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1. Introduction

Statistical agencies, such as the Census Bureau and Statistics Canada, provide
researchers with access to detailed micro-level data while preserving confiden-
tiality. Each table of data contains ultimate sample units in its rows and the
different variables under study in its columns, plus other columns for survey
weights. Parameters of interest can be easily estimated based on these values.
However, a crucial step is to use the data to estimate some accuracy measures
of a given statistic, such as the variance or a confidence interval, something
which is not always easy to obtain through analytical methods. For this pur-
pose, many statistical agencies apply bootstrap resampling methods. The data
files prepared by these agencies contain further columns with bootstrap sur-
vey weights to be used instead of the original survey weights to compute many
bootstrap replicates of the statistic. The Monte Carlo variance estimator of
the resulting bootstrap statistics is used to estimate the variance under study
while the empirical distribution of the bootstrap statistics can be used to con-
struct a confidence interval. Since the bootstrap methods are readily applicable
for many estimators, these methods are attractive from a practical point of
view.

The bootstrap was first introduced by Efron (1979) in the context of clas-
sical statistics where data are independently and identically distributed (i.i.d.)
from an unknown distribution. Since survey data are not necessarily i.i.d., many
bootstrap resampling methods have been proposed in the context of survey sam-
pling over the past thirty years. These methods are obtained after making some
modifications to the classical i.i.d. bootstrap in order to adapt it for survey data.

Some overviews of bootstrap methods in the context of survey sampling have
been published, notably parts of Chapter 6 of Shao and Tu (1995), as well as
Lahiri (2003) and Shao (2003) in the special issue of Statistical Science celebrat-
ing the 25th anniversary of the bootstrap. But these later two papers emphasized
small area estimation and imputed data, respectively. In this full study of the
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various bootstrap methods in the context of survey sampling, we classify the
methods in different groups according to their features and we present them in
a unified way that shows the similarities and the differences among the methods
in a given group. This comprehensive survey should be useful to researchers
who need to use or better understand existing bootstrap methods in survey
sampling. It provides sufficient details to help researchers apply the methods or
develop new ones.

We classify the various bootstrap methods for complete (full response) survey
data in three groups. While this classification is partly arbitrary and could
have been done differently, it helps in better understanding them. The first one
is the class of the pseudo-population bootstrap methods in which a pseudo-
population is first created by repeating the units of the original sample and
bootstrap samples are then selected from the resulting pseudo-population, e.g.
Gross (1980), Booth et al. (1994) and Chauvet (2007). The second one, called
the direct bootstrap methods, consists of directly selecting bootstrap samples
from the original sample or a rescaled version of it, e.g. Rao and Wu (1988)
and Sitter (1992b). In the third group, called the bootstrap weights methods,
an appropriate adjustment is made on the original survey weights to obtain
a new set of weights called the bootstrap weights, e.g. Rao et al. (1992) and
Beaumont and Patak (2012). Users of public data files prepared by agencies
such as Statistics Canada, who are usually not familiar with complex statistical
methods, can easily use the generated bootstrap weights. They only need to
replace the original weights by the resulting bootstrap weights in the estimator
of the parameter of interest to define the bootstrap statistics.

The paper is organized as follows. Basic concepts concerning sampling de-
signs, parameter estimation, and estimation of its variance that will be used
in the sequel are introduced in Section 2. The jackknife, the balanced repeated
replication and the i.i.d. bootstrap resampling methods are briefly discussed in
Section 3. A detailed presentation of the three classes of bootstrap methods
in the context of survey data is the main topic of Section 4. Variance estima-
tion, the construction of confidence intervals, the application of the methods
to multistage designs and software implementation will be discussed in this
section. Note that the preceding methods are designed for finite population pa-
rameters where the population under study is treated as fixed. The bootstrap
methods introduced in Section 5 are applicable when the study variables in the
finite population are seen as a realization of a statistical model and the goal
is to estimate the variance of the estimator of the parameter of that statistical
model.

In practice, we often must be able to deal with imputed data which are used to
compensate item non-response. Treating imputed data as true observations may
lead to an underestimation of the variance. Therefore, some bootstrap methods
that account for the added variability due to item non-response and imputation
have been proposed and are studied in Section 6. We conclude in Section 7.

Note that we do not discuss Bayesian bootstrap methodology. Interested
readers can read about its application in a survey context in Aitkin (2008) and
Carota (2009).
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2. Preliminaries

In this section, we introduce the notation as well as the basic concepts of survey
sampling. Given that the bootstrap is to be used for estimators more complex
than the total or the mean, we also define the median and the GREG esti-
mator of the total. Many of the bootstrap methods are designed so that the
bootstrap variance of the estimator of the total exactly matches the usual unbi-
ased estimator of its variance. Hence we pay special attention to the variance of
the Horvitz-Thompson estimator of total, as well as the approximation of the
variance of functions of totals through Taylor linearization.

Let U be a finite population consisting of N distinct units. Let y1, . . . , yJ be
J study variables and yi = (y1i, . . . , yJi)

�
denote the vector of study variables

associated with the ith unit, i = 1, . . . , N. We are interested in estimating a
finite population parameter, denoted by θ, which is a function of the N values,
y1, . . . ,yN . A simple but important parameter, in the case where J = 1, is
the population total of a study variable y defined as θ ≡ t =

∑
i∈U yi. Many

parameters encountered in practice can be expressed as a function of population
totals:

θ = g(t1, . . . , tJ) with tj =
∑
i∈U

yji for j = 1, . . . , J. (2.1)

Special cases of (2.1) include the ratio of two population totals, θ = t1/t2, and
the finite population distribution function

FN (z) =
1

N

∑
i∈U

I(yi ≤ z), (2.2)

where I(A) is the indicator function of the event A taking the value 1 when A
occurs and 0 otherwise, and z is a real number. A parameter closely related to
the distribution function is the finite population median, which is the value sepa-
rating the higher half of data from the lower half. More formally, the population
median m is defined as

m = F−1
N (0.5),

where F−1
N (·), the inverse function of FN (·), is defined as

F−1
N (b) = inf {yi| FN (yi) ≥ b; i ∈ U} , (2.3)

with 0 ≤ b ≤ 1.
A sample s ⊆ U of (expected) size n, is randomly selected according to a given

sampling design p(s) with first-order inclusion probabilities πi = Prob(i ∈ s).
Common sampling designs include simple random sampling without replace-
ment and stratified simple random sampling, which are both fixed size sampling
designs. Fixed size sampling designs are those for which the sample size is fixed
prior to sampling. While simple random sampling without replacement is sel-
dom used in practice, stratified simple random sampling is widely applied, es-
pecially in business surveys. Under this design, the population U is first divided
into L non-overlapping strata U1, . . . , UL with Nh units in the hth stratum,
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h = 1, . . . , L. Then, a sample sh of size nh is selected from Uh according to
simple random sampling without replacement, independently across strata. The
first-order inclusion probability of unit i in stratum h is nh/Nh, h = 1, . . . , L.
Except in the case of proportional allocation, stratified simple random sampling
is an example of an unequal probability sampling design as units in different
strata have different inclusion probabilities.

Another unequal probability sampling design is Poisson sampling, which con-
sists of performing N independent Bernoulli trials with probability πi that unit
i is selected in the sample. Unlike simple random sampling without replacement
and stratified simple random sampling, Poisson sampling is a random size sam-
pling design.

Estimators of finite population parameters are constructed on the basis of the
sample values and, possibly, auxiliary information, which is a set of variables
collected for the sample units and for which the corresponding total in the
population is known. We start by examining the case of a population total t
and consider a general linear estimator of the form

t̂ =
∑
i∈s

wi(s)yi, (2.4)

where wi(s) is a survey weight associated with the ith unit. The Horvitz-
Thompson estimator t̂HT (Horvitz and Thompson, 1952), is an important spe-
cial case of (2.4) with

wi(s) = wi = π−1
i . (2.5)

Suppose that a l-vector of auxiliary variables xi = (x1i, . . . , xli)
� is available

for all the sample units and that the vector of population totals, tx =
∑

i∈U xi,
is known. Another linear estimator of t is the so-called Generalized REGression
(GREG) estimator (Särndal, 2007), t̂G, given by (2.4) with

wi(s) = π−1
i

{
1 + (tx − t̂xHT )

�T̂
−1

c−1
i xi

}
, (2.6)

where t̂xHT =
∑

i∈s π
−1
i xi, T̂ =

∑
i∈s π

−1
i xic

−1
i x�

i and ci is a known positive
constant attached to unit i. Note that the GREG estimator can also be viewed
as a function of estimated totals since it can be expressed as

t̂G = t̂HT +
(
tx − t̂xHT

)�
β̂, (2.7)

where

β̂ =

(∑
i∈s

π−1
i xic

−1
i x�

i

)−1∑
i∈s

π−1
i xic

−1
i yi.

We now turn to the case of parameters that can be expressed as functions of
totals, θ = g(t1, . . . , tJ). In this case, we use the plug-in principle that consists
of replacing each unknown population total by its corresponding estimator. This
leads to the so-called plug-in estimator

θ̂ = g(t̂1, . . . , t̂J),
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where t̂j =
∑

i∈s wi(s)yji is a linear estimator of tj ; e.g., the Horvitz-Thompson
estimator, for j = 1, . . . , J . For example, the ratio of two totals θ = t1/t2 may

be estimated by θ̂ = t̂1HT /t̂2HT .
Similarly, an estimator of the distribution function (2.2) is given by

F̃n(z) =
1∑

i∈s wi(s)

∑
i∈s

wi(s)I(yi ≤ z)

noting that the population size N in the definition of FN (t) can be expressed as
N =

∑
i∈U 1. It follows that an estimator of the population median, m, is given

by
m̂ = F̃−1

n (0.5),

where F̃−1
n (·), the inverse function of F̃n(·), is defined as in (2.3).

The above discussion suggests that an estimator of a finite population pa-
rameter θ can be viewed as a function of the sample units in s and the survey
weights; i.e., θ̂ = θ̂ (s;w1(s), . . . , wn(s)). This will prove useful when studying
the bootstrap weights methods described in Section 4.3.

In this paper, with the exception of Section 5, the properties of estimators
(e.g., bias and variance) are studied with respect to the design-based approach.
In this approach, the population U is held fixed and the properties of estimators
are evaluated with respect to repeated sampling.

The expectation and the variance with respect to the design-based approach
are defined as

Ep

(
θ̂
)
=
∑
s⊂U

θ̂(s)p(s) and Vp

(
θ̂
)
= Ep

{[
θ̂ − Ep

(
θ̂
)]2}

,

where the subscript p denotes the sampling design. An estimator is design-

unbiased if Ep

(
θ̂
)
= θ. While the Horvitz-Thompson estimator, t̂HT , is design-

unbiased for t, the GREG estimator, t̂G, is only asymptotically design-unbiased
for t; see, e.g., Isaki and Fuller (1982).

We now turn to the variance of point estimators and variance estimation
starting with the case of the Horvitz-Thompson estimator. The design-variance
of t̂HT is given by

Vp

(
t̂HT

)
=
∑
i∈U

∑
j∈U

Δijyiyj , (2.8)

where

Δij =
πij − πiπj

πiπj
,

with πij = Prob(i ∈ s & j ∈ s) denoting the second-order inclusion probability
of units i and j in the sample. The variance (2.8) can be estimated unbiasedly
by

V̂
(
t̂HT

)
=
∑
i∈s

∑
j∈s

Δij

πij
yiyj , (2.9)
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that is, Ep

{
V̂
(
t̂HT

)}
= Vp

(
t̂HT

)
. For example, under simple random sampling

without replacement, (2.9) reduces to the textbook variance estimator of t̂HT :

V̂
(
t̂HT

)
= N2(1− f)

s2

n
, (2.10)

where f = n/N is the sampling fraction and

s2 =
1

n− 1

∑
i∈s

(yi − ȳ)2,

with ȳ = n−1
∑

i∈s yi. For Poisson sampling, noting that πij = πiπj for i �= j,
(2.9) reduces to

V̂
(
t̂HT

)
=
∑
i∈s

1− πi

π2
i

y2i . (2.11)

In contrast, the variance of the GREG estimator cannot be obtained in closed
form, the latter being a complex function of estimated totals. The same is true
for parameters that are expressed as functions of totals such as the ratio of
two population totals. To overcome this difficulty, we settle for an approximate
expression of the design-variance, which is obtained through a first-order Taylor
expansion. Suppose that θ̂ is expressed as a function of estimated totals, θ̂ =
g(t̂1HT , . . . , t̂JHT ), where g(·) is a differentiable function. Under mild regularity

conditions, a first-order Taylor expansion of θ̂ leads to

θ̂ − θ =
∑
i∈s

π−1
i zi −

∑
i∈U

zi +Op

(
n−1

)
, (2.12)

where

zi =

J∑
j=1

yji
∂g(t̂1HT , . . . , t̂JHT )

∂t̂jHT

∣∣∣∣∣∣
t̂1HT=t1,...,t̂JHT=tJ

(2.13)

is the so-called linearized variable. For instance, in the case of a ratio, θ = t1/t2,
the linearized variable is zi = (y1i − θy2i)/t2. Ignoring the higher-order terms

in (2.12), the design-variance of θ̂ can be approximated by (2.8), where yi is

replaced with zi. That is, the approximate variance of θ̂ is given by

AVp

(
θ̂
)
=
∑
i∈U

∑
j∈U

Δijzizj . (2.14)

As mentioned above, the GREG estimator, t̂G, can also be viewed as a function
of estimated totals. In this case, the linearized variable (2.13) reduces to

zi = yi − x�
i βU , (2.15)

with

βU =

(∑
i∈U

xic
−1
i x�

i

)−1∑
i∈U

xic
−1
i yi.
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The approximate variance of t̂G is thus given by (2.14) with zi given by (2.15).
The approximate variance (2.14) is unknown as the linearized variable z depends
on unknown quantities. To estimate (2.14), we start by estimating z by ẑ. For

example, in the case of an estimated ratio, θ̂ = t̂1HT /t̂2HT , we have ẑi = (y1i −
θ̂y2i)/t̂2HT . An estimator of the approximate variance is obtained from (2.9) by
replacing yi with ẑi, which leads to

V̂
(
θ̂
)
=
∑
i∈s

∑
j∈s

Δij

πij
ẑiẑj . (2.16)

Under mild regularity conditions (e.g., Deville, 1999), the variance estimator
(2.16) is asymptotically unbiased for the approximate variance (2.14).

We briefly discuss asymptotic frameworks needed to have valid linearized
variance estimates or confidence intervals. In survey sampling, it is not possible
to have the sample size n increase to infinity if the population of size N does not
increase at the same time. Moreover, there may be several ways in which the
population could grow, depending on the sampling design. For instance, if the
population is stratified, the number of strata L could remain fixed, but the size
of each stratum Nh increases as would be the case if the strata are provinces
or states. Alternatively, the size of the strata could remain relatively fixed, but
their number increases as would be the case in a business survey where the
classification of businesses would be refined along with an increase in the total
number of businesses. In the latter case, the sample size in each stratum would
necessarily remain relatively small, sometimes as small as nh = 2, and yet many
of the sampling fractions fh = nh/Nh could be relatively large. So, in general,
one considers an increasing sequence, indexed by a parameter δ, of populations
Uδ of size Nδ with a sample of size nδ for δ = 1, 2, . . .. In some cases, the units
in the population are the results of random variables whereas in others they
are a fixed sequence with some conditions that guarantee, for instance, that the
variance in the population converges to a constant. Hence, different authors use
different asymptotic frameworks. See, for instance, Section 1.3 of Fuller (2009)
and Krewski and Rao (1981). But often in survey sampling, authors rely on
unspecified regularity conditions. . .

Both variance estimators (2.9) and (2.16) depend on the second-order in-
clusion probabilities πij , which may be difficult to obtain for some unequal
probability sampling designs. Moreover, the variance estimator (2.16) obtained
through a first-order Taylor expansion requires separate derivations for different
functions of estimated totals in order to obtain ẑ. In this context, resampling
methods may prove useful.

3. Bootstrap for independently and identically distributed data and
earlier resampling methods

The bootstrap method was first proposed by Efron (1979) in classical statistics
where data are i.i.d. from a distribution F . He discovered the bootstrap while
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trying to better understand the jackknife which was first introduced by Que-
nouille (1956) to reduce the bias of point estimators. It is based on the idea
of combining estimates computed by leaving-out one observation at a time, a
form of resampling. Tukey (1958) recognized that by combining these leave-one-
out estimators in a certain way, it would be possible to compute estimates of
the variance of an estimator. Durbin (1959) was first to apply jackknife vari-
ance estimation in the context of finite population sampling while Jones (1974)
extended the method to handle stratified sampling. Krewski and Rao (1981),
Rao and Wu (1985), Wolter (2007) (pages 174–184), Kovar et al. (1988), Rao
et al. (1992) and Chapter 6 of Shao and Tu (1995), among others, studied
the properties of jackknife methods in stratified sampling. For multistage clus-
ter sampling, deleting a cluster at a time, a form of delete-a-group jackknife,
can be used. Rust (1985) and Kott (1998, 2001) are important references for
such methods. For unequal probability sampling without replacement, Camp-
bell and Little (1980), Berger and Skinner (2005), Berger (2007), and Escobar
and Berger (2013) introduced generalized jackknife variance estimators. One of
the major reasons for the early success of the bootstrap is the fact that unlike
the jackknife, it can accommodate functionals which are not as smooth as a
mean (or a total), such as quantiles; see Miller (1974) for a review of applica-
tions of the jackknife variance estimator in an i.i.d. context. In that context,
Shao and Wu (1989) introduced a delete-d jackknife whereby d observations are
deleted rather than one, leading to a consistent estimator of variance for quan-
tiles provided that the number of deleted observations d grows at an appropriate
rate.

Another ancestor of the bootstrap in a survey context is balanced repeated
replication (BRR). McCarthy (1969) first introduced the concept in the spe-
cialized case of stratified simple random sampling with replacement with two
units selected in each stratum. The idea consists of using half samples in each
stratum (modifying the survey weights accordingly) and of considering an ap-
propriately chosen balanced set of such repeated replications of the data. This
involves Hadamard matrices; see Appendix A of Wolter (2007). Krewski and
Rao (1981), Shao and Wu (1992), and Shao and Rao (1993) studied the proper-
ties of such estimators. Extending the method to samples of more than two units
per stratum turns out to be a challenge. Gurney and Jewett (1975), Gupta and
Nigam (1987), Wu (1991), Sitter (1993), and Rao and Shao (1996, 1999) have all
contributed to such extensions. A good review of these other resampling-based
methods can be found in Rust and Rao (1996).

We now return to the bootstrap method in the context of an i.i.d. sample
from a distribution F as it is important to understand how to generalize it to
more complex problems, such as in survey sampling.

Let Y1, · · · , Yn be an i.i.d. sample from the unknown F and let θ be a param-
eter which is estimated by θ̂ a function of the sample. The bootstrap estimates
the distribution of θ̂, computed from an i.i.d. sample from F , by the distri-
bution of θ̂∗, computed from an i.i.d. bootstrap sample Y ∗

1 , . . . , Y
∗
n from the

empirical distribution function F̂n, an estimate of the unknown distribution F .
The estimate F̂n(z) for a real number z is given by
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F̂n(z) =
1

n

n∑
i=1

I(Yi ≤ z).

The bootstrap variance estimate is V ∗ = V ∗(θ̂∗|Y1, · · · , Yn), the conditional

variance of θ̂∗ given Y1, · · · , Yn. However, this bootstrap variance estimator is
usually not a closed form function of Y1, · · · , Yn. In practice, we use a Monte
Carlo approximation of V ∗. The bootstrap algorithm can be depicted as follows:

1. Generate Y ∗
1 , · · · , Y ∗

n
i.i.d.∼ F̂n, which is equivalent to drawing a simple

random sample {Y ∗
1 , · · · , Y ∗

n } with replacement from {Y1, · · · , Yn}. Let θ̂∗
be the bootstrap statistic computed on the resulting bootstrap sample.

2. Repeat Step 1 a large number of times, B, to get θ̂∗1 , · · · , θ̂∗B .
3. Estimate V

(
θ̂
)
by

V̂ ∗
B =

1

B − 1

B∑
b=1

(
θ̂∗b − θ̂∗(·)

)2

,

where θ̂∗(·) = B−1
∑B

b=1 θ̂
∗
b .

Conditional on the original sample, when the number of bootstrap samples B
goes to infinity, the law of large numbers implies that V̂ ∗

B converges almost surely
to V ∗.

A straightforward extension of the bootstrap to survey problems is to apply
the above i.i.d. bootstrap algorithm to draw s∗, a simple random sample with
replacement (SRSWR) of size n, from the original sample s. For θ̂ = t̂HT , the
bootstrap variance estimator reduces to

V ∗ = N2

(
n− 1

n

)
s2

n
. (3.1)

Even in the case of simple random sampling without replacement, the bootstrap
method leads to a biased estimator of the variance as (3.1) fails to account for
the finite population correction, 1 − f ; see expression (2.10). As a result, the
bootstrap variance estimator V ∗ does not reduce to zero in the case of a census,
s = U, which is somehow embarrassing; see Lahiri (2003). Of course, in this sim-
ple situation, a bias-adjusted variance is easily obtained as (1− f)[n/(n−1)]V ∗

is consistent and unbiased for the true variance. However, for more complex
survey designs, the variance estimator (3.1) is biased and adjusting for the bias
may be a complex task unlike in the case of simple random sampling without
replacement.

Successful application of the bootstrap in a finite population setting requires
appropriate modifications. One approach consists of modifying the bootstrap
procedure by taking into account the survey design. Instead of estimating the
unknown distribution F and selecting i.i.d. samples from the estimated distri-
bution F̂n, it estimates the unknown finite population U and takes bootstrap
samples according to the sampling design. These methods will be presented in
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Section 4.1. Alternatively, independent sampling as in the original bootstrap can
be used, but to reflect the variability resulting from the sampling design, either
the data needs to be rescaled or independent subsamples without replacement
must be combined. These methods will be presented in Section 4.2. Finally, in
Section 4.3, some bootstrap weights methods will be presented where survey
weights rather than the original data set are modified.

4. Design-based bootstrap methods for complete survey data

In this section, we study the complete survey data bootstrap methods intro-
duced so far. To better see the similarities and differences between the various
methods, we classify them into three main groups. This classification allows us
to present for each group a single algorithm that covers its different methods.
There is of course a certain degree of arbitrariness in this classification, but it
presents interesting and useful insights. In the first group, a pseudo-population
is first created by repeating the elements of the original sample, and bootstrap
samples are then selected from the resulting pseudo-population following the
original sampling scheme. We refer to these methods as the pseudo-population
bootstrap methods. The second one consists of selecting bootstrap samples from
the original sample or a rescaled version of it using with replacement sampling,
a design that might be different from the original sampling design. We call these
methods the direct bootstrap methods. In the third group, called the bootstrap
weights methods, instead of resampling observations from the original data set
to create a bootstrap sample, the sample remains fixed, but a set of bootstrap
survey weights is generated by making rescaling adjustments on the original sur-
vey weights. The resulting bootstrap weights, combined with the original data
set, are used to compute bootstrap estimators.

It is important to note that many of these methods contain tuning parameters
that are set so that the resulting bootstrap expectation and variance in the case
of the Horvitz-Thompson estimator of the total coincide with the estimate t̂HT ,
and the usual variance estimator presented in (2.9), respectively. Hence, variance
estimation plays a key role in defining the bootstrap methods applied to survey
sampling. However, bootstrap confidence intervals are presented at the end of
Section 4.1 and in subsequent sections.

4.1. Pseudo-population bootstrap methods

As seen in Section 3, the unknown quantity in the classical i.i.d. model of clas-
sical statistics is the distribution F . To perform the bootstrap procedure for
this model, F is first estimated by the empirical distribution function F̂n, and
then i.i.d. observations from F̂n are generated. In survey sampling, the un-
known is the population U from which the sample is drawn. Therefore, under
the pseudo-population bootstrap (PPB) approach, U is estimated by creating
a pseudo-population via repeating the original sample using principles from the
original sampling design. Then, the bootstrap sample is drawn from the resulting
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pseudo-population using the original sampling design. By obeying the original
scheme to draw the bootstrap sample from the pseudo-population, the finite
population correction factors, e.g., the 1− f in the case of simple random sam-
ple without replacement (SRSWOR), are naturally captured by the bootstrap
variance estimator. This important property has persuaded many researchers to
widely study this approach.

The pseudo-population bootstrap methods for simple random sample without
replacement (or stratified simple random sample) for variance estimation will be
presented in the next subsection. Confidence intervals and methods for unequal
probability sampling designs will be presented in the two following subsections.

4.1.1. Simple random sampling without replacement: Variance estimation

In this section, we discuss the proposed pseudo-population methods for the case
of simple random sample without replacement: Booth et al. (1994), Chao and Lo
(1994), Bickel and Freedman (1984), Chao and Lo (1985) and Sitter (1992a). To
clarify the application of these bootstrap methods, we illustrate how a pseudo-
population is constructed through a simple example. Assume that N = 1000
and a simple random sample s of size n = 100 is taken without replacement
from U . A pseudo-population of size N can be created by repeating the sample
s, N/n = 10 times. This method was first proposed by Gross (1980). However,
in reality, N/n is rarely an integer. In this case, a well-known method to build
a pseudo-population of size N was proposed by Booth et al. (1994). In this
method, they create a pseudo-population, U∗, by first repeating each unit of
the original sample s, k = 
N/n� times. Then, U∗ is completed by taking a
simple random sample of size N −nk without replacement from s. For example,
assuming that N = 1000 and n = 150, to construct U∗, each unit in s is first
repeated k = 
1000/150� = 6 times. Then, U∗ is completed by taking a simple
random sample of size N − nk = 100 without replacement. Note that if N/n is
an integer, the pseudo-population U∗ created under the method of Booth et al.
(1994) is exactly the same as that under the method of Gross (1980).

To construct the pseudo-population, all other pseudo-population methods
work similarly to the Booth et al. (1994) method, but different designs are used
to complete the pseudo-population. The following algorithm presents a general
scheme to create the pseudo-population and to select the bootstrap sample for
all existing methods. Elements in bold in the algorithm need to be specified for
each method and will be presented in Table 1.

SRSWOR PPB Algorithm:

1. Repeat each unit in the original sample s, k times to create, Uf , the fixed
part of the pseudo-population.

2. DrawU c∗ from s to complete the pseudo-population, U∗. Therefore, U∗ =
Uf ∪ U c∗. Let θ∗ be the bootstrap analogue of the parameter θ computed
on the resulting pseudo-population U∗.

3. Take a simple random sample, s∗, of size n′ without replacement from U∗.
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4. Compute the bootstrap statistic, θ̂∗, on the bootstrap sample s∗.
5. Repeat Steps 2 to 4 a large number of times, B, to get the sets of bootstrap

parameters and bootstrap estimates

θ∗1 , . . . , θ
∗
B, and θ̂∗1 , . . . , θ̂

∗
B.

Later, we will explain how this algorithm is applied to compute bootstrap vari-
ance estimators. In Table 1, the number of repetitions k, the design to obtain
U c∗ and the bootstrap sample size n′ are presented for all procedures.

Table 1

Existing complete data PPB methods for the case of SRSWOR

Existing methods k Uc∗ n′

Booth et al. (1994)

�N/n�

SRSWOR from s

n

of size N − nk

Chao and Lo (1994)
SRSWR from s

of size N − nk

Bickel and Freedman (1984) †
{
∅,with pr. qbf

a

s,with pr. 1− qbf

Chao and Lo (1985) As † with pr. qcl
b

Sitter (1992a)
⌊
N(n−(1−f))

n2

⌋
As † with pr. qsc n−I (Uc∗ = ∅)

a
qbf =

(
1 − N−nk

n

) (
1 − N−nk

N−1

)
b
qcl =

G(N)−G(n(k+1))
G(nk)−G(n(k+1))

and G(t) =
(
1 − n

t

)
t(n−1)
(t−1)n

c
qs =

1−f
n(n−1)

−a2

a1−a2
with a1 = nk−n+1

n(n−1)(nk−1)
and a2 = k

n[n(k+1)−1]

Note that when N/n is not an integer, for the methods of Booth et al. (1994)
and Chao and Lo (1994), the size of the pseudo-population is fixed at N , the
original population size, but its (conditional) mean varies with each pseudo-
population. On the other hand, for the methods of Bickel and Freedman (1984),
Chao and Lo (1985) and Sitter (1992a), there is a randomization between two
different pseudo-populations made up of either k or k + 1 copies of the sample
s so that in either case, the (conditional) mean of the pseudo-population is the
mean of the sample.

Assuming that θ̂ is an unbiased estimator of θ, Ep(θ̂) = θ, the variance of θ̂
under the sampling design is reduced to

Vp(θ̂) = Ep[(θ̂ − θ)2]. (4.1)

To estimate Vp(θ̂) through the SRSWOR PPB Algorithm, there are two random
components that have to be considered in this bootstrap procedure: the sampling
mechanism applied to complete the pseudo-population and the one for choosing
the bootstrap sample, indexed by u∗ and p∗, respectively.

Using Step 5 of the SRSWOR PPB Algorithm, a natural Monte Carlo boot-
strap estimate of variance would be the sample variance of the bootstrap esti-
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mates:

Ṽ ∗
B =

1

B − 1

B∑
b=1

(
θ̂∗b − θ̂∗(·)

)2

, (4.2)

where θ̂∗(·) = B−1
∑B

b=1 θ̂
∗
b . This is an approximation of the (total) bootstrap

variance Ṽ ∗
(
θ̂∗
)
:

Ṽ ∗
(
θ̂∗
)
=Eu∗p∗

[
θ̂∗ − Eu∗p∗

(
θ̂∗
)]2

=Eu∗Ep∗

{[
θ̂∗ − Eu∗Ep∗

(
θ̂∗|U∗

)]2
|U∗

}
.

(4.3)

Conditional on the original sample, Ṽ ∗
(
θ̂∗
)
is computed by taking the vari-

ability of the bootstrap estimates θ̂∗ around the fixed value Eu∗Ep∗
(
θ̂∗|U∗

)
,

estimated in the algorithm by θ̂∗(·). It is estimating Ep[(θ̂ − θ)2], the sampling

variability of θ̂ around the (fixed) parameter θ in the population. In some of
the bootstrap procedures, conditional on the original sample, the value of the
bootstrap parameter, θ∗, is random, i.e., changes with each pseudo-population.
In such a case, if the bootstrap estimator θ̂∗ is design-unbiased for its boot-

strap parameter θ∗, Ṽ ∗
(
θ̂∗
)

does not only reflect the sampling variability of

θ̂∗ around θ∗, but also the variability of the bootstrap parameter θ∗ around its
mean Eu∗ (θ

∗). So, in the case of methods for which the bootstrap parameter
θ∗ changes with each pseudo-population, an alternative bootstrap estimate of
Vp(θ̂) in (4.1) is obtained by computing the sampling variability of the bootstrap

estimates θ̂∗ around θ∗. In other words, we estimate Vp(θ̂) by

V ∗
(
θ̂∗
)
= Eu∗Ep∗

[(
θ̂∗ − θ∗

)2

|U∗
]
. (4.4)

Using the SRSWOR PPB Algorithm, the Monte Carlo approximation of V ∗
(
θ̂∗
)

is

V̂ ∗
B =

1

B

B∑
b=1

(
θ̂∗b − θ∗b

)2

. (4.5)

Now, we study both bootstrap variance estimators for all five methods. We start
by analyzing the bootstrap procedures of Bickel and Freedman (1984), Chao and
Lo (1985) and Sitter (1992a). As was shown in Table 1, each bootstrap method
uses a different randomization method to select the pseudo-population. In Bickel
and Freedman (1984) and Chao and Lo (1985), the pseudo-population is con-
structed by randomly repeating the original sample k = 
N/n� or 
N/n� + 1
times. In Sitter (1992a) the number of repetitions k and the bootstrap sam-
ple size are different from those in the other methods. In this method, the
randomization is done between two pairs of the number of repetitions k and
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the bootstrap sample size, i.e. between (k, n − 1) and (k + 1, n) where k =

(N/n) [1− (1− f)/n]�. Consequently, in the case of the mean or the median,
the bootstrap parameter θ∗ does not change with each pseudo-population and

both bootstrap variance estimators Ṽ ∗
(
θ̂∗
)
and V ∗

(
θ̂∗
)
of (4.3) and (4.4) are

identical.
Consider now the two bootstrap variance estimates in (4.3) and (4.4) for the

two other bootstrap procedures of Booth et al. (1994) and Chao and Lo (1994)
in the case of the population total, beginning with the former.

For the method of Booth et al. (1994), the bootstrap variance estimator

Ṽ ∗
(
θ̂∗
)
in (4.3) can be written as

Ṽ ∗ (t̂∗HT

)
=Eu∗

[
Vp∗

(
t̂∗HT |U∗)]+ Vu∗

[
Ep∗

(
t̂∗HT |U∗)]

=

[
n− 1

n− f
− 1− f 
N/n�

N − 1

(
1− N − n 
N/n�

n

)]
N2(1− f)

s2

n

+N (1− f 
N/n�)
(
1− N − n 
N/n�

n

)
s2,

(4.6)

where t̂∗HT = (N/n)
∑

i∈s∗ y
∗
i is the bootstrap Horvitz-Thompson estimator of

total computed on s∗. It is straightforward to see that the first term of the
bootstrap variance estimator in (4.6) is asymptotically unbiased for Vp

(
t̂HT

)
,

more precisely,

Ep

{
Eu∗

[
Vp∗

(
t̂∗HT |U∗)]}− Vp

(
t̂HT

)
= O

(
n−1

)
Vp

(
t̂HT

)
. (4.7)

Moreover, the ratio of the expectation of each component of (4.6) to Vp

(
t̂HT

)
is

Ep

{
Eu∗

[
Vp∗

(
t̂∗HT |U∗)]}

Vp

(
t̂HT

) = O(1) and
Ep

{
Vu∗

[
Ep∗

(
t̂∗HT |U∗)]}

Vp

(
t̂HT

) = O(f).

As a result, the second term in (4.6) produces a bias and implies an overestima-
tion of the variance. This bias can be ignored only when the sampling fraction f
is negligible. Note that in the case of a negligible f , even the classical i.i.d. boot-
strap method works well asymptotically, so there would be no need to consider
more sophisticated resampling procedures.

However, as demonstrated in the following, the bootstrap variance estimator
around the bootstrap parameter θ∗, V ∗ (t̂∗HT

)
in (4.4), is asymptotically unbi-

ased for Vp

(
t̂HT

)
regardless of the sampling fraction f . Since Ep∗

(
t̂∗HT |U∗) =∑

i∈U∗ y∗i = t∗, we have

V ∗ (t̂∗HT

)
=Eu∗Ep∗

[(
t̂∗HT − t∗

)2 |U∗
]

=Eu∗
[
Vp∗

(
t̂∗HT |U∗)]

=

[
n− 1

n− f
− 1− f 
N/n�

N − 1

(
1− N − n 
N/n�

n

)]
N2(1− f)

s2

n
.

(4.8)
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Therefore, the bootstrap variance estimator V ∗ (t̂∗HT

)
is equal to the first term

of Ṽ ∗ (t̂∗HT

)
, Eu∗

[
Vp∗

(
t̂∗HT |U∗)], which represents the average over the different

pseudo-populations of the sampling variability of the bootstrap estimator t̂∗HT ;
see (4.6). Consequently, an alternative to formula (4.5) to approximate V ∗ (t̂∗HT

)
without resorting to the explicit computation of the bootstrap parameter θ∗

consists of replacing Step 5 of the SRSWOR PPB Algorithm by the following
two steps:

5’. Repeat Steps 3 and 4 a large number of times, B, to get the bootstrap
estimates θ̂∗1 , . . . , θ̂

∗
B, leading to

V̂ ∗
B =

1

B − 1

B∑
b=1

(
θ̂∗b − θ̂∗(·)

)2

,

where θ̂∗(·) = B−1
∑B

b=1 θ̂
∗
b .

6. Repeat Steps 2 to 5 a large number of times, D, to get V̂ ∗
1B , . . . , V̂

∗
DB,

leading to

V̂ ∗ =
1

D

D∑
d=1

V̂ ∗
dB ,

Incidentally, this is the algorithm presented by Chauvet (2007). He argues that
since the interest is in estimating the sampling variability associated with simple
random sampling, the extra variability associated with completing the pseudo-
population, Vu∗

[
Ep∗

(
t̂∗HT |U∗)], is viewed as a parasitic variance. As a result,

the bootstrap estimate of variance should be Eu∗
[
Vp∗

(
t̂∗HT |U∗)] as computed

above.
It should be noted that Booth et al. (1994) were interested in constructing a

confidence interval for a function of means and obtained asymptotic results for
the distribution of the estimator, which is what is needed to study confidence
intervals. Even though they do provide an algorithm for the expected value
of the bootstrap estimator, they are silent on estimating the variance of an
estimator. On the other hand, they do center the bootstrap statistic θ̂∗ around
the bootstrap parameter θ∗, which perhaps suggests that if they had explicitly

suggested a variance estimator, it would have been V ∗
(
θ̂∗
)
, not Ṽ ∗

(
θ̂∗
)
. More

on the implications of this centering problem for confidence intervals in the next
subsection.

Like Booth et al. (1994), Chao and Lo (1994) attempt to create a pseudo-
population of size N , the same as the original population size. However, Chao
and Lo (1994) take a simple random sample with replacement to complete the
pseudo-population. They construct their method through first principles, using
ideas from the method of moments and maximum likelihood to show that when
N/n is an integer, the only natural thing to do is to repeat the original sample k
times. When N/n is not an integer, they complete the pseudo-population with
a simple random sample with replacement from the original sample, but while
they argued why it should be completed by observations found in the sample,
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they do not argue why it should be by simple random sampling with replacement
as opposed to without replacement.

As in Booth et al. (1994), Chao and Lo (1994) do not explicitly explain how
to estimate the variance of an estimator from their method. But in the case of
the population total, it leads to

Eu∗
[
Vp∗

(
t̂∗HT |U∗)] = [

n− 1

n− f
− 1− f 
N/n�

N − 1

(
1− 1

n

)]
N2(1− f)

s2

n

and

Vu∗
[
Ep∗

(
t̂∗HT |U∗)] = N (1− f 
N/n�)

(
1− 1

n

)
s2.

Since the first term is asymptotically unbiased for Vp

(
t̂HT

)
and the second term

cannot be ignored in the case of a non-negligible f , the bootstrap variance esti-
mator in (4.3), which is Eu∗

[
Vp∗

(
t̂∗HT |U∗)]+ Vu∗

[
Ep∗

(
t̂∗HT |U∗)], may lead to

an overestimation of the variance Vp

(
t̂HT

)
. However, considering the variability

of t̂∗HT around the bootstrap parameter t∗, the bootstrap variance estimator in
(4.4), leads to an asymptotically unbiased estimator for Vp

(
t̂HT

)
since

V ∗ (t̂∗HT

)
= Eu∗Ep∗

[(
t̂∗HT − t∗

)2 |U∗
]
= Eu∗

[
Vp∗

(
t̂∗HT |U∗)] .

Coming back to the methods of Bickel and Freedman (1984), Chao and Lo
(1985) and Sitter (1992a), the fact that they involve two pseudo-populations of
different sizes raises an interesting question for the estimation of the population
total. These three methods are designed to estimate the variance of a function
of means. Writing the estimator t̂HT of the population total as t̂HT = Nȳ,
where N is the known population size, the bootstrap statistic is t̂∗HT = Nȳ∗

and Ep∗
(
t̂∗HT |U∗) = t∗ = NȲ ∗ = Nȳ, where Ȳ ∗ is the mean of the pseudo-

population. As a result, under these three methods, Eu∗Ep∗
(
t̂∗HT |U∗) = Nȳ =

t∗, so the bootstrap variance estimators presented in (4.3) and (4.4) are equiv-
alent.

Now let N ′ be the size of the particular pseudo-population randomly se-
lected by the bootstrap method. If the bootstrap statistic was defined using the
usual Horvitz-Thompson estimator on a sample of size n′ drawn from a pseudo-
population of sizeN ′, i.e. t̂∗HT = (N ′/n′)

∑
i∈s∗ y

∗
i = N ′ȳ∗, (4.3) and (4.4) would

no longer be equivalent. If this definition was used, Ep∗
(
t̂∗HT |U∗) = N ′ȳ which

depends on the random pseudo-population size N ′.
In Table 2, the ratio of the expectation of V ∗ (t̂∗HT

)
= Ṽ ∗ (t̂∗HT

)
to Vp

(
t̂HT

)
is presented for these three methods.

Interestingly, there is quite a bit of confusion in the literature regarding the
method of Bickel and Freedman (1984), especially the probability qbf of using

N/n� copies of the sample as the pseudo-population; see Table 1. Many authors
argue that the probability used in this method can be negative making the
procedure potentially infeasible. But qbf cannot be negative and the confusion
probably comes from a different probability which was used in the unpublished
manuscript Bickel and Freedman (1983).



18 Z. Mashreghi et al.

Table 2

The ratio of the expectation of V ∗ (t̂∗HT

)
= Ṽ ∗ (t̂∗HT

)
to Vp

(
t̂HT

)
in the

case of SRSWOR

Existing methods Ep
[
V ∗ (t̂∗HT

)]
/Vp

(
t̂HT

)
Bickel and Freedman (1984) (n− 1)/(n− f)

Chao and Lo (1985)
[
qcl

(
k−1
nk−1

)
+ (1− qcl)

(
k

n(k+1)−1

)]
n−1
1−f

a

Sitter (1992a) 1

a
k = �N/n�, qcl =

G(N)−G(n(k+1))
G(nk)−G(n(k+1))

and G(t) =
(
1 − n

t

)
t(n−1)
(t−1)n

To illustrate the accuracy of the five pseudo-population methods in estimating
the variance of t̂HT for some specific cases, the ratio of the expectation of both

bootstrap variance estimators, Ep

[
V ∗ (t̂∗HT

)]
and Ep

[
Ṽ ∗ (t̂∗HT

)]
, to Vp

(
t̂HT

)
,

which only depend on the population (N) and sample (n) sizes, are presented in
Table 3. Four different scenarios made up of two population sizes N1 = 100 and
N2 = 10000 with two sampling fractions f1 = 6% and f2 = 60% are considered.

Table 3

The ratio of the expectation of the bootstrap variance estimators V ∗ (t̂∗HT

)
and

Ṽ ∗ (t̂∗HT

)
to Vp

(
t̂HT

)
assuming N1 = 100, N2 = 10000, f1=6% and f2=60%.

Ep
[
V ∗ (t̂∗HT

)]
/ Vp

(
t̂HT

)
Ep

[
Ṽ ∗ (t̂∗HT

)]
/ Vp

(
t̂HT

)
PPB methods for SRSWOR f1=6% f2=60% f1=6% f2=60%

N1 N2 N1 N2 N1 N2 N1 N2

Booth et al. (1994) 0.842 0.998 0.992 1.0 0.843 0.999 1.192 1.2

Chao and Lo (1994) 0.841 0.998 0.989 1.0 0.843 1.001 1.579 1.6

Bickel and Freedman (1984) 0.842 0.998 0.993 1.0 0.842 0.998 0.993 1.0

Chao and Lo (1985) 0.842 0.998 0.993 1.0 0.842 0.998 0.993 1.0

Sitter (1992a) 1 1 1 1 1 1 1 1

For all methods, the ratio Ep

[
V ∗ (t̂∗HT

)]
/Vp

(
t̂HT

)
is close to 1 in all scenarios

except when N1 = 100 with f1 = 6% where the ratio is about 0.84. Note that
in this scenario the sample size, n = 6, is very small and the results improve
rapidly when the sample size increases. For that same scenario, the other ratio

Ep

[
Ṽ ∗ (t̂∗HT

)]
/Vp

(
t̂HT

)
is also about 0.84. In the case of Sitter (1992a), all

ratios are exactly 1 because the probability qs of Table 1 is constructed so that
the bootstrap variance estimator is identical to the usual variance estimator in
the case of the population mean (or total).

The contribution of the second term in Ṽ ∗ (t̂∗HT

)
to the total variance (the

difference between Ṽ ∗ (t̂∗HT

)
and V ∗ (t̂∗HT

)
) is significant in Booth et al. (1994)

and Chao and Lo (1994) when the sampling fraction is large (f2 = 60%), as
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suggested by the theory above, while this second term is zero for the other

three methods so that Ep

[
V ∗ (t̂∗HT

)]
= Ep

[
Ṽ ∗ (t̂∗HT

)]
, as discussed earlier.

We also note that completing the pseudo-population using without replacement
sampling as in Booth et al. (1994) leads to a much smaller bias than the with
replacement sampling of Chao and Lo (1994) when f2 = 60%, however, the boot-
strap variance estimator Ṽ ∗ (t̂∗HT

)
in both methods implies an overestimation

of the variance.
In light of all of these results, it is clear that for the methods of Booth et al.

(1994) and Chao and Lo (1994), the bootstrap estimate of variance should be

given by V ∗
(
θ̂∗
)
of (4.4).

All methods for the case of simple random sample without replacement can
be easily extended to stratified simple random sample without replacement by
applying a resampling method independently within strata.

4.1.2. Simple random sampling without replacement: Confidence intervals

Another important statistical problem is the construction of a confidence inter-
val for a parameter θ based on an estimator θ̂. In survey sampling, the use of the
bootstrap for this problem has received less attention than in classical statis-
tics, perhaps because statistical agencies often report coefficients of variation as
measures of precision for estimators and this measure requires an estimation of
the variance of the estimator.

The construction of approximate confidence intervals requires estimates of

quantiles of the distribution of (θ̂ − θ)/

√
V (θ̂) or of (θ̂ − θ)/

√
V̂ , where V̂ is

an estimate of V (θ̂), the variance of θ̂, and are based on the inversion of a
probability statement of these quantities.

The 1− α level asymptotic confidence intervals are given by

[θ̂ − z1−α/2

√
V̂ , θ̂ − zα/2

√
V̂ ], (4.9)

where zβ is the β-quantile of the standard normal distribution. This interval is

based on the approximation of (θ̂ − θ)/
√

V̂ by a standard normal distribution.
Each estimate V̂ of the variance of the estimator leads to a different asymp-

totic confidence interval. For instance, one could use the linearized variance
estimator of (2.14) or the BRR or jackknife estimators briefly discussed in Sec-
tion 3. But one could also use any of the bootstrap estimate V̂ ∗ introduced so
far or that will be introduced in the next subsections.

Using the quantiles of the bootstrap distribution of (θ̂ − θ)/
√

V̂ instead of
those of the standard normal distribution, one obtains bootstrap-t confidence
intervals. More precisely, let

K̂n;∗(x) = Prob∗

(
θ̂∗ − θ∗√

V̂ ∗
≤ x

)
(4.10)
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where θ̂∗ and
√
V̂ ∗ are, respectively, the estimate and its variance estimate

computed from the bootstrap observations and θ∗ is the value of the parameter
under bootstrap sampling. Often, θ∗ = θ̂, the estimate computed from the
original sample. But in this section, θ∗ is the value of the parameter computed
from the particular pseudo-population and so in the case of the methods of
Booth et al. (1994) and Chao and Lo (1994), that value changes with each
bootstrap sample. The bootstrap-t confidence interval is given by

[θ̂ −
√

V̂ K̂−1
n;∗(1− α/2), θ̂ −

√
V̂ K̂−1

n;∗(α/2)]. (4.11)

Again, there are as many bootstrap-t confidence intervals as there are estima-
tors of the variance V (θ̂). Obviously, if one uses a computer-intensive variance
estimator, such as the bootstrap (leading to a double bootstrap) or the jack-
knife, the confidence interval will require a very large number of computations
given that it has to be computed on each bootstrap sample.

A more direct way to use the bootstrap to construct confidence intervals
simply uses the bootstrap distribution of θ̂∗. Let θ̂∗(1) ≤ θ̂∗(2) ≤ . . . ≤ θ̂∗(B) be
the ordered bootstrap statistics. The bootstrap percentile confidence interval is
(usually) given by

[θ̂∗(Bα/2), θ̂
∗
(B∗{1−α/2})]. (4.12)

When the bootstrap parameter θ∗ equals the estimate θ̂, this interval is equivalent
to

[θ̂ + L−1
n,∗(α/2), θ̂ + L−1

n,∗(1− α/2)], (4.13)

where Ln,∗(x) = Prob∗(θ̂∗− θ∗ ≤ x) is an estimate of Ln(x) = Prob(θ̂− θ ≤ x).
Note that in this interval, the left quantile is added to the estimate for the
lower bound rather than subtracting the right quantile; see (4.11). This is fine,

asymptotically, since the asymptotic distribution of θ̂ is symmetric. But, as
with the bootstrap-t intervals, in the case of the bootstrap methods of Booth
et al. (1994) and Chao and Lo (1994), the bootstrap parameter θ∗ changes with
each bootstrap sample and the percentile bootstrap confidence interval would
have to be computed according to (4.13) rather than directly through (4.12)
as otherwise the confidence intervals will overcover the true parameter θ. As
we have previously discussed in the context of variance estimation, the overall
dispersion of θ̂∗ as opposed to the dispersion of θ̂∗− θ∗ is too large; see Table 3.
So care must be exercised when applying the percentile bootstrap method.

The discussion of confidence intervals in the papers mentioned so far dif-
fers considerably. As discussed previously, Booth et al. (1994) had confidence
intervals rather than variance estimation in mind when they introduced their
method and they considered bootstrap-t confidence intervals for functions of
means where the estimate of the standard error is an explicit function of the
sample. Note that K̂n;∗(x) is centered at the bootstrap parameter θ∗ which
changes with each pseudo-population. They do not consider percentile inter-
vals. Sitter (1992a) studies bootstrap-t confidence intervals based on a jackknife
variance estimate when his method is applied to nonlinear functions of means
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while he uses the percentile method for the median. Note that the bootstrap
parameter θ∗ is fixed for this method. Bickel and Freedman (1984) and Chao
and Lo (1985) do not specifically address the construction of confidence inter-
vals, but they both study the asymptotic distribution of a suitably studentized
bootstrap version of the estimator θ̂ so that their results would imply that a
bootstrap-t confidence interval would work. Finally, Chao and Lo (1994) do not
discuss confidence intervals at all.

4.1.3. Unequal probability sampling

We now study two procedures designed for unequal (single-stage) probability
sampling designs (UEQPS). The methods of Chauvet (2007) for Poisson sam-
pling and Holmberg (1998) for probability proportional to size sampling, also
referred to as πPS, aim to emulate the original sampling design as was the case
with simple random sample without replacement. A πPS sample of size n se-
lects the ith element without replacement with probability πi = nxi/X where

X =
∑N

i=1 xi is the total of the size variable x, and so the probability of se-
lection is proportional to the size variable. This sample design is particularly
efficient for estimating the total through the Horvitz-Thompson estimator when
the correlation between x and y is large. As we have seen in Section 2, in Poisson
sampling each element of the population is selected independently in the sample
with probability πi and therefore the sample size is random. We can describe the
two methods with this general algorithm. The element in bold will be specified
for each method in the next paragraphs (there shouldn’t be any confusion with
the usual convention that we have used so far that vectors are represented with
bold characters).

UEQPS PPB Algorithm:

1. Repeat the pair (yi, πi),
⌊
π−1
i

⌋
times for all i in s to create, Uf , the fixed

part of the pseudo-population.
2. To complete the pseudo-population, U∗, draw U c∗ from {(yi, πi)}i∈s using

Poisson sampling with inclusion probability π−1
i −

⌊
π−1
i

⌋
for the ith pair.

Denote the pseudo-population by U∗ = Uf ∪ U c∗ = {(y̌i, π̌i)}i∈U∗ where
(y̌i, π̌i) is the ith pair of the pseudo-population and corresponds to one of
the values of the variable obtained from the sample and its corresponding
probability of selection according to the sample design.

3. Take the bootstrap sample s∗ from U∗ using the same sampling design
that led to s, but with inclusion probability π′

i for the ith unit in U∗, as
defined in the sequel.

4. Compute the bootstrap statistic, θ̂∗, on the bootstrap sample s∗.
5. Repeat Steps 3 and 4 a large number of times, B, to get θ̂∗1 , . . . , θ̂

∗
B . Let

V̂ ∗
B =

1

B − 1

B∑
b=1

(
θ̂∗b − θ̂∗(·)

)2

,

where θ̂∗(·) = B−1
∑B

b=1 θ̂
∗
b .

6. Repeat Steps 2 to 5 a large number of times, D, to get V̂ ∗
1B, . . . , V̂

∗
DB .
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We see that the pseudo-population is constructed the same way for both
methods. However, to draw the bootstrap sample, the original sampling mech-
anism used to draw s from U is applied, but with inclusion probability π′

i. Note
that π′

i may be different from the original inclusion probability. The sampling
design, the inclusion probability π′

i in Step 3 and the approximation of the
bootstrap variance estimator using the resulting Monte Carlo approximations
are presented next for both methods.

Chauvet (2007) estimates the variance of the population total Vp

(
t̂HT

)
for

Poisson sampling design. To obtain the bootstrap variance estimator of Chauvet,
Poisson sampling with the original inclusion probabilities π′

i = π̌i in Step 3 of
the UEQPS PPB Algorithm is used. Recall that π̌i is the probability of selection
of the value y̌i, one of the pairs making the pseudo-population and therefore one
of the pairs (yj , πj) of the original sample. Under this method, the bootstrap

variance estimator is Eu∗
[
Vp∗

(
θ̂∗|U∗

)]
which is approximated by

V̂ ∗ =
1

D

D∑
d=1

V ∗
dB .

As shown in the previous section, Eu∗
[
Vp∗

(
θ̂∗|U∗

)]
=Eu∗Ep∗

[(
θ̂∗ − θ∗

)2

|U∗
]
,

where θ∗ is the population parameter computed on the resulting pseudo-popu-
lation in Step 2. Chauvet showed that under Poisson sampling, the proposed
bootstrap variance estimator reduces to the usual variance estimator of (2.11)
in the case of the total estimator since

Eu∗
[
Vp∗

(
t̂∗HT |U∗)] = Eu∗

[
Vp∗

(∑
i∈s∗

π
′−1
i y∗i |U∗

)]

= Eu∗

(∑
i∈U∗

1− π̌i

π̌i
y̌2i

)

=
∑
i∈s

⌊
π−1
i

⌋ 1− πi

πi
y2i + Eu∗

( ∑
i∈Uc∗

1− π̌i

π̌i
y̌2i

)

=
∑
i∈s

⌊
π−1
i

⌋ 1− πi

πi
y2i +

∑
i∈s

(
π−1
i −

⌊
π−1
i

⌋) 1− πi

πi
y2i

=
∑
i∈s

1− πi

π2
i

y2i .

Note that the resulting pseudo-population may not have the same size as the
original population size, N . But, letting M̌i be the number of times unit i
appears in U∗, we have EpEu∗

(∑
i∈s M̌i

)
= N .

Holmberg (1998) proposed his bootstrap method for inclusion probability
proportional to size sampling designs, and since the size distribution for the
pseudo-population is not the same as the original, the first order inclusion
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probability used in Step 3 of the UEQPS PPB Algorithm is modified to π′
i =

nπ̌i/
∑

j∈U∗ π̌j . According to the theory done in Holmberg (1998) in the case of
Pareto sampling (Rosén, 1997), a special case of a high entropy unequal prob-

ability sampling design, it is the total bootstrap variance estimator Ṽ ∗(θ̂∗) =

Eu∗
[
Vp∗

(
θ̂∗|U∗

)]
+ Vu∗ [Ep∗ (θ

∗|U∗)] which is a good approximation of the

variance in the case of the population total.

However, to compute the Monte Carlo variance estimator, he ignores the
variability induced by creating the pseudo-population. In the case of Pareto
sampling, he takes D = 1 in the UEQPS PPB Algorithm, so Uc∗ in Step 2
does not change and the pseudo-population is created once from which a large
number of bootstrap samples are taken. As a result, the second term in (4.3)
is estimated by zero. In this case, his suggested Monte Carlo approximation of
the bootstrap variance estimator is

V̂ ∗ =
n

n− 1
V̂ ∗
B .

Chauvet (2007) considered other unequal probability sampling designs. To
complete the pseudo-population in Step 2 of the algorithm, he suggests using
the sampling design under study with the same probabilities π−1

i −
⌊
π−1
i

⌋
. In par-

ticular, he studied the fixed size rejective sampling (or conditional Poisson sam-
pling). To show that the bootstrap estimate of variance works well in this case, he
uses the Hájek approximation for the second order inclusion probability to derive
an approximation to the variance of the Horvitz-Thompson estimator of the pop-

ulation total and shows that Eu∗
[
Vp∗

(
t̂∗HT |U∗)] (or Eu∗Ep∗

[(
t̂∗HT − t∗

)2 |U∗
]
)

is asymptotically unbiased for Vp

(
t̂HT

)
. The Hájek approximation will be good

for rejective sampling as it is a high entropy sampling design. Note that when
the original inclusion probabilities are proportional to size, the inclusion proba-
bilities to select the bootstrap sample have to be recalculated on each resulting
pseudo-population in the same way that the original inclusion probabilities were
computed on U . We conjecture that the method of Chauvet (2007) will perform
well for any sampling design belonging to the class of high entropy sampling
designs, which includes the Rao-Sampford method (Rao, 1965; Sampford, 1967)
and randomized proportional-to-size systematic sampling as special cases.

Interestingly, Chauvet (2007), which is a generalization of Booth et al. (1994),
did not recognize that it is not necessary to compute B bootstrap statistics
for each of D pseudo-populations to capture the appropriate variance. As we
explained in the case of simple random sampling, if one computes the bootstrap
parameter θ∗ for the pseudo-population, it is possible to obtain the appropriate
variance by computing the bootstrap variability of θ̂∗ − θ∗.

While Holmberg (1998) did not address the problem of constructing confi-
dence intervals, Chauvet (2007) computed bootstrap percentile intervals, more

specifically percentile intervals constructed from the DB values of θ̂∗i . As ex-
plained in the previous subsection, given that the bootstrap parameter θ∗

changes with each pseudo-population, the bootstrap percentile intervals should
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be computed from the quantiles of θ̂∗i −θ∗i where the pseudo-population changes
with each bootstrap sample; see equation (4.13).

This particular difficulty comes from the random completion of the pseudo-
population necessary to obtain exact results for the variance in Poisson sam-
pling. Chauvet (2007) introduced a simplified algorithm where the fixed pseudo-
population is made up [π−1

i ] copies of the pair (yi, πi) where [x] is the integer
nearest to x and no random completion is done. The rest of the algorithm re-
mains the same. Barbiero and Mecatti (2010) suggested exactly the same thing
and called this the “0.5 πPS algorithm”. In that paper, they also introduce
two other methods to construct a fixed pseudo-population for πPS sampling.
As mentioned earlier, the selection probability in such a design is πi = nxi/X
where X is the sum of the xi. In the creation of the pseudo-population, pairs
(yi, πi) or equivalently (yi, xi) are repeated a number of times according to
the first step of the UEQPS PPB Algorithm. Instead of completing the pseudo-
population with a random selection from the pairs (yi, xi), in these two methods
coined “x-balanced”, they try to make the sum of the values of xi in the pseudo-
population as close as possible to X, the sum in the population, according to
two different (fixed) criteria.

Alternatively, Barbiero et al. (2015) introduced six other bootstrap πPS al-
gorithms based on calibration ideas. Let w∗

i be the number of times that the
pair (yi, xi) is replicated in the pseudo-population and let N∗ =

∑
i∈s w

∗
i and

X∗ =
∑

i∈s w
∗
i xi. In the population, these quantities are N and X. One of their

algorithms consists of choosing w∗
i as close to π−1

i so that the two calibration
constraints N∗ = N and X∗ = X are satisfied. The other algorithms consider
other calibration (or semi-calibration) constraints.

In addition, Sitter (1992a) extended his method to the Rao-Hartley-Cochran
method for probability proportional to size sampling (Rao et al., 1962) in such a
way that the bootstrap variance estimate in the linear case is the usual variance
estimate. Chao and Lo (1994) also investigated the case of unequal probabil-
ity sampling design. But their algorithm, based on maximum likelihood ideas
where the parameters are the unobserved values in the population, is not re-
ally practical and was illustrated on a sample of size 2 from a population of
size 5.

4.2. Direct bootstrap methods

The bootstrap methods in this category are based on the idea that the boot-
strap samples can be directly drawn from the original data set as in Efron (1979)
without requiring the creation of a pseudo-population and mimicking the orig-
inal sampling design. However, some modifications have to be made so that
the bootstrap variability reflects the sampling variability of the original sam-
pling design. Some methods modify the observations while others concatenate
independent smaller simple random samples without replacement. First, we fo-
cus on the procedures handling the case of simple random sampling without
replacement.



A survey of bootstrap methods 25

The rescaling bootstrap (RSB) method proposed by Rao and Wu (1988) is
one of the well-known direct bootstrap methods. In this procedure, a rescaling
of the original data set is made before drawing the bootstrap sample leading
to a valid estimator of the variance of θ̂ = g(t̂1HT , . . . , t̂JHT ), a function of
population totals such as a ratio, a correlation coefficient or the generalized
regression estimator. Let n′ be the bootstrap sample size and y′i = ȳ+C(yi− ȳ)
be the rescaled y-value for unit i, where

C =

√
n′(1− f)

n− 1
. (4.14)

The bootstrap sample, s∗ = {y∗i }n
′

i=1, of size n′, is then taken with replacement

from s′ = {y′i}ni=1 the set of rescaled data. Then, the bootstrap statistic θ̂∗ =
g(t̂∗1HT , . . . , t̂

∗
JHT ) is computed where t̂∗jHT = (N/n′)

∑
i∈s∗ y

∗
ji for j = 1, . . . , J .

To illustrate how this bootstrap method performs for a function of totals, assume
that the parameter of interest is the population variance which is a function of
two totals:

θ = N−1
∑
i∈U

y2i −
(
N−1

∑
i∈U

yi

)2

= N−1t1 −
(
N−1t2

)2
(4.15)

with (y1i, y2i) = (y2i , yi). Therefore, the rescaled values of y1i and y2i are given
by (y′1i, y

′
2i) =

(
ȳ1 + C

(
y2i − ȳ1

)
, ȳ2 + C(yi − ȳ2)

)
, where ȳ1 = n−1

∑
i∈s y

2
i and

ȳ2 = ȳ. The bootstrap sample is now drawn from {(y′1i, y′2i)}ni=1.
It is worth noting that s∗ is drawn with replacement like in Efron (1979), but

from a rescaled data set and with a size that may be different from n.
As shown below, the rescaling factor C is chosen so that the variance under

resampling matches the usual variance estimator of the population total.

Vp∗
(
t̂∗HT

)
= Vp∗

(
N

n′

∑
i∈s∗

y∗i

)

=
N2

n′
1

n

∑
i∈s

⎛
⎝y′i − n−1

∑
j∈s

y′j

⎞
⎠

2

=
N2C2

n′n

∑
i∈s

(yi − ȳ)
2

= N2(1− f)
s2

n
.

Rao andWu (1988) showed that an inadequate choice of n′ could lead to negative

values of θ̂∗ even when θ̂ ≥ 0 and the parameter of interest is necessarily positive.
For example, when the parameter of interest is the population variance given by
(4.15), choosing n′ > (n− 1)/(1− f) might lead to a negative value for θ̂∗. This
is because the rescaling is not just done on the yi, but also separately on the
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y2i , which after recentering may be negative! However, in this case, by choosing

n′ ≤ (n− 1)/(1− f), we have θ̂∗ ≥ 0.

When applying this method to estimate the variance of the GREG estimator
given by (2.7), the auxiliary variables x also need to be rescaled the same way
that the study variables are. The bootstrap samples are then selected from the
rescaled version of the set of pairs {(yi,xi)}i∈s. The resulting bootstrap variance
estimator is asymptotically unbiased for the linearization variance estimator
given by (2.14). In addition, Kovar et al. (1988) applied the RSB method to the
case of quantiles. To draw bootstrap samples, they use the same rescaled data
set that was used for the case of the population mean. The bootstrap estimator
of quantile is computed on the resulting bootstrap sample in the same way that
it was computed on the original sample.

In the following, a general algorithm for the direct bootstrap methods is
presented. In Table 4, the different items from this algorithm noted in bold are
defined for each procedure. To put the various procedures in the same algorithm,
we define three quantities. We let C be the rescaling factor of the observations.
Also the method of Sitter (1992b), called the mirror-match bootstrap, involves
the concatenation of k′ simple random samples without replacement of size n′′.
For the methods involving a single i.i.d. sample of size n′, we will use n′′ = 1
and k′ = n′. In other words, setting n′′ = 1 in the algorithm described below is
equivalent to selecting the bootstrap samples with replacement.

SRSWOR Direct Algorithm:

1. Let y′i = ȳ +C(yi − ȳ), for i = 1, · · · , n. Define s′ = {y′i}ni=1.
2. Take a simple random sample of size n′′ without replacement from s′.
3. Repeat Step 2, k′ times independently, concatenating all subsamples, to

get s∗ = {y∗i }n
′

i=1, where n′ = k′n′′.

4. Compute the bootstrap statistic, θ̂∗ = g(t̂∗1HT , . . . , t̂
∗
JHT ), where t̂∗jHT =

(N/n′)
∑

i∈s∗ y
∗
ji for j = 1, . . . , J .

5. Repeat Steps 2 to 4 a large number of times, B, to get θ̂∗1 , . . . , θ̂
∗
B .

6. Estimate the variance of θ̂ by Vp∗
(
θ̂∗
)
or by

V̂ ∗
B =

1

B − 1

B∑
b=1

(
θ̂∗b − θ̂∗(·)

)2

,

where θ̂∗(·) = B−1
∑B

b=1 θ̂
∗
b .

Table 4 shows that the i.i.d. bootstrap of Efron (1979) overestimates the vari-
ance as it fails to capture the without replacement correction factor. McCarthy
and Snowden (1985) do the same as Efron (1979), but they recommended a
new bootstrap sample size n′ = (n− 1)/(1− f) to capture the finite population
correction factor which yields the customary variance estimator of t̂. If the rec-
ommended resample size (n − 1)/(1 − f) is not an integer, they suggest using
the closest integer to this value as n′.
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Table 4

Existing complete data direct bootstrap methods for the case of SRSWOR

Existing methods C n′′ k′
Ep[Vp∗(t̂∗HT )]

Vp(t̂HT )

Efron (1979) 1 1 n n−1
n(1−f)

McCarthy and Snow-
den (1985)

1 1 n−1
1−f

a 1 b

Rao and Wu (1988)
√

k′(1−f)
n−1

1 Arbitrary c 1

Sitter (1992b) 1 ≤ n
2−f

⌊
n(1−f ′′)
n′′(1−f)

⌋
+ Iq d 1

a
It may be a non-integer. If so, n′ = �(n − 1)/(1 − f) + 0.5�.

b
Only when (n − 1)/(1 − f) is an integer

c
More conditions are required to have a positive θ̂∗ when θ̂ is necessarily positive.

d
Iq ∼ Bernoulli(q) with q = (�k�−1 − k−1)/(�k�−1 − �k�−1), �k� = �k� + 1, k = n(1 −

f′′)/[n′′(1 − f)] and f′′ = n′′/n

As mentioned above, the method of Sitter (1992b) consists of taking a re-
sample without replacement, as in the original sampling scheme, but of size n′′

smaller than the original sample size and then repeating this resampling inde-
pendently k = n(1−f ′′)/[n′′(1−f)] times. The bootstrap sample is obtained by
accumulating all these resamples. The number of repetitions k is chosen in such
a way that the resulting bootstrap variance matches the usual variance estimate
of the population total in (2.9), Vp∗

(
t̂∗HT

)
= V̂

(
t̂HT

)
. Since k is usually not an

integer, a randomization between bracketing integers is available as shown in
Table 4. Sitter (1992b) showed that this procedure remains valid for the case of
a function of totals, but more study is required for more complex parameters
such as a population quantile.

Sitter (1992b) also discussed an alternative choice of resample size with
n′′ = fn such that the resampling fraction f ′′ = n′′/n is the same as the
original sampling fraction f . However, this procedure is generally not feasible
since both n′′ and k are generally not integer values. In this case, two types of
randomization between bracketing integers were suggested. In the first one, the
bootstrap sample size n′′ = 
fn� + Iq′ is first fixed, where Iq′ ∼ Bernoulli(q′)
with q′ = fn − 
fn�. Then, a randomization between the integer values of k
is done, as presented in Table 4, so that E(f ′′) = f and Vp∗

(
t̂∗HT

)
= V̂

(
t̂HT

)
.

Choosing n′′ by this way may lead to k < 1. So, this randomization is not
valid. In this case, another kind of randomization made between (
fn�, 
k�) and
(fn�, k�) is presented, where ·� denotes the smallest integer greater than.

All proposed methods can be easily extended to the case of stratified simple
random sample without replacement by performing resampling independently
within each stratum. Rao and Wu (1988) and Sitter (1992b) also extended their
methods to the Rao-Hartley-Cochran method.

Confidence intervals

Consider now the construction of confidence intervals. The methods of Rao and
Wu (1988) and Sitter (1992b) both involve a tuning parameter. In the first case,
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it is the bootstrap sample size n′ (with replacement) which has an impact on
the rescaling factor of the observations. For Sitter (1992b), it is n′′, the size
of the without replacement subsample taken from the original sample, which
determines the total number of subsamples which will be concatenated to form
the bootstrap sample. Whatever value of that parameter is used, these methods
have been designed so that the bootstrap estimate of variance is identical to the
classical estimate when the estimator is a function of means.

On the other hand, bootstrap confidence intervals will differ depending on
the value of the tuning parameter. Consider for instance the RSB method of
Rao and Wu (1988) applied to construct a confidence interval for the mean
of the distribution. Let y(i) be the ith order statistic of the sample s and let
y′(i) of s′ be similarly defined. The smallest possible value of the bootstrap

statistic θ̂∗ is equal to y′(1) and happens if all n′ bootstrap observations are

equal to y′(1). But since y′(i) depends on the size of the bootstrap sample n′, the

distribution of θ̂∗ changes with n′ although its variance does not. Consequently,
the various bootstrap confidence intervals will vary according to the choice of
the tuning parameter, unlike the asymptotic confidence interval based on a
bootstrap estimate of variance.

Rao and Wu (1988) have shown that the distribution of the studentized
version of the bootstrap statistic, Kn;∗(x) of (4.10), captures the second-order
term of the Edgeworth expansion in the (very) special case of known popula-
tion strata variances and with replacement sampling, leading to more precise
bootstrap-t confidence intervals whenever n′ ≈ n−3. In their paper, they consid-
ered bootstrap-t confidence intervals based on a bootstrap estimate of variance
(hence a double bootstrap) as well as percentile bootstrap intervals. They also
mentioned the possibility of replacing the bootstrap estimate of variance in the
bootstrap-t confidence intervals by a jackknife, a BRR or even a linearization
variance estimator. Sitter (1992b) also considered percentile and bootstrap-t
confidence intervals with his mirror match method.

4.3. Bootstrap weights methods

As discussed in Section 2, an estimator of θ can be viewed as a function of the
observations and of the survey weights. Rao et al. (1992) developed the idea of
creating bootstrap survey weights rather than drawing the bootstrap sample of
observations to compute the bootstrap statistic. In the case of the sample mean,
they noted that the bootstrap sample mean ȳ∗ of the RSB method of Rao and
Wu (1988), the mean of the bootstrap observations y∗i , is a weighted mean of
the rescaled observations y′i where the weights are the number of times that y′i
is in the bootstrap sample. But since y′i is itself a weighted mean of the original
observations yi, ȳ

∗ is therefore a weighted mean of the original observations yi.
To better understand this statement, let

I∗ji =

{
1, if y∗j = y′i = ȳ + C(yi − ȳ),
0, otherwise,

j = 1, . . . , n′; i = 1, . . . , n.
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As a result,
∑

j∈s∗ I
∗
ji represents the number of times unit i in s is selected in

the bootstrap sample under the RSB method. In the case of a population mean,
the bootstrap estimator in Rao and Wu (1988) is n′−1

∑
j∈s∗ y

∗
i . In the case of

simple random sampling without replacement, applying the definition of I∗ji, we
have

1

n′

∑
j∈s∗

y∗j =
1

n′

∑
j∈s∗

∑
i∈s

I∗jiy
′
i

=
1

n′

∑
j∈s∗

∑
i∈s

I∗ji[ȳ + C(yi − ȳ)]

= ȳ +
C

n′

∑
i∈s

yi
∑
j∈s∗

I∗ji − Cȳ

=
1

N

∑
i∈s

[
1 + C

(
n
∑

j∈s∗ I
∗
ji

n′ − 1

)]
wiyi,

where wi = N/n is the weight attached to unit i. Therefore, rather than se-
lecting bootstrap observations, Rao et al. (1992) suggested to keep the original
observations and create bootstrap weights. This method is attractive to users
of public data files prepared by statistical agencies such as Statistics Canada.
These agencies provide data sets consisting of columns with the original obser-
vations, a column with the original survey weights and B columns of bootstrap
weights. As a result, the agencies do not need to provide certain details about
the sampling design which could reveal enough information to jeopardize confi-
dentiality.

Bootstrap weights are of the general form

w∗
i = a∗iwi, (4.16)

where a∗i is computed based on the bootstrap sample. In Rao et al. (1992),
the suggested bootstrap adjustments for the case of simple random sampling
without replacement are

a∗i = 1 +

√
n′(1− f)

n− 1

(
nm∗

i

n′ − 1

)
,

where m∗
i is the number of times that the ith element is appearing in the

bootstrap sample of size n′ selected with replacement from the original sample
(
∑

i∈s m
∗
i = n′). Therefore, according to the definition of the random variable∑

j∈s∗ I
∗
ji in the Rao and Wu (1988) method and that of m∗

i , it is clear that the
number of times unit i in s is selected in the bootstrap sample has the same

distribution in both methods, i.e. m∗
i

D
=
∑

j∈s∗ I
∗
ji where

D
= indicates equality in

distribution. Consequently, we have

a∗i
D
= 1 + C

(
n
∑

j∈s∗ I
∗
ji

n′ − 1

)
.
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Table 5

Existing complete data bootstrap weights methods for SRSWOR

Existing methods Resampling n′ a∗i

Rao et al. (1992) SRSWR Any a 1 +
√

n′(1−f)
n−1

(
nm∗

i
n′ − 1

)
Chipperfield and Preston
(2007)

SRSWOR �n/2� 1 +
√

�n/2�(1−f)
n−�n/2�

(
nm∗

i
�n/2� − 1

)

Beaumont and Patak (2012)

– –

Generate from a distribution

Bertail and Combris (1997)
with E∗(a∗) = 1 and

V ∗(a∗ − 1)(a∗ − 1)� = Σ b

Antal and Tillé (2011)
SRSWOR &

n m∗
i

one-one

Antal and Tillé (2014)
Bernoulli &

n m∗
i

one-one

a
More conditions are required to have positive bootstrap weights.

b
a∗ = (a∗

1 , . . . , a∗
n) and Σ = (Δijπiπj/πij) where Δijπiπj/πij = −(1 − f)/(n − 1) if i 	= j and 1 − f if

i = j.

That is, both methods are equivalent for a function of means (or totals). Note
that even if the ith element is not selected, m∗

i = 0, the associated bootstrap
survey weight is nonzero. This is because the rescaled observations y′i are cen-
tered at ȳ which involves all observations. If wi > 0 for all i ∈ s and n′ is chosen
to be less than or equal to (n − 1)/(1 − f), then the bootstrap weights are all
positive.

It is important to understand that the equivalence of the RSB method of
Rao and Wu (1988) and of the bootstrap weights version of Rao et al. (1992)
only holds for functions of means. In fact, strictly speaking, the RSB method
is not even defined when the estimator is not a function of means, but it has
for instance been used by Kovar et al. (1988) and Sitter (1992a) for the median
where the original data yk have been rescaled to y′k and the median was simply
computed on the n′ selected values of y′k in the bootstrap sample. It is clear

that in this case the RSB bootstrap estimate θ̂∗ is one of the rescaled values y′k
whereas in the bootstrap weights method of Rao et al. (1992), θ̂∗ will be of the
original values yk. So for any other more complex parameter such as a quantile
or the Gini index, the two methods differ. And needless to say, the bootstrap is
much more needed for such parameters than for simple functions of means.

Letting m∗
i be the number of times that the ith element is appearing in a

bootstrap sample selected according to a particular resampling design of size
n′, Table 5 displays the way a∗i in (4.16) is computed for different bootstrap
weights methods in the case of simple random sample without replacement: Rao
et al. (1992), Chipperfield and Preston (2007), Beaumont and Patak (2012) and
Antal and Tillé (2011, 2014).

As shown in Table 5, the method of Chipperfield and Preston (2007) intro-
duced a new set of bootstrap weights rescaled on the basis of the number of
times that the original units are selected in a simple random sample of size
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n′ = 
n/2� drawn without replacement from s. So, unlike the method of Rao
et al. (1992), bootstrap samples are drawn without replacement. As a result,
m∗

i = 0 or 1. Chipperfield and Preston (2007) applied their method and the
Rao et al. (1992) method to estimate the variance of GREG estimators. The
bootstrap statistics are computed using the following GREG bootstrap weights:

w∗
i = a∗i π

−1
i

{
1 + (tx − t̂∗x)

�T̂
∗−1

c−1
i xi

}
,

where t̂∗x =
∑

i∈s a
∗
i π

−1
i xi and T̂

∗
=
∑

i∈s a
∗
i π

−1
i xic

−1
i x�

i . Note that replacing
a∗i by 1 in the expression of w∗

i leads to the usual GREG weights given by (2.6).
Both bootstrap variance estimators are asymptotically unbiased to estimate
the linear approximation of the variance of total presented in (2.14). Based on
empirical results, they showed that the Chipperfield and Preston (2007) method
can be significantly more efficient than the bootstrap weights method of Rao
et al. (1992) in terms of simulation variance; see also Preston and Chipperfield
(2002). As the sample size n increases, Preston and Chipperfield (2002) showed
empirically that the difference between both methods vanishes.

A closer look at the Rao et al. (1992) method for the case of SRSWOR reveals
that the distribution of {m∗

i } is a Multinomial(n′; 1
n , . . . ,

1
n ), which implies that

E∗(a∗i ) = 1 and E∗(a∗i − 1)(a∗j − 1) = Δijπiπj/πij with Δijπiπj/πij = 1 − f
if i = j, and −(1− f)/(n− 1) otherwise. Therefore, the bootstrap adjustments
a∗i are constructed so that the bootstrap expectation and the bootstrap vari-
ance estimator in the case of the estimation of the population total capture
the Horvitz-Thompson estimator of total t̂HT and the usual variance estimator
V̂
(
t̂HT

)
in (2.9), respectively. Bertail and Combris (1997) and Beaumont and

Patak (2012) indicate that if any appropriate distribution is used to generate
a∗i so that

E∗(a∗i ) = 1 and E∗(a∗i − 1)(a∗j − 1) =
πij − πiπj

πij
=

Δijπiπj

πij
, (4.17)

the first two moments are captured. This type of bootstrap method belongs
to the class of the generalized bootstrap method, (e.g., Lo, 1991; Mason and
Newton, 1992; Barbe and Bertail, 1995), which was first presented in survey
sampling with unequal probability sampling by Bertail and Combris (1997).

They suggested generating the vector a∗ = 1+Σ1/2ã∗ where a∗ = (a∗1, . . . , a
∗
n),

Σ is a n × n matrix containing Δijπiπj/πij in its ith row and jth column and
ã∗ is a n-vector of independent random variables with mean 0 and variance
1 for all its elements. A simple choice is to generate ã∗i from the standard
normal distribution. So, the vector a∗ follows a multivariate normal distribution
N (1,Σ).

In the case of Poisson sampling, the pseudo-population bootstrap method
of Chauvet (2007) (see Section 4.1) can be implemented using a bootstrap
weights method; see Beaumont and Patak (2012). That is, the creation of a
pseudo-population is not required. Rather, bootstrap weights are directly gen-
erated from some appropriate distributions so that (4.17) holds. They sug-

gested generating m∗
i ∼ Binomial(w̃i, πi), where w̃i =

⌊
π−1
i

⌋
+ Ibpi and Ibpi ∼
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Bernoulli
(
π−1
i −

⌊
π−1
i

⌋)
, and letting a∗i = m∗

i . The resulting bootstrap param-

eter and estimator of the population total, θ∗ and θ̂∗, from this method and
that of Chauvet (2007) have the same distribution; see also Ranalli and Mecatti
(2012) for π−1

i integer, for all i ∈ s. Applying the method of Chauvet (2007),
we have

θ̂∗ − θ∗ =
∑
i∈s∗

π
′−1
i y∗i −

∑
i∈U∗

y̌i

=
∑
i∈U∗

I(i ∈ s∗)π̌−1
i y̌i −

∑
i∈U∗

y̌i

=
∑
i∈s

m
′∗
i wiyi −

∑
i∈s

[⌊
π−1
i

⌋
+ I(i ∈ Uc∗)

]
yi,

wherem
′∗
i is the number of times that the ith unit of s is selected in the bootstrap

sample from the pseudo-population U∗. Since sample unit i is repeated
⌊
π−1
i

⌋
+

I(i ∈ Uc∗) times in U∗ and I(i ∈ Uc∗)
D
= Ibpi , it is easy to see that m

′∗
i

D
= m∗

i

which confirms that both methods are equivalent in the case of the population
total.

In the case of the GREG estimator of total under a given sampling design,
assuming that ci = λ�xi in (2.6) with λ a vector of known constants so that
ci > 0, the GREG survey weights become

wi(s) = π−1
i x�

i c
−1
i T̂

−1
tx. (4.18)

In this case, to compute the corresponding bootstrap statistic, Beaumont and
Patak (2012) suggest using their proposed bootstrap adjustments a∗i , obtained
on the basis of the original sampling design, and defining GREG bootstrap
weights similar to (4.18) by

w∗
i = a∗i π

−1
i x�

i c
−1
i T̂

∗−1
tx, (4.19)

where T̂
∗

=
∑

i∈s a
∗
i π

−1
i xic

−1
i x�

i . The bootstrap estimator of total is then

computed by t̂∗ =
∑

i∈s w
∗
i yi. They showed that the resulting bootstrap variance

estimator is approximately equal to the usual variance estimator presented in
(2.16). An alternative consists of replacing tx in (4.19) by t̂xHT .

In general, some bootstrap adjustments may be negative. To avoid negative
bootstrap adjustments a∗i , Beaumont and Patak (2012) suggested using the
following bootstrap adjustments

ǎ∗i =
a∗i + τ − 1

τ
,

where τ ≥ 1 is a small number but large enough so that the scaled bootstrap
adjustments are non-negative. Note that E∗(ǎ∗i ) = 1 and E∗(ǎ∗i − 1)(ǎ∗j − 1) =

τ−2E∗(a∗i − 1)(a∗j − 1). Therefore, to have a valid bootstrap estimator for the
variance, the resulting bootstrap variance estimator obtained after applying the
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new bootstrap adjustment ǎ∗i must be multiplied by τ2. So, this value must be
provided to an eventual user.

Antal and Tillé (2011, 2014) have proposed methods applicable for simple
random sampling without replacement, Poisson sampling, and unequal proba-
bility sampling without replacement.

Confidence intervals

Concerning confidence intervals, Rao et al. (1992) have considered bootstrap-t
confidence intervals with a jackknife estimate of variance for functions of means,
as well as percentile intervals in the case of the median. Beaumont and Patak
(2012) considered percentile intervals in the case of a Poisson design. Bertail and
Combris (1997) study asymptotic and bootstrap confidence intervals through a
simulation. Unfortunately, they do not explicitly define their intervals, so that
it is not clear which one they use, but given the theory that they present, it
seems to be the percentile interval. Antal and Tillé (2011) studies an asymptotic
interval based on their bootstrap estimate of variance while Antal and Tillé
(2014) does not consider the construction of confidence interval at all although
the same type of confidence interval could be used. On the other hand, it is not
clear that the other types of bootstrap confidence intervals (percentile or t) could
be used with either of these methods since they are based on sampling schemes
designed to match the variability of the estimator, but not its distribution.

Are all bootstrap methods bootstrap weights methods?

So far, we have organized the various bootstrap methods in three categories:
pseudo-population, direct, and bootstrap weights. As argued previously, the
rescaling bootstrap method of Rao and Wu (1988) is not a bootstrap weights
method unless the estimator can be expressed as a function of means or totals.
But all other methods could be expressed in a bootstrap weights approach.
There could be two reasons to do this: to have a computationally more efficient
way to compute bootstrap weights (than generating the pseudo-population and
taking bootstrap samples from it) and to more easily derive the properties of
the method. In both cases, the joint distribution of the vector (a∗1, a

∗
2, . . . , a

∗
n)

would be needed. But this distribution can be very complicated to write down
unless certain special conditions are met. For instance, in the pseudo-population
method of Booth et al. (1994) for simple random sampling, if N/n is an integer,
the pseudo-population is made up of a fixed number of repetitions of the original
sample and bootstrap samples are taken without replacement from it. It can
be shown that in this case (a∗1, a

∗
2, . . . , a

∗
n) has a multivariate hypergeometric

distribution. But N/n is rarely an integer and in all other cases, the pseudo-
population is completed by a (random) sample from the original sample so that
it becomes rapidly cumbersome to compute the joint distribution. Hence, from a
computational point of view, except when N/n is an integer, it is not clear how
one could simulate bootstrap weights from the (complicated) joint distribution
of the a∗i to provide a better implementation of the method.
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Moreover, even if we could write it down, it need not give new insight into
the variance estimate. For instance, by specifying that the bootstrap resam-
pling is done without replacement from a pseudo-population of size N , one
automatically obtains the finite population correction factor 1− f for the boot-
strap estimate of variance of the Horvitz-Thompson estimator of the total. This
would not be obtained as handily if we worked from a bootstrap weights version
of the method.

4.4. Multistage designs

Many surveys are conducted by taking the sample in two or more stages. In
such a design, the population U is first partitioned into NI primary sampling
units (PSUs) U1, . . . , UNI

. In a two-stage design, a sample sI of PSUs is first
selected according to a sampling design pI( · ) and secondary sampling units
(SSUs) are further sampled from the ith PSU according to a (possibly different)
sampling design pi( · |sI). In multistage designs, SSUs are further sampled, and
so on. For instance, if the design at the primary level is a census whereas the
secondary sampling design is SRSWOR, then the resulting two-stage design is
stratified SRSWOR. Alternatively, if the all secondary units from the PSUs
selected in the sample sI are selected in the (ultimate) sample, the resulting
design is sometimes called single-stage cluster sample. For more details, see for
instance Chapter 4 of Särndal et al. (1997).

The variance of a linear estimator, such as the Horvitz-Thompson estimator
of total, involves all second-order probabilities of the primary and secondary
designs. In the case of the total, it can be decomposed as the sum of two com-
ponents representing the variance due to PSU sampling and that due to SSU
sampling. If sampling at the first level is with replacement, then the estimate of
the total is a weighted combination of the estimate of the total of each PSU in
the sample and each of these terms is independent. Hence it is easy to estimate
its variance. If sampling is without replacement and the sampling fraction of
the primary sampling design is small, using the with replacement estimate of
the variance of the total will have a small bias. But if the sampling fraction is
large or if the parameter to estimate is more complex, such as a quantile, other
estimators of variance must be considered.

Of the methods introduced so far, Sitter (1992a), Sitter (1992b) and Rao and
Wu (1988) extended their methods to two-stage sampling (which they refer to
as two-stage cluster sampling), while Rao et al. (1992) considered the case of
stratified multistage sampling with replacement. In all of these cases, different
rescaling factors or tuning parameters were used so that the resulting bootstrap
variance estimators match the textbook variance estimator of a linear estimator.

For the case of multistage stratified designs where sampling fractions are
large and simple random sample without replacement is used at each stage, a
Bernoulli-type bootstrap method was proposed by Funaoka et al. (2006). Under
this method, Bernoulli trials are applied in each stage of resampling procedure.
The bootstrap adjustment for each ultimate unit is the number of times that
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this unit is selected in the final bootstrap sample. Saigo (2010) extended the
methods of Rao et al. (1992), Sitter (1992a) and Sitter (1992b) to stratified
three-stage sampling. Drawing the bootstrap samples is of course performed in
three stages independently across strata and the rescaling factors used at each
stage for the rescaling bootstrap method as well as the number of replications
needed at each stage in the mirror-match bootstrap are explicitly presented.
They compare these three methods along with that of Funaoka et al. (2006)
for variance estimates and confidence intervals of a total and various quantiles
through simulations. Preston (2009) extended the bootstrap weights method of
Chipperfield and Preston (2007) to multistage stratified designs and compared
it to the Bernoulli-type method of Funaoka et al. (2006).

Chaudhuri and Saha (2004), on the other hand, extended the mirror-match
method of Sitter (1992b) to two-stage sampling where each stage uses Rao-
Hartley-Cochran sampling (Rao et al., 1962).

Chauvet (2007) also generalized his pseudo-population procedure to the case
of two-stage sampling design, providing the most general algorithm for such
designs. The general idea is simple. For each PSU in the sample, use a pseudo-
population method appropriate for the second stage design to recreate a pseudo-
PSU by repeating an appropriate number of times the items of the second
phase sample from this PSU, for instance using the SRSWOR PPB algorithm
if the second stage uses SRSWOR or using the UEQPS PPB Algorithm if it
Poisson. After generating pseudo-PSUs for each of the selected PSUs of the first
stage sampling, generate an overall pseudo-population by repeating again whole
PSUs according to the pseudo-population method appropriate for the first stage
design.

Finally, two-phase sampling is different from two-stage sampling in that in-
formation on an auxiliary variable is obtained in the (large) sample from the
first phase to determine which units will be subsampled to obtain the value of
the variable of interest in the second phase. To estimate the population total,
a double-expansion estimator and a reweighted expansion estimator are avail-
able. In the case of two-phase sampling, Kim et al. (2006) have shown how to
use replicate weights computed to reflect variability of the first phase, for in-
stance bootstrap weights, to construct an appropriate replicate-based estimator
of variance for these two total estimators.

4.5. Calculation of bootstrap weights: Software implementation

Widespread use of statistical methodology depends on the availability and ease
of use of appropriate software. As we have seen, in survey sampling there are
many different bootstrap methods and they usually are only valid for a par-
ticular type of design. It is therefore important to have enough information to
understand which method is used, but this is not always the case. For instance,
an important R package in survey sampling is the survey package of Lumley
(2014) which is the basis of a book: Lumley (2010). This package contains func-
tions to generate replicate weights using the jackknife, BRR or the bootstrap.
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Sections 2.3 and 3.2.3 of that book do not specifically mention which bootstrap
method is used when they discuss the function as.svrepdesign.

The user guide of version 3.30-3 of the package, dated February 20, 2015,
presents the functions bootweights, subbootweights, and mrbweights. According
to the documentation, “Bootstrap weights for infinite populations (’with re-
placement’ sampling) are created by sampling with replacement,” suggesting
that the methods do not take into account that the population is finite. The
function bootweights is deemed to implement the method of Canty and Davison
(1999). But to simplify the discussion, that paper assumes that N/n is an inte-
ger and presents what seems like the algorithm of Gross (1980) and the case of a
non-integer N/n is not discussed. Since the paper refers to Section 3.7 of Davi-
son and Hinkley (1997), it suggests that bootweights implements the method of
Booth et al. (1994). The function subbootweights seems to implement the Rao
et al. (1992) method although the reference is incorrect and no finite population
correction is included, i.e., it is as if f = 0 in the weights adjustment formula of
Table 5 and so is not appropriate if the sampling fraction is large. On the other
hand, it is clear that the function mrbweights is for the multistage method of
Preston (2009). The documentation clearly mentions that “these bootstraps are
strictly appropriate only when the first stage of sampling is a simple or strati-
fied random sample of PSUs with or without replacement, and not (eg) for PPS
sampling”. In fact, Preston’s method requires that simple random sampling be
used at all stages, not only the first one.

Stata also offers some bootstrap functionalities, including the generation of
the Rao et al. (1992) bootstrap weights through the bsweights command, see
Kolenikov (2010). Of course, this is appropriate for (stratified) simple random
sampling only. And as was the case with the subbootweights function of R, no
finite population correction is available.

So, there are implementations of bootstrap methods for survey sampling in
software packages, but it is not always easy to understand what they do exactly,
and they often are not appropriate for the problem at hand. Hence more work
is needed. Obviously, if bootstrap weights are already available all software
packages, including SAS, can be used to calculate bootstrap variance estimates.

5. Bootstrap methods for model parameters

Until now, we have focused on design-based bootstrap methods for finite popu-
lation parameters. In practice, analysts are often interested in generalizing the
conclusions to a universe larger than the finite population under study. For ex-
ample, one may be interested in studying people’s perception of discrimination
in their experiences with health care services as a function of characteristics such
as race, sex and age. Here, the analyst is not interested in the finite population U
currently under study but rather in the process relating these variables. The in-
terest lies in estimating model parameters, also called analytic parameters (e.g.,
regression coefficients) rather than finite population parameters. An important
distinction between finite population parameters and model parameters is that
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the former may be estimated perfectly provided that a census is conducted and
that non-sampling errors such as non-response, measurement errors and cover-
age errors are absent. In contrast, even with a perfect census, it is not possible
to estimate a model parameter perfectly since one faces an infinite population.

In analytic studies, the selected sample can be viewed as the result of a two-
stage process: (i) first, the finite population U of size N is generated according
to a statistical model, called the superpopulation model, that is, the finite popu-
lation of size N can be viewed as a realization of the superpopulation model; (ii)
then, from the population generated in (i), a sample s is selected according to
a given sampling design p(s). Estimators of model parameters are constructed
using the sample observations. This begs the question: how to estimate the vari-
ance of estimators of model parameters? From the above, it is clear that the
variance involves two sources of variability: the first due to the superpopulation
model that has generated the finite population U and the second due to the
selection of the sample s from U . Application of the bootstrap in this context
has been considered in Beaumont and Charest (2012), Wang and Thompson
(2012) and Kovacevic et al. (2006). In the sequel, we focus on the method of
Beaumont and Charest (2012).

For simplicity, we consider the problem of estimating the regression coefficient
β in a linear regression model

m : yi = x�
i β + εi,

where xi is a l-vector of predictors and β is a l-vector of unknown parameters.
We assume that Em(εi) = 0, Em(εiεj) = 0 if i �= j and Vm(εi) = σ2. Had a
census been conducted, an estimator of β would be given by

βU =

(∑
i∈U

xix
�
i

)−1∑
i∈U

xiyi. (5.1)

The estimator (5.1) is often called a census regression coefficient. Since the
y-values are only observed for i ∈ s, it is not possible to compute (5.1). An
estimator of βU based on the sample units is given by

β̂ =

(∑
i∈s

wixix
�
i

)−1∑
i∈s

wixiyi. (5.2)

To derive the variance of β̂, we first express its total error as

β̂ − β =
(
β̂ − βU

)
+ (βU − β) .

It follows that the total variance of β̂ is given by

Vmp

(
β̂ − β

)
= EmVp

(
β̂
)
+ Vm (βU ) ,
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which involves both the model variability and the sampling variability of β̂.

Under mild regularity conditions, the term Vp

(
β̂
)
is of order O(n−1), whereas

the term Vm (βU ) is of order O(N−1); e.g., see Binder (2011). Therefore, the
contribution of the term Vm (βU ) to the total variance is negligible if the sam-
pling fraction f is negligible. In this case, the term Vm (βU ) can be omitted and
the total variance reduces to

Vmp

(
β̂
)
≈ EmVp

(
β̂
)
. (5.3)

In order to estimate EmVp

(
β̂
)
, it suffices to obtain a consistent estimator of

Vp

(
β̂
)
, which represents the sampling variance of a function of totals. To that

end, any bootstrap method presented in Section 5, which estimates the sampling
variability, can be applied.

We now turn to the case of non-negligible f . For instance, business surveys at
Statistics Canada often use stratified sampling where the strata are constructed
on the basis of a size variable and while the largest businesses are put in take-
all strata, the next largest are in put in take-some strata, often with a large
sampling fraction. Using a first-order Taylor expansion, we obtain

Vmp

(
β̂ − β

)
�
{
Emp

(
T̂
)}−1

Vmp

(∑
i∈s

wixiei

){
Emp

(
T̂
)}−1

=
{
Emp

(
T̂
)}−1

EmVp

(∑
i∈s

wixiei

){
Emp

(
T̂
)}−1

+
{
Emp

(
T̂
)}−1∑

i∈U

xix
�
i Em

(
e2i
){

Emp

(
T̂
)}−1

,

(5.4)

where T̂ =
∑

i∈s wixix
�
i and ei = yi − x�

i β̂. In the case of non-negligible f ,
the last term on the right hand-side of (5.4) is no longer negligible and must be
accounted for. A consistent linearization variance estimator of Vmp(β̂) is thus
given by

V̂
(
β̂
)
= T̂

−1
V̂

(∑
i∈s

wixiei

)
T̂

−1
+ T̂

−1

{∑
i∈s

wixix
�
i e

2
i

}
T̂

−1
. (5.5)

This begs the question: how to apply the bootstrap method in order to capture
both terms in (5.4)? It is clear that applying the bootstrap methods described
in Section 4 may lead to an appreciable underestimation of the total variance
as the model variability Vm (βU ) is ignored. To overcome this problem, Beau-
mont and Charest (2012) proposed a bootstrap weights method that accounts
for both the sampling and the model variabilities when the sampling design is
non informative. Note that a sampling design is non-informative if the distribu-
tion of the study variables in the sample is the same as the distribution of these
variables in the population, after accounting for x. Suppose that the sampling
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variance in (5.4) is to be estimated through a bootstrap weights method such as
the method of Rao et al. (1992). Let w∗

i = a∗iwi be the bootstrap weight defined
as in Section 4.3 and which addresses the sampling variability. To account for
the model variability Beaumont and Charest (2012) suggest making an addi-
tional adjustment on the w∗

i . The resulting bootstrap weights are of the form
w∗∗

i = ψ∗
iw

∗
i = ψ∗

i a
∗
iwi, with a∗i being defined in Section 4.3 and ψ∗

i denoting a
random bootstrap adjustment for unit i, whose role is to account for the model
variability.

The bootstrap adjustments ψ∗
i are generated independently with expectation

equal to 1 and variance equal to

Vo∗(ψ
∗
i ) = σ2

ψi =
wi

Ep∗(w∗2
i )

, (5.6)

where the subscript o∗ denotes the distribution of ψ∗
i in the bootstrap samples.

To better understand the rationale behind the method of Beaumont and Charest
(2012), we first express the bootstrap version of β̂ as

β̂
∗
=

(∑
i∈s

w∗∗
i xix

�
i

)−1∑
i∈s

w∗∗
i xiyi.

Using a first-order Taylor expansion, we obtain

Vp∗o∗
(
β̂
∗) � T̂

−1
Vp∗o∗

(∑
i∈s

w∗∗
i xiei

)
T̂

−1
, (5.7)

where

Vp∗o∗

(∑
i∈s

w∗∗
i xiei

)
= Vp∗

(∑
i∈s

w∗
i xiei

)
+ Ep∗

(∑
i∈s

σ2
ψiw

∗2
i xix

�
i e

2
i

)
.

From (5.6), it becomes clear that the total bootstrap variance estimator (5.7) is
asymptotically equivalent to the linearization variance estimator (5.5).

To generate ψ∗
i , Beaumont and Charest (2012) suggest using the distribution:

Prob(ψ∗
i = 1 − σψi) = 1/2 and Prob(ψ∗

i = 1 + σψi) = 1/2. This ensures
that ψ∗

i is always non-negative provided that σψi ≤ 1. Note that, in order to
compute σψi, Ep∗(w

∗2
i ) in (5.6) can be easily approximated through a Monte

Carlo approximation by taking the mean of the B generated w∗2
i .

It is worthwhile to mention that if all the weights wi are large (implying
a small f), σ2

ψi is expected to be small, in which case the contribution of ψ∗
i

is expected to be small and, as a result, may be ignored. This conclusion is
consistent with the result in (5.3) that the model variability can be ignored if
the sampling fraction is small.

We considered the regression model coefficient β and its regression estimator
(5.2) for ease of presentation. The method can also be used much more gener-
ally in the context of survey-weighted estimating equations; see Beaumont and
Charest (2012) for details.
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We briefly describe the work of the other two papers we mentioned earlier.
Many researchers try to understand the hierarchical structure of a population
by using multilevel models from complex survey data. Kovacevic et al. (2006)
assume that survey weights are available at all sampling levels and that the hier-
archy of sampling levels coincides with the hierarchy used in modeling. The pro-
posed methods are modifications of the bootstrap weights method of Rao et al.
(1992). Wang and Thompson (2012) focus on weight-inflated estimators of vari-
ance components which are often biased. They introduce a pseudo-population
based bootstrap method to estimate the bias of the variance components esti-
mators in order to correct them so that they become unbiased with respect to
the model and the design, even in the case of an informative design.

6. Bootstrap for missing survey data

Virtually all surveys must face the problem of missing observations due to var-
ious reasons. Survey statisticians distinguish unit non-response (when no infor-
mation is collected on a sample unit) from item non-response (when the absence
of information is limited to some variables only). Unit non-response occurs, for
example, when the sample unit is not at home or refuses to participate in the
survey, while item non-response occurs when the sample unit refuses to respond
to sensitive items, may not know the answer to some items, or because of edit
failures. In this section, we focus on item non-response, which is typically treated
by some form of imputation. In the last two decades, the problem of variance
estimation in the presence of imputed data has been widely studied in the lit-
erature; see, e.g., Haziza (2009) for a review. It is well known that treating
the imputed values as if they were observed values leads to underestimation of
the true variance, leading to invalid inferences. In this section, after presenting
some useful concepts, some bootstrap methods for imputed survey data will be
presented.

6.1. Some useful concepts

Let ri be the response indicator associated with unit i such that ri = 1 if unit
i responds to item y and ri = 0, otherwise. Let

yIi = riyi + (1− ri)ỹi,

where ỹi denotes the imputed value used to replace the missing yi. Let θ be
a finite population parameter, θ̂ be the complete data estimator of θ and θ̂I

be the imputed estimator obtained after imputation. The imputed estimator
θ̂I can be computed the same way as the complete data estimator θ̂ using yI -
values instead of the y-values. For example, in the case of a total t, an imputed
estimator is

t̂I =
∑
i∈s

wiy
I
i .
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In practice, various imputation methods are used. We distinguish between two
classes of imputation methods: the deterministic methods, which are those that
yield the same imputed values if the imputation process is repeated, and the
random methods that may yield different imputed values if the imputation is
repeated. A random method can be viewed as a deterministic method with
an added random noise. Most imputation methods encountered in practice are
motivated by the general model

m : yi = f(xi;β) + εi, (6.1)

where f(·) is a given function, x is a vector of auxiliary variables recorded for all
sample units (respondents and non-respondents) and β is a vector of unknown
parameters. The errors εi satisfy

Em(εi) = 0, Vm(εi) = σ2ci and covm(εi, εj) = 0, ∀i �= j,

where σ2 is an unknown parameter and ci is a fixed positive constant. For
example, deterministic linear regression imputation is motivated by (6.1) with
f(xi;β) = x�

i β. In this case, the imputed value ỹi is given by

ỹi = x�
i β̂r, (6.2)

where

β̂r =

(∑
i∈s

wirixici
−1x�

i

)−1∑
i∈s

wirixici
−1yi

is the weighted least square estimator of β based on the responding units. Mean
imputation, whereby the missing values are replaced by the mean of the respon-
dents, ȳr =

∑
i∈s wiriyi/

∑
i∈s wiri, is a special case of (6.2) with xi = ci = 1

for all i.
A frequently used random method is random hot-deck imputation, which

consists of imputing a missing value by the value of a respondent selected at
random from the set of responding units. More specifically, the imputed values
under random hot-deck imputation are

ỹi = ȳr + ε̃i, (6.3)

where ε̃i takes a value in {e1, . . . , enr} such that Prob(ε̃i = ej) = rjwj/
∑

l∈s rlwl

with ej = yj − ȳr and nr denoting the number of respondents to item y.
In this section, we assume that the data are Missing At Random (MAR);

(Rubin, 1976). The data are MAR if the probability of response to item y is
independent of the error term in (6.1) after accounting for the vector of auxiliary
variables x.

There exist two theoretical frameworks for variance estimation: the customary
two-phase framework and the reverse framework. In the two-phase framework,
non-response is viewed as a second phase of selection. In the reverse frame-
work, proposed by Fay (1991) and Shao and Steel (1999), the order of sampling
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and response is reversed. First, the population is randomly divided into a pop-
ulation of respondents and a population of non-respondents according to the
non-response mechanism. Then, a random sample is selected from the popula-
tion (containing respondents and non-respondents) according to the sampling
design p(s). Unlike the two-phase framework, the reverse framework requires
the additional assumption that the non-response mechanism does not depend
on which sample is selected. The reverse framework is particularly useful in the
context of bootstrap variance estimation in the presence of imputed data, as we
argue in the next section.

6.2. Bootstrap methods for negligible sampling fraction

In this section, we focus on the case of negligible f . In this context, Shao and
Sitter (1996) proposed a bootstrap method for handling imputed data. The ra-
tionale behind their method is to first select, using any complete data bootstrap
method, a bootstrap sample of pairs composed of the original or rescaled im-
puted data and their corresponding original response status. The bootstrap data
with a missing status are then reimputed using the same imputation method
that was used in the original sample. To illustrate the Shao-Sitter method,
we consider the case of simple random sampling without replacement with the
RSB method of Rao and Wu (1988) and mean imputation to compensate for
the missing values. The algorithm proceeds as follows:

Shao-Sitter Algorithm:

1. Let n′ be the bootstrap sample size and y′i = ȳI + C(yIi − ȳI), for all i in
s, where ȳI = n−1

∑
i∈s y

I
i and

C =

√
n′(1− f)

n− 1
.

2. Draw a bootstrap sample of pairs s∗ = {(y∗i , r∗i )}n
′

i=1 of size n′ with re-
placement from {(y′i, ri)}ni=1.

3. Reimpute the missing values in the bootstrap sample s∗ using the respon-
dents in this sample, i.e. define y∗Ii as follows

y∗Ii =

{
y∗i , if r∗i = 1,
ȳ∗r , if r∗i = 0,

where ȳ∗r =

∑
i∈s∗ r

∗
i y

∗
i∑

i∈s∗ r
∗
i

, for i ∈ s∗.

Let θ̂∗I be the bootstrap statistic based on the observed and imputed
bootstrap data.

4. Repeat Steps 2 and 3 a large number of times, B, to get θ̂∗I1 , · · · , θ̂∗IB .

5. Estimate V
(
θ̂I
)
with Vp∗

(
θ̂∗I

)
or its Monte Carlo approximation V̂ ∗

B =

(B − 1)−1
∑B

b=1

(
θ̂∗Ib − θ̂∗I(·)

)2

, where θ̂∗I(·) = B−1
∑B

b=1 θ̂
∗I
b .
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Note that for imputation methods using auxiliary information (e.g., regres-
sion imputation), the vector of auxiliary variables xi also accompanies the pairs
(yi, ri) in the bootstrap sample and needs to be rescaled similarly to yi.

In the case of the population total, the bootstrap total estimator is t̂∗I =

(N/n′)
∑n′

i=1 y
∗I
i = Nȳ∗r . Using a first order Taylor linearization, when the non-

response mechanism is uniform, i.e. the response probability pi = Prob(ri =
1) = p0 for all i ∈ s, the bootstrap variance estimator Vp∗

(
t̂∗I

)
is approximated

by

Vp∗
(
t̂∗I

)
≈ Vp∗

{
N

p̂0n′

n∑
i=1

(
m∗

i −
n′

n

)
(y′i − ȳr)

}

=
N2

p̂20

C2

n′n

∑
i∈s

ri(yi − ȳr)
2

= N2

(
1− f

p̂0

)
nr − 1

p̂0(n− 1)

s2r
n
,

(6.4)

wherem∗
i is the number of times that the ith unit in s is selected in the bootstrap

sample, p̂0 = nr/n, the response rate, is the estimator of p0 and s2r = (nr −
1)−1

∑
i∈s ri(yi − ȳr)

2.
At this point, one may be wondering what quantity (6.4) is really estimating.

To answer this question, one has to rely on the reverse framework for variance
estimation mentioned above. The reverse framework can be used to express the
variance of θ̂I as the sum of two terms in the case of deterministic imputation.
In this case, the total variance of θ̂I under deterministic imputation is given by

V NR
(
θ̂I
)
= EVp

(
θ̂I |y, r

)
+ V Ep

(
θ̂I |y, r

)
, (6.5)

where y = (y1, . . . , yN )� and r = (r1, . . . , rN )� is the vector of response indica-
tors. Under mild regularity conditions, the contribution of the second component

to the total variance in (6.5), V Ep

(
θ̂I |y, r

)
/V NR

(
θ̂I
)
, is of order O(f), which

is negligible when the sampling fraction, f , is negligible. Therefore, when f is
negligible, this component can be omitted from the calculations and only the

first component EVp

(
θ̂I |y, r

)
remains to be estimated. To that end, it suffices

to estimate Vp

(
θ̂I |y, r

)
in an (approximately) unbiased fashion.

Suppose that we are interested in estimating a population total t. Noting that
the imputed estimator t̂I can be expressed as a function of totals, estimating
Vp

(
t̂I |y, r

)
reduces to the classical problem of estimating the sampling vari-

ance of a function of totals. To that end any complete data variance estimation
methods can be used, including Taylor expansion procedures and resampling
methods. The bootstrap variance estimator (6.4) is an estimator of Vp

(
t̂I |y, r

)
as the Shao-Sitter method simulates the effect of sampling conditionally on the
vector of response indicators r and the bootstrap method reflects this sampling
variability. This can be explained by the fact that non-response is not gener-
ated in each bootstrap sample before the imputation process is performed; see
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Mashreghi et al. (2014). As a result, the bootstrap variance estimator (6.4) can
be used if the sampling fraction f is negligible. Also, it is worth noting that
(6.4) is approximately unbiased for Vp

(
t̂I |y, r

)
regardless of the validity of the

underlying imputation model.
The problem of bootstrap variance estimation in the case of quantiles is

discussed in Shao and Chen (1998). The method of Shao-Sitter may lead to
a biased estimator in the case of very small stratum sizes. To overcome the
problem, Saigo et al. (2001) proposed a modification of the method of Shao and
Sitter (1996). Instead of using any complete data bootstrap method like Shao
and Sitter (1996), they proposed a new sampling design, called the repeated
half-sample bootstrap.

6.3. Bootstrap methods for non-negligible sampling fraction

When the sampling fraction is appreciable, the Shao-Sitter method may lead

to a significant underestimation of the variance as the term V Ep

(
θ̂I |y, r

)
in

(6.5) is not accounted for. To overcome this problem Mashreghi et al. (2014)
proposed a method called the independent bootstrap in the special case of strat-
ified simple random sample without replacement with uniform non-response in
each stratum. Their method consists of selecting bootstrap samples according to
a direct bootstrap method (see Section 4.2) and then regenerating non-response
within each bootstrap sample, mimicking the initial non-response mechanism,
i.e., independent Bernoulli trials with the observed response rate. Afterwards,
the non-respondents in the bootstrap sample are reimputed using the same im-
putation method that was used on the original data. Since direct bootstrap
methods involve some constants, e.g., C and k′ in Table 4, Mashreghi et al.
(2014) showed how to modify these constants to obtain an approximately unbi-
ased estimator of the total variance. The modified constants explicitly depend
on the response rate as well as the imputation method. For example, in the case
of mean imputation with uniform non-response mechanism, the rescaling factor
in the method of Rao and Wu (1988) presented in (4.14) has to be replaced by

CI =

√
n′[1− (nr/N)]

nr − 1
.

Comparing CI with C in (4.14), we see that n in C is replaced by nr in CI , i.e.
the number of respondents is used instead of the sample size as the information
contained in the sample only comes from the observed values. In this case, the
following algorithm leads to the creation of samples of bootstrap imputed data:

1. Let n′ be the bootstrap sample size and y′i = ȳI +CI(yIi − ȳI), for all i in
s.

2. Draw a bootstrap sample {y∗i }n
′

i=1 of size n
′ with replacement from {y′i}ni=1.

3. Generate {r∗i }n
′

i=1
i.i.d.∼ Bernoulli(p̂0), the bootstrap sample of response

indicators. Let s∗ = {(y∗i , r∗i )}n
′

i=1.
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4. Identify the missing and observed bootstrap data using the regenerated
r∗i and reimpute the bootstrap missing values using the bootstrap re-
spondents and the same imputation method that was used to impute the
original sample. Let θ̂∗I be the bootstrap statistic based on the bootstrap
imputed data.

Unlike the Shao-Sitter algorithm presented in this section, this algorithm in-
cludes an additional step in order to generate non-response within each boot-
strap sample. Note that the constant CI used to rescale the data depends on the
imputation method. Mashreghi et al. (2014) present the appropriate constants
for several combinations of bootstrap and imputation methods.

7. Conclusion

Efron (1979) revolutionized applied statistics when he introduced the bootstrap
methodology to estimate the variance of estimators and construct confidence
intervals by resampling the observations of samples of i.i.d. observations. It
took close to a decade to apply the bootstrap to more complicated models,
such as time series or spatial data. The application to survey methods data
also took some time and many approaches and principles were used to define
bootstrap methods. The introduction of bootstrap survey weights, Rao et al.
(1992), ultimately democratized the use of survey data when statistical agen-
cies such as Statistics Canada prepared public survey data files with columns
of bootstrap survey weights that subject-area researchers could use to compute
variance estimates for estimators designed to answer research questions of in-
terest.

In this paper, we present the various bootstrap methods that have been in-
troduced for survey methods data by classifying them in three groups. This
classification provides interesting and useful insights and allows us to present
a single algorithm for all methods of a given group. Variance estimation has
been central in the development of many of these methods since they are de-
signed so that the bootstrap variance estimate for the estimate of total is the
usual estimate of variance. This is partly due to the fact that many statisti-
cal agencies rely on coefficients of variation, which involve the variance of an
estimator, to quantify its precision. But the construction of confidence inter-
vals is also an important survey sampling inference problem addressed by the
bootstrap.

Many of the pseudo-population bootstrap methods have the advantage that
they use the sampling design that generated the original data and so the boot-
strap estimator inherits many of its properties. One disadvantage is that they
usually require the explicit generation of the pseudo-population which can re-
quire a lot of space when the population is very large. We have also highlighted
the difficulties involved in variance estimation and the construction of certain
confidence intervals, such as the popular percentile bootstrap intervals, when the
pseudo-population method involves a random pseudo-population as opposed to
a fixed one. Direct bootstrap methods involve independent sampling (in a con-
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text where sampling without replacement is usually part of the sampling plan)
and tuning parameters must be set to reflect the sampling variability of the
sampling plan. While all choices of the tuning parameters will lead to the same
variance estimate for the estimator of population total, bootstrap confidence in-
tervals will give different results, even for the population total. Similarly, many
of the bootstrap weights methods are constructed to provide the same estimator
of variance for the total (as well as the same bootstrap mean of the estimator),
but the bootstrap distribution, and therefore confidence intervals, will depend
on the actual method.

In fact, with few exceptions, all bootstrap methods, even the class of pseudo-
population ones, can be described as bootstrap weights methods in that the
original survey weights can be modified to take into account how often one of
the original observation appears in the bootstrap sample. Hence, these methods
can also be used in public files provided by statistical agencies. On the other
hand, it is not clear for certain of these methods that an efficient algorithm
exists to provide the bootstrap weights without actually creating the pseudo-
population and taking the sample from it to count the number of appearances
of each original observation.

We have also seen that software availability of adequate sample survey boot-
strap methods is still lagging. The use of existing columns of bootstrap weights
created by statistical agencies for researchers is relatively simple. But even then,
as we have seen, it may be important to know more about the method that
created the bootstrap weights as otherwise the computation of a bootstrap es-
timate of variance or the construction of a confidence interval may be incorrect
if a pseudo-population method with a random pseudo-population is used. As
for the construction of bootstrap weights, relatively little is available, appro-
priate documentation is lacking, finite sample correction is often not available,
and there is basically nothing readily available for unequal probability sampling
design.

Sample surveys often suffer from missing observations, either through unit
non-response or through item non-response. In the first case, one possibility
to address the problem is to reweight the units who have responded. But for
unit non-response, the solution often involves imputation. It is important to
understand that the bootstrap weights that researchers can use in public data
file only reflect the sampling variability of the selected units, not the extra
variability due to the imputation. This extra variability, which depends on the
non-response mechanism and the imputation method, requires special care.

While a lot has been accomplished in bootstrap research for survey sampling,
much work remains. For instance, many of the simulations in the case of quan-
tiles such as the median have shown relatively poor results whether it be for
variance estimation or for confidence intervals; see e.g., Sitter (1992b) for strat-
ified simple random sampling or Saigo (2010) for three-stage stratified simple
random sampling. One possible explanation may be the emphasis on requesting
that the bootstrap method match the first two sample moments for the esti-
mation of the total which behaves very differently from quantiles. More work is
needed for such estimators.
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