network, which is always integer due to the total unimodularity property
(Papadimitriou & Steiglitz, 1982, pp. 316-318), gives a schedule for all the lectures for the given
class.

The construction of the network is repeated for all classes and eventually, if a solution is
found for all networks, it leads to a complete timetable. Obviusly, since there is no backtracking
on the classes already scheduled, we have no guarantee that the solution is found whenever it
exists.

2.5.4 Genetic algorithms

A genetic algorithm (Appendix D) has been applied to the school timetabling problem in (Colorni
et al., 1992). The cited paper considers the optimization problem with the objective function
mentioned in Section 2.3.

Infeasible timetables are also included in the search space of the algorithms. The objec-
tive function embeds the number of infeasibilities. In order to bias the search toward feasible
timetables the infeasibilities are given a very high weight in the objective function w.r.t. other
constraints.

A solution is represented as a matrix M,,y, such that the row ith of M represents the
timetable for teacher ;. In particular, each entry m;, contains the name of the class that the
teacher is meeting at period k.

The crossover operator is applied to two timetables 77 and T in the following way: There is
a local fitness function that computes the fitness of the schedule of a specific teacher. The rows
of T} are sorted in order of decreasing local fitness and the best k rows are taken together with
the other m — k rows taken from 7%. The second offspring is obtained from the unutilized rows
of T1 and T5. The value of k is determined on the basis of the local fitness of both 7} and 7.

The mutation operator takes h contiguous genes and swaps them with another h contiguous
non-overlapping ones belonging to the same row. The algorithm includes also a local search
phase that moves a solution to its local optimum.

2.5.5 Simulated annealing

Abramson (1991) applies simulated annealing (Appendix C) to school timetabling. He also
considers, as an extension, the possibility that two different classes may have common students.
With this extension, his framework may fall also into the course timetabling category.

A solution is described by a list of sets of lectures, one list for each period. Given a solution,
the choice of the neighbor solution is performed by selecting at random a period and a lecture
in the selected period, and moving the lecture to a different period randomly chosen.

The objective function f (to be minimized) is a weighted sum of the number of conflicts on

classes and conflicts on teachers.?
Abramson chooses a cooling rate of 0.9, although he experimented also with various other
values. The number of iterations performed is in the order of three millions.

2.5.6 Logic programming approach

Kang and White (1992) propose the use of a logic programming approach to the school timetable
problem. In particular, they use PROLOG as the implementation language for their timetabling
program. The main advantage of this approach is the ability to express in a declarative way the
constraints involved in the problem.

The full backtracking capability of the PROLOG machine is overridden by a heuristics that
allows only for a limited attempt to reschedule assignments that create conflicts. In particular,
when a lecture becomes unschedulable, the procedure finds an “equivalent” (defined in the
paper) lecture already scheduled and reassigns it to a different period (similarly to Strategy C
of Section 2.5.1). If no equivalent lecture can be moved to a different period, leaving a feasible
period for the currently-processed lecture, it is put into a list of lectures which will be manually
scheduled later.

2.5.7 Constraint-based approach

The work in (Yoshikawa et al., 1994) proposes the use of a general-purpose Constraint Relazation
Problem solver, called CoASTOOL. In a constraint relaxation problem, a given penalty is assigned
to each constraint and the objective is to find an assignment of the problem variables that
minimizes the total penalty.

The constraint language allows the user to express several types of constraints. For example,
it is possible to express the unavailabilities of a given teacher. The following constraint states
that the set lectures of the teacher Smith, identified by the set SmithLessons, cannot take
place during the set of period representing the unavailabilities of Smith, identified by the set
SmithAbsence.

(define-constraint PartTimerSmith
:object ((:set lesson SmithLessons))
:variables ((v lesson))

:condition (not (is-a v SmithAbsence))
:penalty 10)

The solution method combines a greedy algorithm for finding an initial solution and a hill-
climbing procedure for the optimization phase. The employment of a smart greedy algorithm,
called Really-Fully-Lookahead algorithm, for the initialization phase, and a strongly biased opti-
mization algorithm, for the optimization phase, allows the method to find a high-quality solution
in a reasonable amount of time.

2.5.8 Tabu search

Costa (1994) and Schaerf and Schaerf (1995) apply tabu search to a quite standard high school
timetabling problem.

The representation chosen by Schaerf and Schaerf (1995) is the same as (Colorni et al,,
1992), that is a solution is represented as a matrix M,,y, such that each entry m,, contains

3The paper also considers conflicts on rooms. We discuss about room assignment in Section 3.

10

the name of the class that the teacher is meeting at period k. A move consists in exchanging
two lectures for a given teacher or moving a lecture to a different period. Costa (1994) instead
employs a different type of move. That is, he allows only for the reassignment of a single lecture
to a different period. In his representation, however, a single teacher can teach more than one
lecture at the same time, therefore a swap of assignments for a single teacher can be done in
two consecutive moves letting both assignment in the same period at the intermediate step.

Schaerf and Schaerf (1995) also experiment with more complex move types and with combi-
nations of tabu search with other local search techniques. They also compare the results with
simulated annealing algorithms and other descendent methods.

2.5.9 Combination of methods

The algorithm in (Cooper & Kingston, 1993) combines several heuristics. As a core strategy, it
uses a form of bipartite graph matching, that they call meta-matching.

The algorithm identifies groups of lectures that must be scheduled all at different times,
which are called meeting-sets. Thereafter, it iteratively performs a matching between lectures
belonging to a meeting set, on one side, and the so-called prototimes on the other; the prototimes
are variable time slots that are lately assigned to actual periods in a successive phase.

The algorithm is improved by choosing among the possible assignments those that assign as
many lectures as possible to the prototimes already used for previously scheduled meeting-sets.
This enhancement helps in finding a feasible timetable in presence of many large meeting-sets.

As already mentioned, the cited paper solves an extension of the basic problem which requires
to deal with different interchangeable resources, such as teachers and rooms. Actual resources
are assigned to lectures by a specific procedure. Such procedure, depending on the number of
resources involved may use a brute-force algorithm or a covering technique called beam search.

3 University course timetabling

The university course timetabling problem consists in scheduling a set of lectures for each course
within a given number of rooms and time periods. The main difference with the high school
problem is that university courses can have common students, whereas school classes are disjoint
sets of students. If two courses have common students then they conflict, and they cannot be
scheduled at the same period. Moreover, school teachers always teach to more than one class,
whereas in universities, a professor may teach only one course. In addition, in the university
problem, availability of rooms (and their size) plays an important role, whereas in the high
school problem they are often neglected because, in most cases, we can assume that each class
has its own room.

We start describing the basic formulation of the problem. Thereafter, we introduce the
optimization problem and we discuss the variants of the problem. Finally, we present the
solution techniques and approaches.

3.1 Basic search problem

There are various formulations of the course timetabling problem (see e.g., Tripathy, 1992). The
one given here is taken from (de Werra, 1985).

There are g courses K1, ..., K , and for each 7, course K; consists of k; lectures. There are r
curricula Sq,...,.5,, which are groups of courses that have common students. This means that
the courses in 5; must be scheduled all at different times. The number of periods is p, and I is

11

the maximum number of lectures that can be scheduled at period k (i.e. the number of rooms
available at period k). The formulation is the following:

TTP3 find yi i=1,...,¢;k=1,...,p)

P

st. > oy=k (i=1,...,9) (14)
k=1
g
i<l (k=1,...,p) (15)
=1
Syn<l (I=1..mk=1,...p) (16)
iESl
yir =0or 1 i=1,...,¢;k=1,...,p) (17)

where y;, — 1 if a lecture of course K is scheduled at period k, and y;;, — 0 otherwise.

Constraints (14) impose that each course is composed of the correct number of lectures.
Constraints (15) enforce that at each time there aren’t more lectures than rooms. Constraints
(16) prevent conflicting lectures to be scheduled at the same period.

Problem TTP3 can be shown to be NP-complete through a simple reduction from the graph
coloring problem.

A formulation equivalent to TTP3 is based on the conflicts matriz instead of on the curricula.
The conflict matrix Cyy, is a binary matrix such that ¢;; = 1 if courses K; and K; have common
students, and ¢;; = 0 otherwise.

3.2 Optimization problem
de Werra (1985) includes in the problem TTP3 the following objective function

q b
maz > > diryin

=1 k=1

where d;, is the desiderability of having a lecture of course K; at period k.

Tripathy (1992) considers a conflict matrix Cyy4 with integer values, such that ¢;; represents
the number of students taking both courses K; and K;. In this way, c;; represents also a measure
of dissatisfaction in case a lecture of K; and a lecture of K; are scheduled at the same time.
Tripathy tries to minimize the global dissatisfaction obtained as the sum of all the dissatisfactions
of the above type.

Several authors, following (Eiselt & Laporte, 1987), split the requirements into hard and soft
ones. The hard requirements are included in the constraints and they define the search space,
whereas the soft ones are included in the objective function (see e.g., Aubin & Ferland, 1989).
Soft requirements generally include event spreading constraints and room capacity constraints.

3.3 Variants of the problem

We now briefly discuss some of the most common variants of the basic problem proposed above.

12

3.3.1 Unavailabilities and preassignments

Preassignments and unavailability are not included in the basic model of Section 3.1. They can
be included in the model exactly in the same way as done in Section 2 for the school timetabling
problem.

However, in the university case the problem is already NP-complete even without them.
Therefore, unavailabilities and preassignments do not add worst-case complexity as in the school
case.

3.3.2 Multiple sections and grouping subproblem

In certain universities, some courses are repeated more than once during the week. In particular,
those courses involving a large number of students and belonging to several curricula are split
into multiple sections. The creation of different sections for a course may help to reduce the
number of conflicts in a timetable. For example, suppose that curriculum .5; involves courses
K, and K, and curriculum S5 involves courses K, and K3. Suppose also that a lecture of K,
takes place at time p and a lecture of K3 at time ¢. In this case, the lectures of course K; cannot
take place neither at time p nor at time q. However, if course K; is given in two sections, then
the lecture of one section can take place at time p, and the lecture of the other section at time
q.

Given a certain timetable, the problem of assigning the students taking a particular curricu-
lum to a specific section of a course in order to minimize conflicts is called grouping subproblem
(or student sectioning).

The grouping subproblem is considered, among the others, in (Laporte & Desroches, 1986;
Aubin & Ferland, 1989; Hertz, 1991; Tripathy, 1992). We refer to (Laporte & Desroches, 1986)
for a mathematical formulation of the grouping subproblem.

Laporte and Desroches (1986) take an approach analogous to the one they take in (Laporte
& Desroches, 1984) for the examination timetabling (see Section 4). They formulate the prob-
lem as an optimization problem splitting the requirements into hard and soft ones. The hard
requirements are: (z) A student cannot be in two lectures at one time and (4¢) a student can-
not have two adjacent lectures in two different campuses. Soft requirements include number of
lectures in a single day and changes of campus in a free hour.

The problem is then solved in two phases: In the first one the algorithm searches for an
admissible solution, whereas in the second one it searches for a local optimum.

In those approaches that take into account the grouping subproblem, the overall timetabling
algorithm is based on the alternate solution of the pure timetable problem and the grouping
one. For example, Hertz (1991) uses an iterative procedure that at each iteration solves both
problems, first the timetabling and thereafter the grouping subproblem.

3.3.3 Periods of variable length

So far we have considered all lectures of one-period length. Several authors consider also lectures
of different length.

In all approaches the lectures are allowed to last an integer number of periods; for example,
in (Ferland & Roy, 1985) lectures may last one or two or three periods.

Therefore, for each lecture we have to consider both the starting time and the length. In
this case, Constraints (14) and (15) are replaced by constraints that take into account the fact
that two lectures /; and [, starting at time p and ¢ > p, are conflicting also if ¢ — p < dj,;, where
dj; is the length of lecture /.

13

Hertz (1992) tackles the more general situation in which lectures may have a variable length.
In particular, Hertz allows one to specify that a course is composed of a certain number of
periods which can be given in a variable number of lectures of different length. For example,
a course composed of twelve time periods may consist of lectures of two or three time peri-

ods. In this case the course can be given in four, five or six lectures of the following lengths:
(3,3,3,3),(2,2,2,3,3),(2,2,2,2,2,2).

3.3.4 Classroom assignment subproblem

The classroom assignment subproblem consists in assigning classes to rooms, given a fixed
timetable. Carter and Tovey (1989) analyze in detail this problem and give various alternative
formulations and variants. They also show in which cases the problem is tractable and in which
it is NP-complete. In particular, they show that the problem becomes NP-complete when we
impose the constraint that all lectures of a course must take place in the same room, whereas
the problem is polynomial if we consider the assignment in each period independently of the
other period. We refer to Carter and Tovey for the exact formulation of this problem.

Ferland and Roy (1985) solve the classroom assignment subproblem by a reduction to a
quadratic assignment problem.

3.4 Solution techniques and approaches

We now list the solution techniques proposed in the literature. As for the school timetabling
problem, we try to follow the chronological order.

3.4.1 Reduction to graph coloring

de Werra (1985) shows how to reduce a course timetabling problem to graph coloring (Ap-
pendix A): Associate to each lecture I; of each course K; a vertex m;;; for each course Kj;
introduce a clique between the vertices m;; (for i = 1,...,¢). Introduce all edges between the
clique for K;, and the clique for K;, whenever K; and K, are conflicting.

In case of unavailabilities, introduce a set of p new vertices, each one corresponding to
a period. The new vertices are all connected to each other. This ensures that each one is
assigned to a different color. If a course cannot have lectures at a given period, then all the
vertices corresponding to the lectures of the course are connected to the vertex corresponding
to the given period. Conversely, if a lecture must take place at a given time, then the vertex
corresponding to that class is connected to all period vertices but the one representing the given
period.

The reduction to graph coloring is applied, among the others, in (Selim, 1988).

3.4.2 Integer linear programming

Several authors solved the timetabling problem using integer linear programming techniques
(e.g. Breslaw, 1976; Shin & Sullivan, 1977; McClure & Wells, 1984; Tripathy, 1984; Ferland &
Roy, 1985; Tripathy, 1992).

For example, Tripathy (1984) employs a Lagrangian Relazation technique. In (Tripathy,
1992), he extends the technique to deal also with the grouping subproblem.

Ferland and Roy (1985) formulate the problem as an assignment problem, and solve it
through a reduction to a quadratic assignment problem.

14

3.4.3 Network flow techniques

Dyer and Mulvey (1976), Mulvey (1982), Chahal and de Werra (1989), Dinkel et al. (1989)
propose to use a network model as the core of the timetabling algorithm. The general formulation
of a network model can be found in Section 2.5.3.

The network employed by Dinkel et al. contains three levels, plus a source and a sink vertex.
The first level is the Department Level which includes a vertex for each department, such that all
of these vertices are connected to the source. The second level is the Faculty/Staff Level which
includes a vertex for each possible combination of teacher and course taught by the teacher; these
vertices are connected to the vertices representing the departments to which the teachers belong.
The third level is the Room Size/Time Level, which contains a vertex for each combination of
room and time. Each vertex of this level is connected to a vertex of the second level only if the
size of the room represented by the vertex in compatible with the number of students of the
course represented by the other vertex. An edge between levels 2 and 3 represents a possible
lecture.

The capacities and the lower bounds of edges representing the lectures are 0 and 1 respec-
tively, and due to unimodularity, this ensures that the optimal solution to the problem will
possess all integer values.

The coefficients of the objective function are assigned based on availabilities of teachers and
rooms, and preferences of the teachers.

The network model can be solved in polynomial time; however it does not prevent the
solution from assigning a single teacher to multiple lectures at the same time. The procedure
therefore solves the problem and, if it finds a feasible solution, the process is over, otherwise
a human intervention changes some of the weights manually so as to get rid of the reason of
infeasibility. The procedure is executed several times until a feasible solution is obtained.

3.4.4 Tabu search

The tabu search technique (Appendix B) has been applied to university course timetabling in
(Hertz, 1991, 1992). The work in (Hertz, 1991) considers the optimization problem with the
grouping option, whereas (Hertz, 1992) extends the approach to a more complex case which
takes into account also lectures of different length.

In (Hertz, 1991) the tabu search is applied to both the timetabling problem and the grouping
subproblem. We describe only the application of tabu search to the pure timetabling problem.
In addition, we simplify the treatment in (Hertz, 1991), and we do not consider constraints
involving the location of the lecture rooms.

The application of tabu search to our specific problem requires the definition of the following
entities: (¢) a feasible solution; (¢¢) the neighbor relation and the neighbor selection procedure;
(4i7) the objective function to minimize; (4v) the initial solution.

In (Hertz, 1991) the constraints, as usual, are split into hard and soft ones. However, a
feasible solution is not defined based on the hard constraints because this does not guarantee
that the corresponding search space is connected (w.r.t. the neighbor relation). For this reason,
the concept of feasible solution for the search procedure is relaxed with respect to the concept
of feasible timetable, and the procedure is allowed to pass also through infeasible timetables.
In particular, Hertz considers a feasible solution also a timetable in which courses given at the
same time share a common teacher or involve common students. All the other hard constraints
are satisfied by feasible solutions.

The neighborhood N(s) of a solution s consists of all timetables that can be obtained from

15

s by assigning a lecture [to a different period ¢. Notice that, based on the above definition of
feasible solution, this operation always results in a feasible solution. Among the neighbors of the
current solution, the algorithm selects only the most promising ones. That is, it only considers
reassignments of lectures which create at least one conflict in the current solution.

The objective function is the weighted sum of the number of teacher and student conflicts
for each period.

Due to the way we defined a feasible solution, a starting solution can be easily selected at
random.

3.4.5 Expert systems approach

A solution technique based on expert systems is given in (Meisels, Gudes, & Kuflik, 1991;
Solotorevsky, Gudes, & Meisels, 1994).

Solotorevsky et al. define a rule-based language, called RAPS, for specifying general resource
allocation problems, and they use it, among the others, for a course timetabling problem. In
particular, they consider lectures as activities and periods as resources to be assigned to the
activities.

RAPS has five types of rules, namely assignment rules, constraint rules, local change rules,
context rules, and priority rules.

Assignment rules assign lectures to periods, one at a time, and therefore they are the core
of the system. These rules, like all the others, are supplied by the user, and thus the heuristics
used is not predefined but is chosen by the user.

Constraint rules specify the constraints that the solution must satisfy. They are checked
each time a new lecture is assigned to a period (i.e. a new activity is assigned to a resource).
Constraint rules are split into positive and negative ones, that is, constraints that must be
satisfied and constraints that must fail. Constraint rules allow to identify conflicts as soon as
they arise.

Local change rules specify the action to perform when there is a lecture that the assignment
rules are not able to tackle. The purpose of local change rule is to undo a previous assignment
in order to create the opportunity to assign the current one (like Strategy C in Section 2.5.1).

Context rules select the active context. In fact, the system allows for multiple contexts: In
different contexts the various lectures and periods may have different priority. The priority of
the objects determines which object, among those of a given type, is processed first.

Priority rules determine the priorities of the lectures and the periods, in each context. The
priorities are calculated each time a context is entered.

The system may work in two possible modes: greedy and non-greedy. In the greedy mode,
when the assignment rules fail to make an assignment, the system selects a different lecture.
Conversely, in the non-greedy mode, when a fail occurs the control is passed to the local change
rules.

Other authors (Monfroglio, 1988; Petrie, Causey, Steiner, & Dhar, 1989; Dhar & Ran-
ganathan, 1990) make use of expert systems. For example, Dhar and Ranganathan (1990)
propose the use of an expert system, called PROTEUS, for the allocation of teachers to courses,
and compare it to integer programming techniques.

3.4.6 Constraint logic programming approach

A constraint logic programming (CLP) system (Jaffar & Lassez, 1987) is a tool for modeling a
specific search problem, which provides the ability to declare variables and their domains, and

16

to place constraints.

In order to search for a solution, a CLP system generates values for the variables, propagating
values through the constraints in order to prune parts of the solution space where inconsistencies
are discovered. The basic method is therefore a backtrack search where the constraints allow
the system to look ahead to the consequences of decisions and spot failure earlier.

For dealing with optimization problems the CLP systems provide a solution technique based
on a form of branch-and-bound search.

Azevedo and Barahona (1994) deal with the timetabling problem using a CLP language
called DOMLOG. DOMLOG extends CHIP, the most popular CLP language, with features such as
user-defined heuristics and a flexible lookahead constraint solving.

In particular, DoMLOG allows for the possibility to specify a finite domain for the variables.
In adddition, the user can specify the heuristics for the selection of the value of a domain to
assign first to a given variable.

3.4.7 Others techniques and approacches

Genetic algorithms have been used for course timetabling in (Ling, 1992; Paechter, Luchian,
Cumming, & Petruic, 1994). Since their approaches are similar to those employed for the
examination timetabling we refer to Section 4.4.4 for a discussion of this technique.

A logic programming approach is taken by Fahrion and Dollansky (1992). They propose
a PROLOG implementation of a heuristics based on a priority scheme on the lectures to be
scheduled. Logic programming techniques are also used in (Monfroglio, 1986) and (Ling, 1992).

Other approaches to the course timetabling problem are given in (Akkoyunlu, 1973; Harwood
& Lawless, 1975; Selim, 1983). For example, Harwood and Lawless employ a mixed integer goal
programming.

Dowsland (1990) compares among themselves three different approaches based on graph
coloring, set partitioning, and simulated annealing.

4 Examination timetabling

The examination timetabling problem requires the scheduling of a given number of exams (one
for each course) within a given amount of time. The examination timetabling is similar to the
course timetabling, and it is difficult to make a clear distinction between the two problems. In
fact, some specific problems can be formulated both as an examination timetabling problem and
as a course timetabling one.

Nevertheless, it is possible to state some broadly-accepted differences between the two prob-
lems. Examination timetabling has the following characteristics (different from the course
timetabling problem):

e There is only one exam for each subject.

o The conflict condition is generally strict. In fact, we can accept that a student is forced
to skip a lecture due to overlapping, but not that a student skips an exam.

o There are different types of constraints, e.g. at most one exam per day for each student,
and not too many consecutive exams for each student.

e The number p of periods may vary, in contrast to course timetabling where it is fixed.

e There can be more than one exam per room.

17

As in the previous sections, we start describing the basic formulation of the problem. There-
after, we introduce the optimization problem, we discuss its variants, and we present the solution
techniques and approaches.

4.1 Basic search problem

The basic search problem can be formulated in a similar way to university course timetabling.

There are g courses K;,...,K,, and one exam for each course K;. There are r groups of
exams S1,...,5, such that in each S; there are students that take all exams in 5;. The number
of periods is p and [, is the maximum number of exams that can be scheduled at period k (which
is not necessarily the number of rooms, since more exams can take place in the same room).

TTP4 find vy t=1,...,¢;k=1,...,p)

p
st. D ye=1 (i=1,...,9) (18)
k=1
q
vi<lh (k=1,...,p) (19)
=1
oy<l (I=1,...,mk=1,...,p) (20)
1€S5;
yir =0or 1 t=1,...,¢;k=1,...,p) (21)

where y;, = 1 if the exam of course K; is scheduled at period k, and y;;, = 0 otherwise.
Like TTP3, the problem TTP4 can be shown NP-complete by a simple reduction from the
graph coloring problem.

4.2 Optimization problem

The most common type of soft constraint considered in the literature on examination timetabling
are the second order constraints. That is, the system should avoid that a student takes two exams
in consecutive periods. To this aim, we can add the following objective function to the basic

search problem.
p—1 7

ZZ Z YikYjik+1

k=11=11,7€8;

The above function counts the pairs of 1’s corresponding to exams belonging to the same
group 5; scheduled at adjacent periods. In fact, the product y;ry;x+1 gives 1 only if both y;
and y;r41 are 1.

Most authors (e.g., Mehta, 1981) consider in the objective function also the number of
students involved in each conflict. In particular, the penalty of a conflict is linearly related to
such number.

Laporte and Desroches (1984) consider also higher order constraints. That is, they penalize
also the fact that a student takes two exams in periods at distance three, four, or five.

Carter, Laporte, and Chinneck (1994) generalize the above constraints and consider a penalty
for the fact that a student is forced to take # exams in y consecutive periods. Their system
considers as consecutive also the last period of a day and the first of the next day, and the two
periods before and after lunch. Therefore, the dissatisfaction of a student that takes two exams

18

in consecutive periods is not always the same. Carter et al. deal with this problem by adding
dummy evening sessions.

Corne, Fang, and Mellish (1993) consider a slightly different objective function. They penal-
ize — in descending order of weight — a student taking (¢) more than two exams in the same
day, (4%) two exams in (real) consecutive periods, and (4i7) two exams just before and just after
lunch.

Corne et al. also consider a student taking two exams at once as part of the objective function
(with the highest weight). Carter et al. instead allow the user to choose what is a hard constraint
and what is a soft one.

4.3 Variants of the problem

Like in Sections 2 and 3, we now discuss the main variants of the basic examination timetabling
problem.

4.3.1 Unavailabilities and preassignments

Like in the previous two problems, unavailabilities and preassignments are generally taken into
account in real cases. They can be included in the model exactly in the same way as done in
Section 2 for the school timetabling problem.

4.3.2 Room assignment

Exams must be assigned to rooms based on the number of students taking the exams and
capacities of rooms.

Some authors (e.g., Carter et al., 1994) allow only one exam per room in a given period. In
this case, the problem of assigning exams to actual rooms in an optimal way can be solved in
polynomial time by means of a greedy algorithm.

Conversely, if we allow more exams per room (e.g., Burke, Elliman, & Weare, 1993), then
the problem becomes NP-complete being a generalization of the bin packing problem (Garey &
Johnson, 1979, SR1, p. 226).

Some authors (e.g., Laporte & Desroches, 1984) consider also different types of rooms, and
some exams may only be held in certain types of rooms. In addition, some exams may be split
into two or more rooms, in case the students do not fit in one single room.

4.3.3 Minimize the length of the session

Differently from course scheduling, in the examination case we may want to minimize the number
of periods required to accomplish all the exams. In that case, the number of periods p becomes
part of the objective function. Up to our knowledge, no author dealt specifically with this
variant.

Notice that if we reduce the problem to graph coloring then the resulting problem is that of
minimizing the number of colors. This is a well-studied problem (see e.g., Halldérsson, 1993),
and therefore the reduction to graph coloring can be profitable in this case.

4.4 Solution techniques and approaches

Like in the previous two sections, we now list the solution techniques proposed in the literature
roughly in chronological order.

19

4.4.1 Direct heuristics

Several direct heuristics have been proposed in the literature. Some of them are described in
(Carter, 1986). We now present the approach followed in (Laporte & Desroches, 1984), which
has been modified and improved in (Carter et al., 1994).

The algorithm works in three phases: (7) find a feasible solution, (4¢) improve the solution,
(4i7) allocate the rooms (allowing more exams per room).

Phase (¢) schedules iteratively exams to periods based on the increase of the objective func-
tion caused by that allocation. When an exam cannot be scheduled, one or more exams previ-
ously scheduled are moved — at least cost — without creating infeasibilities. Each exam that
cannot be moved is put back in the list of the exams yet unscheduled. In order to avoid infinite
loops, Laporte and Desroches employ a mechanism resembling the tabu list in the tabu search
technique (Appendix B): An exam cannot be put back by the same other exam more than a
specified number of times.

Phase (i¢) employs a simple descendent method. It identifies the move that would result in
the maximum decrease in the objective function and performs it. The procedure stops when it
reaches a local minimum.

Phase (4i¢) takes for each period a list of exams and a list of rooms. It iteratively assigns
the exam with largest number of students to the largest room. If the exam fits perfectly in
the room, they are both eliminated from the list of items to be allocated. If the room is too
large, then the exam is eliminated and the remaining part of the room is considered as a new
available room. Conversely, if the number of students does not fit in the room, then the room
is eliminated and the remaining part of the students are considered as a new exam.

4.4.2 Reduction to graph coloring

The exam problem can be obviously reduced to graph coloring (Appendix A) by associating each
exam to a vertex and drawing an edge between each pair of conflicting exams. This approach is
followed in (Mehta, 1981).

Unfortunately, there is no obvious translation of the usual second order constraints into
some properties on graphs. Therefore, examination timetabling problems with second order
constraints cannot be easily formulated as graph coloring problems.

4.4.3 Simulated annealing

Simulated annealing (Appendix C) has been used for examination timetabling, among the others,
by (Eglese & Rand, 1987; Johnson, 1990).

Eglese and Rand actually solve a problem slightly different from the examination timetabling,
which is the timetabling of conference presentations (or seminars). In their formulation, a
presentation can be repeated more than once if necessary. In addition the number of rooms is
fixed and all rooms are used for all periods.

Each participant is required to provide the list of seminars that he/she wants to attend plus
a reserve choice. The objective function is based on the number of participants that are not
allowed to attend all the presentations they want. A higher cost is given to the case where the
participant was not able to attend even his/her reserve choice.

The initial timetable is found using a heuristics, which schedules a presentation at a time,
ordering them w.r.t. the number of participants that want to attend that presentation and the
number of times it has been already scheduled.

20

The neighbors of a solution are obtained by cancelling a presentation in a given period and
replacing it with another presentation. In this way, the number of rooms needed, for every
period, never exceeds the number of rooms available (which is a hard constraint).

4.4.4 Genetic algorithimns

Genetic algorithms (Appendix D) have been recently applied to the examination timetabling by
several authors (e.g. Burke, Elliman, & Weare, 1994; Corne, Ross, & Fang, 1994b; Paechter,
1994; Corne et al., 1993).

We discuss the approach taken in (Corne et al., 1993) and we refer to (Corne et al., 1994a)
for a general discussion on the issues related to the use of genetic algorithms for the examination
timetabling problem (e.g., direct vs. implicit representation).

The representation used by Corne et al. is simply a list of length ¢ (the number of exams to
be scheduled) of integers between 1 and p. The meaning of the list is that, if the i** number in
the list is ¢, then exam K is scheduled at period ¢.

The objective function counts the number of instances of the following offenses: (i) a student
taking more than one exam at once (weight = 30); (¢¢) a student taking more than two exams
in one day (weight = 10); (4¢2) a student taking two exams in consecutive periods on the same
day (weight = 3); (4v) a student taking an exam just before and another one just after lunch on
the same day (weight = 1).

The recombination operator is based on a fized-point uniform crossover. That is, for one
child the bits in a fixed set of positions are chosen from one parent, the others are chosen from
the other parent; vice versa for the other child. The number of positions is chosen to be half the
solution length.

Recombination and mutation are applied with probabilities given by the two parameters pg
and ppr. In the experiments described in the paper, such parameters are set to 0.7 and 0.003,
respectively.

Corne et al. also experiment with variants of the genetic algorithms, called Inverse Square
Pressure, Elitism, and Operator Rate Interpolation, which improved the timetable produced. We
refer to the cited paper for a description of such variants.

4.4.5 Others techniques and approacches

Balakrishnan, Lucena, and Wong (1992) combine a network model with a Lagrangian relaxation
technique. In particular, Balakrishnan et al. use Lagrangian relaxation to calculate accurate
lower bounds for the network model. Their procedure iteratively calculates new solutions and
new lower bound as long as they are close enough or the procedure exceeds the maximum number
of iterations allowed.

5 General issues

In this section we briefly discuss some general issues that are common to all three problems.
We first give some general comments on the implementations and their results, and thereafter
we introduce a variant of the problem, called continuous timetabling, obtained by relaxing the
constraints on integer values for the variables of the problem.

21

5.1 Implementations and experiences

Almost all papers in the literature describe a substantial software implementation. In addition,
every paper usually presents the results of the application of the method to one or more test
cases.

The success of the application is measured in two different ways, depending on the fact
that the application deals with a search problem or an optimization problem. In the first case,
the measure of success is the number of lectures scheduled with respect to the total. The
results reported vary between 95% and 100% depending on the various cases. Such numbers
are obviously influenced by how constrained the specific instance is, therefore they are not an
accurate measure of the quality of the program.

In the second case, the measure of success is given by the value of the objective function for
the optimal solution. Such value in some cases has a direct practical meaning; for example, it can
represent the number of student dissatisfactions. Conversely, in some others it lacks a natural
interpretation; for example, it can be obtained as a weighted sum of a number of features, in
which case it is not directly readable.

In both cases, the results are generally compared with the hand-made ones. It is superfluous
saying that in all papers the results produced by computer are superior to the hand-made ones.

The computational complexity of the proposed systems is generally determined only through
the computing time. In almost all cases, such time is on the order of a few seconds. The hardware
used varies from case to case, ranging from mainframes to PCs. The use of PCs is advisable
for school timetabling because these are the type of computers generally owned by a school
administrative office.

Some other papers are devoted to the discussion of implementations and experiences. For
example, Sabin and Winter (1986) provide a discussion on the impact of timetabling on uni-
versities, and Junginger (1986) reports on the life cycle of the most popular school timetabling
systems in Germany.

5.2 Continuous timetabling

We call continuous timetabling the problem obtained by relaxing the constraint of integer values.
For example, the continuous version of problem TTP1 is obtained by replacing Constraints (4)
with the less restrictive ones

0<e;,<1 (i=1,....m;j=1,...,mk=1,...,p) (22)

Therefore, the solution of a continuous timetabling problem can include also fractional values
for the variables z;;, of the problem.

The continuous timetabling is generally a polynomial problem, and therefore it is much
simpler to solve than the integer problem.

The continuous version of the school timetabling problem has been investigated in (Smith
& Sefton, 1974; Clementson & Elphick, 1982). The cited papers discuss necessary and sufficient
conditions for the existence of a continuous timetable.

The solution to the continuous problem may have some utility for the real problem in case of
long term scheduling, e.g. scheduling for an academic year. In such case, it can be interpreted as
a set of timetables, differing from week to week. For example the value #;;, = 1/2 could mean
that teacher ¢; meets class c; at period k every second week.

22

6 Related problems

In this section we describe some problems related to timetabling. The solution techniques and
the results obtained for such problems can be helpful for the study of the timetabling problem.

6.1 Student scheduling

The student scheduling problem consists of assigning a student to specific course sections for a
given fixed timetable (see e.g., Busam, 1967; Laporte & Desroches, 1986; Feldman & Golumbic,
1989).

In details, we assume that a given student is required to take a certain number of courses,
which are given in one or more different sections. The courses are split into groups and there
are conditions on the minimum and maximum number of courses to be taken for each group.

There are also other constraints on the number and the distribution of the periods in which
the student is involved in a course.

A solution to the problem for a student is a set of courses and a specific section for each of
them, such that there are no time conflicts and all the constraints are satisfied.

Feldman and Golumbic (1989) propose a solution technique for the student scheduling prob-
lem based on a constraint satisfiability algorithm.

6.2 Other scheduling problems

Many scheduling problems share some features with the timetabling problem. For example, the
sport leagues games scheduling (Ferland & Fleurent, 1991) and the service timetable problem for
transportation networks (Odijk, 1994) also account to the creation of a timetable. In that cases,
though, the type of the constraints are different. The latter, for example, takes into account
also the order of execution of the activities.

A scheduling problem that has been largely investigated in the literature is the job shop
scheduling: A job consists of a sequence of operations, each of which must be processed on
a specific machine. The operations of a job must be processed in the order specified by the
sequence, and each machine can process at most one job at a time. The problem is to produce
a schedule of n jobs on m machines that minimizes the time when all jobs have completed
processing.

The job shop scheduling is NP-hard (Garey & Johnson, 1979, SS18, p. 242). Several algo-
rithms have been proposed for this problem (see e.g., Shmoys, Stein, & Wein, 1991). In addition,
there are several approximability results for them. The ideas for the solution of the job shop
scheduling might be profitably exploited for the timetabling problem.

7 Possible research directions

So far we have described the state of the art of the research. In this section we list a number of
topics that we consider possible future research directions.

7.1 Investigate a specific technique

The application of search and optimization techniques, developed in various fields, to the
timetabling problem probably will continue to go on in the future.

Many of the techniques mentioned in this paper have to be investigated more deeply in order
to produce results even better that the ones they give at present.

23

In addition, other techniques may be explored. For example, GSAT (Selman, Levesque, &
Mitchell, 1992) is a recently-proposed greedy algorithm for satisfiability (SAT) problems. It
has been applied also to graph coloring and other problems, suitably transformed into SAT
problems. It might be interesting to try to formulate the school timetabling problem directly as
a SAT problem, and apply the GSAT algorithm to it.

7.2 Standardization

Each school or university has its specific rules and constraints for the timetable. This is especially
true for universities. Therefore, a program written for creating the timetable of a university can
hardly be used for a different one.

Nevertheless, it would be useful to have a standard problem that includes a superset of the
constraints of a set of universities so as to write portable programs.

To this aim, the University of Nottingham is currently distributing a questionnaire (Weare,
1995) to all British Universities about how they timetable exams and the problems they have.

7.3 Approximability

The quality of the solution of a timetabling algorithm has been always measured only in com-
parison with other solutions, either produced manually or with other techniques. No guarantee
of the quality of the solution with respect to the optimal one has ever been provided in the
literature.

Conversely, the theoretical investigation of other problems (e.g., graph coloring and job shop
scheduling) has provided a large number of approximation (and non-approximability) results.

It would be interesting to provide some theoretical approximation results for the timetabling
problem, at least for the basic optimization problems.

7.4 Design of a powerful constraint language

The constraints of a timetabling problem can be very different in nature. Some of them can
be easily formulated in a mathematical form, whereas some others are well expressed in some
logical formulation.

In addition, in some cases, the informal definition of the constraint, given in some papers, is
not clear enough for the reader.

For the above reasons, we envision the definition of a constraint language, semantically
well-founded, that can express all the types of constraints usually considered in the literature.

Examples of constraint languages are given in (Cooper & Kingston, 1993; Azevedo & Bara-
hona, 1994; Solotorevsky et al., 1994; Yoshikawa et al., 1994).

7.5 Compare and combine different approaches

The comparison of different approaches to the solution of a specific problem can give an insight on
the quality of a specific method. Some comparisons are given in (Corne et al., 1994a; Dowsland,
1990; Colorni et al., 1992).

The comparison can also provide information about which approach works best in different
situations. In addition, it can also help for the development of combined methods that hopefully
exploit the good qualities of the various methods.

24

A Graph coloring algorithms

The graph coloring problem is one of the classical NP-complete problems on graphs (Garey &
Johnson, 1979, GT4, p. 191): Given an undirected graph G = (V, E), the problem consists of
finding a partition of V into a minimum number of color classes (or simply colors) c1,.. ., ck,
where no two vertices can be in the same color class if there is an edge between them.

The simplest graph coloring heuristics is the following one (called SEQ in Johnson, Aragon,
McGeoch, & Schevon, 1991): Vertices vy,...,v,, and colors ¢i,...,c, are ordered. Initially,
vertex vy is assigned to color c¢;. Thereafter, vertex v; in turn is assigned to the “smallest” color
that contains no vertices adjacent to v;.

Such method performs rather poorly in worst-case (see Johnson et al., 1991). Welsh and
Powell (1967) propose a variant of the above method in which the vertices are ordered by degree
(in decreasing order). That is, the vertices with highest degree are colored first. The underlying
idea of this method is that the vertices with high degree are the most difficult to be colored.
Other methods based on the same idea have also been proposed. For example, Leighton (1979)
adds to the algorithm of Welsh and Powell the idea of recomputing the degree of the vertices at
each step, eliminating the vertices already colored. A number of methods based on ordering the
vertices by degree is discussed in (Carter, 1986).

A slightly different idea is used in the algorithm DSATUR by Brélaz (1979): At each step
DSATUR chooses the vertex to color next by picking the one that is adjacent to the largest
number of distinctly colored vertices.

Hertz and de Werra (1987) propose the use of tabu search, whereas Chams, Hertz, and
de Werra (1987) and Johnson et al. (1991) make use of simulated annealing. In particular,
Johnson et al. (1991) propose three different simulated annealing implementations, and they
compare such implementation with many other methods for a class of random graphs.

Coloring of weighted graphs may also be useful for timetabling applications. In fact, the
weight of an edge may represent the degree of confliction between two lectures. The problem of

coloring of weighted graphs and its application to timetabling are discussed in (Cangalovié &
Schreuder, 1991; Kiaer & Yellen, 1992).

B Tabu search

Tabu search is a local search technique designed to solve optimization problems. In this section,
we briefly describe the technique, and we refer to (Glover, 1989; Glover & Laguna, 1993) for a
comprehensive presentation.

Local search techniques are based on the notion of neighbor: Given an optimization problem
P, let S be the search space of P, and let f the objective function to minimize (the case of
maximization problems is analogous). A function N, which depends on the structure of the
specific problem, assigns to each feasible solution s € § its neighborhood N(s) C S. Each
solution s’ € N(s) is called a neighbor of s.

A local search technique, starting from an initial solution s;,;;, which can be obtained with
some other technique or generated at random, the algorithm enters in a loop that navigates the
search space, stepping from one solution to one of its neighbors. The connectivity of the search
space, w.r.t. the neighbor relation, is a necessary condition for the technique to work effectively.

In tabu search, the algorithm explores a subset V' of the neighborhood N(s) of the current
solution s; the member of V' that gives the minimum value of the objective function becomes the
new current solution independently of the fact that its value is better or worse than the value
in s.

25

In order to prevent cycling, there is a so-called tabu list, which is the list of solutions to
which it is forbidden to move back. It is the list of the last k& current solutions, where k is a
parameter of the method, and it is run as a queue; that is, when a new solution is added, due
to a move, the oldest one is discarded.

There is also a mechanism that overrides the tabu status of a solution: If a solution gives
a large improvement of the objective function, then its tabu status is dropped and the solution
is accepted as new current one. More precisely, we define an aspiration function A that, for
each value of the objective function, returns another value for it, which represents the value that
the algorithm aspires to reach from the given value. Given a current solution s, the objective
function f, and the best neighbor solution s', if f(s') < A(f(s)) then s’ becomes the new current
solution, even if s’ is a tabu move.

The procedure stops either when the number of iterations reaches a given value or when the
value of the objective function in the current solution reaches a given lower bound.

The main control parameters of the procedure are the length of the tabu list &, the aspiration
function A and the cardinality of the set V' of neighbor solutions tested at each iteration.

C Simulated annealing

Simulated annealing is a probabilistic local search technique for finding solutions to optimization
problems. It has been proposed by Kirkpatrick, Gelatt, and Vecchi (1983) and extensively
studied by van Laarhoven and Aarts (1987), Aarts and Korst (1989). Its name comes from the
fact that it simulates the cooling of a collection of hot vibrating atoms.

The technique starts by creating a random initial solution. The main procedure consists of
a loop that generates at random at each iteration a neighbor of the current solution. Like for
tabu search, the definition of neighbor depends on the specific structure of the problem.

Let’s call A the difference in the objective function between the new solution and the current
one and suppose to deal with a minimization problem. If A < 0 the new solution is accepted
and becomes the current one. If A > 0 the new solution is accepted with probability e=2/T
where T is a parameter, called the temperature.

The temperature T is initially set to an appropriately high value Ty. After a fixed number
of iterations, the temperature is decreased by the cooling rate a, such that T,, = a X T},_1, where
0<a<1.

The procedure stops when the temperature reaches a value very closed to 0 and no solution
that increases the objective function is accepted anymore, i.e. the system is frozen. The solution
obtained when the system is frozen is obviously a local minimum.

The control knobs of the procedure are the cooling rate a, the number of iterations at each
temperature, and the starting temperature 7j.

A special architecture (both hardware and software) for performing fast programs based on
simulated annealing is described in (Abramson, 1992).

D Genetic algorithms

Genetic algorithms are a solution technique for optimization problems (Davis, 1991; Michalewicz,
1994). Differently from tabu search and simulated annealing they are not based on local search.

A genetic algorithm starts with a set of solutions randomly chosen {s?,...,s%}, which is
called the population at time 0.

26

The core procedure is a loop that creates the population {sﬁ"’l, ..., 881} at time ¢+ 1 starting

from the population at time ¢. To this aim, the value of the objective function is computed for
each solution si. Based on a weighted randomization, n elements of the population at time ¢
are selected. Obviously, some solution may be selected more than once. The randomization is
biased by the value of the objective function so as to assign a higher probability to be selected
to the solutions that result in a better value of the objective function. In this way the best
solutions get more copies, and the worse ones probably die off.

At this point each solution is selected for recombination with a given probability (pr). The
recombination is done by the crossover operator. That is, two selected solutions are mixed by
swapping corresponding segments of their representations. One of the most common ways to
do the crossover is by selecting a fixed number of positions in which the swapping takes place
(fized-point crossover).

For example, if two solutions are represented by the strings abcdef and uvwxyz and we
choose two crossover points after the second and the fifth character, then the new solutions
would be abwxyf and uvcdez.

In addition, mutation arbitrarily alters randomly some part of some solutions randomly
selected, based on a given probability value (pas).

The method terminates either when it generates a fixed number of populations, or when the
best solution reaches a certain value of the objective function, or when the algorithm does not
make any progress for a certain number of iterations.

The main control parameters of the method are the population size n, the probability of
crossover pg, and the probability of mutation pjas.

Acknoledgements

I wish to thank Luca Cabibbo, Diego Calvanese, Maurizio Lenzerini, and Marco Schaerf for their
comments on the earlier draft of the paper.

References

Aarts, E. H. L., & Korst, J. (1989). Simulated Annealing and Boltzmann Machines. John Wiley
& Sons, New York.

Abramson, D. (1991). Constructing school timetables using simulated annealing: sequential and
parallel algorithms. Management Science, 37(1), 98-113.

Abramson, D. (1992). A very high speed architecture for simulated annealing. IEEE Computer,
May, 27-36.

Akkoyunlu, E. A. (1973). A linear algorithm for computing the optimum university timetable.
The Computer Journal, 16(4), 347-350.

Aubin, J., & Ferland, J. A. (1989). A large scale timetabling problem. Computers and Opera-
tional Research, 16(1), 67-77.

Azevedo, F., & Barahona, P. (1994). Timetabling in constraint logic programming. In Proceed-
ings of World Congress on Ezpert Systems ’94.

Balakrishnan, N., Lucena, A., & Wong, R. T. (1992). Scheduling examinations to reduce second-
order conflicts. Computers and Operational Research, 19(5), 353-361.

27

Brélaz, D. (1979). New methods to color vertices of a graph. Commaunications of the ACM, 22,
251-256.

Breslaw, J. A. (1976). A linear programming solution to the faculty assignment problem. Socio-
Economic Planning Science, 10, 227-230.

Burke, E., Elliman, D., & Weare, R. (1993). Extensions to a university exam timetabling system.
In IJCAI-93 Workshop on knowledge-based production, planning, scheduling and control,
pp- 42-48 Chambery, France.

Burke, E., Elliman, D., & Weare, R. (1994). A genetic algorithm based university timetabling
system. In 2nd East-West International Conference on Computer Technologies in Educa-
tion. Crimea, Ukraine.

Busam, V. A. (1967). An algorithm for class scheduling with section preference. Communications

of the ACM, 10(9), 567-569.

Cangalovié, M., & Schreuder, J. A. M. (1991). Exact coloring algorithm for weighted graph
applied to timetabling problems with lectures of different length. Journal of Operational
Research, 51(2), 248-258.

Carter, M. W. (1986). A survey of practical applications of examination timetabling algorithms.
Operations Research, 34(2), 193-202.

Carter, M. W., Laporte, G., & Chinneck, J. W. (1994). A general examination scheduling
system. Interfaces, 24(3), 109-120.

Carter, M. W., & Tovey, C. A. (1989). When is the classroom assignment problem hard?.
Operations Research, 40(1S), 28-39.

Chahal, N., & de Werra, D. (1989). An interactive system for constructing timetables on a PC.
European Journal of Operational Research, 40, 32-37.

Chams, M., Hertz, A., & de Werra, D. (1987). Some experiments with simulated annealing for
coloring graphs. Furopean Journal of Operational Research, 32, 260-266.

Clementson, A. T., & Elphick, C. H. (1982). Continuous timetabling problems. Journal of the
Operational Research Society, 33, 181-183.

Colorni, A., Dorigo, M., & Maniezzo, V. (1992). A genetic algorithm to solve the timetable prob-
lem. Tech. rep. 90-060 revised, Politecnico di Milano, Italy. Submitted to Computational
Optimization and Applications.

Cooper, T. B., & Kingston, J. H. (1993). The solution of real instances of the timetabling
problem. The Computer Journal, 36(7), 645—653.

Corne, D., Fang, H.-L., & Mellish, C. (1993). Solving the modular exam scheduling problem
with genetic algorithms. Tech. rep. 622, Department of Artificial Intelligence, University
of Edinburgh.

Corne, D., Ross, P., & Fang, H.-L. (1994a). Evolutionary timetabling: practice, prospects and
work in progress. In UK Planning and Scheduling SIG Workshop.

28

Corne, D., Ross, P., & Fang, H.-L. (1994b). Fast practical evolutionary timetabling. In AISB
Workshop on Evolutionary Computation, No. 865 in Lecture Notes in Computer Science,
PP 251-263.

Costa, D. (1994). A tabu search algorithm for computing an operational timetable. Furopean
Journal of Operational Research, 76, 98-110.

Davis, L. (Ed.). (1991). Handbook of genetic algorithms. Van Nostrand Reinhold.

de Werra, D. (1985). An introduction to timetabling. European Journal of Operational Research,
19, 151-162.

Dempster, M. A. H., Lethridge, D. G., & Ulph, A. M. (1973). School timetabling by computer
— a technical history. Tech. rep., Oxford University.

Dhar, V., & Ranganathan, N. (1990). Integer programming vs. expert systems: an experimental
comparison. Communications of the ACM, 33(3), 323-336.

Dinkel, J. J., Mote, J., & Venkataramanan, M. A. (1989). An efficient decision support system
for academic course scheduling. Operations Research, 37(6), 853—-864.

Dowsland, K. A. (1990). A timetabling problem in which clashes are inevitable. Journal of the
Operational Research Society, 41(10), 907-918.

Dyer, J., & Mulvey, J. M. (1976). The implementation of an integrated optimization/information
system for academic departmental planning. Management Science, 22, 1332-1341.

Eglese, R. W., & Rand, G. K. (1987). Conference seminar timetabling. Journal of the Operational
Research Society, 38(7), 591-598.

Eiselt, H. A., & Laporte, G. (1987). Combinatorial optimization problems with soft and hard
requirements. Journal of the Operational Research Society, 38, 785-795.

Even, S., Itai, A., & Shamir, A. (1976). On the complexity of timetabling and multicommodity
flow problems. SIAM Journal of Computation, 5(4), 691-703.

Fahrion, R., & Dollansky, G. (1992). Construction of university faculty timetables using logic
programming techniques. Discrete Applied Mathematics, 35(3), 221-236.

Feldman, R., & Golumbic, M. C. (1989). Constraint satisfiability algorithms for interactive
student scheduling. In Proc. of the 11th Int. Joint Conf. on Artificial Intelligence (IJCAI-
89), pp. 1010-1016.

Ferland, J. A., & Fleurent, C. W. (1991). Computer aided scheduling for sport league. Infor.,
29, 14-25.

Ferland, J. A., & Roy, S. (1985). Timetabling problem for university as assignment of activity
to resources. Computers and Operational Research, 12(2), 207-218.

Ferland, J. A., Roy, S., & Loc, T. G. (1986). The timetabling problem. In Coelho, J. D., &
Tavares, L. V. (Eds.), O.R. Models on Microcomputers, pp. 97-103. North-Holland.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability—A guide to NP-
completeness. W.H. Freeman and Company, San Francisco.

29

Glover, F. (1989). Tabu search. Part I. ORSA Journal of Computing, 1, 190-206.

Glover, F., & Laguna, M. (1993). Tabu search. In Reeves, C. R. (Ed.), Modern Heuristic
Techniques for Combinatorial Problems. Scientific Publications, Oxford.

Gotlieb, C. C. (1963). The construction of class-teacher timetables. In Popplewell, C. M. (Ed.),
IFIP congress 62, pp. 73—77. North-Holland.

Halldérsson, M. M. (1993). A still better performance guarantee for approximate graph coloring.
Information Processing Letters, 45, 19-23.

Harwood, G. B., & Lawless, R. W. (1975). Optimizing faculty teaching schedules. Decision
Science, 6, 513-524.

Hertz, A. (1991). Tabu search for large scale timetabling problems. Furopean Journal of Oper-
ational Research, 54, 39-47.

Hertz, A. (1992). Finding a feasible course schedule using tabu search. Discrete Applied Math-
ematics, 35(3), 255-270.

Hertz, A., & de Werra, D. (1987). Using tabu search techniques for graph coloring. Computing,
39, 345-351.

Hilton, A. J. W. (1981). School timetables. Annals of Discrete Mathematics, 11, 177-188.

Hopcroft, J. E., & Karp, R. (1973). An n5/2 algorithm for maximum matching in bipartite
graphs. SIAM Journal of Computation, 2, 225-231.

Jaffar, J., & Lassez, J.-L. (1987). Constraint logic programming. In Proc. of the 14th ACM
POPL Symposium Munich, Germany.

Johnson, D. (1990). Timetabling university examinations. Journal of the Operational Research
Soctety, 41(1), 39-47.

Johnson, D. S., Aragon, C. R., McGeoch, L. A., & Schevon, C. (1991). Optimization by simulated
annealing: an experimental evaluation; part II, graph coloring and number partitioning.
Operations Research, 39(3), 378—-406.

Junginger, W. (1986). Timetabling in Germany — a survey. Interfaces, 16, 66-74.

Kang, L., & White, G. M. (1992). A logic approach to the resolution of constraints in timetabling.
European Journal of Operational Research, 61, 306-317.

Kiaer, L., & Yellen, J. (1992). Weighted graphs and university course timetabling. Computers
and Operational Research, 19(1), 59-67.

Kirkpatrick, S., Gelatt, Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220, 671-680.

Klein, D. (1983). The application of computerized solution techniques to the problem of
timetabling in high schools and universities. Master’s thesis, Concordia university.

Klingen, L. H. (1981). Stundenplan-erstellung mit dem computer. Log In, 1(4), 31-33.

30

Laporte, G., & Desroches, S. (1984). Examination timetabling by computer. Computers and
Operational Research, 11(4), 351-360.

Laporte, G., & Desroches, S. (1986). The problem of assigning students to course sections in a
large engineering school. Computers and Operational Research, 13, 387-394.

Leighton, F. T. (1979). A graph coloring algorithm for large scheduling problems. J. Res. Natl.
Bur. Standards, 84, 489-506.

Ling, S.-E. (1992). Integrating genetic algorithms with prolog assignment problem as a hybrid
solution for the politechnic timetable problem. In Manner, R., & Manderick, B. (Eds.),
Parallel problem solving from nature, 2, pp. 321-329.

Mathaisel, D. F. X., & Comm, C. L. (1991). Course and classroom scheduling - an interactive
computer-graphics approach. Journal of Systems and Software, 15(2), 149-157.

McClure, R. H., & Wells, C. E. (1984). A mathematical programming model for faculty course
assignment. Decision Science, 15, 409-420.

Mehta, N. K. (1981). The application of a graph coloring method to an examination scheduling
problem. Interfaces, 11(5), 57-64.

Meisels, A., Gudes, E., & Kuflik, T. (1991). Limited-resource time-tabling by a generalized
expert system. Knowledge-Based Systems, 4, 215-224.

Michalewicz, Z. (1994). Genetic algorithms + data structures = evolution programs. Springer-
Verlag. Second, extended edition.

Monfroglio, A. (1986). School time table scheduling in prolog. SIGART Newsletter, 96, 20-22.

Monfroglio, A. (1988). Time-tabling through a deductive database: A case study. Data and
Knowledge Engineering, 3, 1-27.

Mulvey, J. M. (1982). A classroom/time assignment model. European Journal of Operational
Research, 9, 64-70.

Neufeld, G. A., & Tartar, J. (1974). Graph coloring conditions for the existence of solutions to
the timetable problem. Communications of the ACM, 17(8), 450-453.

Odijk, M. A. (1994). Construction of periodic timetables; part I: A cutting plane algorithm. Tech.
rep. DUT-TWI-94-61, Delft University of Technology, Department of Technical Mathemat-
ics and Informatics, Delft, The Netherlands.

Ostermann, R., & de Werra, D. (1983). Some experiments with a timetabling system. OR
Spektrum, 3, 199-204.

Paechter, B. (1994). Optimising a presentation timetable using evolutionary algorithms. In
AISB Workshop on Ewolutionary Computation, No. 865 in Lecture Notes in Computer
Science, pp. 264-276.

Paechter, B., Luchian, H., Cumming, A., & Petruic, M. (1994). Two solutions to the general
timetable problem using evolutionary methods. In IEEFE Conference on FEvolutionary
Computation.

31

Papadimitriou, C. H., & Steiglitz, K. (1982). Combinatorial Optimization: Algorithms and
Complezity. Prentice-Hall, Englewood Cliffs, New Jersey.

Papoulias, D. B. (1980). The assignment-to-days problem in a school time-table, a heuristic
approach. Furopean Journal of Operational Research, 4, 31-41.

Pearl, J. (1984). Heuristics: Intelligent search strategies for computer problem solving. Addison-
Wesley, Reading, MA.

Petrie, C., Causey, R., Steiner, D., & Dhar, V. (1989). A planning problem: revisable academic
course scheduling. Tech. rep. ACT-AI-020, Microelectronics and Computer Technology
Corporation.

Sabin, G. C. W., & Winter, G. K. (1986). The impact of automated timetabling on universities
— a case study. Journal of the Operational Research Society, 37, 689-693.

Schaerf, A., & Schaerf, M. (1995). Local search techniques for high school timetabling. In Proc.
of the 1st Intl. Conf. on the Practice and Theory of Automated Timetabling, pp. 313-323.

Schmidt, G., & Strohlein, T. (1979). Timetable construction - an annotated bibliography. The
Computer Journal, 23(4), 307-316.

Selim, S. M. (1983). An algorithm for producing course and lecture timetables. Computers &
Education, 7, 101-108.

Selim, S. M. (1988). Split vertices in vertex colouring and their application in developing a
solution to the faculty timetable problem. The Computer Journal, 31(1), 76-82.

Selman, B., Levesque, H., & Mitchell, D. (1992). A new method for solving hard satisfiability
problems. In Proc. of the 10th Nat. Conf. on Artificial Intelligence (AAAI-92), pp. 440-
446.

Shin, W., & Sullivan, J. A. (1977). Dynamic course scheduling for college faculty via zero-one
programming. Decision Science, 8, T11-721.

Shmoys, D. B., Stein, C., & Wein, J. (1991). Improved approximation algorithms for shop
scheduling problems. In Proc. of the Symposium on Discrete Algorithms.

Smith, G., & Sefton, I. M. (1974). On Lion’s counter-example for Gotlieb’s method for the
construction of school timetables. Communications of the ACM, 17, 196-197.

Solotorevsky, G., Gudes, E., & Meisels, A. (1994). RAPS: A rule-based language specifying
resource allocation and time-tabling problems. IEEFE Transactions on Knowledge and
Data Engineering, 6(5), 681-697.

Tripathy, A. (1984). School timetabling — A case in large binary integer linear programming.
Management Science, 30(12), 1473-1489.

Tripathy, A. (1992). Computerised decision aid for timetabling - A case analysis. Discrete
Applied Mathematics, 35(3), 313-323.

Uhlemann, K. H., Schéllkopf, K. H., & Knauer, B. A. (1969). Untersuchungen zum studenten-
planproblem. Elektron. Datenverarbeitung, 11, 119-131.

32

van Laarhoven, P. J. M., & Aarts, E. H. L. (1987). Stmulated Annealing: Theory and Applica-
tions. D. Reidel Publishing Company, Kluwer Academic Publishers Group.

Vincke, P. (1984). Timetabling in Belgium: a survey. In TIMS XX VI Copenhagen.
Weare, R. (1995). Unpublished manuscript. Distributed by e-mail. Nottingham University, UK.

Welsh, D. J. A., & Powell, M. B. (1967). An upper bound to the chromatic number of a graph
and its application to timetabling problems. The Computer Journal, 10, 85-86.

Wong, K. H., & Ng, W. Y. (1990). An interactive timetabling support system. In Int. Conf. in
System Management, pp. 307-313 Hong Kong.

Yoshikawa, M., Kaneko, K., Nomura, Y., & Watanabe, M. (1994). A constraint-based approach
to high-school timetabling problems: a case study. In Proc. of the 12th Nat. Conf. on
Artificial Intelligence (AAAI-94), pp. 1111-1116.

33

