
International Journal of Computer Trends and Technology (IJCTT) – Volume 31 Number 2 - January 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 61

A survey of Commit Protocols in Distributed
Real Time database systems

Fadia A. Elbagir#1, Ahmed Khalid*2, Khalid Khanfar#3
#1

 PhD. Program in Computer Science, Sudan University of Science and Technology, Sudan
#2

 Department of Computer Science, Community College, Najran University, Najran, KSA
#3

 Full professor Head of Information Security Department at Naif Arab University for Security, Saudi Arabia

Abstract— The commit processing in a Distributed

Real Time Database (DRTDBS) can significantly

increase execution time of a transaction. Therefore,

designing a good commit protocol is important for the

DRTDBS; the main challenge is the adaptation of

standard commit protocol into the real time database

system and so, decreasing the number of missed

transaction in the systems. In these papers we review

the basic commit protocols and the other protocols

depend on it, for enhancing the transaction

performance in DRTDBS. We propose a new commit

protocol for reducing the number of transaction that

missing their deadline.

Keywords— DRTDBS, Commit protocols, Commit

processing, 2PC protocol, 3PC protocol, Missed

Transaction, Abort Transaction.

I. INTRODUCTION

In Distributed Real-Time Database System (DRTDBS)
it is very important to design an efficient commit
protocols to grantee transaction atomicity. The
commit processing in a DRTDBS can significantly
growing the execution time of a transaction [37, 32,
41]. The performance of the commit protocol is
usually measured in terms of number of transactions
that complete before their deadlines. The transaction
that miss their deadlines before the completion of
processing are aborted, in the other side the successful
transaction is committed [45, 3].
For Reducing unavailability of the data , most of the
existing commit protocols allowing a committing
cohort to transfer its data to an executing cohort
therefore, the system performance will be improved
[38, 36].
In Distributed Real time systems, a transaction may
decide to commit at some sites while at some other
sites it could decide to abort, these resulting in
infraction of transaction atomicity, to avoid these
problems the commit protocol are used [45, 38, 39].
To take control of this problem, distributed database
systems use a distributed commit protocol to ensure
that all the participating sites accept on the final
outcome (commit/abort) of the transaction [32, 19].
A distributed real-time transaction commit is
confirming to meet the requirements of both the
atomicity and the time constraints. And need commit
processing so that transactions executing on them still

preserve the Atomicity, Consistency, Isolation and
Durability (ACID) property [9].

The rest of this paper is organized as follows:
Section II introduces Distributed Commit protocols.
Section III Describe differences between 2PC and
3PC protocols. In section IV the Implementation of
Commit Protocols in Distributed real time
Environment is presented. Section V Describes the
proposed commit protocol and section VI concludes
the paper.

II-Distributed Commit protocols

A real time distributed computing system has
heterogeneously connected computers to resolve a
single problem. If the transactions run across different
sites, it may commit at one site and may drop at
another site, leading to an inconsistent transaction.
The transaction in a real time database system has
deadlines to process the workloads and it need to
process transactions before these deadlines expired [3].
Distributed database systems implement a transaction
commit protocol to ensure transaction atomicity. A
commit protocol guarantees the uniform of
commitment of distributed transaction execution [24].
There are two types of commit protocols these are the
Two-Phase Commit protocol a blocking protocol and
the Three-Phase Commit protocol a non-blocking
protocol [22, 25, 36].

a- Two-Phase Commit protocol

Two Phase Commit (2PC) is the common used
protocol in DRTDBMS and most of the exciting
protocol based on it [11, 15, 1, 16, 22, 17].
2PC protocol has two phases: In the first phase
coordinator add the record ‗begin commit‘ in the log
and send the messages of ‗Prepare‘ to all participants ,
the Timer start to step into the waiting stage;
participant receive the ‗Prepare‘ news, if it is ready to
commit its own part, it can send the message of
‗Ready‘ to coordinator; if it is not ready to commit it
due to some reasons, it can send the message of
‗Abort‘ to coordinator, and add the message to the log.
In the second phase, If all participants answer
‗Ready‘ , coordinator send ‗Global Commit‘ to all of
them, otherwise, send the command of ‗Global Abort‘;
if time is out, it also send the command of ‗Global
Abort‘ to participants, add the command to the log.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 31 Number 2 - January 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 62

Participants commit or undo the transactions depend
on the command of coordinator, and send the message
of ‗Acknowledge‘ to coordinator to take in the
message to the log. Coordinator gathers the message
of ‗Acknowledge‘ from all participants, add the
message to the log and terminate the transaction. Fig.1
show the Two Phase Commit [42, 26, 31, 28, 7, 2, 5].

Fig.1 Two Phase Commit Protocol (2PC) Process

There are variant types of 2PC the following are some
of these protocols [32, 24, 29, 10].

(1) Presumed Abort/Presumed Commit
Protocols
(2) One Phase Commit Protocols
(3) Group Commits Protocols
(4) Pre Commit/Optimistic Commit
Protocols.

(1) Presumed Abort/Presumed Commit Protocols:
The Presumed Abort (PA) protocols tries to minimize
the message and logging Overheads by requiring all
the participants to follow in case of doubt abort rule,
that is, if after coming up from a failure a site queries
the master about the final outcome of a transaction
and finds no information available with the master, the
transaction is assumed to have been aborted. suppose
that the transactions abort if they are not explicitly
committed to reduce the messages such as
acknowledgement message from the cohorts to the
coordinator and the disk write for the abort log record,
while the Presumed Commit (PA) protocol is based on
notice that, the number of committed transactions is
much more than the number of aborted transactions,
assume the transactions commit if they are not
explicitly aborted. Since transactions usually commit
under the normal conditions, it has the advantage if we
can skip the messages related to the commit
processing. However, it still has the overhead that the
coordinator must force-write a ―collecting‖ log record
before initiating the commit processing [10, 7, 28, 44,
3].
(2) One-Phase commits protocol: Excluded the
voting phase of the 2PC, by compel some properties
on the cohort‘s behavior during the transaction
execution. This protocol interfere the voting phase
with the execution of transaction and it just has a
decision phase. There are two stages the Implicit Yes
Voting and the Coordinate Log. This protocol contain

fewer overhead therefore it is a simple protocol, It has
low latency as it holds less disk spaces, and it is free
from bandwidth speed as fewer messages have to be
exchanged in it [36,14,8] .The greatest disadvantage
of 1PC it can only handle immediate consistency
operation because it lack the voting phase. It does not
work on deferred consistency operation [9, 16, 19].
(3) Group Commits Protocols: Many database
systems perform an optimized form of commit
processing where commit information for a group of
transactions is written to disk in one I/O operation,
that consumption the cost of the I/O across multiple
transactions. So, instead of each transaction write its
own commit list to disk, in the group commit one
transaction writes to disk a commit list include the
commit information for a number of other transactions
[20].
(4) Pre-commit/Optimistic commit: the protocol
allows transactions to access uncommitted data carried
by prepared transactions in the ‗optimistic‘ belief that
this data will finally be committed. It reduce the lock
difference by releasing the locks earlier, focus on
reducing the lock waiting time [11, 26].

b- The Three-Phase Commit protocol (3PC):

The three phase commit (3PC) protocol was proposed
to address the blocking problem in 2PC. This protocol
achieves a non-blocking capability by inserting an
extra phase, called the pre-commit phase, between the
two phases of the 2PC protocol. In the pre-commit
phase, a preliminary decision is reached regarding to
the destiny of the transaction. The Three Phase
Commit protocol (3PC) performs the operations
Prepare phase, Pre-commit phase, Commit/Abort
phase [22, 35, 40].

a) Prepare phase

Initially the coordinator will broadcast the Begin-
commit request message to all participants and enter
into wait state. When, the participant receive the
request message, If the participant want to commit the
transaction means it respond with the ‗Vote-commit‘
message(Yes) to the coordinator and enters into ready
state. Otherwise, the participant responds with the
Vote-abort message (No) to the coordinator. When the
coordinator receives the reply from participant it starts
second phase

a) Pre-Commit or Buffering

 When the coordinator receives Vote commit message
within the time from the participant, the coordinator
broadcast the Pre-Commit message to all participants.
At this phase introductory decision can be made and it
moves to prepared state. When the participant accepts
the Pre_commit message acknowledge message will
be sent to coordinator. When the Coordinator received
ACK message from participant it starts the third phase.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 31 Number 2 - January 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 63

b) Commit/Abort phase

The coordinator decided to commit or abort the
transaction and it will inform the participant about the
outcome of the transaction. Three-Phase Commit
Protocol is problematic only when there are multiple
site failures, although it remove the blocking problem,
it include an extra overhead of one more cycle and in
turn increases time taken for the transaction to
complete, However because of high communication
overhead 3PC has not been implemented so far [35].

III-Difference between 2PC and 3PC Protocols

In the 2PC, the coordinator may abort the transaction
globally or resend the global decision; the participant
can leave the process blocked until communication
with the coordinator is re-established such as sending
abort message to the coordinator or invoke the
cooperative termination protocol. For 3PC, the
coordinator can abort the transaction globally, send
global-commit message to the participants or simply
send the global decision to all sites that have not
acknowledged. The participant can abort a transaction
from one side, follow an election protocol, or elect a
new coordinator.

IV-Implementation of Commit Protocols in

Distributed real time Environment

The design of an efficient commit protocol is very
important for distributed real time database systems
(DRTDBS), the atomicity property of distributed
transactions can only be ensured with the use of an
atomic commit protocol, therefore it is very important
to choice a better commit protocol for distributed real-
time database system (DRTDBS), atomic commit
protocols received comprehensive work in the late
1970s till now [38, 30].this section introduce the
researchers effort for implementation of the Commit
Protocols in DRTDBS.
R.Gupta et al (1996) proposed Optimistic Commit
Protocol (OPT), for designing high performance real-
time commit protocols that do not require transaction
atomicity requirements, OPT, was designed
specifically for the real-time environment and
included features such as controlled optimistic access
to uncommitted data, active abort and silent kill [14].
In 1997 R. Gupta improved OPT and proposed
Shadow-Opt and Healthy-OPT protocols, they note
that Healthy-OPT provides this high level of
performance without incurring the potentially
significant overheads associated with implementing
the Shadow mechanism in a real system, However, it
does not consider the type of dependencies between
two transactions [25].
Yongik Yoon et al. (1996), proposed a new ―protocol
Real-time Commit Protocol‖ (RCP). The proved that
the RCP satisfies both the correct and the timely

completion and produces several desirable effects for
fast computing like the elimination of voting phase
and the reduction of the number of messages in two
phase commit protocol [42].
Lam et al. (1997) proposed deadline-driven conflict
resolution (DDCR) protocol which integrates
concurrency control and transaction commitment
protocol for firm real time transactions .DDCR
resolves different transaction conflicts by maintaining
three copies of each modified data item (before, after
and further) according to the dependency relationship
between the lock-requester and the lock holder. The
protocol aims to reduce the impact of a committing
transaction on the executing transaction which
depends on it. The conflict resolution in DDCR is
divided into two parts (a) resolving conflicts at the
conflict time; and (b) reversing the commit
dependency when a transaction, which depends on a
committing transaction, wants to enter the decision
phase and its deadline is approaching [13].
C Pang, K Lam (1998) proposed an enhancement
based on the deadline driven conflict resolution
(DDCR) called the Deadline Driven Conflict
Resolution with Similarity with similarity (DDCR-S)
to resolve the executing- committing conflicts in
DRTDBS with mixed requirements of criticality and
consistency in transactions. In DDCR-S, conflicts
involving transactions with looser consistency
requirement and the notion of similarity are adopted
so that a higher degree of concurrency can be
achieved and at the same time the consistency
requirements of the transactions can still be met. The
simulation results show that the use of DDCR-S can
significantly improve the overall system performance
as compared with the original DDCR approach [5].
R. Haritsa et al. (1999, 2000) defined the process of
transaction commitment and the conditions under
which a transaction is said to miss its deadline in a
distributed firm real time setting, they proposed and
evaluate a new commit protocol PROMPT (Permits
Reading of Modified Prepared data for Timeliness) for
the real time domain to allows transactions to
optimistically borrow in a controlled manner, the
updated data of transactions currently in their commit
phase. The new PROMPT protocol as they explain
provided significantly improved performance over the
classical commit protocols, however, it does not
consider the type of dependencies between two
transactions. [12, 28]
R. Haritsa et al. (2000) presented a new one-phase
real-time commit protocol, called PEP, to address the
problem of One-phase commit protocols, which
significantly increase the occurrence of priority
inversions.
The result of PEP evaluation for real-time applications
with firm deadlines demonstrates that, for a variety of
environments, it substantially reduces the number of
killed transactions as compared to its multi-phase
counterparts. They improve that PEP often provides

http://www.ijcttjournal.org/
https://scholar.google.com/citations?user=s3zqPMYAAAAJ&hl=en&oi=sra

International Journal of Computer Trends and Technology (IJCTT) – Volume 31 Number 2 - January 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 64

better performance than even an equivalent centralized
system. [27]
B. Qin and Y. Liu, (2003), proposed an optimistic
real-time commit protocol based on PROMPT and
DDCR protocols, called double space commit (2SC),
which is specifically designed for the high-
performance distributed real-time transaction. 2SC
allows a non-healthy transaction to lend its held data
to the transactions in its commit dependency set.
When the prepared transaction aborted, only the
transactions in its abort dependency set are aborted
while the transactions in its commit dependency set
will execute as normal. The two properties of 2SC can
reduce the data inaccessibility and the priority
inversion that is inherent in distributed real-time
commit processing. Extensive simulation experiments
have been performed to compare the performance of
2SC with that of other protocols such as PROMPT
and DDCR. The simulation results show that 2SC has
the best performance. Furthermore, it is easy to
incorporate it in any commit protocol [23].
Q.Biao et al. (2003) proposed Optimistic Commit
Protocol 2LC(two-Level Commit),which specially
designed for distributed real time domain, it allows
transaction to optimistically access the locked data in
a controlled manner, which reduces the data an
accessibility and priority inversion inherent and
undesirable in distributed real time database systems.
They used distributed firm – deadline database system
model , compared the real time performance of the
proposed protocol with others protocols and the
simulation results shows that 2LC is effective in
reducing the number of missed transaction deadline
[23].
 Inseon Lee et al (2004) evaluated the various
distributed commit protocols and proposed a causal
commit protocol which suitable for distributed main
memory database systems. They performed simulation
study to evaluate the performance of proposed
protocol and in the result of this simulation they
reached that the new protocol greatly reduces the time
to commit the distributed transactions without any
consistency problem [10].
U. Shanker et al. (2006) analyzed all kind of
dependencies that may arise due to data access
conflicts among executing-committing transactions
when a committing cohort is allowed to lend its data
to an executing cohort. It then proposes a static two-
phase locking and high priority based, write-update
type, ideal for fast and timeliness commit protocol
―SWIFT”. They analyzed the performance of SWIFT
for partial read-only optimization, which minimizes
interstice message traffic, execute-commit conflicts
and log writes consequently resulting in a better
response time. As they appear these approach reduces
the time needed for commit processing and is free
from cascaded aborts and Simulation results show that
SWIFT improves the system performance in
comparison to earlier protocol, However SWIFT is
beneficial only if the database is main memory

resident and his work is still needed to explore the
impact of communication among the cohort and its
siblings on overall system performance [38].
 N. Noual &HDris (2006) analyzed the main features
of 2PC protocol and identified the problems they raise
in mobile context. Many papers and there proposed
protocols are discussed , provided differences between
a traditional distributed system and mobile system and
proposed protocols as alternative to 2PC to allow a
participant to unilaterally commit a transaction and
release resource is hold. The solution proposed for
mobile transaction commitment [18]
Shishir Kumar & Sonali Barvey(2009) analyzed two
phase commit protocols and its variants both on the
basis of time and cost. They presented a new commit
protocol which is non-blocking (NBCP) which
survives the coordinator and participant failure and
not even increases the cost of execution and time with
the help of low cost main memory and can give even
better performance in reliable systems where failure
rate is not very high [33].
S. Agrawal & Udai Shanker (2010) described many
protocols for distributed real time database systems
(Shadow, Piggy bag, Elemental External Dependency
Inversion and in Time Yielding (SPEEDITY)
protocols. compared performance of proposed commit
protocol ―SPEEDITY‖ with shadow PROMPT,
SWIFT and DSS-SWIFT commit protocols,
Simulation results show that the proposed protocol
improves the system performance up to 5% as
transaction miss percentage [30].
Udai Shanker & Nikhil Agarwal(2010) proposed a
modified real time commit protocol for distributed
real time database systems (DRTDBS), Allow
Commit Dependent and in Time borrowers for
Incredible Value added data lending without Extended
abort chain (ACTIVE), where borrower cohorts are
categorized as commit and abort dependent. Further,
the commit dependent borrowers can lend data to
executing cohorts with still limiting the transaction
abort chain to one only and reducing the data
inaccessibility the performance of ACTIVE is
compared with PROMPT, 2SC and SWIFT protocols
for both main memory resident and disk resident
databases with and without communication delay.
Simulation results show that the proposed protocol
improves the system performance up to 4 % as
transaction miss percentage [37].
Xiai YAN et.al(2012) proposed a protocol adapted to
the distributed real-time transaction commit, which
can avoid the blocking problem when dealing with
transactions by coordinator redundancy. They
analyzed 2PC protocol. They proposed modified
protocol RL2PC adapted to the distributed real-time
transaction commit. The result of exponent shows that
when the average arrival interval time of transaction is
small, the success rate of the improved commit
protocol is significantly higher than that of 2PC [41].

V-proposed Commit protocol

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 31 Number 2 - January 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 65

In our proposed model we will use commit
percentage which indicates the percentage of
input transaction completed before deadline.
And according to the time factor we will tend
to consider it as a most important form of the
deadline to avoid the unpredictability in the
commitment process. Several workload
parameters such as number of sites, size of
database (i.e. pages in DB), transaction
arrival rate/site, CPU page processing time,
disk access time are used for the simulation ,
It is anticipated that the commit and abort
percentage of cohorts may lead for designing
a new commit protocol based on 2PC
protocol.

VI-Conclusion
Designing a good commit protocol is important for the
DRTDBS. In this paper, we have reviewed the basic
concepts of commit protocol and committing process.
We discuss the basic concept of Two Phase Commit
(2PC) which is the most of the exciting protocol based
on it, and 3PC non-blocking protocol, Also, we have
discussed the different implementation of the commit
protocols. Finally a commit protocol depends on the
commit percentage is proposed.

REFERENCES

[1] Ahmad Waqas et al., "Transaction Management Techniques
And Practices In Current Cloud Computing Environments : A
Survey", International Journal of Database Management Systems (
IJDMS) Vol.7, No.1, February 2015
[2] Anup A. Dange, Prof. Neha Khatri-Valmik ," Analysis of
Scheduling Nested Transactions in Distributed Real-Time
Environment", International Journal of Engineering Research and
General Science Volume 2, Issue 6, October-November, 2014 ISSN
2091-2730.
[3] Bandaru Vishnu Roopini ,"Transaction Management Policy in
Distributed Real Time System", International Journal of Soft
Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-3,
Issue-2, May 2013
[4] Butler Lampson and David Lomet ," A New Presumed Commit
Optimization for Two Phase Commit", Proceedings of the 10th
VLDB Conference, Dublin, Ireland, 1998
[5] C Pang, K Lam ," On Using Similarity for Resolving Conflicts
at Commit in Mixed Distributed Real-time Databases", Proceedings
of the 5th International Conference on Real-Time Computing
Systems and Applications, 1998.
[6] C. MOHAN et al, "Transaction Management in the R*
Distributed Database Management System", ACM Transactions on
Database Systems, Vol. 11, No. 4, December 1986, Pages 373-396.
[7] Giuseppe Congiu et al., "One Phase Commit: A Low Overhead
Atomic Commitment Protocol for Scalable Metadata Services",
2012 IEEE International Conference on Cluster Computing
Workshops, 978-0-7695-4844-9/12 $26.00 © 2012 IEEE DOI
10.1109/ClusterW.2012.16- 9
[8] Gunjan Verma et al ,"Transaction Processing and Management
in Distributed Database Systems", IJCST Vol. 2, Issue 3, September
2011 ISSN : 2229-4333(Print) | ISSN : 0976-8491(Online)
[9] Himanshu Dubey et al, "Enhancer- A Time Commit Protocol",
International Journal of Advanced Research in Computer

Engineering & Technology (IJARCET) Volume 1, Issue 10,
December 2012
[10] Inseon Lee & Heon Y. Yeom,"A Single Phase Distributed
Commit Protocol for Main Memory Database Systems",
International, IPDPS 2002, - ieeexplore.ieee.org –
[11] Inseon Lee et al ," A New Approach for Distributed Main
Memory Database Systems: Causal Commit Protocol", LEE Inseon,
P Taesoon - IEICE Transactions on Information, 2004 -
search.ieice.org.-
[12] J.R. Haritsa et al. The PROMPT Real Time Commit
Protocol", IEEE Transactions On Parallel And Distributed Systems,
Vol. Xx, No. Y, Month 1999
[13] Lam et al, "Resolving executing-committing conflicts in
distributed real-time database systems". J. Comput. 42(8), 674–692
(1999), In: Proceedings of the Third IEEE International Conference
on Engineering of Complex Computer Systems, Como, Italy, 8–12
September 1997, pp. 49–58 (1997)
[14] LI Taoshen, SONG Qingzhen, "On the Open One-Phase
Atomic Commit Protocol", computer Science Applications and
Education Vol.3 No.2 November 2013, 2159-8223 /© 2013 ISAEP.
[15] M.S.Khatib & Dr. Mohammad Atique , "An Analysis of
Transaction Management in Distributed Real Time Databases: An
Overview", (IJITR) International Journal Of Innovative Technology
And Research ,Volume No.2, Issue No. 3, April – May 2014, 985 –
990
[16] Maha Abdallah et al, "One Phase Commit Does it makes
sense? ,This work has been partially funded by the CEC under the
OpenDREAMS Esprit project n°20843, All Rights Reserved ©
2012 IJARCET
[17] Mandeep Kaur & Harpreet Kaur, "Concurrency Control in
Distributed Database System", International Journal of Advanced
Research in Computer Science and Software Engineering ISSN:
2277 128X, Volume 3, Issue 7, July 2013
[18] Nadia Noual et. al ., "Protocols for committing Mobile
Transactions", The International Arab Journal of Information
Technology, vol.3 ,No 2, April 2006
[19] Nitesh Kumar et al., "Enhanced c One Phase Commit Protocol
in Transaction Management", International Journal of Soft
Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-3,
Issue-4, September 2013
[20] Peter M. Spiro et al., "Designing an Optimized Transaction
Commit Protocol", Digital Technical Journal Vol. 3 No. 1 Winter
1991
[21] Poonam Singh et al, "An Extended Three Phase Commit
Protocol for Concurrency Control in Distributed Systems",
International Journal of Computer Applications (0975 – 8887)
Volume 21– No.10, May 2011
[22] Q. Biao et al., "A commit Strategy for Distributed Real Time
transaction‖, J. computer. Sci. & Technol., Vol 18, No 5, pp.626-
631, Sept.2003
[23] QIN Biao, LIU Yun-sheng, "Distributed Real-Time
Transaction Commit Processing", 1000-9825/2002/13(08)1395-07
©2002 Journal of Software, Vol.13, No.8
[24] R .Gupta et al., Commit processing in distributed real time
database systems . In Proc. the 17th IEEE Real- Time Systems
Syrup., Oct. 1996, pp.220-22929.
[25] R .Gupta et al.(1997) ,More optimistic about real-time
distributed commit processing. In Proc. the 18th IEEE Real-Time
Systems Symp., Oct. 1997, pp.123-133.
[26] R .Gupta et al. , Revisiting Commit processing in distributed
database systems , ACM SIGMOD Record, 1997 - dl.acm.org
[27] R. Haritsa & k. Ramamrithamt, Adding PEP to Real-Time
Distributed Commit Processing , 0-7695-0900-2/00 $10.00 0 2000
IEEE
[28] R. Haritsa et al., The PROMPT Real-Time Commit Protocol ,
IEEE Transactions On Parallel And Distributed Systems, VOL. 11,
NO. 2, FEBRUARY 2000
[29] Rabin Kumar Singh et al., FIVE: A Real-Time Commit
Protocol , International Journal of Computer Applications (0975 –
8887) Volume 13– No.5, January 2011
[30] S. Agrawal et al., SPEEDITY-A Real Time Commit
Protocol , ©2010 International Journal of Computer Applications
(0975 – 8887) Volume 1 – No. 3

http://www.ijcttjournal.org/
https://scholar.google.com/citations?user=s3zqPMYAAAAJ&hl=en&oi=sra

International Journal of Computer Trends and Technology (IJCTT) – Volume 31 Number 2 - January 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 66

[31] Saud A. Aldarmi, Real-Time Database Systems: Concepts and
Design Department of Computer Science the University of York.
1998)

[32] Shetan Ram Choudhary et al, Performance Evaluation of Real
Time Database Systems in Distributed Environment , Int.J.
Computer Technology & Applications, Vol4 (5), 785-792.
ISSN:2229-6093- (Sept-Oct 2013),
[33] Shetan Ram Choudhary&, Dr. C.K. Jha, Performance
Transaction‘s Assessment Of Real Time Database System In
Distributed Environment , International Journal of Engineering
Trends and Technology (IJETT) – Volume 4 Issue 9- Sep 2013 - 33
[34] Shishir Kumar&Sonali Barvey, Non-Blocking Commit
Protocol , IJCSNS International Journal of Computer Science and
Network Security, VOL.9 No.8, August 2009. – 33
[35] Tanuja Shukla & Radha Krishna Rambola, Perfect Commit
Protocol for Distributed Database System: Analysis Review ,
International Journal of Advanced Research in Computer Science
and Software Engineering, Volume 5, Issue 11, November 2015,
ISSN: 2277 128X.- 34
[36] Teresa K. Abuya et al., A Clustering Algorithm in Two-Phase
Commit Protocol for Optimizing Distributed Transaction Failure ,
International Journal of Computer Science and Mobile Computing
IJCSMC, Vol.4 Issue.3, March- 2015, pg. 97-106, ISSN 2320–
088X. –
[37] Teresa K. Abuya et al, An Improved Failure Recovery
Algorithm In Two-Phase Commit Protocol For Transaction
Atomicity , Journal of Global Research in Computer Science
Journal of Global Research in Computer Science Research Paper,
volume 5, No. 12, December 2014
[38] Udai Shanker et al, ACTIVE-A Real Time Commit Protocol ,
Wireless Sensor Network, 2, 254-263 doi:10.4236/wsn.2010.23035
Published Online March 2010 (http://www.scirp.org/journal/wsn
2010
[39] Udai Shanker et al. SWIFT—A new real time commit
protocol , Distrib Parallel Databases (2006) 20:29–56 DOI
10.1007/s10619-006-8594-8
[40] Udai Shanker et al., Distributed real time database systems:
background and literature review , Distrib Parallel Databases
(2008) 23: 127–149 , DOI 10.1007/s10619-008-7024-5
[41] V. Manikandan et al., An Efficient Non-Blocking Two Phase
Commit Protocol for Distributed Transactions , International
Journal of Modern Engineering Research (IJMER) www.ijmer.com
Vol.2, Issue.3, May-June 2012 pp-788-791 ISSN: 2249-6645
[42] Xiai YAN1,et al , An Improved Two-phase Commit Protocol
Adapted to the Distributed Real-time Transactions , Hunan Police
Academy, China(1), Hunan University, China(2), (Electrical
Review), ISSN 0033-2097, R. 88 NR 5b/2012
[43] Yongik Yoon et al., Real- time Commit protocol For
Distributed Real-Time Database Systems , 0-8186-7614-0/9$65 .00
0 1996 IEEE
[44] Yousef J. AlHoumaily & Panos K. Chrysanthis, 12PC: The
One/Two Phase Atomic Commit Protocol , SAC‘04, March 1417,
2004, Nicosia, Cyprus. Copyright 2004 ACM 1581138121/ 03/04
...¥ 5.00
[45] Yousef J. Al-Houmaily et al., Enhancing the performance of
presumed commit protocol . In: Proceedings of the ACM
Symposium on Applied Computing, San Jose, CA, USA, 28
February–1 March 1997
[46] Yumnam Somananda et al., Management of missed
transactions in a distributed system through Simulation , 978-1-
4244-5540-9/10/$26.00 ©2010 IEEE

http://www.ijcttjournal.org/
http://www.scirp.org/journal/wsn

