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Abstract

This paper surveys the developments of the last 10 years
in the area of camera self-calibration. In order to solve
this problem, researches have used the camera intrinsic
constraints separately and in conjunction with the camera
motion constraints or the scene constraints. Most of the
self-calibration algorithms are concerned with unknown
but constant intrinsic camera parameters. Recently,
camera self-calibration in the case of varying intrinsic
camera parameters was also studied. We present the basic
theories behind the different self-calibration techniques
and discuss the ideas behind most of the self-calibration
algorithms.

1. Introduction

Self-Calibration, introduced by [1, 2], is an attempt to
calibrate the camera(s) by finding intrinsic parameters that
are consistent with the underlying projective geometry of a
sequence of images. In doing that, the self-calibration
algorithms make no or few assumptions about the
particular structure of the scene being viewed. In this
survey, we’ll call the underlying projective geometry
constraints, the camera intrinsic constraints.

Recently, researchers extend the self-calibration
techniques to use other constraints besides the camera
intrinsic constrains, mainly the camera motion constraints
and the scene constraints. The dimension of the self-
calibration problem has been extended also to address
varying intrinsic parameters, mainly the zoom and the
focus of the camera. A key use of such a system is as a
solution to the registration problem of augmented reality;
the estimation of the alignment between the real and virtual
world [3].

This paper divided into eight sections including the
introduction section. Section 2 addresses the basic
principles that most of the self-calibration techniques rely
on. Sections 3-6 address the different classes of self-
calibration techniques. Section 3 addresses the techniques
that rely solely in the camera intrinsic constraints. Section
4 addresses the techniques that combine the camera motion
and the camera intrinsic constraints to solve the problem.
Section 6 addresses the techniques that combine the scene
constraints and the camera intrinsic constraints to solve the
calibration problem. Section 6 addresses the critical

motion sequences. Section 7 concludes the survey and
finally Section 8 list the citations referenced in this paper.

2. Basic principles

The theoretical foundations of the self-calibration
techniques are presented in this section. Starting first with
the projective geometry of the camera model (pinhole
camera model is used). Then, introducing the concept of
the absolute conic and its usage in developing the basis for
the self-calibration techniques.

2.1. Projective geometry

In the pinhole camera model, the camera is assumed to
perform a perfect perspective transformation. Let (u, v) be
the image coordinates of the world coordinates (X, Y, Z)
then, the equation of the projection is
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Where K is an upper triangle matrix accounting for the
intrinsic camera parameters and R and ¢ is accounting for
camera orientation and position, respectively, that is the
extrinsic camera parameters. The matrix P is the
perspective transformation matrix, which relates 3D world
coordinates and 2D image coordinates. The matrix K
depends on a variable number of parameters, according to
the sophistication of the camera model. In our case, there
are five intrinsic parameters as shown in Equation 2 where
(ug, vp) 1s the coordinates of the principle point, (¢, &) are
scale factors, and @is the angle between the image axes.
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2.2. Absolute conic and Kruppa equations

The absolute conic Q is a particular conic in the plane
at infinity. The conic Q is invariant under rigid motions
and under uniform changes of scale so its relative position
to a moving camera is constant. Therefore its image ® will
be constant if the intrinsic camera parameter is constant.
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The conic Q can be considered a calibration object that is
present in all scenes.

The conic Q can be represented by the Dual Absolute
Quadric ’. In this case, both Q and its supporting plane,
the plane at infinity II, are expressed through one
geometric entity and the relationship between the Q and its
image mis easily obtained using the projection equation
for the Q’:

o, =P.QP! 3)
Where the operator = means up to a scale factor, a),

represents the dual of @, , Q’ the dual of Q and Pi the

projection matrix for view i (see Fig. 1). Using Equations 1
and 3 and writing Q’ as = diag(l, 1, 1, 0), one obtains the
relation between the intrinsic camera parameters K and the
dual of the image of the absolute conic Q’:

o, ~K K/ 4)
The Q can be transferred from one image to another
through the homography of its plane (i.e. the plane at
infinity):

w,~H 'oH" 5)

Then if we restrict this constraint to the epipolar geometry,
one obtains the Kruppa equations [4] (see Fig. 1):

[eij ]I KK"' [eij ]X ~ F;KK TE-,-T (6)

where F; the fundamental matrix for views i and j, and e;
the corresponding epipole. By this restriction we eliminate
the position of infinity from the equation. In this case only
2 independent equations can be obtained. Combining
Equation (5) and (6) one obtain the following equation:

KK =PQP' (7
Equations 5-7 are the foundations for the majority of the
camera self-calibration techniques. When the homography

of the plane at infinity H ; is known, then Equation (5)

can be reduced to a set of linear equations in the
coefficients of @, or a),’ [5].

In the next sections, we are going to present the
different techniques of camera self-calibration grouped
according to the used constraints. Each section will have
two subsections, one for constant intrinsic and the other for
the varying intrinsic case.

3. Camera intrinsic constraints

Many researchers have been working on self-calibration
subject. Mostly self-calibration algorithms are concerned
with unknown but constant intrinsic camera parameters.
The techniques presented in this section rely only on the
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Figure 1. The image of the absolute conic
satisfies the epipolar constraint.

camera intrinsic constraints and had no assumptions about
the particular structure of the scene being viewed. Some
interesting approaches were proposed in[1, 2, 4-23, 27-29].

3.1. Constant intrinsic

The first self-calibration method was proposed in [1, 2]
based on the Kruppa equations (Equation 6) when up to
three views of a scene are available. The approach was
improved over the years [6]. Luong and Faugeras [6] use
the kruppa equations to derive systems of polynomial
equations, which are of degree four in five unknowns.
These systems are solved with the use of numerical
continuation methods. The main feature of this self-
calibration technique is that it does not relate all the images
in a single projective frame (which is hard to do in some
cases), only pairwise epipolar calibration. The drawback of
this technique is that it involves high computational costs
and it is difficult to take into consideration the uncertainty
associated with the estimate of the epipolar geometry and
any a priori knowledge regarding the intrinsic parameters
that might be available. Variants of the basic approach [1]
were proposed by Heyden and Astrom [7].

Pollefeys et al. [8, 9] proposed to minimize the
deviation from Equation (5) in a stratified approach, which
starts from projective calibration, augments it with the
homography of the plane at infinity to yield affine
calibration and finally upgrades to Euclidean calibration.
The method is developed further in [10] to obtain the
metric calibration of a camera setup from only three
images.

Hartley in [5] uses the ideas in [1] to develop a
practical algorithm for self-calibration for more than three
cameras. A global optimization technique is defined where
a lot of smaller optimization problems have to be solved in
order to get a starting point for the last optimization.

Triggs [11] propose to minimize the deviation from
Equation (7) that is the recovery of the absolute quadric.
The absolute quadric is a degenerate quadric consisting of
planes tangent to the absolute conic and has the property
that its image projection coincides with the dual image of
the absolute conic. An initial projective reconstruction is

YF]',F.

COMPUTER
SOCIETY

Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS’03)
0-7695-1971 3$17.00 © 2003 IEEE



rectified to give calibration and scaled Euclidean structure
and motion. The absolute quadric and conic are recovered
simultaneously using an efficient constrained nonlinear
optimization technique or a quasi-linear method.

Lourakis and Deriche [12] propose a simplification of
the Kruppa equations and show how it can be employed
for self-calibration. The simplification is derived in a
purely algebraic manner and is based solely on the
fundamental matrix. Estimates of the epipoles, which are
known to be difficult to compute accurately, are not
needed. And hence, this algorithm has the potential of
being more stable and robust with respect to measurement
noise.

Lei et al. [13] propose a method to solving the Kruppa
equations (Equation 6) for camera self-calibration. First,
the method determines the scale factors by a Levenburg-
Marquardt (LM) optimization or Genetic optimization
technique. Then the camera’s intrinsic parameters are
derived from the resulting linear constraints.

3.2. Varying intrinsic

Heyden and Astrom [14] have shown that self-
calibration in the case of continuously focusing/zooming
cameras is possible when the aspect ratio is known and no
skew is present. However, although their method estimates
intrinsic ~ calibration through a non-linear bundle
adjustment algorithm, no means of obtaining a suitable
initial solution was proposed. Extending their work,
Pollefeys et al [15, 16] prove that the absence of skew in
the image plane is sufficient to allow for self-calibration.
They also proposed an optimization framework for
recovering the intrinsic parameters. Heyden and Astrom
[17] have proven a more general result according to which
the existence of one constant intrinsic parameter suffices
for self-calibration. In all of the aforementioned methods
[14-16], variable intrinsic calibration parameters are
estimated through the recovery of the absolute quadric
[11].

The first step in recovering the absolute quadric is to
obtain a projective reconstruction that uses bundle
adjustment to compute for each image a projection matrix
that is consistent with inter-image correspondences and is
known up to a 3D projective transformation. Then, the
motion rigidity assumption is utilized in some constrained
optimization framework to yield the intrinsic parameters
and rectify the projective reconstruction to a Euclidean
one. The problem of this iterative approach is that iteration
is quite chancy in the context of self-calibration under
minimum assumptions on internal parameters. Hartley et
al. [18] replace the need for descent-based iteration by a
quick, but exhaustive search for the best affine
reconstruction.

Pollefeys et al. [19] use the modulus constraint where
the self-calibration method presented in [8] is extended to

allowing changing focal length. However, the practical
implications of this result are questionable since when the
focal length varies, by zooming, the principal point varies
also. The method is developed further in [10]. They reduce
Equation (5) to a set of linear equations by following a
stratified approach. They first obtain the homographies of
the plane at infinity by first reaching an affine calibration
based on modulus constraint.

Hartley [20] Provide an algorithm for computing the
focal lengths of two cameras given the corresponding
fundamental matrix and knowledge of the remaining
intrinsic parameters. That paper made the first use of the
Huang and Faugeras constraints, presented in [21], as a
tool for self-calibration. Bougnoux [22] provides an elegant
closed-form solution for the same problem. He estimates
the projective projection matrices corresponding to the
available images and embeds them into a nonlinear
minimization algorithm for finding the homography that
maps the estimated projection matrices to Euclidean ones.
The Kruppa equations are employed for obtaining an
initial solution for the nonlinear minimization process.

Mendonca and Cipolla [23] exploit the well-known
equality constraint regarding the two nonzero singular
values of the essential matrix [20, 21]. Since the latter is a
function of the fundamental matrix and the unknown
intrinsic parameters, the equality constraint corresponds to
a constraint involving the intrinsic parameters that are
recovered by optimizing an appropriate objective function.
The method presented in [23] generalizes the ones in [20, 22]. It
computes first the focal lengths using linear approach then
refines this estimate and estimates the principle point using
a non-linear approach. It takes into account how close to a
critical motion for self-calibration (see [24-26]) the relative
motion between any two pair of cameras in the sequence
is, and “weights” the information provided by that
particular pair accordingly. The input for the algorithm is
only a set of fundamental matrices and it does not need
projective bundle adjustment.

Lourakis and Deriche [27] extend their previous work
for simplifying the Kruppa equations and using them for
self-calibration in the case of constant intrinsic parameters
[12] to the case of varying intrinsic calibration parameters.
The intrinsic calibration parameters are recovered using a
nonlinear minimization scheme that explicitly takes into
consideration the uncertainty that is associated with the
estimates of the employed fundamental matrices. For all
developments, only pairwise fundamental matrices need to
be estimated, thus the need for a projective reconstruction
is relaxed.

Rousso and Shilat [28] present a method to compute the
pose estimation and the calibration from three
homographies between two images, without first
computing a projective camera. Three homographies can
be obtained directly from the trifocal tensor or from the
fundamental matrix between the two images.
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Seo and Heyden [29] present an algorithm for making
flexible calibration from the assumption of zero skew. The
purpose of their algorithm is to obtain good initial
estimates for a subsequent bundle adjustment method or to
make fast approximate auto-calibration. The algorithm is
based on an initial projective reconstruction, in the form of
a sequence of camera matrices. The FEuclidean
reconstruction is obtained from an iterative scheme, where
the intrinsic parameters and the absolute conic are
estimated sequentially, using only linear operations in each
iteration. In this method a new constraint, called the
orthogonality constraint, is used to constrain the location
of the absolute conic.

4. Camera intrinsic and motion constraints

Many researchers proposed specific self-calibration
algorithms for restricted motion, combining camera motion
constraints and camera intrinsic constraints. In several
cases it turns out that simpler algorithms can be obtained.
However, the price to pay is that the ambiguity can often
not be restricted to metric. Some interesting approaches
were proposed in [30-42].

4.1. Constant intrinsic

Moons et al [30] and Hartley [31] propose to reduce
Equation (5) to a set of linear equations by following a
stratified approach. They first obtain the homographies of
the plane at infinity by first reaching an affine calibration
based on: pure translation [30], pure rotation [31].

Armstrong et al. [32] consider the case of self-
calibration of a camera under planar motion. A planar
motion consists of a translation in a plane and a rotation
about an axis perpendicular to that plane. It is often
performed by a vehicle moving on the ground. They
introduce the pole/polar relation between the vanishing
point of the rotation axes and the trifocal line.

Faugeras et al. [33] investigate the relationship between
the usual 2D camera and the 1D camera. 1D projective
camera projects a point in P2 to a point in P1. A laser
beam can be modeled as 1D camera. They find out that a
2D camera undergoing planar motion can be reduced to a
1D camera on the trifocal plane of the 2D cameras. A
linear algorithm is used for 1D camera self-calibration
instead of solving complicated Kruppa equations for 2D
camera self-calibration.

Wang et al. [34] analyze the errors introduced when the
assumption of a pure rotation about the camera’s optic is
violated. They consider the case of the intrinsic parameters
remaining unchanged throughout the sequence. They
analyze un-calibrated camera in addition to partially
calibrated cameras, incorporating conditions of known
principle point, aspect ratio and/or skew. They consider
random translations caused for instance by shaky hand-
held operation.

4.2. Varying intrinsic

De Agapito et al. [35, 36] propose a linear method for
self-calibration of a stationary but rotating camera. The
internal parameters of the camera are allowed to vary from
image to image, allowing for zooming (change of focal
length) and possible variation of the principal point of the
camera. The method works under the minimal assumption
of zero-skew (rectangular pixels), or the more restrictive
but reasonable conditions of square pixels, known pixel
aspect ratio, and known principal point. Being linear, the
algorithm avoids the convergence problems characteristic
of iterative algorithms. They use the same approach as [31]
(reduce Equation (5) to a set of linear equations by
following a stratified approach) but for a zooming camera.
The approach does not apply to some cases such as fixed,
but unknown aspect ratio or fixed but unknown principle
point. The proposed method is developed further in [37].

Kim and Hong [38] adopt a pan-tilt camera (without z-
axis rotation) and simplify the intrinsic parameters to
overcome the degenerated configuration and get a closed
form solution. They first calculate the rotation angles then
the focal lengths.

Tordoff and Murray [39] address the problem of radial
lens distortion showing strong effect of the distortion
(specially barreling distortion) on the accuracy of the self-
calibration of a rotating camera. They propose a method
for automatically estimating the radial distortion over a
sequence of images when both distortion and camera
internal parameters vary.

Seo and Hong [40] show that, when skew is assumed
zero, self-calibration of a zooming and rotating camera is
possible and unique up to a rotation. They propose an
iterative estimation method. The method is developed
further in [41]. They show that one inter-image
homography is necessary for computing internal camera
parameters assuming that aspect ratio and principle point
are fixed in time. Practical problems are also discussed.

Hayman and Murray [42] develop expressions
describing the errors introduced when the assumption of a
pure rotation about the camera’s optic center is violated.
They consider the case where the rotation arm is of fixed
length and the focal length is the sole unknown parameter
but can vary from image to another. They reach to the
conclusion that the assumption of pure rotation is a
perfectly good one in many practical situations when the
distance to the scene is large in comparison with the
translations of the camera.

5. Camera intrinsic and scene constraints

Recently some methods were proposed to combine self-
calibration with scene constraints. Some interesting
approaches were proposed in [43-56].
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5.1. Constant intrinsic

Li et al. [43] propose a self-calibration method that can
compute the 5 intrinsic parameters linearly. In this method,
the planar information in the scene is used, and the camera
undergoes N (N>=2) sets of three mutually orthogonal
motions or N (N>=5) sets of two orthogonal planar
motions.

Triggs [44] develops a self-calibration technique based
on some constraints involving the absolute quadric and the
scene-plane to image-plane collineations. Since only the
collineations with respect to a reference view (a key
image) can be used to self-calibrate a camera with constant
internal parameters, inaccurate measurements Or poor
conditioning in the key image contribute to all the
collineations reducing the numerical accuracy or the
stability of the method. Malis and Cipolla [45, 46] propose
to impose the constraints between collineation using a
different iterative method. They do not use any key image
but all the images are treated equally averaging the
uncertainty over all of them.

Sturm and Maybank [47] and Zhang [48] independently
proposed to use planar patterns in 3D space to precisely
calibrate cameras. While Sturm and Maybank also discuss
singularities, Zhang also calibrates radial distortions. They
both require a planar pattern known a priori. Lowbowitz
and Zisserman [49] describe a technique of metric
rectification for perspective images of planes using metric
information such as a known angle, two equal but unknown
angles, or a known length ratio.

Xu et al. [50] propose a linear algorithm to solve the
problem of self-calibrating cameras, and recovering
camera motion and plane equations from knowing two
homography matrices for two planes in space. They use
estimates as an initial guess that is further optimized by
minimizing the difference between observations and re-
projections.

Bondyfalat and Bougnoux [51] proposed a method of
elimination to impose the scene constraints. Liebowitz and
Zisserman [52] on the other hand formulate both the scene
constraints and the self-calibration constraints as
constraints on the absolute conic so that a combined
approach is achieved. Vanishing points of orthogonal
directions and rectified planes are examples of the scene
constraints.

5.2. Varying intrinsic

In [53], Malis and Cipolla extend their work in [45, 46]
to allow the recovering of the varying focal length. Lv et
al. [54] describe an approach for estimating both intrinsic
and extrinsic parameters from three orthogonal vanishing
points and an object of known height. The method derives
a direct solution of the parameters without using matrix
manipulations, which should result in numerical stability.
One vertical vanishing point and a horizontal vanishing

line provide an approximate solution with some
assumptions.

Zhang and Schenk [55] propose a new method for
obtaining camera calibration of a stereovision system over
time without using again any particular calibration
apparatus. The idea is to use previously valid camera
projection matrices and image point matches to push
forward the Euclidean structure of the scene, which allows
recalibrating the stereovision system. Uncertainty is
systematically manipulated and maintained.

Mendelsohn and Daniilidis [56] propose and evaluate a
technical solution to decrease the sensitivity of self-
calibration by placing easily identifiable targets of known
shape in the environment. The relative position of the
targets need not be known a priori. Assuming an
appropriate ratio of size to distance these targets resolve
known ambiguities. Constraints on the target placement
and the camera’s motions are explored.

6. Critical motion sequences

In some cases the motion of the camera is not general
enough to allow for self-calibration. This kind of motion is
defined as critical motion sequences. In the case of a
critical motion sequence, there is no unique solution for the
self-calibration problem. Hence, one can find more than
one solution for the intrinsic camera parameters that satisfy
all constraints on the camera parameters for all images of
the sequence.

Sturm [25, 26] provides a complete analysis of critical
motion sequences for constant intrinsic parameters and
identifies specific degeneracies for some algorithms.
Partial analysis and some specific cases are mentioned in
[57-59]. Kahl [24] provides an analysis for the critical
motions in case of varying intrinsic parameters.

Sturm [60] presents a type of camera motion that is not
critical for the generic self-calibration problem, but for
which the Kruppa equation approach fails. This is the case
if the optical centers of all cameras lie on a sphere and if
the optical axes pass through the sphere’s center.

7. Conclusion

The area of camera self-calibration has drawn the
attention of tens of computer vision scientists and
researches in the last 10 years following the break through
paper [1]. In order to calibrate the camera on-line,
researches have used the camera intrinsic constraints
separately and in conjunction with the camera motion
constraints or the scene constraints. Most of the self-
calibration algorithms are concerned with unknown but
constant intrinsic camera parameters. Recently, camera
self-calibration in the case of varying intrinsic camera
parameters was also studied. A group of researchers have
also analyzed the developed self-calibration algorithms,
estimated the errors, and identified critical motion
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sequences that can prevent from having a unique solution
for the self-calibration problem.

The trend of the research in the self-calibration area is
to use the camera intrinsic constraints in conjunction with
the camera motion and the scene constraints while taking
into consideration the critical motion sequences and
provide a closed-form solution that can be solved linearly.
Yet, we have not seen a smart algorithm that is based on a
data fusion approach when using the available constraints;
camera intrinsic, motion and scene. That approach should
enhance the robustness and widen the usage of the self-
calibration method.
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