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1. Introduction

The aim of this survey is to provide a unified decision theoretic review of
Bayesian predictive model assessment, selection and comparison methods, and
of methods closely related to them. Bayesian decision theory gives a natural
definition for the assessment of the predictive performance of a statistical model
as well as a comparison of several models by their predictive performance as
formal decision problems.

In science the usefulness of a theory is tested by performing predictions for
observations made in an experiment able to falsify the said theory. Significant
discrepancies between observations and predictions suggest that the theory, or
in our narrower view the statistical model, is not useful. In decision theory the
correspondence between predictions and observations is described by a utility
function, whose values are computable given predictions and observations. The
predictive performance of a model is defined to be the utility evaluated at one or
several future observations. The definition of predictive performance as utility is
equivalent to generalization ability, a concept often used in the machine learning
literature.

When the future observations are not available the predictive performance
can be estimated by computing the expected predictive performance (expected
utility) given a belief model for the future observations. Expected predictive per-
formance is a useful quantity in assessing a single model. Indeed, if a model does
not give reasonable predictions, there is usually not much sense in trying to infer
on its parameters. Furthermore, a set of models can be compared against each
other according to their expected predictive performance. Most of the methods
reviewed in this survey have been advocated as tools for the common task of
model selection, but we also discuss their use for the purpose of assessing the
predictive performance of a model.

In the Bayesian statistical framework all aspects that appear relevant to the
modeling problem should be described by probability models. For an answer, one
finally integrates away all uncertain quantities, with respect to their conditional
distribution given the data. In prediction problems the key quantity arising
from the Bayesian theory is the posterior predictive distribution, that is, the
distribution of the yet unobserved future observations conditioned on the data.
It is a generally held view that one should use models that are rich enough to
capture all essential uncertainties including, when in doubt, the model structure.
Generally speaking, we agree with G. E. Box’s famous quote “All models are
wrong, but some are useful”. Even rich models are wrong in the sense that they
do not fully correspond to the mechanisms in Nature that generated the data,
but their usefulness can be assessed by evaluating their predictive performance
or by some other model criticism approach.

A common opinion, and one shared by the authors, following from adopting
the Bayesian statistical framework and using a rich enough model, is that as
long as one is happy with the results from model criticism and predictive per-
formance assessment, there is no need for model selection. Model selection can
be a useful tool in tackling practical modeling problems, even though selecting
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a more restricted model leads to ignoring uncertainties inherent in the initial
model specification. For example, one may ask whether the predictive perfor-
mance of a simple parametric model is practically as good as the performance
of a complex non-parametric model. By using such a simple alternative it would
be possible to reduce future measurement costs of the explanatory variables val-
ues and also alleviate communication of the model’s essential features to other
interested parties. In some cases one may also be willing to trade predictive
performance against lower costs resulting from less demanding data collection
and computation requirements. Also, when performing explanatory variable se-
lection a common informal use of the model selection methods is to assess the
predictive relevance of the covariates.

The framework for assessing and selecting models based on their predictive
performance can be applied in different ways, for example, by defining different
utility functions and prediction scenarios. Moreover, often the practical appli-
cation of the formal decision theoretic concepts requires theoretical and com-
putational approximations. The reviewed methods are presented in a common
notation in order to make comparisons easier, especially since the decision the-
oretic assumptions on which these methods are based are not always clearly
stated in the original articles. We also voice our own opinions on how we think
the predictive framework should be applied. Finally, we stress that one should
be aware that the behavior of many of the methods based on the predictive
framework is not very well known in many applications, for example, when a
model is selected from a very large set of candidate models. While some results
exist, giving solid general advice on all aspects of predictive model assessment,
selection and comparison is impossible in absence of sufficient quantitative com-
parisons of the presented methods.

In Section 2 the notation for a Bayesian predictive model and the concept
of the actual belief model are defined. In Section 3 the Bayesian decision the-
oretic framework for model assessment and selection is reviewed. Important
issues related to practical model comparison are discussed in Section 4. Predic-
tive methods for model assessment, selection and comparison are reviewed in
Section 5. The paper concludes with a discussion in Section 6.

2. Bayesian predictive model

We consider a prediction problem with an explanatory variable (covariate, input
variable, predictor) x and an outcome variable (response, target, output vari-
able) y. The same notation is used interchangeably for scalar and vector-valued
quantities. The observed data are denoted by D = {(xi, yi)}

n
i=1 and the future

observation by (x̃, ỹ). An abbreviation y(1:n) = (y1, . . . , yn) is used to avoid
clutter in formulas.

From a predictivist Bayesian point of view (Bernardo and Smith, 1994) the
main interest in statistical inference is inference about observable quantities
such as the future observation ỹ. Parametric models and updating beliefs about
model parameters with Bayes’s theorem provides a convenient framework for
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determining the distribution of future observations. Given a model specification
M , a Bayesian model consists of a statistical model p(y, x|ψ,M) for observations
and of a prior distribution p(ψ|M) for the model parameters. We use the same
notation for both the discrete and continuous distributions. In prediction prob-
lems it is common to specify the statistical model separately for y conditional
on x,

p(y, θ|x,M) = p(y|x, θ,M)p(θ|x,M), (1)

where the distribution of y given x is parametrized with θ, and for x,

p(x, ϕ|M) = p(x|ϕ,M)p(ϕ|M), (2)

where ϕ is the parameter of the distribution of x. Often the explanatory variable
x is assumed to be given and the focus of the prediction problem is the condi-
tional model in Eq. (1). This is the case with most of the methods reviewed in
Section 5. In the following we treat the explanatory variable as a known quan-
tity, and come back to the implications of conditioning on either fixed or random
x in Section 4.3. Conditioning on observed data D by the Bayes’ theorem results
in the posterior distribution p(θ|D,M) for the model parameters, which in turn
can be used to determine the posterior predictive distribution

p(ỹ|x̃, D,M) =

∫
p(ỹ|x̃, θ,M)p(θ|x̃, D,M)dθ (3)

describing beliefs about the future observation given the observed data D and
the model M .

The Bayesian framework in itself is not sufficient to guarantee that a model
is adequate for its designed purpose. For example, a grossly misspecified model
may describe the actual problem very poorly. Assessing the adequacy of a model
is often referred to as model criticism. Although predictive performance of a
model is an important (if not the most important) aspect of model criticism, a
multitude of different model criticism approaches and tools exists (see, e.g., Gel-
man et al., 1995; O’Hagan, 2003, and references therein). While model criticism
is beyond the scope of this survey, its importance cannot be over-emphasized.

In complex real-world modeling situations a simple parametric model is often
not flexible enough for building a satisfying belief model. Model averaging and
non-parametric models are often used as a means of obtaining richer models. In
a situation in which a set of alternative models {Mk}Kk=1 and a corresponding
prior p(Mk) on that set have been specified, one can integrate over the models
and thereby arrive at the Bayesian model averaging (BMA) (e.g. Hoeting et al.,
1999) predictive distribution

pBMA(ỹ|x̃, D) =
K∑

k=1

p(ỹ|x̃, D,Mk)p(Mk|D), (4)

where p(Mk|D) are the posterior probabilities of the models Mk. In case of
nested models, for example in covariate selection, where the encompassing model
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can be reduced to any submodel by setting the parameters to specific values,
the BMA predictive distribution over all the submodels can be equivalently
formulated by placing a discrete prior probability for the said specific values
and integrating over the parameters (e.g., George and McCulloch, 1993; Brown,
Vannucci and Fearn, 1998). A rich class of belief models can be obtained when,
instead of considering a finite number of alternative parametric models, a con-
tinuum of non-parametric models is specified by defining a prior on a suitable
function space (e.g., O’Hagan and Forster, 2004, Ch. 13).

When a rich enough model, describing well the knowledge about the model-
ing problem and capturing the essential prior uncertainties, is constructed and
there are no substantial deficiencies found in model criticism phase, we follow
Bernardo and Smith (1994) and call such a model the actual belief model, and
denote it by M∗. In other words, the predictive distribution p(ỹ|x̃, D,M∗) is a
quantitatively coherent representation of our subjective beliefs about the unob-
served future data. We also use the term reference model for M∗ especially in a
model selection context.

3. Predictive model assessment and selection as decision problems

The Bayesian framework offers a way of representing and revising beliefs. Infer-
ence on an unknown quantity, whether it is a future observation or a parameter
of a statistical model, can be represented as a decision problem where a decision
to choose a specified inference action is based on beliefs about the unknown
quantity. Our formulation of predictive model assessment and selection as de-
cision problems follows the ideas presented by Bernardo and Smith (1994) and
Key, Pericchi and Smith (1999). For a general introduction to the Bayesian de-
cision theory see references (Berger, 1985; Raiffa and Schlaifer, 2000; Robert,
2001, and references therein). A related discussion on model assessment and
selection can be found, for example, in references (O’Hagan and Forster, 2004;
O’Hagan, 2003; Bayarri, 2003; Gelfand, 2003).

In the context of statistical inference the components of the decision problem
are the following:

• a ∈ A, available decisions, actions or answers to the inference problem;
• ω ∈ Ω, the unknown states of the world;
• u(a, ω) : A×Ω → R, a utility function attaching a reward to each answer

to an inference problem (decision) a when a state of the world ω obtains;
• p(ω|D), a specification of the current beliefs about the state of the world,

represented as the posterior distribution conditioned on observations D.

Observing the state of the world ω allows to observe the utility for any a,
and in particular, to determine the optimal answer â to an inference problem by
maximizing the observed utility. In practice, the state of the world ω cannot be
directly observed, or if it can, the decision must be made before the observations
are available. The optimal decision under uncertainty about ω can be determined
by maximizing the expected utility, that is, the expectation of the utility function
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taken over the distribution p(ω|D). The observed utility is typically available
only in experiments where generating new data is easy and cheap such as, for
example, in a computer simulation with artificially created data.

Decision theory provides a unifying framework for describing the majority
of the predictive model selection methods reviewed in Section 5. In Section
3.1 prediction is formulated as a decision problem, and the components of the
prediction task are discussed in some detail. Predictive model assessment (eval-
uating the expected utility of the actual belief model) is discussed in Section 3.2,
while in Section 3.3 predictive model selection (choosing a single model from a
set of candidate models based on their estimated predictive performance) is con-
sidered. An alternative formulation of the prediction problem in terms of model
parameters is presented in Section 3.4. Finally, in Section 3.5 some model se-
lection approaches and concepts that are closely related to Bayesian predictive
model selection are presented for the purpose of providing background informa-
tion for many commonly used non-Bayesian predictive approaches. The outline
of the Section is illustrated in Fig. 1.

3.1. Prediction as an inference task

We define prediction as a decision problem with the following components:

• the state of the world is a future observation ỹ ∈ Y;
• an answer a ∈ A to an inference problem in a prediction task is a predic-

tion for the future observation, whose exact nature depends on the utility
function and the specification of A;

• utility function u(a, ỹ), which defines a reward for predicting the unknown
future observation ỹ with a;

• belief about the future observation, described by the posterior predictive
distribution p(ỹ|D,M∗) of the actual belief model M∗.

In a prediction problem one aims to give as good a prediction1 a as possible
for an unknown future observation ỹ, a set of several future observations ỹ(1:ñ) or
some function of the future observation. The optimal prediction action â obtains
from maximizing the expected utility. The expected utility depends on the utility
function as well as on the actual beliefs concerning the future data, described
by the predictive distribution p(ỹ|D,M∗). For the time being, it is assumed
that expectations and other integrals with respect to p(ỹ|D,M∗) are readily
available; implications from specifying the properties of M∗ are considered in
Section 4 and a number of practical definitions are discussed in Section 5.

Bayesian statistical decision theoretic literature is often concerned with find-
ing the optimal decision under uncertainty over parameters θ. As discussed in
Section 3.4, it is possible to reduce the prediction problem into this more com-
mon decision theoretic formulation by taking θ to be the unknown state of the
world and defining a suitable utility function. In the spirit of the predictivist
Bayesian view we prefer the definition directly in terms of ỹ in this survey, so

1An equivalent term “forecast” is often used in, for example, meteorology and economics.
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Prediction as a decision problem (Section 3)

Optimal prediction for ỹ by maximizing expected utility (Section 3.1)

Utility functions
(Section 3.1.1)

Expected utility
(Section 3.1.2)

Belief/true mod-
els (Section 3.1.4)

Simultaneous/single pre-
dictions (Section 3.1.3)

Model assessment (Section 3.2)

Model selection (Section 3.3)

Mk-conditional
(Section 3.3.1)

M∗-projection
(Section 3.3.2)

Alternative formu-
lation (Section 3.4)

Gibbs utility
(Section 3.4.2)

True model
(Section 3.4.1)

Related issues
(Section 3.5)

Plug-in predictive
(Section 3.5.1)

Frequentist, AIC
(Section 3.5.2)

Fig 1. Content for Section 3.

that the value of the utility function is in principle observable; it can be eval-
uated by observing the future data. This is not the case when the prediction
problem is defined in terms of θ, as typically the model parameters cannot be
observed. Moreover, due to model-specific definitions of p(ỹ|D,M∗) some of the
methods in Section 5 are straightforward to present in the ỹ-formalism, whereas
presenting them in terms of the θ-formalism would be unnecessarily compli-
cated.

Without loss of generality the target of the prediction task is defined to be
a single future observation ỹ, unless explicitly stated otherwise. Also, in order
to simplify the treatment in this Section only outcomes y are considered, and
the additional considerations involved in the conditional modeling of y given an
explanatory variable x are discussed in Section 4.3.
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3.1.1. Utility functions for prediction

A utility function u(a, ỹ) assigns a reward for the prediction action a when the
future observation ỹ obtains. In statistical decision theory, it is common to define
a loss or cost function l(a, ỹ) instead of a utility function u(a, ỹ). Without a loss
of generality, one may write l(a, ỹ) = v(ỹ) − u(a, ỹ), where v(ỹ) is an arbitrary
fixed function independent of a. In such a formalism, the optimal a can be
obtained by minimizing the expected loss. Although we prefer terminology from
the utility theory we also use the loss formalism when appropriate.

In a prediction task, the answer a is a prediction for the future observation.
In point prediction (predictive point estimation or point forecasting) a single
value a ∈ A ⊆ Y representing the unknown future observation is reported. In
probabilistic prediction (probabilistic forecasting) the aim is to report inferences
about ỹ in such a way that the full uncertainty over ỹ is taken into account.
In probabilistic prediction, the possible answers are probability distributions
a(ỹ) ∈ A, where A ⊆ F is a possibly somehow restricted set of probability
distributions for ỹ. In order to avoid unnecessary clutter in notation, the same
symbol a is used to denote both the point predictions and the probabilistic
predictions. The nature of a should be clear from the context, but if there is
a possibility of confusion, it will be explicitly specified whether a is a point
estimate or a distribution.

Preferably, the utility function u is specifically tailored for the application
at hand, and it measures as correctly as possible the benefit (or cost) of pre-
dicting future data with the model. For example, Miyamoto (1999) reviews
quality-adjusted life years (QALY) utility functions for combined survival dura-
tion and health quality, and Fouskakis and Draper (2008); Fouskakis, Ntzoufras
and Draper (2009) discuss an example in which monetary utility is placed for
the data collection costs as well as for the accuracy of predicting the mortality
rate in a health policy problem. However, often explicit benefit or cost informa-
tion is not available and the predictive performance of a model is assessed by
utility functions commonly found to be appropriate in reporting scientific infer-
ence. Typically, these utility functions assign larger rewards (or smaller losses)
to predictions close to future observations, with closeness defined in a specific
mathematical sense.

Common utility functions in point prediction are scoring functions such as
squared error, absolute error or absolute percentage error. Scoring functions
are commonly formulated as loss functions in the literature. A good review of
the most common scoring functions is presented by Gneiting (2011), who also
discusses the desirable properties for scoring functions in prediction problems.
We use the squared error as an example utility function for point prediction,
because the squared error and its derivatives seem to be the most common
scoring functions in predictive literature (Gneiting, 2011).

In probabilistic prediction the appropriate utility functions are scoring rules,
such as quadratic, logarithmic and zero-one score, whose properties are reviewed
by Gneiting and Raftery (2007) and Bernardo and Smith (1994) (who use the
term score function). Bernardo and Smith (1994) argue that suitable scoring
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rules for prediction are local and proper: a scoring rule is proper if it is maximized
by the actual belief model, a = p(ỹ|D,M∗) and strictly proper if it is uniquely
maximized by p(ỹ|D,M∗); and local if the value of the utility function depends
on the unknown ỹ only through the value a(ỹ). Propriety of the scoring rule
ensures that the decision maker reports his true beliefs honestly, while locality
incorporates the possibility that bad predictions for some ỹ may be judged more
harshly than others. The logarithmic score proposed by Good (1952) is a good
example of a utility function for probabilistic prediction. The logarithmic score
is the unique (up to an affine transformation) local and proper score function
(Bernardo, 1979), and appears to be the most commonly used utility function
in model selection.

3.1.2. Expected utility and optimal decisions

In order to obtain the optimal prediction maximizing utility, one needs to be able
to evaluate the value of the utility function depending on the considered future
observation. As access to new observations is typically restricted, observed utility
cannot be used as the basis for determining the optimal prediction â. Instead,
the observed utility can be estimated by the expected utility

ū∗(a) =

∫
u(a, ỹ)p(ỹ|D,M∗)dỹ, (5)

with the expectation taken over the posterior predictive distribution of the ac-
tual belief model p(ỹ|D,M∗), which describes the uncertainty of the future ob-
servation ỹ conditioned on the observed data D. We write the subscript in ū∗
to explicitly remind that the expectation is taken over the model M∗; in the
following Sections expectations with respect to predictive distributions of other
models are also encountered. Expected utility is a reasonable estimate for the
observed utility if p(ỹ|D,M∗) is a good proxy for an actual set of future obser-
vations.

The decision to choose the optimal prediction â, whether it is a point predic-
tion or a probabilistic prediction, is made by maximizing the expected utility

â = argmax
a∈A

∫
u(a, ỹ)p(ỹ|D,M∗)dỹ. (6)

The resulting maximized expected utility is then given by

ū∗(â) =

∫
u(â, ỹ)p(ỹ|D,M∗)dỹ. (7)

For scoring rules the maximized expected utility function is sometimes referred
to as information measure or entropy function. In this context the maximized
expected utility can be written as ū(â, p), where â = â(ỹ) refers to optimal pre-
diction under model p = p(ỹ|D,M∗). An associated discrepancy or divergence
function is defined as d(a, p) = ū(p, p)− ū(a, p). Because the optimal prediction
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â can be obtained by minimizing d(a, p), discrepancies or divergences can be
directly used as loss functions. For more information on information measures
and discrepancies or divergences as loss functions, see Robert (1996); Bernardo
(2005a,b); Gneiting (2011); Grünwald and Dawid (2004).

As logarithmic score or the squared error are used in the majority of the
methods in Section 5, we use them as examples for illustrating the optimal
predictions and the values of the maximized expected utility.

Logarithmic utility function proposed by Good (1952) is a widely-used
scoring rule for probabilistic prediction when the unknown state of the world
is the future observation ỹ. Given any prediction a(ỹ) the utility function is
defined as the logarithmic score,

u(a, ỹ) = log a(ỹ), (8)

that is, the logarithm of the value of the probability distribution at the obser-
vation ỹ. The logarithmic score is a strictly proper and a local score function,
and therefore a good choice as a utility function for prediction (Robert, 1996).

The answer to an inference problem is to choose the optimal prediction â(ỹ)
from the set of all probability distributions F . The expected utility

ū∗(a) =

∫
log a(ỹ)p(ỹ|D,M∗)dỹ (9)

is maximized by â(ỹ) = p(ỹ|D,M∗). That is, because p ∈ F the p-optimal (or
equivalently, M∗-optimal) prediction is the predictive distribution of the actual
belief model itself. The maximized expected utility for the logarithmic utility
function

ū∗(â) =

∫
log p(ỹ|D,M∗)p(ỹ|D,M∗)dỹ, (10)

is the negative entropy of the predictive distribution p(ỹ|D,M∗). The associ-
ated divergence function is the Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951)

dKL {p(ỹ|D,M∗), a(ỹ)} = KL(p||a) =

∫
log

p(ỹ|D,M∗)

a(ỹ)
p(ỹ|D,M∗)dỹ. (11)

Minimizing the KL-divergence with respect to a ∈ F gives an equivalent result
as maximizing the expected logarithmic utility in Eq. (9). The KL-divergence
is often used as a loss function in model selection literature. The connection of
the logarithmic utility function and the KL divergence illustrates the intuitive
fact that the utility of prediction is high when the prediction is close to the
predictive distribution of the actual belief model.

The logarithmic utility function is a good choice in prediction problems where
properties such as asymmetry or tail thickness of the predictive distribution
may be important, because the optimal probabilistic prediction is the posterior
predictive distribution of the actual belief model.
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Squared error is an example of a utility function in situations in which the
decision action is to choose a point prediction a ∈ Y for the future observation
ỹ. Squared error and its many derivatives are common choices in the statistical
literature. It may be also considered as a quadratic approximation to the general
class of convex loss functions.

The squared error utility function depending on a point prediction a can be
defined through the squared error or quadratic loss

s(a, ỹ) = (a− ỹ)2 (12)

as u(a, ỹ) = −s(a, ỹ). However, we do not convert the quadratic forms into utility
functions because the squared error is typically presented as a loss function in
the literature.

The optimal point prediction â minimizing the expected loss (negative ex-
pected utility)

s̄∗(a) =

∫
(a− ỹ)

2
p(ỹ|D,M∗)dỹ (13)

can be shown to be the posterior predictive mean

â = E [ỹ|D,M∗] =

∫
ỹ p(ỹ|D,M∗)dỹ (14)

and the expected loss for the optimal prediction â is

s̄∗(â) =

∫
(ỹ − E [ỹ|D,M∗])

2 p(ỹ|D,M∗)dỹ = var [ỹ|D,M∗] , (15)

the variance of the posterior predictive distribution p(ỹ|D,M∗).
The squared error loss results in a point estimate that incorporates informa-

tion about the location of the predictive distribution. In other words, formulat-
ing a prediction problem with the squared error loss is equivalent to regarding
the two first central moments of the predictive distribution as the important
information for predicting future observations. That is, only the location and
scale of the predictive distribution are considered important, while other prop-
erties, such as skewness or kurtosis, do not directly affect the evaluation of the
expected utility.

3.1.3. Single and simultaneous prediction

Although in principle it makes no difference whether the unknown state of the
world is defined to be a single future observation ỹ or a set of ñ future observa-
tions ỹ(1:ñ), it is useful to make a difference between single prediction where the
uncertainty of a single future observation is described by the marginal predic-
tive distribution p(ỹ|D,M∗) and simultaneous prediction, where the uncertainty
about ñ future observations is described by the joint predictive distribution
p(ỹ1, . . . , ỹñ|D,M∗). The theory so far has been formulated for predicting a
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single future observation, but the theoretical framework for solving the simul-
taneous prediction problem is exactly the same. The chain rule representation
of the joint predictive distribution

p(ỹ1, . . . , ỹñ|D,M∗) =

ñ∏

i=1

p(ỹi|ỹ(1:i−1), D,M∗), (16)

where ỹ(1:0) = ∅ and ỹ(1:1) = ỹ1, illustrates that simultaneous prediction is
equivalent to ñ consecutive single predictions with the posterior distribution
updated after each new observation.

In practice, instead of a simultaneous prediction several single predictions are
often made using the marginal predictive distributions p(ỹj |D,M∗), j = 1, . . . , ñ.
From Eq. (16) it is evident that generally the joint predictive distribution for a
sample of size ñ is different from the product of ñ marginal predictive distribu-
tions

ñ∏

i=1

p(ỹi|ỹ(1:i−1), D,M∗) 6=
ñ∏

j=1

p(ỹj |D,M∗). (17)

The methods based on the marginal predictive distributions instead of simul-
taneous prediction are commonly used, because 1) ỹ(1:ñ) are not observed in
the immediate future and thus updating of the posterior is not possible during
prediction – for example, an automatic digit recognition system for postal codes
in letter addresses does not get instant information about the correct digit clas-
sification, 2) ñ is unknown – model assessment or selection would be affected by
an arbitrary selection of ñ, so instead average performance for single prediction
can be estimated, 3) for many models the marginal predictive distributions are
easier to compute than the joint predictive distribution, 4) some utility func-
tions do not make a difference between marginal and joint predictions, and 5) an
approximation made during the estimation of the predictive performance makes
the difference between the marginal and joint predictions to disappear.

3.1.4. On belief models and true models

In the predictive Bayesian approach, the optimal decisions are made by max-
imizing the expected utility. The uncertainty over the future observations is
described by the data-dependent actual belief model p(ỹ|D,M∗). In a strict
subjective Bayesian view there is only one set of data D available and all infer-
ence is conditioned on these observations.

Sometimes a concept of the true model representing the actual data generat-
ing machinery is proposed. In a typical theoretical treatment only very general
properties of the true models are specified. For example, the observations are
assumed to be independently subject to the same probability distribution pt(·).
We wish to emphasize the difference between the true model and a Bayesian
belief model. The Bayesian belief model is the result of learning from data under
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uncertainty. That is, a probabilistic model is used to represent both the inherent
uncertainties and the lack of information in the modeling task. Furthermore, we
are not required to assume that the target of the modeling task is random. On
the other hand, the properties of the true model are specified by the modeller a
priori, and they are not learned from the data. Many model selection approaches
have been formulated based on the idea of locating a model close to the true
model, for example, in the KL-divergence sense. However, in order to obtain an
operational approach any computation involving the concept of a true model
needs to be approximated somehow: either the true model is estimated from
the data or represented as a proxy sample of the observations. Under such ap-
proximations the boundary between the true model and the actual belief model
becomes blurred.

It is our view that postulating the existence of a true model and the asso-
ciated probability distribution pt(·) should not be done in order to provide a
way of constructing practical operational statistical inference or model selection
approaches. Rather, assuming a true model allows us to study the theoretical
properties of the subjective data-driven approaches based on belief models. For
example, knowing pt(ỹ), the true distribution of the future observation, we may
define the generalization utility

ūt(â) =

∫
u(â, ỹ)pt(ỹ)dỹ (18)

for assessing the predictive performance of the M∗-optimal prediction â over
all possible future observations. Furthermore, existence of the true model al-
lows to consider statistically how variations in the observed data set D affect
the predictions and the corresponding expected utilities. That is, one can take
expectations over pt(D) of an expected utility such as

ED [ū∗(â|D)] =

∫
ū∗(â|D)pt(D)dD, (19)

where the dependence on the observations in the expected utility in Eq. (5) is
explicitly shown, and define quantities such as bias and variance of ū∗(â|D).
These frequency properties are considered in more detail in Section 4.6.

In the extreme case the true model pt(·) is a known and completely speci-
fied quantity. For example, in simulation experiments knowledge on the data-
generating machinery allows to evaluate the true generalization utility as well as
the frequency properties of the utility estimate for any model either analytically
or by sample-based Monte Carlo (MC) approaches.

If the existence of the true model has been postulated, an intuitive idea in
statistical learning is that with increasing number of observations the data-
dependent model should resemble the data-generating distribution more and
more closely. In this sense it may be argued that the actual belief model is an
estimate for the unknown true model. Formalizing these ideas requires defining
certain properties of the true model in relation to the proposed statistical mod-
els. We follow the categorization in (Watanabe, 2009). In the case of a realizable
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and regular true model it may be assumed that the true model is included in the
proposed model space pt(·) ∈ {p(·|θ,M) : θ ∈ Θ}; that is, a unique parameter
θ0 exists such that pt(·) = p(·|θ0,M). If, in addition, the Fisher’s information
matrix is positive definite the true model is also regular for p(·|θ,M). In a case
of realizable and regular true model, the posterior distribution for the belief
model parameters converges to a single point, and we may assess, for example,
the asymptotic properties of how the Bayesian learning framework estimates the
underlying true model. However, the true model pt(·) may be unrealizable, which
means that although there is no unique parameter such that pt(·) = p(·|θ0,M),
nevertheless a particular parameter value minimizing dKL {pt(·), p(·|θ,M)} ex-
ists. Furthermore, for a singular true model there is a set Θ0 such that for the
parameter values θ ∈ Θ0 the KL-divergence dKL {pt(·), p(·|θ,M)} is minimized.
For singular models the posterior distribution does not converge to a single point,
but to an algebraic or analytical set. Many common statistical models (for ex-
ample, mixture models, latent variable models, Bayes networks, hidden Markov
models and neural networks) are singular. Singular learning theory (Watanabe,
2009) provides a way of assessing the theoretical predictive properties of belief
models in the singular case.

3.2. Model assessment: predictive performance of the actual belief
model M∗

In this survey, the term predictive model assessment refers to evaluating the
predictive performance of the actual belief model as the maximized expected
utility. The definition holds regardless of whether the the main focus is in the
estimation of the prediction performance or the prediction task is considered as
a subcomponent of a more comprehensive decision problem. After satisfactory
model criticism the model M∗ can be considered to adequately represent the
uncertainties involved in the prediction task, and the beliefs about the future
observation can be described by the posterior predictive distribution p(ỹ|D,M∗).
Obtaining the optimal prediction â and evaluating the maximized expected
utility ū(M∗, â), where the model label is now written explicitly, proceeds exactly
as described in Section 3.1. Model assessment is presented as a stylized decision
theoretic problem in Fig. 2.

When the prediction task is a part of a larger decision theoretic problem
the maximized expected utility is typically used to guide the decision maker
in choosing a course of action which is not directly involved with assessing the
predictive performance of the actual belief model. When the prediction task is
not a subcomponent of a broader formal decision problem, the purpose of model
assessment is to report to the application expert the optimal prediction under
the model and the corresponding assessment of the predictive performance of
the said model.

Even in the latter case there is inherently an informal decision problem in-
volved in reporting the expected utility of the model. Typically the application
expert uses the estimate of the predictive performance to decide whether large
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u(M∗, a, ỹ)ỹa
D

Fig 2. Predictive model assessment represented as a stylized decision theoretic problem. Given
the actual belief model M∗ the only decision is to choose the prediction a maximizing the
expected utility under p(ỹ|D,M∗). Random nodes are represented by circles and decision
nodes by squares.

enough benefits can be obtained by predicting future observations with the
model. For example, in case of monetary utility the reduction in costs or in-
crease in profits resulting from better predictions may not be significant enough
to warrant taking the predictive model into use. In such case there is an inherent
comparison to some baseline activity, such as “make predictions completely at
random”, “use constant prediction for future regardless of obtained information”
or “keep doing things in the old way”. To alleviate this comparison, the predic-
tive performance should be reported in such a way that the application expert
can understand the significance of the result in light of external information
that is not included in the model (e.g., Gelman et al., 2003).

When one of the common utility functions for reporting scientific inference is
used, the resulting expected utilities such as the average logarithmic scores can
be rather unintuitive. Although such utility functions may not be useful in model
assessment, they can still be highly useful in model selection and comparison.

3.3. Model selection: prediction with a candidate model Mk other
than the actual belief model M∗

Predictive model selection refers to a decision problem where a single model
with the best predictive performance is selected from a set of candidate mod-
els {Mk}Kk=1. The unknown state of the world is again the future observation
ỹ and the beliefs about the future observation are described by the posterior
predictive distribution p(ỹ|D,M∗) of the actual belief model. The formal deci-
sion problem involves two sequential decisions: after selecting the model Mk the
decision maker selects a prediction ak ∈ Ak depending on the selected model.
The predictive performance of a candidate model Mk is given by the maximized
expected utility

ū(Mk, âk) =

∫
u(Mk, âk, ỹ)p(ỹ|D,M∗)dỹ, (20)

where âk is the optimal prediction under the model Mk. Model selection is done
by ranking the candidate models based on their expected utilities, so that the
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u(Mk, ak , ỹ)ỹak
Mk

D

Fig 3. Formal representation of the predictive model selection task as a decision problem. The
choice of the candidate model Mk is followed by a choice of the model-dependent prediction
ak. The predictive distribution of the actual belief model p(ỹ|D,M∗) describes the beliefs about
the future observation.

optimal model choice results from a maximization

M̂ = argmax
k

ū(Mk, âk). (21)

Predictive model selection is presented as a formal decision problem in Fig. 3.
Utility functions can be tailored individually for each specific model selection

problem. However, instead of specifying an application-specific utility function
a more common approach is to rely on utility functions suitable for statistical
inference. The most widely-used examples in the literature are the logarithmic
score and the squared error. The lack of a clear interpretation for the expected
utility values is not a serious issue as long as the main goal in model selection
is to order the candidate models with respect to their predictive performance.
Utility functions can also be constructed by adding a term depending on the
model structure to the utility depending on the prediction accuracy,

u(c)(Mk, ak, ỹ) = u(Mk, ak, ỹ) + c(Mk). (22)

For example, in input variable selection c(Mk) may be a term favoring models
with a small number of covariates and penalizing more complex models with a
larger number of covariates.

A complete specification of model selection as a decision problem requires
defining the space of possible predictions Ak for each model Mk. Roughly speak-
ing, the effect of the modelMk is taken into account in two ways. In the reference
predictive model selection (Section 3.3.1) the predictions are Mk-optimal over
a common Ak = A whereas in the projection predictive model selection (Sec-
tion 3.3.2) predictions are M∗-optimal with each Ak restricted in a meaningful
way by the respective Mk. Although both approaches adhere to the same for-
mal decision theoretic framework, the distinction is useful because the reference
predictive approach requires a complete definition of priors p(θk|Mk) for every
candidate model, whereas the projection predictive approach does not.
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3.3.1. Reference predictive model selection: Mk-optimal prediction

The reference predictive model selection presented by Bernardo and Smith
(1994) follows the general decision theoretic outline illustrated in Fig. 3. The
prediction space for any model Mk is the space of all probability distributions
Ak = F . However, the optimal prediction âk for a model Mk is determined by
a maximization

âk = arg max
ak∈F

ūk(Mk, ak) = arg max
ak∈F

∫
u(Mk, ak, ỹ)p(ỹ|D,Mk)dỹ, (23)

where the expectation is taken with respect to the posterior predictive distri-
bution of the model Mk obtained by the standard Bayesian treatment. That is,
the optimal prediction is selected as if the predictive distribution p(ỹ|D,Mk)
described the actual beliefs about ỹ.

Given the model Mk and the Mk-optimal prediction âk the expected utility
of the model Mk is defined as

ū∗(Mk, âk) =

∫
u(Mk, âk, ỹ)p(ỹ|D,M∗)dỹ, (24)

where p(ỹ|D,M∗) describes the actual beliefs for the future observation. The
model with the best predictive performance is obtained by Eq. (21).

The optimal prediction for each candidate model is obtained without knowl-
edge of any predictive properties of M∗, while the predictive performance for
each model is computed as an expectation over p(ỹ|D,M∗). The term reference
predictive reflects the role of M∗ as a common yardstick for comparing the can-
didate models: M∗ acts as a reference whose predictive properties are sought
after in the candidate models.

The reference predictive approach requires a complete definitions of priors
p(θk|Mk) for each candidate model. For example, in case of nested models a
coherent specification of such priors may be difficult.

Example: logarithmic utility function The Mk-optimal prediction results
from maximizing the expected utility

ūk(Mk, ak) =

∫
log ak(ỹ)p(ỹ|D,Mk)dỹ (25)

with respect to all possible probability distributions, ak ∈ F . As discussed in
Section 3.1.2 the optimal prediction is the posterior predictive distribution of
the model Mk, âk(ỹ) = p(ỹ|D,Mk). The expected utility for the model Mk with
the Mk-optimal prediction is given by

ū∗(Mk, âk) =

∫
log p(ỹ|D,Mk)p(ỹ|D,M∗)dỹ. (26)

The maximized expected utility in Eq. (26) is equivalent up to a constant in-
dependent of Mk (negative entropy of the actual belief model) to the negative
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Kullback-Leibler divergence between the predictive distribution of the actual
belief model and the predictive distribution of the candidate model. Thus the
maximization of the expected utility is equivalent to minimizing the Kullback-
Leibler divergence between the actual belief model and the predictive distribu-
tion of model Mk.

Example: squared error Under the squared error loss function the Mk-
optimal point prediction results from minimizing the expected loss

s̄k(Mk, ak) =

∫
(ỹ − ak)

2p(ỹ|D,Mk)dỹ (27)

over ak ∈ Y. The optimal point prediction can be shown to be the posterior
predictive mean conditional on the model Mk,

âk =

∫
ỹ p(ỹ|D,Mk)dỹ = E[ỹ|D,Mk]. (28)

The expected loss under the actual belief model M∗ is given by

s̄∗(Mk, âk) =

∫
(ỹ − E[ỹ|D,Mk])

2p(ỹ|D,M∗)dỹ. (29)

Straightforward manipulation of the expected loss in Eq. (29) leads to

s̄∗(Mk, âk) = var [ỹ|D,M∗] + (E[ỹ|D,M∗]− E[ỹ|D,Mk])
2
, (30)

from which it is evident that the model Mk minimizing the expected loss is
the one whose predictive mean is closest to the predictive mean of the actual
belief model in the squared error sense. The expected utility is the variance of
the predictive distribution of the reference model (as in Equation (15)) plus the
squared difference between the predictive means.

3.3.2. Projection predictive model selection: M∗-projected prediction

In projection predictive model selection the optimal prediction âk under a candi-
date model Mk is the M∗-optimal prediction over Ak, which is a set of possible
predictions restricted by the model structure Mk. The optimal prediction âk is
obtained by maximizing the expected utility

âk = arg max
ak∈Ak

∫
u(Mk, ak, ỹ)p(ỹ|D,M∗)dỹ, (31)

where the expectation is taken with respect to the posterior predictive distribu-
tion of the actual belief model. In other words, the prediction âk is M∗-optimal,
whereas in the reference predictive approach the predictions were Mk-optimal.
The resulting maximized expected utility is given by

ū∗(Mk, âk) =

∫
u(Mk, âk, ỹ)p(ỹ|D,M∗)dỹ, (32)
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which differs from Eq. (24) only by the definition of âk.
The key component in the projection predictive approach is the definition

of Ak. For example, in probabilistic prediction the space Ak can be restricted
to parametric probability distributions {p(ỹ|θk,Mk) : θk ∈ Θk}, so that select-
ing the optimal prediction â(ỹ) becomes equal to selecting the optimal point

estimate θ̂.
A major difference to the reference predictive approach in Section 3.3.1 is

the possibility to avoid defining priors p(θk|Mk) for the candidate models Mk by
treating the parameters of the candidate model as decision variables. Also, there
are model selection approaches related to the projection predictive framework,
which directly project the posterior distribution of the parameters of the actual
belief model onto the parameter space of the candidate models.

Example: predictive point estimation with the logarithmic utility
function Given a logarithmic utility function the optimal prediction âk(ỹ)
for the model Mk is determined by maximizing the expected utility

ū∗(Mk, ak) =

∫
log ak(ỹ)p(ỹ|D,M∗)dỹ, (33)

where the expectation is taken with respect to the posterior predictive distribu-
tion of the actual belief model. The maximization is performed over the set of
parametric models defined by Mk so that ak(ỹ) ∈ Ak = {p(ỹ|θk,Mk) : θk ∈ Θk}.
The maximization can be written equivalently in terms of the parameter as

θ̂k = arg max
θk∈Θk

∫
log p(ỹ|θk,Mk)p(ỹ|D,M∗)dỹ. (34)

Given the optimal prediction âk(ỹ) = p(ỹ|θ̂k,Mk) the expected utility for the
model Mk is

ū∗(Mk, θ̂k) =

∫
log p(ỹ|θ̂k,Mk)p(ỹ|D,M∗)dỹ, (35)

where the parameter is now explicitly written as the decision variable. In other
words, the point estimate θ̂k is such that the parametric distribution p(ỹ|θ̂k,Mk)
is as close as possible to the posterior predictive distribution of the actual belief
model in the KL-divergence sense. The predictive point estimation approach is
illustrated in Fig. 4.

Example: predictive posterior approximation with logarithmic util-
ity function The M∗-optimal prediction is determined by maximizing the
expected utility

ū∗(Mk, ak) =

∫
log ak(ỹ)p(ỹ|D,M∗)dỹ, (36)

where ak(ỹ) ∈ Ak. The definition Ak =
{∫

p(ỹ|θk,Mk)q(θk)dθk : q ∈ Q
}

re-
quires specifying a set of posterior projections q(θk) belonging to a suitable
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ak(ỹ) = p(ỹ|θk,Mk)

u(Mk , ak , ỹ)ỹθk
Mk

D

Fig 4. Predictive point estimation: projection predictive model selection with the M∗-optimal
selection for the model parameter θk.

ak(ỹ) =
∫

p(ỹ|θk,Mk)q(θk)dθk

u(Mk, ak, ỹ)ỹq(θk)
MkD

Fig 5. Predictive model selection with optimal q(θk) projected from the actual belief model.

restricted family of probability distributions Q. For example, Q could consist
of Gaussian distributions. The expected utility maximization can be written in
terms of q(θk), so that the optimal posterior projection is given by

q̂(θk) = arg max
q(θk)∈Q

∫
log

(∫
p(ỹ|θk,Mk)q(θk)dθk

)
p(ỹ|D,M∗)dỹ, (37)

and the corresponding maximized expected utility is defined as

ū∗(Mk, q̂) =

∫
log

(∫
p(ỹ|θk,Mk)q̂(θk)dθk

)
p(ỹ|D,M∗)dỹ, (38)

where âk(ỹ) =
∫
p(ỹ|θk,Mk)q̂(θk)dθk is the optimal prediction. The procedure

is illustrated in Fig. 5.

The M∗-optimal posterior projection q̂(θk) is not an approximation for the
posterior distribution p(θk|D,Mk) of the model Mk. Instead, q̂(θk) contains
properties that are important in producing a prediction approximating the prop-
erties of the predictive distribution of the actual belief model. For example, in
input variable selection the prediction âk(ỹ) may contain information about in-
put variables included in the structure of M∗ but not Mk; the standard Bayesian
treatment of the model Mk would disregard all information about variables not
included in the model Mk.
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Maximization with respect to the posterior projection q(θk) is not trivial, and
we are not aware of any successful applications of this principle. See Section 5.4
for additional discussion.

3.4. Alternative formulation for prediction as an inference task:
reduction to θ

Commonly in Bayesian statistical decision theory (see, for example, (Berger,
1985; Robert, 2001)) the components of a decision problem are the following:

• the unknown state of the world is the parameter θ ∈ Θ of the sampling
model p(y|θ,M∗);

• a decision or an answer to an inference problem a ∈ A;
• utility function u(a, θ);
• beliefs about the unknown state of the world are described by the posterior

distribution p(θ|D,M∗).

A prediction task can be reduced to a decision problem involving θ by spec-
ifying a suitable utility function assigning a reward to a prediction for a future
observation ỹ when the state of the world θ obtains. A suitable utility function
for predictive model selection can be formed, for example, as the expectation of
a scoring function or scoring rule over the sampling distribution

u(a, θ) =

∫
ũ(a, ỹ)p(ỹ|θ,M∗)dỹ. (39)

The optimal prediction can be obtained by maximizing the expected utility

ū∗(a) =

∫
u(a, θ)p(θ|D,M∗)dθ. (40)

For example, with the logarithmic score ũ(a, ỹ) = log a(ỹ) the expected utility

ū∗(a) =

∫ [∫
log a(ỹ)p(ỹ|θ,M∗)dỹ

]
p(θ|D,M∗)dθ (41)

equals Eq. (9) for any probabilistic prediction a. As a trivial consequence the
same optimal prediction â(ỹ) = p(ỹ|D,M∗) results from both formulations. We
give an example of a model selection approach depending on an unknown θ in
Section 3.4.1.

Mathematically the difference between the two formulations is merely the
order of integration. In fact, the θ-formulation is probably more widely used
in the literature. Especially when u(a, θ) is available analytically, calculating
the posterior expectation (for example, using posterior samples) can be simpler
than taking expectations over the predictive distribution. However, as stated in
Section 3.1, we prefer the formulation based directly on the posterior predictive
distribution, because it allows the utility function to be observable and, as dis-
cussed further in Section 4.1, provides notation for a larger class of predictive
methods where the θ-formulation is less natural.
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It is also possible to give a decision theoretic formulation of a model selection
problem depending on the unknown θ in such a manner that the selection of
prediction for the selected model Mk is not required (Gibbs utility, Section
3.4.2), or that the predictive properties of the selected Mk are not considered
at all (zero-one utility, Section 3.4.3).

3.4.1. Predictive model selection when the unknown state of the world is the
parameter of the actual belief model

When the unknown state of the world is a parameter of the sampling model the
predictive model selection problem is typically formulated with the Kullback-
Leibler utility function

u(Mk, ak, θ∗) = −

∫
log

(
p(ỹ|θ∗,M∗)

ak(ỹ)

)
p(ỹ|θ∗,M∗)dỹ, (42)

which describes the utility of choosing a model Mk and a prediction ak when
the sampling model is p(ỹ|θ∗,M∗). It is common to use the loss function form,
so that the KL-divergence loss describes the loss of selecting a model different
from the unknown sampling model; in the realizable regular case (Section 3.1.4)
one may think of the loss of selecting a model different from the true model. The
information about the unknown state of the world is described by the posterior
distribution p(θ∗|D,M∗), whatever the set of candidate models is.

A special case arises when a prior p(Mk, θk) can be placed on all possible
model specifications, especially when the set of candidates models is the same
{Mk}

K
k=1. The information about the unknown state of the world is contained in

the posterior distribution p(Mk, θk|D). Equivalently, it may be stated that the
actual beliefs about the future observations are described by the BMA predictive
distribution, Eq. (4).

Example: parametric point estimation with Kullback-Leibler diver-
gence utility Given a sampling model p(y|θ∗,M∗), a prior p(θ∗|M∗) and
observations D the unknown state of the world is described by the posterior
distribution p(θ∗|D,M∗). The model selection problem, as illustrated in Fig. 6,
requires selecting a model Mk and subsequently the parameter value θk so that
the parametric model p(ỹ|θk,Mk) is close to the sampling model depending on
an unknown parameter θ∗. The closeness of the prediction to the sampling model
is defined by the negative Kullback-Leibler divergence utility function

u(Mk, θk, θ∗) = −

∫
log

(
p(ỹ|θ∗,M∗)

p(ỹ|θk,Mk)

)
p(ỹ|θ∗,M∗)dỹ. (43)

Maximizing the expected utility

ū∗(Mk, θk) = −

∫ [∫
log

(
p(ỹ|θ∗,M∗)

p(ỹ|θk,Mk)

)
p(ỹ|θ∗,M∗)dỹ

]
p(θ∗|D,M∗)dθ∗ (44)
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u(Mk, θk, θ∗)θ∗θk
Mk

D

Fig 6. Predictive model selection with the negative KL-divergence utility under the unknown
parameter θ∗ for the sampling model p(y|θ∗,M∗).

with respect to θk results in the optimal point estimate θ̂k for the model Mk, and
the model with the largest maximized expected utility ū∗(Mk, θ̂k) is the optimal
model choice. Changing the order of integration in Eq. (44) and dropping terms
constant with respect to Mk and θk leads to expected utility

ū∗(Mk, θk) =

∫
log p(ỹ|θk,Mk)p(ỹ|D,M∗)dỹ, (45)

where p(ỹ|D,M∗) =
∫
p(ỹ|θ∗,M∗)p(θ∗|D,M∗)dθ∗ is the predictive distribution

of the actual belief model. The result is identical to that obtained in the para-
metric predictive point estimation example in Eq. (34), so that these approaches
are equivalent with respect to the resulting prediction and model choice.

Example: Kullback-Leibler divergence utility and Mk-optimal predic-
tion selection Consider a sampling model p(ỹ|θk′ ,Mk′) and a prior specifi-

cation p(θk′ |Mk′)p(Mk′), with a set of K discrete model structures {Mk′}Kk′=1.
Given observationsD beliefs about the unknown state of the world are described
by the posterior distribution p(θk′ ,Mk′ |D).

A two step model selection approach, similar as in Section 3.3.1, is based on
the negative Kullback-Leibler divergence utility function

u(Mk, ak,Mk′ , θk′) = −

∫
log

(
p(ỹ|θk′ ,Mk′)

ak(ỹ)

)
p(ỹ|θk′ ,Mk′)dỹ. (46)

between the unknown sampling model p(ỹ|θk′ ,Mk′) and a prediction ak(ỹ) de-
pending on a candidate model Mk. As illustrated in Fig. 7 the selection of a
candidate model Mk is followed by a subsequent selection the prediction ak.
The Mk-optimal prediction following from maximizing the utility

ūk(Mk, ak,Mk) = −

∫ [∫
log

(
p(ỹ|θk,Mk)

ak(ỹ)

)
p(ỹ|θk,Mk)dỹ

]
p(θk|D,Mk)dθk

(47)

is seen to be the Bayesian posterior predictive distribution, âk(ỹ) = p(ỹ|D,Mk).
Given the Mk-optimal prediction âk(ỹ) the expected utility for the model Mk
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u(Mk, ak,Mk′ , θk′ )θ∗

M∗
ak

Mk

D

Fig 7. Predictive model selection with the negative KL-divergence utility under the unknown
sampling model p(y|θk′ ,Mk′ ).

is obtained as the posterior-averaged KL-divergences between the sampling
model with unknown parameters and the posterior predictive distribution of
the model Mk,

ū∗(Mk, âk) =

−
K∑

k′=1

[∫
dKL {p(ỹ|θk′ ,Mk′), p(ỹ|D,Mk)} p(θk′ |D,Mk′)dθk′

]
p(Mk′ |D). (48)

After a straightforward manipulation of the resulting expected utility and drop-
ping the terms constant with respect to model Mk one can show that the model
maximizing the utility in Eq. (48) is the same as the model maximizing the
utility in Eq. (26) when the actual belief model M∗ is the BMA predictive
distribution pBMA(ỹ|D), Eq. (4). A generalization of this approach based on
α-divergences has been proposed by Trottini and Spezzaferri (2002).

3.4.2. Model selection with the Gibbs utility

An often-used utility in Bayesian model selection is the negative KL-divergence
from the actual belief model p(ỹ|D,M∗) to the prediction, Eq. (11). In the same
spirit as in projection predictive methods in Section 3.3.2, the predictions may
be restricted to the parametric form p(ỹ|θk,Mk), so that the utility function can
be written directly as

u(Mk, θk) = −

∫
log

(
p(ỹ|D,M∗)

p(ỹ|θk,Mk)

)
p(ỹ|D,M∗)dỹ. (49)

Instead of selecting a point estimate for θ, that is, selecting the optimal pre-
diction p(ỹ|θ̂k,Mk), one may be interested in the average predictive performance
of the model Mk, as illustrated in Fig. 8. The average predictive performance is
defined as the expected utility, with the expectation over the unknown param-
eter θk taken with respect to the model-conditional posterior distribution,

ū(Mk) = −

∫ [∫
log

(
p(ỹ|D,M∗)

p(ỹ|θk,Mk)

)
p(ỹ|D,M∗)dỹ

]
p(θk|D,Mk)dθk. (50)
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u(Mk , θk, ỹ)ỹθk
Mk

D

Fig 8. Model selection with Gibbs utility: the predictive performance of the model Mk is eval-
uated as the posterior expected predictive performance of the parametric models p(ỹ|θk,Mk).

Dropping the terms constant with respect to model Mk results in the Gibbs util-
ity (terminology follows Watanabe (2009), although Watanabe uses loss func-
tions instead utilities)

ūG∗ (Mk) =

∫ [∫
log p(ỹ|θk,Mk)p(ỹ|D,M∗)dỹ

]
p(θk|D,Mk)dθk (51)

=

∫ [∫
log p(ỹ|θk,Mk)p(θk|D,Mk)dθk

]
p(ỹ|D,M∗)dỹ. (52)

The Gibbs utility measures the predictive performance of the candidate model
Mk as the average predictive performance of the parametric probability distribu-
tions indexed byMk. The significant difference to the model selection approaches
based on the logarithmic utility function described in Section 3.3 is the lack of
selection of unique prediction ak: the Gibbs utility cannot be used to select a
model and to identify a unique prediction action for the future data given the
selected model. In other words, Gibbs utility can be employed to select a model
based on the average predictive performance, but maximization of the expected
utility will not tell the user how to actually predict the future observations.

Mathematically the difference in the Gibbs utility in Eq. (52) and the ex-
pected logarithmic predictive density in Eq. (26) is the order of logarithm and
the inner integration. From Jensen’s inequality it is evident that the expected
logarithmic predictive density is lower bounded by the Gibbs utility.

The form of the Gibbs utility is often computationally simpler than the ex-
pected logarithmic predictive density in Eq. (26). For example, for observation
models in the exponential family it is easier to take expectations of log like-
lihood in Eq. (52), while the expectations of the logarithm of the predictive
distribution in Eq. (26) can be mathematically more involved.

3.4.3. Zero-one utility on the model space

If the unknown state of the world is assumed to be a model specification Mk′

belonging to the exhaustive set of models {Mk′}Kk′=1, and the beliefs about the
unknown model are described by the posterior distribution p(Mk′ |D), then the
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u(Mk,Mk′ )Mk′

Mk

D

Fig 9. Model selection with the zero-one utility: the optimal model choice is the model Mk

with the highest posterior probability P (Mk|D).

zero-one utility function defined on the model space

u(Mk,Mk′) =

{
1 if Mk′ =Mk

0 if Mk′ 6=Mk

(53)

describes the utility of selecting the model Mk when the unknown model struc-
ture is Mk′ . When {Mk′}Kk′=1 = {Mk}Kk=1 the posterior distribution can be
written in terms of the candidate models by

p(Mk′ |D) =

{
p(Mk|D) if Mk′ =Mk

0 if Mk′ 6=Mk,
(54)

because the unknown model Mk′ is believed to be among the set of candidate
models. The expected utility for selecting the model Mk is seen to be

ū(Mk) =

∫
u(Mk,Mk′)p(Mk′ |D)dMk′ = p(Mk|D). (55)

The optimal model selection under the zero-one utility function is to choose
the model with highest posterior probability. This is equivalent to Bayes factor
(Kass and Raftery, 1995) model selection in case of equal prior probabilities for
models (see Section 5.6). It is noteworthy that with the zero-one utility function
model selection is not based on the predictive properties of the candidate models,
nor does solving the decision problem result in a unique optimal prediction.

3.5. Other closely related concepts

Many model selection formulations in the literature, an obvious example being
the non-Bayesian approaches, do not fit into the presented Bayesian predictive
framework. Nevertheless, these methods may still be based on the predictive
properties of the models, and they may be closely related to the Bayesian meth-
ods described in this survey.
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3.5.1. Plug-in predictive distribution and deviance

A plug-in2 predictive distribution

p(ỹ|θ̂k(D), D,Mk) ≈

∫
p(ỹ|θk,Mk)p(θk|D,Mk)dθk = p(ỹ|D,Mk) (56)

is a common approximation to the fully Bayesian predictive distribution, which
results from using a point estimate for all or some of the parameters instead
of integrating over the full posterior distribution. Replacing the full predictive
distribution of the candidate model by the plug-in predictive distribution results
in a plug-in utility. For example, in case of the logarithmic utility function the
corresponding plug-in utility is given by

ū∗(Mk, âk) ≈ ūP∗ (Mk, θ̂k(D)) =

∫
log p(ỹ|θ̂k(D), D,Mk)p(ỹ|D,M∗)dỹ. (57)

Plug-in quantities are often encountered especially with information criteria
presented in Section 5.5.

In contrast to the predictive point estimates presented in Sections 3.3.1 and
3.4.1, the plug-in estimator θ̂k does not need to follow from decision-theoretic
optimality. In fact, the plug-in point estimate can be chosen based on a different
utility function (for example, posterior mode corresponding to zero-one utility,
or posterior mean corresponding to squared error) than the one that is actually
used to evaluate the expected utility (for example, logarithm of the predictive
distribution).

In Bayesian applications, data-dependent plug-in estimates are typically used
for hyperparameters, while the lower-level parameters are integrated over. Good
examples of such approaches are empirical Bayes (EB) (Carlin and Louis, 1996),
type-II maximum likelihood (ML-II) (Berger, 1985) and evidence framework
(MacKay, 1992), which differ mainly in how the hyperparameters are estimated.

With complex models, an optimization-based plug-in approach can be compu-
tationally relatively simple while a full integration over all the unknown parame-
ters may be infeasible. In practical modeling problems, ignoring the uncertainty
related to the estimated parameters can be informally justified if the predictions
by the model are not significantly affected.

A specific example of a loss function based on plug-in logarithmic score func-
tion is the deviance function

Dev(D; θ̂) = 2 logC(D) − 2 log p(D|θ̂k(D),Mk), (58)

where the function C(D) does not depend on the candidate model. For example,
in the context of generalized linear models the function C(D) is the maximum
achievable log likelihood log p(D|θ̃) of the full model, representing the best at-
tainable data fit (McCullagh and Nelder, 1989). However, candidate models are

2The point estimate θ̂(D) is sometimes called plug-in estimate, as it is plugged into the
model, sometimes without a solid theoretical justification.
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often compared by the difference of the respective deviances, so that the con-
stant terms in the deviance function cancel out. Deviance is used mostly in
frequentist literature as it is closely connected to the likelihood ratio statistic.
For consistency, in this review we replace the deviance function by the plug-in
log-score.

3.5.2. On frequentist formulation of model assessment and selection

Reviewing the vast frequentist and other non-Bayesian literature on model as-
sessment and selection is outside the scope of this survey. Some of the results
from the related theory can also be utilized in the Bayesian framework. As
necessary, in the following sections the most interesting and relevant frequen-
tist results are treated with references for further reading. Mostly we follow
the framework introduced, for example, by Akaike (1974) and Burnham and
Anderson (2002).

In frequentist statistics, the predictions of a model Mk are usually based on
a point estimate such as the maximum likelihood estimate (MLE) θ̂(D). The
quality of the predictions can be assessed by evaluating the expected utility

ūt(Mk, θ̂k) = Eỹ,Dn

[
u(Mk, θ̂k(Dn), ỹ)

]
, (59)

where the expectation is taken not only over the future unknown observation
ỹ, but also over all the possible n-sized sets of observations Dn with respect to
an unknown true distribution pt. In this survey, we use a common notation for
all approaches, although the terminology in the frequentist statistical decision
theory literature is typically different from the Bayesian literature.

Under certain regularity conditions, the sampling distribution of the estima-
tor θ̂k and the Bayesian posterior distribution of θk approach asymptotically
the same Gaussian distribution, and the MLE θ̂k and mode of the posterior
distribution converge to the same value (see, e.g., Gelman et al., 1995, and ref-
erences therein). However, in the non-asymptotic case replacing the sampling

distribution of the estimator θ̂k with the posterior distribution of θk does not
produce equivalent results, as illustrated in the following example.

Example: Kullback-Leibler divergence A common formulation for many
non-Bayesian predictive model selection approaches is based on the Kullback-
Leibler divergence between an unknown true distribution of the observations,
pt(y) and the candidate model p(y|θk,Mk) (Akaike, 1974; Burnham and An-
derson, 2002). The parameters of the model are estimated from the observed
data D. The expected prediction error is the expectation of the KL divergence
loss over all possible training data sets following the same unknown distribution
pt(y),

lt(Mk, θ̂k) = EDn

[∫
log

(
pt(ỹ)

p(ỹ|θ̂k(Dn),Mk)

)
pt(ỹ)dỹ

]
. (60)
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The expectation over the training sets can be written in terms of the sampling
distribution of the estimator g(θ̂k). Ignoring terms constant with respect to the
model Mk, the expected prediction error can be written equivalently as the
expected prediction utility

ūt(Mk, θ̂k) = Eθ̂k
Eỹ

[
log p(ỹ|θ̂k,Mk)

]

=

∫ [∫
log p(ỹ|θ̂k,Mk)pt(ỹ)dỹ

]
g(θ̂k)dθ̂k. (61)

The similarity of Eq. (61) to the Gibbs utility in Eq. (52) may be one reason
why the Gibbs utility has been used so extensively in Bayesian model selection.

In practical model selection approaches, both the expectations in Eqs. (60)–
(61) must be approximated, as they are taken over an unknown distribution
pt(y). Examples of the resulting information criteria are discussed in Section 5.5.

4. Predictive model comparison in practice

Predictive model assessment and selection, as presented in Section 3, are rather
straightforward decision problems when the actual belief model p(ỹ|D,M∗) is
readily available and utility-related computations over p(ỹ|D,M∗) can be per-
formed. How the actual belief model is defined depends on assumptions un-
derlying the prediction task at hand. A common categorization presented by
Bernardo and Smith (1994) into M-closed, M-completed and M-open views
is useful in clarifying the strength of statements we are willing to make about
p(ỹ|D,M∗).

We use the term model comparison3 in practical model selection context
where we need to take into account external information that is difficult to
formulate either in terms of probabilistic models or within decision theoretic
framework. In particular, the specific definition of p(ỹ|D,M∗), limited amounts
of data, the nature of possible input variables and the computational approaches
that are employed all affect how the expected utility is estimated. While the
goal is still to identify the model with the best predictive performance defined
in terms of expected utility, the properties of the expected utility estimate need
to be considered when constructing a practical utility-based approach for com-
paring different models. The outline of the section is illustrated in Fig. 10.

4.1. M-closed, M-completed and M-open views

In the M-closed view it is possible to either enumerate all possible model struc-
tures {Mk}Kk=1 and place a prior distribution p(Mk) over them or specify a
non-parametric model with a prior distribution on a suitable function space.
This is equivalent to stating a belief that one of the candidate models is the

3The authors are aware that the term “model comparison” is often used interchangeably
with model selection.
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Predictive model comparison (Section 4)

Prediction as a decision problem (Section 3)

Model assessment
(Section 3.2)

Model selection
(Section 3.3)

M-views
(Section 4.1)

Practical considera-
tions (Section 4.2)

Explanatory vari-
ables (Section 4.3)

Sampling error
(Section 4.5)

Frequency proper-
ties (Section 4.6)

Fig 10. Content for Section 4 and its relation to Section 3.

“true model generating the data”, under uncertainty about which of the can-
didate model is the said “true model”. If the number of alternative models is
countable, the actual belief model of the future observations is constructed as
the Bayesian model averaging predictive distribution p(ỹ|D,M∗) = pBMA(ỹ|D),
Eq. (4). Literally taken, the M-closed view is appropriate only when it is known
for certain that the true data generating real world mechanism is among a fi-
nite set of models. Situations where this applies are not often encountered; one
example could be a computer simulation where the observations are actually
generated by one of the candidate models. Although it is difficult to find situ-
ations in which the strict interpretation of the M-closed view holds, Bayesian
model averaging has been shown to have good predictive performance (Raftery
and Zheng, 2003). Thus, often it is not too unreasonable to proceed with the
M-closed view as if one believed in it, that is, by placing prior weights on a
limited set of well-defined alternative models.

In the M-completed view one forms a rich enough model M∗ whose predic-
tions are considered to best reflect the uncertainty in the prediction task. In
typical modeling problems, it is impossible to come up with an exhaustive list
of possible candidate models, with one of them being guaranteed to be the true
data generating model, and place an explicit model prior. Instead of the BMA
predictive distribution, the predictive distribution of the actual belief model
p(ỹ|D,M∗) is considered to be the best available description of the uncertainty
of future data.

In the M-open view, the aim is to avoid constructing explicitly the actual
belief model, as there is a strong conviction under the current background infor-
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mation that any such model would not reflect well the properties of future data.
In this case, it may be more appropriate to assess the predictive performance of
the candidate models under minimal modeling assumptions rather than being
confident about the realism of one’s current predictive model. It is possible to re-
sort to thinking that while it is not possible to correctly specify the distribution
of the future data, it is still possible to obtain pseudo Monte Carlo samples from
it (Bernardo and Smith, 1994). Such thinking leads to sample re-use methods
such as cross-validation. The decision theoretic formulation in terms of model
parameters, discussed in Sections 3.4 and 3.4.1, is not suitable for describing
the M-open case.

The categorization into M-closed, -completed or -open views should not be
understood in an overly strict sense, as there are approaches combining prop-
erties from different categories as well as ones that cannot be classified in the
above sense.

4.2. Expected utility estimation in practice

M-closed and M-completed views both lead to defining the expected util-
ity for model Mk with the optimal optimal prediction action âk directly as
Eq. (20),

ū∗(Mk|D) =

∫
u(Mk, âk, ỹ)p(ỹ|D,M∗)dỹ, (62)

where the uncertainty related to future data is described by the actual be-
lief model p(ỹ|D,M∗). Much of the diversity found in predictive model assess-
ment and selection methods comes from the differences in the specification of
p(ỹ|D,M∗), whose implications are further explored in Section 5. Although cal-
culating the integral in Eq. (62) in practice may require an approximative ap-
proach, such as numerical integration or a Monte Carlo solution, the expected
utility is obtained in a rather straightforward fashion. Also, the estimate in Eq.
(62) is highly dependent on the quality of the actual belief model M∗; misspec-
ified beliefs about the future observations may be lead to poor expected utility
estimates.

M-open view corresponds to avoiding the explicit specification of p(ỹ|D,M∗)
by re-using observations D as a proxy for the predictive distribution of the
actual belief model. If samples {ỹj}ñj=1 independent of D can be obtained, for
example, as a separate test data set, the expected utility ū∗(Mk|D) could be
approximated as

ūtest(Mk|D) =
1

ñ

ñ∑

j=1

u(Mk, âk, ỹj). (63)

Assessing the utility in this way is referred to as external validation (Gelman
et al., 2003), and also as the test utility (or when loss functions are used, test
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error) especially in the machine learning literature. In absence of additional test
data set, the naïve approach would be to use exact replicates of data, ẏi = yi.
The dot-notation is used to emphasize that even though ẏi has the same value
as yi, it represents a realization of a different random quantity. The resulting
estimate

ūtrain(Mk|D) =
1

n

n∑

i=1

u(Mk, âk, ẏi), (64)

is often referred to as the training utility (or when loss functions are used,
training loss or training error). Training utility is a biased estimate of test utility,
since replicates {ẏi}ni=1 are not independent from observations D = {yi}ni=1.

As the naïve example shows, the actual way of implementing the sample
re-use has a significant effect on the expected utility estimate. One way of im-
proving the quality of a training utility based estimate is to introduce a sample
re-use strategy aimed at reducing the effect of dependence between {ẏi}ni=1 and
D. This leads to methods such as cross-validation, where the observationsD are
divided in various ways to get independent proxies for D and ỹ. For example, in
leave-one-out cross-validation (LOO-CV) with logarithmic utility function the
expected utility is estimated by the LOO-CV utility

ūLOO(Mk|D) =
1

n

n∑

i=1

u(Mk, âk, yi|D(\i)), (65)

where each D(\i) (observations not including yi) serves as a proxy for D and
yi as a proxy for ỹ in turn. However, each D(\i) contains fewer observations
than D, which makes the LOO-CV estimate in Eq. (65) a biased estimate of the
expected utility. Also, because eachD(\i) is different fromD, additional variance
is introduced in the estimate. The variations of cross-validation are discussed in
more detail in Section 5.1.3.

The expected utility estimate can also be improved by estimating and cor-
recting for the bias in the training utility, which leads to information criteria
type approaches. Formally, the effect of bias is reduced by introducing a bias
correction term to the training utility,

ūIC(Mk|D) =
1

n

n∑

i=1

u(Mk, âk, ẏi) + bias correction. (66)

Information criteria are discussed in Section 5.5.

4.3. Expected utility estimation when explanatory variables x are
included

Throughout Sections 3 and 4 explanatory variables x were left out from equa-
tions in order to keep the notation simpler. Conditional modeling of y|x depends
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on the assumptions related to the explanatory variables x. The decision prob-
lem as well as the practical expected utility estimation need to be defined in a
slightly different way, depending on whether the future explanatory variable x̃
is assumed to be random, unknown, fixed, deterministic or controlled quantity,
or even a mixture of the said quantities.

x and x̃ are random refers to a case where observed x and not yet observed
x̃ are assumed to be exchangeable random quantities. This case is typical in
observational studies where the explanatory variables are not controlled. Com-
monly the distribution of x is assumed to be stationary in time, but covariate
shift can be taken into account, for example, by weighting methods (e.g. Shi-
modaira, 2000; Sugiyama, and Müller, 2005; Sugiyama, Krauledat and Müller,
2007).

Adopting an M-close or M-completed view requires placing a prior p(x, x̃)
for the explanatory variables, so that the expected utility is defined as

ū∗(Mk|D) =

∫
u(Mk, âk, ỹ, x̃)p(ỹ, x̃|D,M∗)dỹdx̃, (67)

where the explanatory variables are now explicitly shown in the utility function.
In practice, modeling the distribution of x is usually more difficult than con-

ditional modeling of y|x, making it common to settle for an M-open view ap-
proach. If an M-open approach is used for both y|x and x, the expected utility
can be estimated for example by training utility, Eq. (64), as

ū∗(Mk|D) ≈
1

n

n∑

i=1

u(Mk, âk, ẏi, ẋi). (68)

It is also possible take an M-closed or M-completed view with respect to y|x
and an M-open view with respect to x. The expected utility estimate is then
given by

ū∗(Mk|D) ≈
1

n

n∑

i=1

[∫
u(Mk, âk, ỹ, ẋi)p(ỹ|ẋi, D,M∗)dỹ

]
. (69)

With random x and x̃ it is very likely that the values of x̃ are different from x.
In such a case it may be interesting to evaluate the out-of-sample performance,
that is, the expected utility at locations x̃ which are not necessarily among the
observations (x1, . . . , xn). In the full M-closed or M-completed approaches the
out-of-sample estimate comes naturally as the expectation is taken also over
p(x̃|D,M∗). In M-open view based sample re-use approaches, hold-out and
cross-validation predictive methods (Section 5.1) can be used for estimating the
out-of-sample performance.

Typically x̃ is present in the utility function only as a condition for the
optimal prediction âk, such as in p(ỹ|x̃, D,Mk) for the logarithmic utility or in
E[ỹ|x̃, D,Mk] for the squared error. Thus x̃ can be omitted from the utilities in
subsequent sections to avoid clutter in notation.
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x and x̃ are fixed when (x̃1, . . . , x̃n) equal to (x1, . . . , xn). That is, x and
x̃ are known constants, and only the conditional part y|x has any uncertainty.
Typical examples of such a case are found in spatial epidemiology where, for
example, locations xi of counties do not change, and future observations are of
the form (xi, ỹi).

As future x are known, it would be logical to compute the expected utility
using simultaneous prediction, but as single prediction is typically simpler to
obtain, it is a more often used and useful proxy for the more complicated es-
timate. Taking an M-closed or M-completed view with respect to y|x and an
M-open view with respect to x leads to estimating the expected utility as

ū∗(Mk|D) =
1

n

n∑

i=1

[∫
u(Mk, âk, ỹ)p(ỹi|xi, D,M∗)dỹi

]
. (70)

Here the sum over fixed values xi collects the utilities following from individual
single predictions to a single statistic, while in Eq. (69) for unknown x the sum
results from the Monte Carlo expectation based on the pseudo samples ẋi from
p(x̃).

In fixed x case, there is no need to estimate the out-of-sample performance
at new x values, but depending on the prediction task we may consider pre-
diction of ỹi given either all of D which includes yi as above, or with D(\i)

with yi removed. For example, in spatial data analysis these prediction tasks
correspond to predicting for ith area given the observations in all areas either
by including, or excluding, the ith area itself. These predictions can be quite
different if observations with different xi are independent or weakly dependent,
that is, p(ỹi|xi, D,M) and p(ỹi|xi, D(\i),M) are not similar.

In M-open sample re-use methods, it is not possible to separate samples
(xi, yi) and to get an independent proxy for ỹ. Thus, for example, in leave-one-
out cross-validation only the p(ỹi|xi, D(\i),M) prediction scenario is possible.
Moreover, in a fixed x case the uncertainty is only with respect to y|x, yet the
sample re-use methods treat the fixed explanatory variables x̃ as random. This
error does not affect the estimated expected utility, but affects the assessment
of the sampling error associated with the estimate.

x̃ is deterministic when (x̃1, . . . , x̃ñ) are deterministic quantities, but differ-
ent from (x1, . . . , xn). A typical example is a time series prediction where the
future time points are known, but not yet observed.

Similarly to the case of fixed explanatory variables, the x̃ are constant, and
the uncertain part of the model is the conditional model p(ỹ|x̃, D,M∗). However,
with deterministic explanatory variables there is a need to estimate the out-of-
sample performance with a structure specific to x̃. In the full M-open case
cross-validation variants (see Section 5.1.3) can be used to take into account the
out-of-sample performance. In the M-closed and M-completed approaches it
is trivial to estimate the expected utility given the known deterministic values
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(x̃1, . . . , x̃ñ) as

ū∗(Mk|D) =
1

n

ñ∑

i=1

[∫
u(Mk, âk, ỹ)p(ỹ|x̃i, D,M∗)dỹ

]
. (71)

x is controlled or x̃ is partially controlled when the explanatory variables
are determined by experimental design or controlled otherwise, and the outcome
variables y|x are considered to be observational quantities. In this case, knowing
x does not give information about either random or controlled x̃. A typical case
is an industrial or medical design of experiment.

If x̃ are random, additional information can be used to form p(x̃). For ex-
ample, a large number of x’s may have been observed, but due to a high mea-
surement cost, the associated outcome variables y have been observed only for
a smaller number of x’s selected by design of experiment. In absence of such
additional information needed to form p(x̃), or when x̃ are also controlled, one
choice is to consider how well the model performs with a fixed x.

If x’s are random observations, it is possible that x̃ are at least partially
controlled. For example, in a production process there may be randomness due
to weather, amount and quality of ingredients, varying temperature, and so on.
After observing the behaviour of the process it may be desired to control some
of the previously uncontrolled quantities which have an effect on the process.
Although the future values x̃ will be restricted, the performance of the model
needs to be assessed over a wider range of possible x-values in order to make
a good control decision. With respect to that decision problem the x̃ can be
considered fixed with no uncertainty.

4.4. Model comparison

While selecting a model with the best predictive performance in terms of ex-
pected utility is a simple concept in principle, the computational and approx-
imative steps taken in estimating the expected utility lead us to consider the
sampling error (Section 4.5) and the frequency properties (Section 4.6) of the
expected utility estimates. In practice the expected utilities of the candidate
models are often compared in a pairwise manner, using subjective assessment
of the significance of the difference in the respective expected utilities.

M-closed or M-completed view Given the belief model p(ỹ|D,M∗) the
difference between the expected utilities of any two candidate models, ū∗(Mk|D)
and ū∗(Mj|D), equals the expectation of the difference,

ū∗(Mj |D)−ū∗(Mk|D)

=

∫
u(Mj, âj , ỹ)p(ỹ|D,M∗)dỹ −

∫
u(Mk, âk, ỹ)p(ỹ|D,M∗)dỹ

(72)

=

∫
[u(Mj, âj , ỹ)− u(Mk, âk, ỹ)] p(ỹ|D,M∗)dỹ. (73)
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The latter form may be preferable if the expectation over p(ỹ|D,M∗) needs to
be approximated.

With a strictly proper scoring rule it is evident that under the M-closed
and M-completed views the actual belief model M∗ will always be preferred.
For example, given Mj =M∗ and the logarithmic utility function the expected
difference of the utilities is the KL-divergence from M∗ to Mk, a strictly positive
quantity for all Mk 6= M∗. However, the aim in model comparison is often
identification of a simpler model that is sufficiently close to M∗ in terms of
predictive performance, even though the said aim is not represented in the
utility function and therefore not properly included into the decision theoretic
framework. The quantification of this practical difference in the expected utilities
of the models compared is referred to as calibration of the model comparison
method. Calibration is discussed in Section 5.7. Again, it is worth stressing
that the results from model comparison in the M-closed and M-completed
approaches depend on the quality of the actual belief model M∗.

M-open view In the M-open approaches issues related to the significant
difference in the expected utilities of the models compared are the same as in
the M-closed or M-completed case. However, because the actual belief model
is represented by a finite proxy sample it is possible that there is considerable
uncertainty whether one model is better than another model. It is possible to
compute the corresponding uncertainty measure by estimating the sampling
error of the expected utility differences (see Section 4.5). These uncertainty
measures can also be used to guide in choosing, for example, the simplest model
which is not significantly worse than some larger, more complex model.

Selection induced bias A model selection procedure based on maximizing
the expected utility estimated with re-used samples suffers from a phenomenon
called selection induced bias. A model selection procedure using a criterion con-
ditional on the training data, such as the estimated expected utility, fits to the
observed data. Even if the procedure is based on an approach giving unbiased
expected utility estimates for any particular model, the data-fitted model selec-
tion procedure causes the expected utility estimate of the selected model to be
biased (see, for example, Stone, 1974; Rencher and Pun, 1980; Reunanen, 2003;
Vehtari and Lampinen, 2004; Shen, Huang and Ye, 2004; Varma and Simon,
2006; Cawley and Talbot, 2010).

If the number of candidate models is very large (for example, the number of
models grows exponentially as the number of observations n grows, or the num-
ber of covariates p ≫ ln(n) in covariate selection) a model selection procedure
can strongly overfit to the data. For example, Birgé and Massart (2007) demon-
strate this for a penalized least-squares criterion and Arlot and Celisse (2010)
provide references in relation to (non-Bayesian) cross-validation methods. It is
possible to estimate the selection induced bias and obtain unbiased estimates
(see section 5.1.3). This does not, however, prevent the model selection proce-
dure from possibly overfitting to the observations and consequently selecting
models with suboptimal predictive performance.
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4.5. Sampling error of the expected utility estimate

If the expected utility is calculated as a Monte Carlo estimate, the associated
Monte Carlo error depends on the number of samples from p(ỹ|D,M∗). In the
M-open sample re-use approaches the size of the proxy sample is fixed and n
is typically relatively small which may result in a substantial sampling error,
whereas the Monte Carlo error resulting from a Monte Carlo integration over the
posterior distribution of parameters can be reduced by increasing the number
of samples. As an example of the latter case, Zhu and Carlin (2000) estimate
the Monte Carlo variance of Deviance Information Criterion (DIC) arising from
Monte Carlo sampling of the parameter posterior.

A typical problem in Monte Carlo methods is that the variance of the Monte
Carlo error can be substantial when the Monte Carlo integral is calculated
from samples drawn from a distribution with thick tails. This can happen when
the proxy sample contains rare observations: as only a restricted subset of all
possible values of the future observation ỹ can be represented by the proxy
sample, the expected utility estimate may be sensitive with respect to the actual
observed data. Choice of a particular utility function can also amplify the effect
of rare observations in the proxy sample, as demonstrated in a non-Bayesian
cross-validation setting by Leung (2005).

Straightforward sample re-use approaches do not include any assumptions
on the distribution of the future observations. Expected utility estimates with
a smaller variance for the Monte Carlo error could be obtained by Bayesian
Monte Carlo (Rasmussen and Ghahramani, 2003), where additional smoothness
assumptions are made. The improved estimates come with the cost of additional
computation as well as statements regarding the properties of the distribution
p(ỹ|D,M∗).

Variance of the sampling error The estimate of the expected utility can
be written as the sample average

ū∗(Mk|D) ≈
1

ñ

ñ∑

i=1

u(Mk, ỹi|D) =
1

ñ

ñ∑

i=1

ui, (74)

where ui is the utility for a sample ỹi. The variance of the sampling error is

VarMC(u) =
V̂ar(u)

ñ
, (75)

where

V̂ar(u) ≈
1

ñ− 1

ñ∑

i=1

(ū∗(Mk|D)− ui)
2
. (76)

Eq. (75), and a more robust quantile-based variance estimate, were proposed
for cross-validation in a non-Bayesian setting by Breiman et al. (1984, ch. 11).
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Both are often adequate approximations even if the distribution of ui’s is not
Gaussian.

A pairwise comparison for models Mk and Mk′ can be made by calculating
the difference of the expected utilities as

ū∗(Mk|D)− ū∗(Mk′ |D) ≈
1

ñ

ñ∑

i=1

(ui(Mk, ỹi|D)− ui(Mk′ , ỹi|D)), (77)

as both u(Mk, ỹi|D) and u(Mk′ , ỹi|D) depend on the same sample ỹi. A variance
estimate for the difference can be computed in a similar fashion. The expected
difference and variance can be used to approximate the probability for the sign
of the difference, which in the case of similar expected utility estimates can be
used as an additional indicator for significance of the difference.

Bayesian bootstrap If the uncertainty related to ū∗(Mk|D) cannot be de-
scribed well with a Gaussian distribution, Vehtari and Lampinen (2002) pro-
posed to use a non-parametric Bayesian bootstrap (BB) (Rubin, 1981) approach
based on the Dirichlet distribution. Sampling from the Dirichlet distribution g
gives BB samples from the distribution of the distribution of u and thus sam-
ples of any parameter of this distribution can be obtained. For example, with
ū = E[u], for each BB sample b the mean of u is calculated as if gi,b were the
probability that u = ui; that is, ūb =

∑n
i=1 gi,bui. The distribution of the values

of ūb; b = 1, . . . , B is the BB distribution of the mean ū. For important properties
of Bayesian bootstrap, see Lo (1987); Weng (1989); Mason and Newton (1992).
The assumption that all possible distinct values of (x, y) have been observed
is usually wrong, but with moderate n and not very thick tailed distributions,
inference should not be very sensitive to this.

4.6. Frequency properties

In the following, we use the notation û ≈ ū for the method-specific utility
estimate to emphasize that the estimate for the expected utility û for model Mk

is conditioned on the specification p(ỹ|D,M∗), the training data D = {yi}
n
i=1

as well as on method-specific approximations.
Although in the Bayesian framework, inference and decisions are always con-

ditioned on the fixed observed data, there are certain reasons for considering
the frequency properties of the methods for estimating the expected utility. Fre-
quency properties can be used to describe the long run behavior of the utility
estimation method or a model selection procedure in repeated use, and should
be taken into consideration when the estimated expected utility is used as a
basis for model selection or comparison.

Although the repeated use of the model assessment and selection methods in
practice means using the said methods for data sets in different modeling prob-
lems, the analysis of the frequency properties is usually simplified by considering
a single distribution pt from which both the observed data Dn of size n and the
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unobserved future data ỹ are generated. The expected utility ū can be regarded
as a random quantity, as varying realizations of Dn cause both p(ỹ|Dn,M∗) and
p(ỹ|Dn,Mk) to vary. Additionally, the method-specific expected utility estimate
û may include approximation errors and stochastic variation.

The frequency properties can be considered in a finite sample case and asymp-
totically (n→ ∞). While asymptotic properties are often interesting, in practice
the finite sample performance is more important in model assessment, selection
and comparison, as realistic model selection problems involve limited amount
of data. Moreover, frequency properties in finite samples typically have a larger
impact on the comparison results. In the following, the most common frequency
properties – bias, variance, efficiency and consistency – are considered.

4.6.1. Bias, variance and efficiency

Bias is the expected difference between a method-specific estimate û(M |Dn)
and the expected utility ūt(M |Dn) given a known pt,

bias[û] = EDn
[û(M |Dn)− ūt(M |Dn)] , (78)

where the expectation is over the repeated sampling of the training data set Dn

and the “true” utility

ūt(M |Dn) =

∫
u(M, â, ỹ)pt(ỹ)dỹ (79)

follows from evaluating the expected predictive performance over the known pt
(with all the optimal decisions â resulting from maximization with respect to
p(ỹ|Dn,M∗)).

The bias is a result of p(ỹ|Dn,M∗) differing from pt(ỹ) and of the method-
specific approximation errors. In practice, pt(ỹ) is unknown. For some models
and methods finite sample or asymptotic results can be computed analytically,
but often simulations from a known constructed pt(ỹ) are used to obtain empir-
ical results of the order of bias.

Variance

var [û] = EDn

[
(û(M |Dn)− EDn

[û(M |Dn)])
2
]

(80)

is a measure of the variability of the estimate û(M |Dn). For some models and
methods finite sample or asymptotic results can be computed analytically, but as
variance does not depend on pt(ỹ), it can also be estimated by different sample
re-use techniques (e.g., Section 5.7.1).

Efficiency can be measured, for example, with the mean square error

eff[û] = EDn

[
(û(M |Dn)− EDūt(M |Dn))

2
]
, (81)

The mean square error will be small when both the bias and the variance are
small.
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In model assessment a large bias is undesirable as it leads to systematically
wrong expected utility estimates. Large variance, in turn, is a signal of unreliable
estimates. Unbiasedness in estimation is often desired, but efficiency can be
considered to be more important in model assessment.

In model selection even a considerable bias may not be a problem. For ex-
ample, a constant bias does not affect model selection in any fashion, so that a
utility estimation method with a large constant bias but a small variance can be
considered to be better than an unbiased one with a large variance. Furthermore,
it has been observed that an estimate biased towards favoring simpler models
can lead to better model selection performance than an unbiased estimate with
a large variance (Cawley and Talbot, 2010). Such a complexity-dependent bias
can be considered as implicit complexity prior information inherent in the model
selection, even though no explicit complexity-related terms were introduced into
the utility function.

The effect of the dependencies in sample re-use Training utility, a sim-
ple M-open sample re-use approach, uses proxy samples for the future data
that are not independent of the observed data, as discussed in section 4.2. The
resulting optimistic bias can be reduced by alternative sample re-use techniques
such as cross-validation (section 5.1) or using a bias correction as in information
criteria (section 5.5). Many of the methods proposed in the literature, however,
do not remove the optimistic bias completely.

The effect of the sample size to the expected utility estimate (learning
curve) Some of the M-open sample re-use based methods (for example, hold-
out and cross-validation approaches) condition the predictions on only part of
the data D to avoid the above-mentioned dependency bias. That is, only m < n
data points are used to compute the predictive distribution. In such cases it
is useful to consider a theoretical construction called the learning curve in the
machine learning literature (see, e.g. Rasmussen and Williams, 2006, Ch 7.).
The learning curve is related to the posterior convergence rate in Bayesian liter-
ature. The learning curve describes the expected predictive performance of the
model given the size of the training data 0 ≤ m ≤ n, where the expectation
is taken over all the possible training datasets generated from pt(ỹ). Usually
the expected predictive performance increases monotonically as m increases. At
any specific m, there is a systematic bias in the expected predictive performance
when compared to results obtained with the full data consisting of n observa-
tions. Moreover, the steepness of the learning curve can vary for models of differ-
ent complexity, so that a comparison between such models with m < n training
data points may not give the same ordering of the predictive performance as
at the n training data points. This bias can be estimated and, for example,
corrected cross-validation estimates have been presented (section 5.1.3).

The effect of model bias In M-completed and M-closed cases and informa-
tion criteria, either M∗ or Mk is used as model for the future data distribution.
In practice, modeling will almost always introduce bias, which may however be
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reasonably small if the model is good. The effect of the deterministic approxi-
mative integration when forming posterior predictive distributions can also be
considered to be part of model bias.

The effect of the data realization The data realization Dn affects the pre-
dictive distribution, but it also affects the estimate of the future data distribu-
tion through p(ỹ|Dn,M∗) and p(ỹ|Dn,Mk) in the M-completed and M-closed
approaches, and through re-used samples in the M-open case. M-open methods
have generally higher variance than M-completed and M-closed methods due
to their high variance in sample re-use (section 4.5). Different models also have
different sensitivity to variations in the data, with more robust models produc-
ing less variable predictions. This effect can not be easily separated from the
overall variation.

The effect of stochastic methods If the construction of the predictive dis-
tribution or expected utility estimate involves stochastic methods, such as Monte
Carlo, this will produce additional variability. This variability can often be re-
duced to be small compared to other variations (see, e.g., Vehtari and Lampinen,
2002).

4.6.2. Consistency

Consistency is often mentioned as a desirable property in model selection. A
consistent model selection procedure will select the “true model” among an ex-
haustive set of candidates as n → ∞. The definition makes sense only when a
true model is assumed (section 3.4.1). As an asymptotic property, consistency
is not that important in a small sample case.

Consistency of model selection procedures is sometimes characterized by
the so-called AIC-BIC dilemma (Yang, 2005). Roughly speaking, the dilemma
means that the model selection methods are efficient either in the sense of pre-
diction, or consistent in the sense of selecting the “true model”. From the maxi-
mum expected utility predictive point of view, efficiency is the more important
property.

Watanabe (2010a) shows that under certain regularity conditions for both
regular and singular models, Bayesian cross-validation (Section 5.1.3) and widely
applicable information criterion (WAIC, Section 5.5) are asymptotically equal
and asymptotically converge to the true utility. Watanabe’s results seem to be
the only current fully Bayesian asymptotic results. However, frequentist non-
asymptotic and asymptotic results (under different regularity conditions) on
model assessment and selection can provide useful tools and hints at corre-
sponding fully Bayesian results.

5. Methods for predictive model assessment and selection

In this Section, we review specific predictive model assessment and selection
methods proposed in the literature within the unifying decision theoretic frame-



184 A. Vehtari and J. Ojanen

work presented in the previous Sections. The methods are divided into the fol-
lowing categories:

• M-open treatment for both ỹ|x̃ and x̃
• M-closed/completed treatment for ỹ|x̃ and M-open for x̃
• M-closed/completed treatment for both ỹ|x̃ and x̃
• Information criteria
• Projection approaches
• Prior predictive or marginal likelihood

Methods that do not fit perfectly into these categories are presented in the
category with the most similar approaches. If x and x̃ are not random quantities
(see Section 4.3), the focus of modelling is solely on the conditional model for ỹ|x̃.
The following notation is used in describing sample re-use methods. An index
set corresponding to all the observations is defined as I = {1, 2, . . . , n}. An index
set Is = {i1, . . . , ij} defines a subset of j observationsD(Is) = {(xi, yi)}i∈Is , and
D(\Is) = {(xi, yi)}i∈I\Is refers to a subset containing the remaining observations
not indexed by Is.

An abbreviation ū ≈ . . . is used to emphasize that we are computing an esti-
mate for some “ideal” quantity such as ū∗(M), ūt(M) or ūtest(M). Also, we aim
to avoid clutter in notation by using the same symbol without spelling out all the
details of the particular method (for example, a reference predictive approach
with the BMA actual belief model for single prediction with deterministic x).

The logarithmic utility function Eq. (8) is used as the default utility function
in the following examples. The logarithmic utility function is used especially
often in model selection methods: on one hand it follows from the Bayesian
decision theoretic considerations (Section 3.1) and on the other hand from the
information-theoretic considerations based on the KL divergence (Section 3.5.2).
The logarithmic forms presented in Fig. 11 are routinely encountered in the
reviewed model selection methods (the terminology follows Watanabe (2009),
while the notation is different).

5.1. M-open treatment for both ỹ|x̃ and x̃

As discussed in Sections 4.1 and 4.2, in the M-open approaches the actual belief
models p(ỹ|x̃, D,M∗) and p(x̃|D,M∗) are not explicitly defined, but instead sam-
ples representing the distribution of the future observations (ỹ, x̃) are assumed
to be available. Although a finite number of samples does not necessarily rep-
resent continuous distributions well, expectations can be estimated often with
sufficient accuracy, as discussed in more detail in Section 4.5. If the dimension-
ality of the data is large compared to the number of observations, it is possible
that a finite number of samples do not cover well the area with a substantial
density, thereby producing less reliable estimates (Jonathan, Krzanowski and
McCarthy, 2000). In practice, in absence of an additional independent sample
it is possible to re-use the observations in D, preferably in a way introducing a
minimal sample re-use bias to the expected utility estimate. Sample re-use meth-
ods are robust in the sense that they are independent of the model assumptions
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Bayes

generalization ūt(Mk|D) =

∫

log p(ỹ|D,Mk)pt(ỹ)dỹ

reference ū∗(Mk|D) =

∫

log p(ỹ|D,Mk)p(ỹ|D,M∗)dỹ

training ūtrain(Mk|D) =
1

n

n
∑

i=1

log p(ẏi|D,Mk)

Gibbs

generalization ūG
t (Mk|D) =

∫
[
∫

log p(ỹ|θk,Mk)p(θk|D,Mk)dθk

]

pt(ỹ)dỹ

reference ūG
∗ (Mk|D) =

∫
[
∫

log p(ỹ|θk,Mk)p(θk|D,Mk)dθk

]

p(ỹ|D,M∗)dỹ

training ūG

train
(Mk|D) =

1

n

n
∑

i=1

∫

log p(ẏi|θk,Mk)p(θk |D,Mk)dθk

Plug-in

generalization ūP
t (Mk|D) =

∫

log p(ỹ|θ̂k(D),Mk)pt(ỹ)dỹ

reference ūP
∗ (Mk|D) =

∫

log p(ỹ|θ̂k(D),Mk)p(ỹ|D,M∗)dỹ

training ūP

train
(Mk|D) =

1

n

n
∑

i=1

log p(ẏi|θ̂k(D),Mk)

Fig 11. Different forms that the logarithmic utility function can take in model selection
problems.

in the predictive model. On the other hand, existing prior information about
the properties of future observations is ignored.

5.1.1. Posterior predictive

In the posterior predictive approach the utility function depending on the pre-
dictive distribution is evaluated at the observations. The “dot-notation” is used
to emphasize that the exact replicates (ẋi, ẏi) of observations (xi, yi) included
in D are considered to be realizations from the future data distribution.

In single prediction each of the n observations is predicted individually. The
estimate for the expected utility is simply the training utility Eq. (68). With
logarithmic utility function the expected utility estimate is

ū ≈ ūtrain(M) =
1

n

n∑

i=1

log p(ẏi|ẋi, D,M), (82)
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and with the squared error loss function the expected loss is estimated by

s̄ ≈ s̄train(M) =
1

n

n∑

i=1

(ẏi − E[ỹ|ẋi, D,M ])
2
. (83)

In simultaneous prediction, all the future observations are treated as a ran-
dom vector, and the prediction results can be different from single prediction
when the joint predictive distribution is not equal to the product of independent
marginal predictive distributions. While it may be reasonable to assume that
the future observations are independent given the model parameters, integrat-
ing over the posterior distribution of the unknown parameters typically results
in dependencies in the multivariate predictive distribution. With logarithmic
utility function the estimated expected utility is given by

ū ≈ log p(ẏ1, . . . , ẏn|ẋ1, . . . , ẋn, D,M) = log p(ẏ(1:n)|ẋ(1:n), D,M). (84)

The replicate sample {(ẋi, ẏi)}ni=1 is not independent of D in Eqs. (82)–(84).
Conditioning the predictive model and evaluating the utility ū with the same
data D = {(xi, yi)} gives over-optimistic results, which are reflected as a bias in
the estimate for the expected utility. Furthermore, out-of-sample performance
cannot be assessed as there is no evaluation outside the observed covariate values
x(1:n) conditioning the predictive distribution.

The amount of optimism depends on how much the inclusion of a single
observation pair (xi, yi) changes the posterior. Thus, if n is very large compared
to the effective number of parameters peff of the model, the optimism may be
negligible. Typically this is not the case with rich models. On the contrary,
complex models tend to fit well to observations. Training utility as a measure
for predictive performance may lead to favoring over-fitting and consequently
selecting maximally complex models, a behaviour that is typically undesirable
for a model selection strategy. Therefore, even if n is large, it is still safer to use,
for example, the hold-out predictive approach (Section 5.1.2), which is equally
simple to implement and has a similar computational burden.

A number of posterior predictive methods have been proposed, even though
lately the posterior predictive approach has not been recommended because of
the disadvantages of using the same data for both training and testing. Well-
known examples of the simultaneous prediction include the posterior Bayes fac-
tor (Aitkin, 1991)

PoBF(M1,M2) =
p(ẏ(1:n)|ẋ(1:n), D,M1)

p(ẏ(1:n)|ẋ(1:n), D,M2)
, (85)

written in a form intended for comparing two candidate models, and the M -
criterion (Laud and Ibrahim, 1995)

M-crit(M) =
(
p(ẏ(1:n)|ẋ(1:n), D,M)

)−1/n
, (86)

which has been scaled to units of a single outcome variable ỹ. Gutiérrez-Peña and
Walker (2001) use the single prediction posterior predictive estimate (Eq. (82))
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for the M-open case. The single prediction training utility appears also as a part
of the widely applicable information criterion (WAIC) (Watanabe, 2010b) and
the simultaneous prediction training utility as a part of a criterion by Ando and
Tsay (2010). These two criteria also include a bias correction for the optimism.

Goodness-of-fit testing with Bayesian posterior predictive p-values (Guttman,
1967; Rubin, 1984; Meng, 1994; Bayarri and Berger, 1999, 2000; Robins, van
Der Vaart and Ventura, 2000) and posterior predictive model checking (Gelman
et al., 1995; Gelman, Meng and Stern, 1996) are examples of using the predic-
tive distribution for model criticism. These approaches are useful for revealing
inconsistencies between a model and data, but they are not recommended for
model selection, because these procedures suffer from the same overfitting to
the observations as the general posterior predictive approach.

5.1.2. Hold-out predictive

Hold-out predictive approach, also known as the validation, test or partial pre-
dictive method, may be seen as a compromise between the posterior predictive
(training utility) and external validation (test utility) approaches discussed in
Section 4.2. The observations are divided into a training set of nt observations,
indexed by It = {i1, . . . , int

}, and a hold-out set of the remaining nh = n − nt

observations indexed by Ih = {int+1, . . . , in}. The training set D(It) is used to
compute the predictive distribution, and the hold-out set D(Ih) is used in eval-
uating the utility. Variations using a very small training set are referred to as
partial methods by O’Hagan and Forster (2004).

In single prediction the estimated expected utility takes the form

ū ≈
1

nh

∑

i∈Ih

log p(yi|xi, D(It),M) (87)

and in simultaneous prediction the form

ū ≈ log p(y(Ih)|x(Ih), D(It),M). (88)

It is evident from these equations that the hold-out predictive approach is equiv-
alent to test error Eq. (63) in the case where a part of the data are held out for
testing the model performance.

The hold-out approach allows for out-of-sample predictions for explanatory
variables x outside the training data. As non-overlapping training set D(It) and
hold-out set D(Ih) can be considered to be independent so that the optimism
of the posterior predictive approach is avoided, but now a learning curve re-
lated bias is introduced as the predictive distribution is conditioned on nt < n
observations. The choice of the split of the data into It and Ih is arbitrary as
there are

(
n
j

)
possible splits. It is reasonable to assume that there is variation in

the expected utility estimate depending on the specific choice for a split. How-
ever, the hold-out method can be considered to be robust if there are enough
observations in both the training and hold-out set.
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The use of separate training and hold-out sets may be considered as decades
old modeling folklore. Recently hold-out method has been used, for example, in
covariate selection by Draper and Fouskakis (2000) with an application-specific
monetary utility function and by Fearn, Brown and Besbeas (2002) with a single
prediction logarithmic utility function, while O’Hagan (2003) gives an example
of a simultaneous prediction with a Mahalanobis distance-type squared error
loss function,

s̄ ≈
(
y(Ih) −mh

)T
V −1
h

(
y(Ih) −mh

)
, (89)

where mh = E
[
ỹ(Ih)|x(Ih), D(It),M

]
is the mean of the joint hold-out predic-

tive distribution for ỹ(Ih) and Vh = Cov
[
ỹ(Ih)|x(Ih), D(It),M

]
is the covariance

matrix.

5.1.3. Cross-validation predictive

Cross-validation (CV) methods for model assessment and comparison have been
proposed by several authors: for early accounts see Stone (1974); Geisser (1975)
and for the Bayesian cross-validation see Geisser and Eddy (1979); Gelfand,
Dey and Chang (1992); Gelfand and Dey (1994); Bernardo and Smith (1994);
Gelfand (1996). In the following we consider some of the most common CV ap-
proaches for Bayesian model selection. Many related variations and their prop-
erties in are reviewed by Arlot and Celisse (2010) in a non-Bayesian context.

Cross-validation can be considered to be an extension of the hold-out ap-
proach. The basic idea in the cross-validation approaches is to split the data
into cross-validation sets indexed by I1, . . . , IK . Each data subset D(Ik) is used
as a validation set in turn, while the remaining sets form a training set D(\Ik).
In Bayesian setting it is desirable that the training sets D(\Ik) are as similar to
D as possible, which leads naturally to leave-one-out (LOO) CV.

Robustness is an advantage of the cross-validation approaches: the double use
of data is not as severe as in the posterior predictive approach, as the same obser-
vations are never used simultaneously for training and evaluating the expected
utility. Cross-validation methods also estimate the out-of-sample predictive per-
formance. A major setback in CV is the larger computational burden than in the
posterior or hold-out predictive approaches, although different approximations
can be used to reduce the computational cost.

LOO-CV The leave-one-out cross-validation is a CV variant where each ob-
servation takes the role of the validation set in turn, which leads to a natural
single prediction approach. With logarithmic utility function the expected util-
ity estimate is given as

ū ≈ ūLOO(M) =
1

n

n∑

i=1

log p(yi|xi, D(\i),M), (90)



Bayesian predictive methods for model assessment and selection 189

and with squared error loss function as

s̄ ≈ s̄LOO(M) =
1

n

n∑

i=1

(
yi − E[ỹ|xi, D(\i),M ]

)2
, (91)

where

p(ỹ|xi, D(\i),M) =

∫
p(ỹ|xi, θ,M)p(θ|D(\i),M)dθ (92)

is the leave-one-out predictive density.
Watanabe (2010a) assumes a true model under fairly general regularity con-

ditions for both D and ỹ and shows that the logarithmic LOO-CV utility is
unbiased in the sense that for regular and singular statistical models p(y|M) the
expected logarithmic LOO-CV utility is asymptotically equal to the expected
true utility in single prediction (expectation taken over all training datasets).
With finite data the error is of order o(1/n), so that when n is not very small,
LOO-CV can be considered as nearly unbiased.

However, in model selection the selection induced bias (Section 4.4) makes
the expected utility estimate of the selected model biased even when using
the (nearly) unbiased CV-estimates. The model selection induced bias can be
taken into account by the double/nested/2-deep cross-validation (e.g. Stone,
1974; Jonathan, Krzanowski and McCarthy, 2000) or making an additional bias
correction (Tibshirani and Tibshirani, 2009).

The computational burden of the LOO-CV approach can be overwhelming es-
pecially with large datasets, as the posterior distribution of the parameters must
be computed separately for each of the n LOO-CV predictive distributions. For
certain models such as linear models and Gaussian processes with fixed hyper-
parameters the LOO-CV utility can be computed analytically if the observation
model is Gaussian (see, e.g., Shao, 1993; Orr, 1996; Peruggia, 1997; Sundarara-
jan and Keerthi, 2001) or approximated efficiently with expectation propaga-
tion (Opper and Winther, 2000; Rasmussen and Williams, 2006) or Laplace
approximation (Held, Schrödle and Rue, 2010). In a more general case the num-
ber of required computational operations can be reduced, for example, with
importance-sampling (IS) LOO-CV or k-fold CV.

IS-LOO-CV Importance sampling leave-one-out cross-validation by Gelfand,
Dey and Chang (1992) is a computationally efficient way of approximating the
LOO-CV with Monte Carlo sampling. In a straightforward Monte Carlo ap-
proach, the LOO predictive density can be approximated as

p(ỹ|x̃, D(\i),M) =

∫
p(ỹ|x̃, θ,D(\i),M)p(θ|D(\i),M)dθ

≈
1

T

T∑

t=1

p(ỹ|x̃, θ(\i),t, D(\i),M), (93)

where θ(\i),t are samples from the leave-one-out posterior p(θ|D(\i),M). Instead
of sampling from the LOO-posteriors for each i separately, the IS-LOO-CV ap-
proach uses the full posterior p(θ|D,M) as an importance sampling distribution
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for each p(θ|D(\i),M). In short, this means that the samples θt from the full
posterior can be weighted using importance sampling weights

p(θt|D(\i),M)

p(θt|D,M)
∝

1

p(yi|xi, θt, D(\i),M)
= w(\i),t. (94)

The expected utility estimate is then given by

ū ≈ ūIS-LOO(M) =
1

n

n∑

i=1

log

(
T∑

t=1

w(\i),tp(yi|xi, θt,M)
∑T

t=1 w
(\i),t

)
(95)

=
1

n

n∑

i=1

log

(
1

1
T

∑T
t=1

1
p(yi|xi,θt,M)

)
. (96)

General conditions of the convergence of the importance sampling are given
by Geweke (1989). The reliability of the importance sampling can be estimated
by examining the variability of the importance weights. For simple models the
variance of the importance weights may be computed analytically. For exam-
ple, the necessary and sufficient conditions for the variance of the case-deletion
importance sampling weights to be finite for a Bayesian linear model are given
by Peruggia (1997). Epifani, MacEachern and Peruggia (2008) extend the re-
sults and provide analytical results for generalized linear models and Michaelis-
Menton models to assess whether the estimators satisfy a central limit theorem.
In the general case, an efficiency estimate of the importance sampling can be
computed from the obtained weights (see Newton and Raftery, 1994; Gelman
et al., 1995, ch. 10; Peruggia, 1997; Vehtari and Lampinen, 2002), but this ap-
proach can not prove convergence.

Most often resampling in IS-LOO-CV is made with replacement. Gelman
et al. (1995) and Stern and Cressie (2000) recommend resampling without re-
placement to reduce the variance due to highly variable importance weights.
Skare, Bølviken and Holden (2003) show that resampling without replacement
gives a smaller total variance error.

Bhattacharya and Haslett (2007) describe a useful variation of IS-LOO-CV
for inverse problems (they also use resampling without replacement). The tails of
the full posterior are usually thinner than the LOO posterior tails, Bhattacharya
and Haslett (2007) propose to use one of the LOO distributions as importance
distribution and propose ways to measure which of the LOO distributions would
be central, that is, close to every other LOO distribution. The same idea could
be used for forward models to improve the importance sampling.

Bornn, Doucet and Gottardo (2010) improve reliability by using sequential
Monte Carlo and tempered sequence of distributions from the full posterior to
the leave-one-out posteriors.

Plummer’s (2008) penalized loss function method uses the IS-LOO-CV ap-
proach with the Gibbs log-score.

k-fold-CV In the k-fold-CV approach the data are split into k ≪ n subsets, or
folds, (usually k ∼ 10), each of which is in turn used as the validation set while
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the remaining data are used for model training. The k-fold-CV can be used to
reduce the computation time in single prediction, as only k posterior evaluations
are needed instead of n in the LOO-CV. The expected utility estimate of the
k-fold CV is given by

ū ≈ ūk-CV(M) =
1

n

n∑

i=1

log p(yi|xi, D(\Ik(i)),M), (97)

where k(i) refers to indices of observations in the same CV fold as the observation
(yi, xi).

The k-fold-CV is always conditioned on less than n observations, which leads
to a biased expected utility estimate. The bias can be estimated and a corrected
CV estimate can be computed (e.g., Burman, 1989; Fushiki, 2011).

Splitting the data in different ways leads to variability in the results (e.g.
Chakrabarti and Ghosh, 2007; Arlot and Celisse, 2010) which, however, may
be small compared to other variabilities (Vehtari and Lampinen, 2002). The
variability due to a specific data-split can be reduced by computing all the
possible data splits or repeating the data splitting randomly and averaging the
results. This is rarely done due to the resulting increase in computation time.

The sampling error for k-fold-CV can be estimated (e.g., Dietterich, 1998)
by first computing the expected utility for each fold

ū(j) =
1

nj

∑

i∈Ij

log p(yi|xi, D(\Ij),M), j = 1, . . . , k, (98)

where Ij are the nj indices in the jth fold, and then by a variance estimate

V̂ar(u) =
1

k − 1

k∑

j=1

(
ūk-CV − ū(j)

)2
. (99)

Compared to Eqs. (74)–(76) the ū(j)’s are closer to Gaussian, but a drawback
is an increased variance in the variance estimate itself.

The k-fold-CV can be used for block simultaneous prediction (nblock < n), but
similarly as with any CV approach, full simultaneous prediction is not possible.
Block simultaneous prediction can be useful for hierarchical models.

For time series with unknown finite range dependencies, the k-fold-CV can be
combined with the h-block-CV proposed by Burman, Chow and Nolan (1994).
Instead of just leaving the ith point out, additionally a block of h cases from
either side of the ith point is removed from the training data for the ith point.
The value of h depends on the dependence structure, and it could be estimated
for example from autocorrelations. Burman and Nolan (1992) show that h = 0
could be used in the case of stationary Markov process and squared error loss
function (or a utility well approximated by a quadratic form) (see also Akaike,
1973). However, in real world problems the exact properties of the process are
usually not known. The approach could also be applied in other models with
finite range dependencies (e.g., spatial models), by removing a block of h cases
from around the ith point.
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Other variations Other variations of CV have been proposed to achieve spe-
cific desirable properties. In non-Bayesian settings smaller training datasets are
often useful. Sometimes it is desired that D(\Ik) would be as independent as
possible, to simulate the effect of conditioning on an unknown dataset Dn in
Equation (60). In such cases, specific cross-validation or bootstrap methods can
be used. Using smaller training sets is sometimes combined with exhaustive,
repeated, Monte Carlo or balanced incomplete design data splitting to reduce
the random splitting variance (e.g., Dietterich, 1998; Nadeau and Bengio, 2000;
Arlot and Celisse, 2010). Taking the expectation over the training datasets has
also been proposed as an answer to the question “Given two learning methods A
and B and training data D, which method will produce a more accurate model
when trained on new training data Dn of the same size as D?” (Dietterich,
1998). An extreme case in machine learning is to use completely independent
training and validation sets, which requires large amounts of data (Rasmussen
et al., 1996; Neal, 1998).

Smaller training sets produce a bias which depends on the training set size
and the learning curves of the models. This bias provides additional penalty
for more complex models which may be helpful in model selection if no other
penalty or prior favoring simpler models is used (Arlot and Celisse, 2010).

To our best knowledge, there is not yet an asymptotic consistency result for
the Bayesian cross-validation in model selection, but results from non-Bayesian
literature (Yang, 2005, 2007; Arlot and Celisse, 2010) imply that the usual
Bayesian LOO-CV would not be consistent, although an alternative Bayesian
CV could be constructed which could be consistent with the sufficient condition
depending on the convergence rates of the models and the asymptotic data
division.

5.1.4. Approximative CV for hierarchical models

The computational burden of the LOO-CV can be alleviated with the approxi-
mative approaches in hierarchical models, where the full posteriors conditional
on the full data D are used in some levels of the models instead of the cross-
validation posteriors.

Cross-validation of only lower level in hierarchical model Consider a
case of a hierarchical model in which the observation depends on a latent value
and hyperparameters according to a model p(yi|fi, θ). The parameters of the
model have a joint prior p(f , θ) = p(f1, . . . , fn, θ). For some models such as the
Gaussian process the LOO-CV density

p(yi|xi, D(\i), θ,M) =

∫
p(yi|fi, θ,M)p(fi|xi, D(\i), θ,M)dfi (100)

conditioned on the hyperparameters can be either computed analytically or
approximated efficiently, for example, with expectation propagation or Laplace
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approximation. The full LOO-CV predictive density follows from integrating
over the LOO-posterior of the hyperparameters. Instead, an approximation

p(yi|xi, D(\i),M) =

∫
p(yi|xi, D(\i), θ,M)p(θ|D(\i),M)dθ

≈

∫
p(yi|xi, D(\i), θ,M)p(θ|D,M)dθ (101)

can be used. In the approximation the posterior distribution of the hyperparam-
eters p(θ|D,M) is computed using all data, but the hyperparameter-conditioned
predictive distributions are computed using D(\i). This computation time saving
approximation is a reasonable alternative if removing (xi, yi) has only a small
impact on p(θ|D,M) but a larger impact on p(yi|xi, θ,D,M).

Ghosting Another example of a mixed CV and posterior predictive approach
is the ghosting approach by Marshall and Spiegelhalter (2003) who consider
hierarchical models and predictive p-value checks to compare whether observed
values are in the extreme tails of the predictive distributions. For latent variable
models the LOO predictive density can be written as

p(yi|xi, D(\i),M) =

∫
p(yi|xi, fi, θ,M)p(f, θ|D(\i),M)dθdf. (102)

Marshall and Spiegelhalter approximate the second term in the integral to get

p(yi|xi, D(\i),M) ≈

∫
p(ẏi|ẋi, fi, θ,M)p(fi|f\i, θ,M)p(f\i, θ|D,M)dθdf,

(103)

where ẋi and ẏi are exact replicates as xi and yi are included in D. Data are
used twice, but the bias is smaller than in the posterior predictive approach as
yi does not directly affect fi.

5.2. M-closed/completed treatment for ỹ|x̃ and M-open for x̃

Predictive methods with an explicit model for the conditional part p(y|x) and a
sample re-use approach for p(x) are close to the full M-closed/completed treat-
ment while avoiding the difficulty in modeling the distribution of x. Many of the
methods in this section deviate from the full M-closed/completed treatment for
p(y|x), but still they use at least partially an explicit model for the conditional
part p(y|x).

5.2.1. Reference predictive

In the M-closed and M-completed views beliefs about future observations given
the explanatory variables are represented by the actual belief model p(ỹ|x̃, D,M∗).
The common term reference model is used for all the various definitions of the
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actual belief model M∗, and the following model selection approaches can be
grouped together under the heading of reference predictive methods. The refer-
ence predictive approach takes different forms depending not only on the utility
function but more importantly on the reference model M∗, which can be an
encompassing model, a full model including all the explanatory variables, the
Bayesian model average predictive model, or a non-parametric model.

For example, with logarithmic utility function the expected utility in single
prediction is

ū ≈ ū∗(Mk) =
1

n

n∑

i=1

∫
log p(ỹ|ẋi, D,Mk)p(ỹ|ẋi, D,M∗)dỹ (104)

and in simultaneous prediction

ū ≈ ū∗(Mk) =

∫
log p(ỹ(1:n)|ẋ(1:n), D,Mk)p(ỹ(1:n)|ẋ(1:n), D,M∗)dỹ. (105)

The expected utility of each candidate model Mk is computed with respect
to the reference model M∗ serving as a common yardstick for comparing the
predictive performance of the competing models. From the Eqs. (9) and (11)
it is clear that the maximization of the expected logarithmic utility function
corresponds to minimizing the Kullback-Leibler divergence

dKL {p(ỹ|ẋ, D,M∗), p(ỹ|ẋ, D,Mk)} =

∫
log

p(ỹ|ẋ, D,M∗)

p(ỹ|ẋ, D,Mk)
p(ỹ|ẋ, D,M∗)dỹ

(106)

from the reference model M∗ to a candidate model Mk. In other words, the
reference predictive approach in model selection equals to searching for a can-
didate model with the predictive distribution similar to the reference model.
Corresponding (unconditional) squared error loss function results can be found
in Section 3.3.1.

In order to estimate the out-of-sample performance at locations x̃ not nec-
essarily included in the training sample (x1, . . . , xn) cross-validation predictive
densities could be used instead of posterior predictive densities used in Eq. (104).

If the reference model does not describe the future data sufficiently well, it is
obvious that the expected utility estimates are likely to be biased. Also, if the
reference model has already been overfitted to the training data, the selection
process favors also overfitted models. However, the reference predictive model
selection process itself does not cause additional fitting to the data, as the
degree of fit to the data is determined by the reference model. That is, there is
no selection induced bias in the reference predictive approach, which has been
demonstrated by Vehtari and Lampinen (2004).

If the goal is to discover a simple model, an additional cost ck for model
complexity can be included in the utility function. Without penalty for the
complexity, the model maximizing the utility would be the reference model it-
self. Instead of adding an additional cost for model complexity, it is also possible
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to choose the simplest model for which expected utility is not practically sig-
nificantly different from the expected utility of the reference model. Practical
significance can be based on expert information or calibration of the expected
utility (Section 5.7.2).

BMA reference model In the Bayesian predictive criterion by San Martini
and Spezzaferri (1984) the reference model is the Bayesian model average, so
that the expected utility in single prediction for model Mk is given by

ū∗(Mk) =
1

n

n∑

i=1

∫
log p(ỹ|ẋi, D,Mk)pBMA(ỹ|ẋi, D)dỹ. (107)

The criterion requires assigning priors to the set of possible models {Mk}
K
k=1,

and computing the BMA predictive density.
BMA as the reference model has been criticized by an argument that set-

ting a prior on the model space requires assuming that one of the models is
the true model, that is, assuming the M-closed view. However, from the M-
completed point of view averaging over models in the BMA predictive density is
analogous to integrating over continuous parameters: what matters is whether
the predictive model is rich enough to describe actual beliefs about the future
observations.

Encompassing reference model Ibrahim and Laud (1994) and Laud and
Ibrahim (1995) consider explanatory variable selection with a designed x and a
replicated experiment (Section 4.3). For a reference model they propose the en-
compassing model (all covariates included) or the intercept model (no covariates
included).

Instead of the logarithmic utility function equivalent to the KL divergence
from the actual belief model to the candidate model they proposed the K-
criterion

K-crit(Mk) = dKL {p(ỹ|ẋ, D,M∗), p(ỹ|ẋ, D,Mk)}

+ dKL {p(ỹ|ẋ, D,Mk), p(ỹ|ẋ, D,M∗)} . (108)

The second term in the sum of the two Kullback-Leibler divergences corresponds
to the estimation of the expected utility of the reference model M∗ with respect
to each candidate model Mk. As there is usually less confidence in the candidate
models being accurate descriptions for the future observations, the K-criterion
is not so much a useful measure of the predictive performance of the candidate
models, but more a measure of how different predictions the models M∗ and Mk

make.

Non-parametric reference models Various non-parametric models – ob-
tained by setting a specific prior on a function space – are often chosen as ref-
erence models. Simpler parametric models, for example, the candidate models,
can be expanded into non-parametric models in order to obtain a rich enough
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model to serve as a reference model. Gutiérrez-Peña (1997) proposed to use a
Gaussian process model centered on one of the candidate parametric models
and Trottini and Spezzaferri (2002) proposed a mixture of Gaussian processes
each centered on a different model as the reference model. The likelihood in a
Gaussian process model is usually parametric, and the term semiparametric is
sometimes used for such a combination of non-parametric and parametric mod-
els. However, the likelihood could also be non-parametric or some other fully
non-parametric model could also be used.

A fully non-parametric model is not automatically a good reference model.
For example, Gutiérrez-Peña and Walker (2001) propose a Dirichlet process as a
non-parametric model reference model; the expectation of this non-informative
fully non-parametric model equals to the single prediction posterior predictive
estimate (Eq (82)). Gutiérrez-Peña and Walker (2005) proposed a Dirichlet pro-
cess mixture in a related projection approach (see section 5.4) and Karabatsos
(2006) proposed a Polya tree model. Both of the latter approaches, while pre-
sented only for predicting one-dimensional data, are improvements to the non-
informative Dirichlet process as there is a positive probability for also other
points than the observed ones.

5.2.2. Mixed reference and posterior predictive

Gutiérrez-Peña and Walker (2001) proposed to use a mixture of the BMA model
and the Dirichlet process model. In their approach the resulting expected utility
estimate is a weighted average of the posterior predictive expected utility esti-
mate and the reference predictive estimate. The weighting is selected by the user.
Gutiérrez-Peña and Walker propose how the weighting can be chosen based on
prior predictive distributions, given that proper priors have been specified.

5.2.3. Self predictive

In the reference predictive approach the models are compared with respect to
a common reference model M∗. In the self predictive approach this common
yardstick is not available, and the candidate models are assessed based on their
own predictive properties as described in Section 3.2.

For example, Bernardo and Bermúdez (1985) describe a self predictive ap-
proach. The single prediction expected utility with the logarithmic utility func-
tion for any candidate model Mk is given as

ū ≈ ūk(Mk) =
1

n

n∑

i=1

∫
p(ỹ|ẋi, D,Mk) log p(ỹ|ẋi, D,Mk)dỹ, (109)

which can be seen to be equivalent to the negative differential entropy of the
predictive distribution. Maximizing this utility with respect to models is equiv-
alent to finding a model with minimum predictive entropy. The corresponding
(unconditional) squared error loss function results can be found in Section 3.1.2.
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Similarly as in the reference predictive approach the cross-validation predictive
densities could be used in order to take into account the out-of-sample perfor-
mance at locations x̃ not necessarily included in D.

Using the model-conditioned predictive distribution p(ỹ|x̃, D,Mk) as a belief
model for the future data results in a smaller variance for the expected utility
estimate for the said model. The dependence on the adequacy of the model
makes the self predictive approach highly sensitive to model assumptions, which
emphasizes the importance of model criticism. For example, if candidate models
include a model with a zero variance predictive distribution, the self predictive
approach will choose that model.

Gneiting, Balabdaoui and Raftery (2007) discuss measuring the sharpness
(concentration) of the predictive distribution and recommend checking the cal-
ibration (statistical consistency) between the predictive distribution and the
observations, a form of model criticism. Model criticism and checking based on
the posterior predictions and the data may detect some problems, but severely
overfitted models may seem to be posterior calibrated and provide very sharp
predictions. For example, in classification with flexible models, it is possible
that a model can give class probabilities very close to one with seemingly good
calibration.

In the predictive entropy approach by Corander and Marttinen (2006), the
posterior expectation of conditional predictive entropy is taken for each model

ū ≈

∫∫
p(ỹ|x̃, θ,Mk) log p(ỹ|x̃, θ,Mk)p(θ|D,Mk)dỹdθ. (110)

Corander and Marttinen (2006) consider only unconditional models (without
explanatory variables x) and use the Gibbs utility form to make the calculations
easier.

5.2.4. Mixed self and posterior predictive

There is no inherent safeguard against poor fit in the self predictive approach:
the self predictive expected utility estimate is maximized with as narrow a
predictive distribution as possible. Several authors have proposed methods in
which the closeness to observations is included into the utility function to satisfy
an informal goal of obtaining predictions close to the actual observations.

L-criterion The L-criterion (Ibrahim and Laud, 1994; Laud and Ibrahim,
1995) is based on assuming a designed x, a replicated experiment and a squared
error loss function

L2(Mk) = Eỹ

[
(ỹ − y)T (ỹ − y)|ẋi, D,Mk

]
(111)

=

n∑

i=1

Eỹ

[
(yi − ỹ)

2 |ẋi, D,Mk

]
. (112)
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The difference from the posterior predictive squared error, Eq. (83), is the ex-
pectation of the squared error taken over ỹ instead of using expectation of ỹ as
the prediction. Given the loss function the L-criterion is defined as

L-crit(Mk) =
√
L2(Mk), (113)

which is scaled to have the same units as the outcome variable. Eq. (112) can
be decomposed as

n∑

i=1

(yi − E[ỹ|ẋi, D,Mk])
2
+

n∑

i=1

Var[ỹ|ẋi, D,Mk], (114)

where we see that there is no difference between simultaneous and single pre-
diction due to the form of the loss function. In the L-criterion literature the
focus is in model selection; how to use the selected model for prediction is not
discussed. If the expectation Eỹ|ẋi,D,Mk

[ỹ] is used for prediction the L-criterion
corresponds to an expected utility estimate with a form of squared distance
between the mean of the predictive distribution and the observation (the pos-
terior predictive part) plus the predictive variance (the self predictive part). In
model comparison, L-criterion penalizes the more complex model asymptoti-
cally with penalty halfway between the posterior predictive approach and the
cross-validation predictive approach (Ibrahim and Laud, 1994), which is natural
as the L-criterion is a sum of posterior and self predictive estimates.

Ibrahim and Chen (1997) presented two multivariate version of L-criteria,

L-critm(Mk) = |Rm|1/2p (115)

L-crit-Jm(Mk) = (tr(Rm))1/2 (116)

where | · | denotes determinant, p is dimension of y, and

Rm =

n∑

i=1

{
(E[ỹi|ẋi, D,Mk]− yi) (E[ỹi|ẋi, D,Mk]− yi)

T
+Cov[ỹi|ẋi, D,Mk]

}
.

(117)

Meyer and Laud (2002) presented how to estimate the L-criterion for gener-
alized linear models.

Posterior predictive criterion Gelfand and Ghosh (1998) discuss single
prediction involving a choice of the optimal point prediction for the future
observation. For a given model M the optimal point prediction follows from
maximizing the expected utility

âi = argmax
ai

{E [u(ỹi, ai) + ku(yi, ai)|D,Mk]} , (118)

where k is a parameter controlling the relative importance of the two terms in
the utility function; u(ỹi, ai) measures the utility for predicting the future ob-
servations modeled with the predictive distribution of model Mk, and u(yi, ai)
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gives the utility of predicting the observed data. The resulting optimal point
prediction is designed to be close to both the future and observed data. Deter-
mining the optimal point prediction is an integral and non-trivial part of the
approach.

Although the utility function can be of any shape, Gelfand and Ghosh (1998)
discussed the squared error loss function in detail, as it gives analytic results.
The single prediction expected loss is given by

Dk(M) =
n∑

i=1

min
ai

E [u(ỹi, ai) + ku(yi, ai)|D,M ] (119)

=
k

k + 1

n∑

i=1

(yi − E[ỹ|ẋi, D,M ])
2
+

n∑

i=1

Var[ỹi|ẋi, D,M ], (120)

where the optimal point prediction is ai = 1
k+1 E[ỹ|ẋi, D,M ] + k

k+1yi. In the
limit k → ∞, Dk(M) becomes the L-criterion (Section 5.2.4) with a rather
unconventional prediction ai = ỹi. When k = 0, the criterion reduces to the
sum of marginal predictive variances with a point prediction ai = E[ỹ|ẋi, D,M ],
which is same as the self-predictive approach (Section 5.2.3).

Sinha, Chen and Ghosh (1999) suggest using k = 1 giving an equal weight
for the terms in Eq (118). The optimal point prediction at any observed ẋi is
ai = 1

2 E[ỹ|ẋi, D,M ] + 1
2yi, which is halfway between the posterior mean and

the observation. If, contrary to the derivation of the criterion, the posterior ex-
pectation E[ỹ|ẋi, D,M ] is used as a point prediction, the expected loss estimate
becomes the posterior predictive estimate divided by two plus the self predictive
estimate.

Ibrahim, Chen and Sinha (2001) adopt the squared error criterion by Gelfand
and Ghosh (1998), calling it the L-measure. They write ν = k/(k+1) and show
that in covariate selection for linear models with orthogonal covariates and a
conjugate prior the true model achieves on average the smallest L-measure when

compared to other candidate models if 1
2+σ2

0
< ν < ν

1+σ2
0

2+σ2
0
. Ibrahim, Chen and

Sinha (2001) used value ν = 1/2 in their experiments.
Gelfand and Ghosh (1998) also discuss the logarithmic utility function and

exponential family models with the location parameter as the point prediction.
Ibrahim, Chen and Sinha (2001) used the L-measure with generalized linear
models following Meyer and Laud (2002).

Chen, Dey and Ibrahim (2004) proposed a weighted quadratic loss L-measure
for generalized linear models and especially for the categorical data models

L =

n∑

i=1

∫
Li

Var[ỹi|wiẋi, θ,D,M ]
p(θ|D,M)dθ, (121)

where the Li-measure for each i is divided by the conditional predictive variance,
with an additional ad hoc weighting wi for ẋi, and the expectation is taken over
the posterior of θ. When the predictive variances are not equal, normalizing by
the predictive variance, makes the loss to better approximate the logarithmic
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loss. Chen, Dey and Ibrahim (2004) do not give any explanation for the need
of introducing weighting wi, but report that their loss measure is robust in the
range 0.3 ≤ wi ≤ 0.6 and 0.4 ≤ ν ≤ 0.6.

5.2.5. Mixed self and cross-validation predictive

Mitchell and Beauchamp (1988) proposed a predictive error based on a squared
error loss function and cross-validation

PE =

√√√√(1/n)

n∑

i=1

E[yi − ỹi]2, (122)

where the expectation is over the CV predictive density p(ỹi|xi, D(\i),Mk). PE
is a cross-validation version of the L-criterion (section 5.2.4) and Lq-criterion
by Marriott, Spencer and Pettitt (2001) is equal to cross-validation version of
the L2-criterion. The decomposed form of PE2 and Lq

PE2 =
1

n

n∑

i=1

{(
E[ỹi|D(\i)]− yi

)2
+Var[ỹi|D(\i)]

}
(123)

is composed of the squared distance between the mean of the leave-one-out pre-
dictive distribution and the observation (cross-validation predictive estimate)
plus the leave-one-out predictive variance (cross-validation self predictive esti-
mate) (compare to Eq. (114)). A similar mixed self and cross-validation predic-
tive estimate could be formed for the logarithmic utility function.

5.2.6. Mixed reference and self predictive

Young (1987a) proposed for covariate selection a predictive criterion based on
a weighted sum of the reference predictive and the self predictive squared error

E
[
(ỹ − E[ỹ|D,Mk])

2|D,M∗

]
+ wVar[ỹ|D,Mk], (124)

where M∗ is the full model consisting of all the explanatory variables. Young
proposed to analyse the sensitivity of selection with regard to w, but the final
choice is based on an ad hoc choice of which part of the criterion is decided to
be more important.

5.3. M-closed/completed treatment for ỹ|x̃ and x̃

In the full M-closed/completed approach, the explanatory variables are explic-
itly modeled. For example, a parametric prior model p(x|ϕ,M∗)p(ϕ|M∗) inde-
pendent of the other model parameters and the outcome variable y leads, via
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a standard Bayesian treatment, to the predictive distribution for an unknown
future explanatory variable

p(x̃|x(1:n),M∗) =

∫
p(x̃|ϕ,M∗)p(ϕ|x(1:n),M∗)dϕ. (125)

The predictive distribution can be now used as a reference model p(x̃|D,M∗)
for the future explanatory variables. For example, for the logarithmic utility
function the expected utility is

ū∗(Mk) =

∫∫
log p(ỹ|x̃, D,Mk)p(ỹ|x̃, D,M∗)p(x̃|D,M∗)dỹdx̃. (126)

If the model p(x̃|D,M∗) is an accurate description of the future observations,
the variance of the expected utility estimate is smaller than in the sample re-use
approaches. However, in a typical case the modeling of explanatory variables is
difficult; this is the usual reason for using conditional models in the first place.

In the context of variable selection in linear regression, Lindley (1968) forms
models p(x̃|ϕ,M∗) and p(ỹ|x̃, θ,D,M∗) and the corresponding predictive distri-
butions p(x̃|M∗) and p(ỹ|x̃, D,M∗). The actual belief model M∗ is the encom-
passing model with all the covariates included. Lindley conditions the inference
on all observed covariates in D and makes the selection of which covariates will
be measured in the future, so that

p(ỹ|x̃k, D,M∗) =

∫
p(x̃|x̃k,M∗)p(ỹ|x̃, D,M∗)dx̃, (127)

where p(x̃|x̃k,M∗) is obtained from the joint prior distribution p(x̃|M∗). Lindley
used a Gaussian model for p(x̃|M∗), a Gaussian linear model with known noise
variance σ2 for p(ỹ|x̃, D,M∗), non-informative priors and a squared error loss

Eỹ,x̃

[
(ỹ − E[ỹ|x̃k, D,M∗])

2 |D,M∗

]
. (128)

With these choices the predictive distribution of the submodel simplifies to a
regular submodel conditioned on the selected covariates, that is

p(ỹ|x̃k, D,M∗) = p(ỹ|x̃k, Dk,Mk). (129)

In this case, Lindley’s approach is a reference predictive approach with a para-
metric model for p(x̃|M∗) and p(ỹ|x̃,M∗). Due to canceling terms the specific
form of p(x̃|M∗) is not important when computing the expected difference to
the reference model as knowing the covariance of the posterior predictive distri-
bution for x̃ is sufficient.

Lindley’s approach has been extended to multivariate y and a non-conjugate
prior by Brown, Fearn and Vannucci (1999) and to BMA reference and candidate
models with conjugate prior by Brown, Vannucci and Fearn (2002), and used
for multivariate y and a conjugate prior by Vannucci, Brown and Fearn (2003).
Brown, Vannucci and Fearn (2002) and Barbieri and Berger (2004) presented
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also a version with a BMA reference model corresponding to the BMA refer-
ence predictive approach by San Martini and Spezzaferri (1984), except that
Brown, Vannucci and Fearn and Barbieri and Berger use squared error and in-
tegrate analytically over the predictive distribution of x̃ (again for model selec-
tion the determination of the covariance of the posterior predictive distribution
for x̃ is sufficient). If the covariates are orthogonal, the best single model ac-
cording to this criterion is the median probability model, that is, the model
including the variables having the marginal posterior probability greater than
or equal to 1/2 (Barbieri and Berger, 2004).

Fearn, Brown and Besbeas (2002) use a generative mixture model and one of
their proposed approaches uses simulated replicate observations from the joint
p(x̃, ỹ|M∗) = p(ỹ|M∗)p(x̃|ỹ,M∗), where p(x̃|ỹ,M∗) is a multivariate normal.

5.4. Projection methods

In projection methods, the predictive properties of a reference model are pro-
jected onto a candidate model. The definition of the decision problem and the
structure of the candidate model together determine which properties of the
reference model are reflected in the resulting projection.

A major difference between the reference predictive approaches and the pro-
jection approaches is that a full prior specification is required only for the actual
belief model M∗. Values for (at least some) of the unknown parameters of the
candidate models are determined by the optimal projection. For example, in
variable selection, information (or equivalently, uncertainty) about parameters
related to explanatory variables included in the actual belief model but not in
the candidate model may be projected onto parameter estimates related to the
explanatory variables included in the candidate model. Thus, relevant predictive
properties of the actual belief model may be partially conserved in the candi-
date models, even if the candidate model specification cannot take into account
these aspects (for example, explanatory variables not included in the candidate
model).

Predictive parametric point estimation Leamer (1979), commenting the
use of information criteria for covariate selection in linear regression, presented
a Bayesian predictive point estimation (Section 3.4.1) solution where the sub-
model parameters are obtained by minimizing the expected KL-divergence loss
function (following the information criteria ideas) from the actual belief model
to a submodel, with the expectation taken over the posterior distribution of the
unknown parameters of the actual belief model. Leamer illustrated the idea with
a linear subspace projection (dimensionality reduction) of multivariate Gaus-
sian with an unknown mean and a diagonal covariance. The result for the linear
model parameters is the usual least squares result.

Tran, Nott and Leng (2011) proposed a Lasso-type (Tibshirani, 1996) pre-
dictive point estimation approach for variable selection in generalized linear
models. The predictive Lasso of Tran, Nott and Leng is formulated directly by
the predictive distributions as in Section 3.3.2.
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Predictive posterior approximation Lacoste-Julien, Huszár and Ghahra-
mani (2011) present the general idea of predictive posterior approximation (pos-
terior projection q(θk) in Section 3.4.1), which they refer to as loss-calibrated
posterior approximation. As examples Lacoste-Julien, Huszár and Ghahramani
consider Gaussian process regression with a Gaussian likelihood and a squared
error loss function and Gaussian process classification with a probit likelihood
and asymmetric binary loss. For a practical implementation the authors pro-
pose a suboptimal expectation maximization algorithm minimizing a variational
lower bound. The proposed loss-calibrated expectation maximization algorithm,
however, requires several approximations and according to authors, is closer to
the variational type KL-divergence dKL {q(θ), p(θ|D,M∗)}, which could explain
why the experimental results are inferior to predictions from expectation prop-
agation posterior approximation.

The predictive posterior approximation is different from many parametric
posterior approximation approaches, such as Laplace approximation (Tierney
and Kadane, 1986), variational bound (Jordan et al., 1999; Jaakkola, 2001) and
expectation propagation (EP) (Minka, 2001), in the sense that the predictive
posterior approximation is determined directly through the predictive proper-
ties of the actual belief model, and not by matching the posterior distributions
of model parameters. As a side note, although EP directly matches posterior
distributions, it has been shown experimentally to give good predictions (Nick-
isch and Rasmussen, 2008; Vanhatalo, Pietiläinen and Vehtari, 2010; Jylänki,
Vanhatalo and Vehtari, 2011).

Parametric projections Goutis and Robert (1998) and Dupuis and Robert
(1997, 2003) presented an alternative projection framework for submodel selec-
tion, which could also be generalized to non-nested models.

The full model M∗ is parametrized by θ ∈ Θ and the parameter space of a
submodel Mk is a restricted subspace of Θ so that θk ∈ Θk ⊂ Θ. For example,
Dupuis and Robert (1997, 2003) propose the restriction βj = 0 for a subset of
the generalized linear model parameters. The parameter projection is defined
so that a discrepancy measure d achieves the infimum

d{p(ỹ|x̃, θ,M∗), p(ỹ|x̃, θ
⊥
k ,Mk)} = inf

θk∈Θk

d{p(ỹ|x̃, θ,M∗), p(ỹ|x̃, θk,Mk)} (130)

and the projected model is p(ỹ|x̃, θ⊥k ,Mk), where θ⊥k denotes the projected pa-
rameters. Goutis and Robert (1998) and Dupuis and Robert (1997, 2003) use the
Kullback-Leibler divergence dKL (from the encompassing model to a submodel),
as it has an information theoretic justification of measuring the amount of in-
formation lost by using the simpler model. Additional benefit of KL-divergence
is quick computation for generalized linear models, that is, projection equations
having a form of likelihood equations associated with generalized linear models.

Unlike Goutis and Robert (1998), Dupuis and Robert (1997, 2003) stated
explicitly that the divergence was between the joint models p(ỹ, x̃|θ, ϕ,M) and
p(ỹ, x̃|θk, ϕk,Mk). Assuming p(x|ϕ,M∗) = p(x|ϕk,Mk) they showed that the
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variable selection procedure depended only on the expectation of the diver-
gence between the conditional models Ex̃ d{p(ỹ|x̃, θ,M∗), p(ỹ|x̃, θ⊥k ,Mk)}. They
approximated the expectation over x̃ in an M-open way as

1

n

n∑

i=1

d{p(ỹ|ẋi, θ,M∗), p(ỹ|ẋi, θ
⊥
k ,Mk)}. (131)

Goutis and Robert (1998) and Dupuis and Robert (1997, 2003) determined the
criterion for variable selection as the posterior expectation of Eq. (131),

1

n

n∑

i=1

∫
d{p(ỹ|ẋi, θ,M∗), p(ỹ|ẋi, θ

⊥
k ,Mk)}p(θ|D,M∗)dθ. (132)

The posterior expectation over θ is typically approximated by MCMC. The
projection can be made for each MCMC sample separately, as the projection
from θ to θ⊥k separates in a pointwise fashion.

The above projection approach is based on the posterior expectation of the
KL-divergence between the models, which corresponds to using Gibbs utility
instead of logarithmic utility in prediction calibrated posterior approximation
q(θk) presented in Section 3.3.2). The different order of integration and loga-
rithm in Gibbs loss makes the projection computations easier.

Goutis and Robert (1998) and Dupuis and Robert (1997, 2003) focused on
model selection and do not consider projected predictive distributions. Projected
predictive distributions can be computed using the projected posterior distri-
bution of θ⊥, which is done, for example, by Nott and Leng (2010). Goutis and
Robert (1998) and Dupuis and Robert (1997, 2003) used submodels with equal-
ity constraints while Nott and Leng (2010) proposed inequality constraints, for
example, of the form

∑p
j=1 |βj | ≤ λ, which produces a lasso-type procedure with

the value of a continuous parameter λ under selection.
The Gibbs loss projection approach is equivalent to a Bayesian hypothesis

testing by Bernardo (1999) (and related to earlier methods Bernardo and Ba-
yarri, 1985; Bayarri, 1987; Gutiérrez-Peña, 1992; Rueda, 1992). Bernardo con-
siders only unconditional models p(y|θ), predicts replicate data of the same size,
and the use of reference priors (Berger and Bernardo, 1992) is an essential part
of the procedure.

Bernardo and Rueda (2002) switched to use a symmetric divergence they call
intrinsic divergence, that is the minimum of directed KL-divergences

min {dKL {p(y|θ,M∗), p(y|θk,Mk)} , dKL {p(y|θk,Mk), p(y|θ,M∗)}} , (133)

to be able to handle cases where p(y|θ,M∗) and p(y|θk,Mk) may have different
supports. Although allowing for a more general automatic procedure, this change
makes the criterion honor less the predictive properties.

Bernardo and Juárez (2003) use symmetric KL-divergence for intrinsic esti-
mation. In this case, point estimates for some continuous parameters are chosen
so that the criterion is minimized while other parameters are projected.
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If a point estimate for all the parameters of the reference model were used and
no parameters would be projected (and given the same divergence) then loga-
rithmic utility and Gibbs utility would produce the same results. If undirected
KL-divergence from the reference model were used instead of the symmetric
KL-divergence, the approach by Bernardo and Juárez (2003) would be equiva-
lent to selecting a point estimate minimizing the reference predictive criterion,
that is

∫∫
p(ỹ|θ,M∗) log

p(ỹ|θ,M∗)

p(ỹ|θ̂,Mk)
dỹp(θ|D,M∗)dθ (134)

= C −

∫
p(ỹ|D,M∗) log p(ỹ|θ̂,Mk)dỹ, (135)

where θ̂ is the point estimate minimizing the criterion (compare to Eq (132)).
A natural extension of the point estimates are credible region estimates using
the highest utility regions. Bernardo (2005b) proposed to use the symmetric
KL-divergence as the utility in this case, too. The directed KL-divergence could
be used in similar way.

5.5. Information criteria

Information criteria are commonly used for selecting Bayesian models. Many
information criteria are directly related to assessing the predictive performance
of the candidate models. The logarithmic utility function or the deviance loss
function for n independent replicate observations are often used; for consistency
we continue to write the formulas with the logarithmic utility function. For
a better understanding we also review the influential frequentist information
criteria.

Regardless on the background theory, information criteria are typically of
form

ūIC(Mk|D) =
1

n

n∑

i=1

u(Mk, âk, yi) + bias correction. (136)

where the first part is the training utility, Eq. (82), and the bias correction is
computed either using the model Mk itself or a reference model M∗. From the
training utility part it can be seen that the variance of the information cri-
teria under repeated sampling of training data is similar to the full M-open
approaches (Section 5.1). Bias corrections in information criteria are derived
considering p(y|Mk). For conditional models p(y|x,Mk) information criteria typ-
ically consist of a sum of terms conditional on xi. Thus they do not evaluate
the out-of-sample performance outside the observed x(1:n). This is sufficient for
a fixed x, but for random x and deterministic x̃ outside the observed values the
estimates may be optimistic.
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AIC Akaike (1974) developed the information criterion AIC to be an in-
formation theoretic generalization of the expected prediction error for models
p(y|θ̂k,Mk), where θ̂k is the maximum likelihood estimate of the parameters.

AIC estimates the expected log score given maximum likelihood estimate θ̂ (e.g.
Burnham and Anderson, 2002, p. 364)

AIC ≈ EDn

[∫
pt(ỹ) log p(ỹ|θ̂k(Dn),Mk)dỹ

]
, (137)

where the expectation is taken over all the possible training sets Dn from pt(·)
(see Section 3.5.2). Equation (137) can be written in the form

AIC ≈ Eθ̂k|pt

[∫
pt(ỹ) log p(ỹ|θ̂k,Mk)dỹ

]
, (138)

where the expectation with regard to θ̂k is over the sampling distribution of the
estimator θ̂k. For conditional models the following form is used

AIC ≈ Eθ̂k|pt

[
1

n

n∑

1=1

∫
pt(ỹi|xi) log p(ỹi|xi, θ̂k,Mk)dỹi

]
. (139)

Under the assumption that the true data-generating model pt(y) can be ap-
proximated well by the pseudo-true model p(y|θ0,Mk) one can write a Taylor

series expansion for θ̂k to get the following AIC estimate (see e.g. Burnham and
Anderson, 2002, for a clearly presented derivation)

AIC =
1

n

n∑

i=1

log p(ẏi|ẋi, θ̂k(D),Mk)−
p

n
, (140)

where p is the number of parameters in the model. The first term on the right
hand side is the maximum likelihood predictive estimate (cf. posterior predictive
estimate) evaluated at the observed data. The estimate is optimistic due to using
the data twice, and p/n is an asymptotic estimate of this optimism.

Small sample corrections to the AIC have been discussed for example by
Hurvich and Tsai (1989, 1991) and Burnham and Anderson (1998). A “Bayesian
extension” of AIC by Akaike (1979) adds a prior on the model space and an
optional averaging of models, but no integration over the parameter space.

TIC, RIC, NIC Takeuchi (1976) (since the original paper is in Japanese,
see also, e.g., Shibata (1989); Burnham and Anderson (1998)) provided a more
general derivation giving a better estimate for the expected prediction error if
the candidate models are not particularly close to the true model pt(ỹ). The
TIC criterion is defined as

TIC =
1

n

n∑

i=1

log p(ẏi|ẋi, θ̂k(D),Mk)−
1

n
tr
[
Ĵ(θ̂)Î−1(θ̂)

]
, (141)
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where Ĵ(θ̂) = Cov[l′
θ̂
], Î(θ̂) = E[l′′

θ̂
], and l′

θ̂
and l′′

θ̂
are the first and second

derivatives of the likelihood with respect to θ evaluated at θ̂. The trace term
tr
[
Ĵ(θ̂)Î−1(θ̂)

]
≤ p was called by Moody (1992) the effective number of param-

eters. Shibata (1989) proposed another criterion called regularized information
criterion (RIC), which extended TIC to penalized likelihoods. Later, Murata,
Yoshizawa and Amari (1994) proposed yet another criterion called network in-
formation criterion (NIC) which extends TIC to arbitrary differentiable utility
functions and penalized or regularized likelihoods (i.e., maximum a posteriori
approach in Bayesian terms). TIC/RIC/NIC approximations are seldom used
in practice as the variance of the estimate is increased due to stability problems
and computational difficulties in estimating the unknown p× p matrices J and
I. Often a simpler AIC approximation with a smaller variance gives a better
estimate (Shibata, 1989; Burnham and Anderson, 2002).When the assumptions
of AIC hold, AIC and TIC are asymptotically equal.

Stone (1977) considered the asymptotic behavior of cross-validation with
maximum-likelihood plug-in estimate. Using a first order Taylor approxima-
tion, Stone heuristically showed that the LOO-CV (with maximum likelihood

estimate θ̂) is asymptotically equivalent with TIC. See also Shibata (1989) for
a derivation of the asymptotic equivalence of TIC and cross-validation.

Sawa (1978), Chow (1981) & Young (1987b) Theoretically expectations
in Eq. (137) are over pt(·), but the unknown true data distribution pt(·) is typ-
ically approximated by a pseudo-true model p(·|θ0,Mk) and θ0 is approximated

with θ̂k(D). Thus pt(ỹ) is partially approximated by reusing y(1:n) and partially

by p(ỹ|θ̂k,Mk). TIC corrects to some extent the problem arising from assuming
that the pseudo-true model p(ỹ|θ0,Mk) is close to an unknown p0(ỹ).

Sawa (1978) proposes a different modification of AIC, in which some proper-
ties of the true p0(y) are known, and the pseudo-true distribution p(y|θ0,M∗)
is obtained by projecting the true data-generating distribution into a restricted
class of models. Sawa considers only a case where p(y|θ0,M∗) is essentially as-
sumed to be a multivariate Gaussian with a diagonal covariance matrix and the
candidate models are Gaussian linear regression models. Sawa proposes a crite-
rion (unfortunately named as B information criterion (BIC), causing confusion
with the Bayesian information criterion (BIC)), which requires estimates for the
unknown parameters of both p(y|θ0,M∗) and the candidate models p(y|θ,Mk).
When the candidate models are reasonably close to p(y|θ,M∗), Sawa’s crite-
rion reduces to AIC. Similarly as in AIC, Sawa’s criterion is evaluated re-using
the observed data D. Sawa also presented a pseudo-Bayesian criterion where a
prior is placed on the pseudo-true parameters, and optimal estimators for the
parameters of every candidate model are found by maximizing the utility.

Chow (1981) developed Sawa’s approach further into a TIC type estimate
(calling it an information criterion as Akaike (1974) had called his criterion).

Chow also used a reference model p(ỹ|θ̂,M∗) (which he called the most general

model) with a plug-in estimate θ̂.
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Young (1987b) separated parameter estimation and model selection by re-
moving the dependency on the parameter estimates through introducing priors
to both the reference model parameters and the candidate model parameters.
Young, using a multivariate Gaussian as the reference model p(ỹ|θ∗,M∗) in a
linear regression setting, proposed a criterion obtained by taking posterior ex-
pectations of the utility

∫
p(ỹ|θ∗,M∗) log p(ỹ|θk,Mk)dỹ over both θ∗ and θk.

The use of plug-in estimates in Sawa (1978) and Chow (1981) for the param-

eters of the reference model p(ỹ|θ̂,M∗) was criticized by Leamer (1979), who
pointed out that the problem should be formulated by placing a prior on the
parameters of the reference model, and the parameters of the candidate models
should be selected by maximizing the expected utility.

AIC/TIC/RIC/NIC criteria (and DIC/BPIC/WAIC criteria below) can be
said to estimate the bias correction in a self-referential way while the crite-
ria proposed by Sawa (1978), Chow (1981) and Young (1987b) can be said to
estimate the bias correction in a reference way.

DIC Deviance information criterion (DIC) proposed by Spiegelhalter et al.
(2002) estimates the plug-in generalization utility using plug-in predictive dis-
tribution (original DIC is multiplied by −2n)

∫
p(θk|D,Mk)

∫
p(ỹ|θk,Mk) log p(ỹ|θ̄k,Mk)dỹdθk. (142)

DIC has a generic form

DIC =
1

n

n∑

i=1

log p(ẏi|ẋi, θ̂k,Mk)−
peff
n
, (143)

where the effective number of parameters peff can be estimated in two ways,
which both can be derived from the properties of the distribution of the deviance
(Gelman et al., 2003; Raftery et al., 2007). For regular models the distribution
of the deviance approaches shifted χ2

ν , where the degrees of freedom ν can be
interpreted as the effective number of parameters. The shifted χ2

ν has following
properties: E(·) = offset+ν and Var(·) = 2ν. Using the mean approach, peff can
be estimated as

peff ≈ 2

n∑

i=1

[
log p(ẏi|Eθk|D,Mk

[θ],Mk)− Eθk|D,Mk
log p(ẏi|θk,Mk)

]
, (144)

where the plug-in deviance is used to estimate the offset. This estimate is not
generally invariant to reparametrization because in general plug-in estimates
are not invariant to reparametrization. Using the variance approach peff can be
estimated as

peff ≈ Varθk|D,Mk
[log p(ẏi|θk,Mk)]. (145)

This form avoids the use of plug-in estimate in estimation of peff , but this
variance estimate can be unstable due to the long tail of the χ2

ν distribution
(Raftery et al., 2007; Carlin and Spiegelhalter, 2007).
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DIC type bias correction b can be used, also, for other utilities (Vehtari, 2002)

b ≈
2

n

n∑

i=1

[
u(Mk, Eθk|D,Mk

[θ], ẏi)− Eθk|D,Mk
u(Mk, θk, ẏi)

]
. (146)

Use of plug-in estimates and the assumption that deviance is χ2
ν distributed

in AIC/TIC/RIC/NIC/BPIC is problematic for irregular models such as mix-
ture models. Richardson (2002) in her comment on DIC (Spiegelhalter et al.,
2002), proposed without a formal justification a DIC version using the predictive
distributions,

peff ≈ 2

n∑

i=1

[
logEθk|D,Mk

[p(ẏi|θ,Mk)]− Eθk|D,Mk
log p(ẏi|θk,Mk)

]
, (147)

which avoids the use of plug-in estimate. This version with a name DIC3 was
tested in a mixture-modeling context by Celeux et al. (2006) along with seven
other ad-hoc versions of DIC, without proper formal justification for any of
them. Celeux et al. (2006) noted that the predictive version was stable, but
based on the experiments did not think it was the best one. Celeux et al. (2006)
did not compare directly the bias or the variance of the different proposals, but
tested them in a model selection with Galaxy data and one simulated data, and
thus it is not easy to interpret the results with regard to ability to estimate the
actual predictive performance as discussed by Cawley and Talbot (2010).

BPIC The Bayesian predictive information criterion (BPIC) by Ando (2007)
estimates the expected Gibbs utility (Section 3.4.2)

ūGt (Mk) =

∫
pt(ỹ)

∫
p(θk|D,Mk) log p(ỹ|θk,Mk)dθkdỹ, (148)

in which the parameters θk are integrated over the posterior distribution in-
stead of using a plug-in estimate as in DIC. Ando proposes an estimate based
on replacing the expectation over the unknown future data distribution by an
average over observed data. Using a similar derivation as in TIC, Ando proposes
to estimate the resulting bias by

nb̂ =

n∑

i=1

∫
p(θ|D,Mk) log [p(yi|θ,Mk)p(θ|Mk)] dθ

−
n∑

i=1

log
[
p(yi|θ̂,Mk)p(θ̂|Mk)

]
+ tr

{
J−1
n (θ̂)In(θ̂)

}
+
p

2
, (149)

where θ̂ is the MAP estimate. The BPIC criterion (divided by −2n) is given by

BPIC(Mk) =
1

n

n∑

i=1

∫
p(θk|D,Mk) log p(yi|θk,Mk)dθk − b̂. (150)

The BPIC criterion has the same problems as TIC/NIC due to instability and
computational difficulties in estimating Î and Ĵ .



210 A. Vehtari and J. Ojanen

WAIC Watanabe (2009, 2010b,c,a) presented a criterion which he called widely
applicable information criterion (WAIC) and gave a formal proof of its proper-
ties as an estimate for the expected utility

ūt(Mk) =

∫
pt(ỹ) log p(ỹ|D,Mk)dỹ (151)

for both regular and singular models. A criterion of a similar form was inde-
pendently proposed by Richardson (2002) as a version of DIC (see DIC section
above). Other information criteria are based on Fisher’s asymptotic theory as-
suming a regular model for which the likelihood or the posterior converges to a
single point and MLE, MAP, and plug-in estimates are asymptotically equiva-
lent. With singular models the true model is projected onto a set of parameters
consisting of more than one point, the Fisher information matrix is not positive
definite, plug-in estimates are not representative of the posterior and the distri-
bution of the deviance does not converge to a χ2

ν distribution. Watanabe uses
singular learning theory (Watanabe, 2009) to derive more general results which
also hold for singular models. Watanabe uses loss functions but for consistency
in this review we use the equivalent utility functions.

Watanabe shows that the Bayesian generalization utility can be estimated by
a criterion

WAICG = ūtrain − 2(ūtrain − ūGtrain), (152)

where ūtrain is Bayes training utility and ūG
train

is Gibbs training utility defined
in Figure 11. The estimate is asymptotically equal to the true logarithmic utility
in single prediction in both regular and singular statistical models and the error
in a finite case is o(1/n). Watanabe (2010a) shows also that the WAIC estimate
is asymptotically equal to the Bayesian cross-validation estimate (section 5.1.3)
and the Gibbs generalization utility can be estimated as

WAICGG = ūGtrain − 2(ūtrain − ūGtrain) (153)

and the error of this estimate is again o(1/n).
WAIC can also be given as a functional variance form

WAICV = ūtrain − V/n, (154)

where the functional variance

V =

n∑

i=1

{
Eθ|D,Mk

[
(log p(ẏi|ẋi, θ,Mk))

2
]

−
(
Eθ|D,Mk

[log p(ẏi|ẋi, θ,Mk)]
)2
}
, (155)

describes the fluctuation of the posterior distribution. WAICG and WAICV are
asymptotically equal, but the series expansion of WAICV has closer resem-
blance to the series expansion of the logarithmic leave-one-out utility. Watanabe
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(2010b) derives the error of the asymptotic theory for WAIC as

|ūtrain − ūGtrain − V/(2n)| = |WAICV −WAICG|/2. (156)

To better see the connection between DIC and WAIC, DIC can be written
as

DIC = ūPtrain − 2(ūPtrain − ūGtrain), (157)

where ūP
train

is the plug-in training utility defined in Figure 11. The similarity to
WAICG is obvious. However, the plug-in estimate θ̄ is sensible only for regular
models. Moreover, the plug-in predictions differ from the posterior predictive
predictions. Watanabe (2010a) shows that in a regular and realizable case a
modification of DIC,

DIC∗ = ūtrain − 2(ūPtrain − ūGtrain), (158)

is asymptotically equivalent to WAIC. The asymptotical equivalence does not
hold in the unrealizable and singular cases.

In a similar fashion to NIC the DIC/WAIC approach can be formulated
for arbitrary differentiable utility functions with appropriate properties. As an
illustrative example consider WAIC with a squared error loss function,

WAICS = s̄train − 2(s̄train − s̄Gtrain), (159)

where

s̄train =
1

n

n∑

i=1

(ẏi − E[ỹ|ẋi, D,Mk])
2 (160)

s̄Gtrain =
1

n

n∑

i=1

Eθk

[
(ẏi − E[ỹ|ẋi, θk,Mk])

2
∣∣D,Mk]. (161)

Rearranging the terms gives

WAICS = s̄train +
1

n

n∑

i=1

Varθk [E[ỹ|ẋi, θk,Mk]|D,Mk] , (162)

where the bias correction is the posterior variance of the mean prediction. This
can be compared to the variance of the predictive distribution (Equation (15))
which combines the expected variance of the observations and the variance from
the posterior uncertainty.

Ando and Tsay (2010): simultaneous prediction All the previous infor-
mation criteria are formulated to estimate the single prediction utility (possibly
scaled with n). Ando and Tsay (2010) propose a criterion for estimating the
simultaneous generalization utility

ūt(Mk) =

∫
pt(ỹ(1:n)) log p(ỹ(1:n)|D,Mk)dỹ(1:n), (163)
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with a TIC type criterion they refer to as the predictive likelihood score

PL(Mk) =
1

n
log p(y(1:n)|D,Mk)−

1

2n
tr
[
Ĵ−1{θ̂}Î{θ̂}

]
. (164)

This criterion possesses the same problems as TIC/NIC due to instability and
computational difficulties in estimation of Î and Ĵ . Ando and Tsay (2010) pro-
pose also a simplification

PL2(Mk) =
1

n
log p(y(1:n)|D,Mk)−

p

2n
(165)

which resembles AIC.
Other information criteria are asymptotically equivalent to different forms of

leave-one-out cross-validation, but it is not clear what relationship the criterion
of Ando and Tsay (2010) has to cross-validation, since it is not possible to leave
n data points out in the cross-validation approach.

5.6. Prior predictive distribution and Bayes factor

A fairly common approach to model selection in Bayesian statistics is based on
maximizing the joint prior predictive distribution

p(D|M) =

∫
p(D|θ,M)p(θ|M)dθ (166)

with respect to the model M . The quantity p(D|M) is called the marginal
likelihood or the evidence of a model M .

If one makes the explicit assumption that one of the candidate models is
true, the optimal model choice under the the zero-one utility/loss (see section
3.4.1) is the model with the highest posterior probability p(M |D). In a pairwise
comparison the posterior odds for two models M0 and M1 can be written as

p(M0|D)

p(M1|D)
=
p(D|M0)

p(D|M1)

p(M0)

p(M1)
, (167)

that is, as a product of the prior odds and the Bayes factor

B01 =
p(D|M0)

p(D|M1)
. (168)

Given equal prior probabilities for the models, the posterior probabilities p(M |D)
are proportional to the marginal likelihoods p(D|M), and the comparison of
models in a pairwise fashion can be based on the Bayes factor (see, e.g., Kass
and Raftery, 1995, for review)).

A predictive perspective can be taken by writing the marginal likelihood by
the chain rule

p(D|Mk) = p(y1|Mk)p(y2|y1,Mk), . . . , p(yn|y(1:n−1),Mk), (169)
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which shows that the joint prior predictive approach corresponds to making the
first prediction with the prior and then sequentially predicting the remaining
data by updating the predictions one data point at time. With the logarithmic
utility function the utility of the joint prior prediction corresponds to the average
utility of posterior predictive distributions with the number of data points used
for training ranging from 0 to n−1. In other words, the utility of prior predictive
approach can be considered to measure the expected predictive performance of
a model. As the learning curve is usually steeper with a small number of data
points, the average is less than the logarithmic utility resulting from a posterior
predictive distribution with n/2 training data points. As the first terms in the
chain rule are conditioned on none or very few data points, the prior predictive
approach can be sensitive to prior definitions (see discussion, e.g., in O’Hagan
and Forster, 2004, Ch 7.17). Furthermore, the first term of the series shows that
the marginal likelihood does not exist if the prior is improper, even if the said
improper prior leads to a proper posterior. Especially with vague priors and
flexible models the few first terms dominate the expectation unless n is very
large. Only if n ≫ peff , terms conditioned on a large number of data points
start to dominate and the result gets closer to the expected predictive utility.

In a general case, computation the marginal likelihood is far from trivial. A
large number of different methods have been proposed, such as the Laplace ap-
proximation, harmonic mean estimator, annealed importance sampling, nested
sampling, path sampling, bridge sampling, parallel tempering with thermody-
namic integration and reversible jump MCMC (last one just for Bayes factor or
posterior odds) reviewed, for example, in Kass and Raftery (1995); Han and Car-
lin (2000); Chen, Shao and Ibrahim (2000); Robert and Wraith (2009); Marin
and Robert (2010); Friel and Wyse (2012).

There are several modifications of Bayes factors reducing the effect of im-
proper or vague priors by using part of the data (e.g. O’Hagan, 1995; Berger
and Pericchi, 1996). These methods can be considered as hold-out predictive
approaches with small amounts of training data and joint prediction mentioned
in Section 5.1.2.

From the expected predictive performance viewpoint the marginal likelihood
p(D|M) can be used as an indicative estimate of the predictive performance.
For example, in the M-closed Bayesian model averaging approaches a negligible
posterior probability of a model lets us ignore the model also in model selection.
Sensitivity to the prior definition affects also which models have a high posterior
probability in the model averaging. However, it is possible that all the models
with a considerable posterior probability under any sensible prior have similar
predictions, so that the predictions are not so sensitive after integrating over
the model space.

5.7. Model comparison approaches

Comparison of the expected utilities has two aspects: 1) what is the uncertainty
related to the comparison and 2) what is a practically significant difference
between the utility values.
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5.7.1. Uncertainty related to the comparison

Sensitivity with regard to M-open sampling error In M-open type ap-
proaches the sampling error of sample re-use can be substantial, and needs to
be taken into account. As discussed in Section 4.5 the related uncertainty in
paired comparison can be estimated, for example, by computing the variance or
using Bayesian bootstrap. These uncertainties tell whether in pairwise compar-
ison we can be confident that there is a difference between the expected utilities
(but they don’t tell whether the difference is practically significant). In model
selection, the smallest model not statistically worse than the best model could
be chosen.

Sensitivity with regard to replication A group of methods answer the
question “what is the sensitivity of the statistic” in a situation in which we have
seen some other realization of the data and the significance of the expected
utility difference is calibrated using the sensitivity estimate.

Ibrahim and Laud (1994) and Laud and Ibrahim (1995) proposed a calibration
number for the L-criterion by estimating the standard deviation given possible
datasets seen, by replicating datasets of size n from the marginal prior predic-
tive distribution of the model giving the best L-criterion value. If the marginal
prior predictive distribution is improper in linear regression, Laud and Ibrahim
(1995) fix the error variance in the model to the MAP value. Ibrahim, Chen and
Sinha (2001) extended the calibration approach by plotting the whole calibra-
tion distribution. Meyer and Laud (2002) presented a calibration of L-criterion
for generalized linear models. Vlachos and Gelfand (2003) estimate calibration
by replicating datasets of size n from the posterior predictive distribution of
the model M . In case of pairwise model selection, they replicate datasets from
both models and plot the two different summary statistic distributions obtained.
They present their method only for pairwise model comparison, but a similar
posterior replicate calibration approach could be used when estimating the ex-
pected utility for a single model.

Based on replicate dataset (bootstrap) methods by Ibrahim, Chen and Sinha
(2001) and Vlachos and Gelfand (2003), it is also possible to compute the prob-
ability for one model being better than the other, but this probability is related
to hypothetical data we might have seen and not to future data. In addition Vla-
chos and Gelfand (2003) use both models for replication, giving two different
probabilities.

These methods use a model for the data in a parametric bootstrap way (e.g.
Efron and Tibshirani, 1993). They are also related to prior predictive checking
(Box, 1980) and posterior predictive checking (Gelman et al., 1995; Gelman,
Meng and Stern, 1996). Non-parametric bootstrap by sample re-use could also
be used, although it would require smaller training sets and thereby increase
the bias of the estimates.
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Table 1

Significance of posterior odds

1 : 1 to 3 : 1 Barely worth mentioning
3 : 1 to 10 : 1 Substantial
10 : 1 to 30 : 1 Strong
30 : 1 to 100 : 1 Very strong

≥ 100 : 1 Decisive

5.7.2. Model comparison based on calibration of criteria

Several calibration approaches have been proposed for characterizing the prac-
tically significant difference in expected utilities.

Calibration scale for pairwise comparisons in terms of posterior odds,
Eq. (167), was proposed by Jeffreys (1961). Jeffreys’ calibration scale, presented
in Table 1, relates the posterior odds to words describing significance. Similar
scales with small variations have been proposed, some of which follow from
presenting rounded values after taking a logarithm of the odds.

Bayes factor compares the prior joint predictive densities for n observations.
Comparing the product of n single prediction densities from the cross-validation
has a similar form as the Bayes factor and has been called quasi or pseudo
Bayes factor (Geisser and Eddy, 1979; Gelfand, Dey and Chang, 1992), and a
similar scale as for Bayes factor might be used. For information criteria there are
heuristic scales for differences in log-scale (Burnham and Anderson, 2002). As
information criteria and cross-validation are asymptotically equivalent, the same
scales could be used for both. For DIC the proposed scale4 is close to Jeffreys’
scale. As cross-validation and information criteria have variance o(1/n), it may
be helpful to compare expected log-score times n, which has variance o(1) and
thus calibration with respect to variance does not depend on n.

Calibration of Kullback-Leibler divergence refers to introducing a yard-
stick in a form of Kullback-Leibler divergence between known statistical models.
For example, in McCulloch (1989) the comparison between the reference model
to a candidate model is calibrated by equating the KL-divergence between them
to the KL-divergence from Bin(0.5) to Bin(θ), where θ is determined by setting
the KL-divergences equal. In other words, comparing the reference model and
the candidate model is set to be equivalent to comparing a binomial model with
the true parameter value 0.5 to a Binomial model with parameter value θ. If
using θ is deemed acceptable, the candidate model can be considered to be a
reasonable proxy for the reference model. Use of other one-parameter exponen-
tial family models, such as Poisson and unit-variance Gaussian, was proposed
by Goutis and Robert (1998). A calibration based on a Gaussian model with
known σ was presented in Bernardo (1999), with an additional discussion on
the correspondence between the threshold value and type I error probabilities.
Bernardo and Rueda (2002) also discuss calibration for hypothesis testing.

4http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/dicpage.shtml

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/dicpage.shtml
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In the context of variable selection, Dupuis and Robert (1997, 2003) pro-
posed to use the null and the full model to scale the KL-divergence by forming
an explanatory power scale from 0% to 100%. The scale can be understood as
an expression of the proportion of the information, when including all the co-
variates, which is ignored when using a smaller subset of covariates. Vehtari and
Lampinen (2004) used this calibration approach to stop basic forward search in
explanatory variable selection when 99% predictive power was obtained.

6. Conclusion

This qualitative review is an approach to presenting different proposed methods
in a unified theoretical framework and notation, and hopefully it provides a
useful map in the wild jungle of “Bayesian predictive criteria”.

Surprisingly, although many comparisons between model selection approaches
have been made, a systematic analysis of typical bias and variance properties
of different Bayesian methods for finite sample size appears still to be lacking.
The considerable variation in published results of performance rankings may be
explained to some extent by the selection induced and learning curve bias. Thus,
we have not aimed at an explicit ranking of the methods, as we believe that many
model selection method comparisons in the literature may be misleading.

If the goal is to estimate the predictive performance of a Bayesian model
then one should compute the expected utility, Eq. (5), which by construction
is estimated by Bayesian cross-validation and WAIC. Both methods are known
to be unbiased and asymptotically true estimates of the generalization utility.
Reference and self-predictive approaches give an expected utility estimate with
reduced variance, but have an unknown bias dependent on the reference model.

Even though CV and WAIC are asymptotically unbiased for a single model,
overfitting to the observed data takes place during the model selection process,
which in turn induces selection bias. The selection induced bias can be negligi-
ble if there are only a small number of models to be compared. The reference
predictive and projection methods avoid using the data several times in model
selection, which should result in reduced selection induced bias.

Although a qualitative comparison can provide advice, we think that there
is still a strong need for a quantitative analysis comparing the performance of
different methods.
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