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The growing complexity and dependability requirements of hardware, software and networks de-
mand efficient techniques for discovering disruptive behavior in those systems. Comparison-based
diagnosis is a realistic approach to detect faulty units based on the outputs of tasks executed by
system units. This survey integrates the vast amount of research efforts that have been produced
in this field, from the earliest theoretical models to new promising applications. Key results also
include the quantitative evaluation of a relevant reliability metric – the diagnosability – of several
popular interconnection network topologies. Relevant diagnosis algorithms are also described. The
survey aims at clarifying and uncovering the potential of this technology, which can be applied to
improve the dependability of diverse complex computer systems.
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1. INTRODUCTION

Consider a large computer system composed of several units. This can be any
system: a multicomputer combining several processors on a single chip, a network
or a system running on that network, a large software system. It is highly likely that
units of those systems will eventually misbehave, producing results not expected
from the unit’s specification. This may occur for a number of reasons, including
typical hardware and software faults as well as malicious interference. If those faults
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cause the system to fail as a whole, users can be severely affected. Comparison-
based diagnosis is a realistic approach to detect disruptive behavior in such systems.
This diagnosis paradigm is a solid long-standing theory that has found several
diverse applications across the years.

Comparison-based diagnosis relies on comparisons of task outcomes produced
by system units. The set of all comparison results is called the system syndrome,
or comparison syndrome. The first models were proposed by Malek [1980], and by
Chwa and Hakimi [1981b]. These models assume the existence of a central observer
which collects information about comparisons and then performs the diagnosis of
the system based on comparison results, thus determining which units are faulty.
Another model, proposed by Maeng and Malek [1981] – the MM model – assumes
that comparisons are executed by the units themselves, and only comparison results
are sent to the central observer, which then completes the diagnosis of the system.
Maeng and Malek also present a special case of the MM model, called MM*, in
which a node executes comparisons for all its connected neighbors.

Sengupta and Dahbura in [1992] generalize the MM model by allowing compara-
tors to be one of the units being compared. They also give a characterization of
diagnosable systems under the MM model. Probabilistic comparison-based models
were first introduced by Dahbura, Sabnani and King [1987], and this method was
applied to multiprocessor diagnosis. Probabilistic models assume a fault proba-
bility, i.e. the probability that a unit produces an incorrect output. Blough and
Brown in [1999] presented the Broadcast Comparison model, a fully distributed
comparison-based system-level diagnosis model based on reliable broadcast. In this
model a task is assigned to a pair of different nodes, which execute the task and
broadcast their outputs to all nodes. All fault-free nodes execute all comparisons
and diagnose the system. Other comparison-based models that are fully distributed
but do not employ a reliable broadcast primitive were presented in [Albini and
Duarte Jr. 2001; Ziwich et al. 2005], in which fault-free nodes test and classify the
system nodes in sets.

Diagnosis algorithms are employed to determine which units are faulty given the
comparison syndrome. Relevant diagnosis algorithms are described in the survey.
Sengupta and Dahbura proposed an O(N5) diagnosis algorithm under the MM*
model to identify faults, where N is the number of system units. Recently, an
O(N ×∆3× δ) diagnosis algorithm – where ∆ and δ are respectively the maximum
and the minimum degrees of a node – was proposed by Yang and Tang in [2007].

Besides the diagnosis itself, another important related problem is the diagnos-
ability, i.e. determining the largest number t of faulty units that do not make it
impossible to diagnose the system. This is a relevant quantitative measure of the
reliability of a given system. Key contributions described in this paper include
carefully proven results on the diagnosability of several popular interconnection
network topologies under comparison-based models. We describe the results for
hypercubes and enhanced hypercubes [Wang 1999], butterflies [Araki and Shibata
2002a], crossed cubes [Fan 2002], locally twisted cubes and hypercube-like net-
works [Yang and Yang 2007; Chiang and Tan 2007], star graphs [Zheng et al. 2002],
matching composition networks [Lai et al. 2004], t-connected and product networks
[Chang et al. 2004]. Recently the strong diagnosability of several topologies was
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presented by [Sheu et al. 2008; Hsieh and Chen 2008a; 2008b].
This survey aims at integrating and clarifying the vast amount of research ef-

forts that have been produced in this field. Traditional applications [Yang and
Tang 2007] include the detection of faults in multicomputers, such as multiproces-
sor interconnection networks. Potential emerging areas of application include the
many-core computers that are due in the near future will combine hundreds of mi-
croprocessor cores on a single chip and need to be tested and diagnosed efficiently.
Comparison-based approaches have already been shown to be well-suited to mul-
ticomputer systems [Wang et al. 1994a] and have also been applied to diagnosing
defects in chips at the wafer-scale integration level [Rangarajan et al. 1990; Fussell
et al. 1989]. These prior successes make the approach a strong candidate for use in
many-core systems.
Other new promising applications have appeared recently. The new applications

include identifying faults in mobile ad hoc networks [Elhadef et al. 2007; Chessa
and Santi 2001], checking the integrity of distributed replicated data [Ziwich et al.
2005] and checking the manipulation of job results by malicious nodes in grid com-
puting platforms [Martins et al. 2006b]. The objective of the survey is to uncover
the potential of this technology, hopefully leading to novel applications in diverse
complex computer systems.
The rest of the paper is organized as follows. Section 2 introduces system-level

diagnosis. Section 3 presents the first comparison-based diagnosis models. The
MM and the MM* models, their characterization and algorithms are presented in
Section 4. Section 5 presents the diagnosis and diagnosability of hypercubes and
enhanced hypercubes. The next six sessions describe results for butterflies, crossed
cubes, locally twisted cubes and hypercube-like networks, star graphs, matching
composition networks, and t-connected and product networks. Section 12 presents
recent strong diagnosability results for several topologies. Section 13 describes the
Broadcast Comparison model. Section 14 introduces the generalized distributed
comparison-based models. Sections 15 and 16 describe probabilistic and evolution-
ary comparison-based approaches, respectively. Section 17 describes the application
of comparison-based diagnosis to mobile ad hoc networks. Section 18 summarizes
relevant results and is followed by concluding remarks.

2. SYSTEM-LEVEL DIAGNOSIS

As faults are inevitable in every computer system, it is important to be able to de-
termine which units of the system are working and which are faulty. The first model
proposed for automatic system-level diagnosis was the PMC model [Preparata et al.
1967], named after the author’s initials: Preparata, Metze and Chien.
The PMC model assumes a system S that consists of a set of N independent

units, u0, u1, . . . , uN−1. Alternatively unit ui is also referred to as unit i or node
i, or even processor i. Each unit ui is assumed to be in one of two states, faulty or
fault-free.
Diagnosis is based on the ability of units to test the status of other units [Masson

et al. 1996; Jalote 1994]. A unit is tested as a whole, it is not possible to test part
of a unit, and the state of a unit does not change during diagnosis. In the PMC
model a test involves the controlled application of stimuli and the observation of

ACM Computing Surveys, Vol. 43, No. 3, Apr. 2011.



4 · E.P. Duarte Jr, R.P. Ziwich, L.C.P. Albini

the corresponding responses from the tested unit. Preparata et. al. define a test
as a “diagnostic program” tailored for each system.
The PMC model assumes that a fault-free unit executes tests and reports test

results reliably, i.e. a fault-free tester can always correctly determine whether the
tested unit is faulty or fault-free. More precisely, on the basis of the responses to
the stimuli, the outcome of the test is classified as pass or fail, nevertheless the
authors highlight that more detailed information about the failure may be retained
for further investigation.
While fault-free units are assumed to be able to execute tests correctly, no as-

sumptions are made about tests executed by faulty units, i.e. they may produce
incorrect test outcomes [Preparata et al. 1967; Hakimi and Amin 1974]. The set of
tests is called the connection assignment, and the set of all test outcomes is called
the syndrome of the system. The syndrome is processed by an external entity,
which diagnoses the system, i.e. determines the state of all system units.
The model employs a directed graph in order to represent the connection assign-

ment. The vertices of this graph are the system units, and there is an edge directed
from unit i to unit j if unit i tests unit j. Each edge is labeled by the test outcome,
ai,j = {0, 1}. If unit i tests unit j as faulty, then ai,j = 1, on the other hand if unit
i tests unit j as fault-free, then ai,j = 0. These results hold only if the tester is
fault-free, otherwise the test outcomes are unreliable.
Depending on the number of faulty units and on the testing assignment, it is

impossible to correctly diagnose the system. A system is defined as one-step
t-diagnosable if all faulty units within the system can be identified when the number
of faulty units is not greater than t. Furthermore, a system is defined as sequen-
tially t-diagnosable if at least one faulty unit can be identified and be repaired or
replaced, so that the testing can be continued using the repaired unit to eventually
diagnose all faulty units in the system.
In t-diagnosable systems the problem of determining the maximum value for t

is called the diagnosability problem. Preparata, Metze and Chien gave necessary
conditions for t-diagnosability of their model [Preparata et al. 1967]. Later Hakimi
and Amin [1974] characterized the PMC model, and proved that if no two units
test each other, each unit is tested by at least t others, and N ≥ 2t+ 1, these are
not only necessary but also sufficient conditions for a system to be t-diagnosable.
Another early model for system-level diagnosis is the BGM model, also named

after its authors’ initials: Barsi, Grandoni and Maestrini [1976]. This model is
similar to the PMC model, employs the same testing graph, but assumes different
test outcomes. Its basic assumptions are: each test is executed by a single unit;
each unit has the capability of testing any other unit; no unit tests itself; and,
for any pair of units ui, uj , unit ui performs at most one test on unit uj. The
diagnostic model is defined as follows:

—if ui is fault-free, the test outcome is 0 if uj is fault-free; the test
outcome is 1 if uj is faulty;

—if ui is faulty and uj is fault-free, both test outcomes are possible;
and

—if ui and uj are faulty, the test outcome is necessarily 1.

In this model if the test outcome ai,j = 0, i.e. unit i tests unit j as fault-free,
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then it is possible to conclude that uj is not faulty; while if ai,j = 1, then, it is not
possible that both ui and uj are fault-free. No other possibilities can be excluded
given the results of the test executed by unit i on unit j. The BGM model also
gives the necessary and sufficient conditions for t-diagnosability both for one-step
diagnosis and sequential diagnosis. If each unit is tested by at least t other units,
and N ≥ t + 2, they show that the one-step diagnosability is at most N − 2. In
sequential diagnosis also, called diagnosis with repair, if a faulty unit is found, it
is repaired and the process is then sequentially repeated until all faulty units are
diagnosed and repaired; the sequential diagnosability of arbitrary topology networks
has been shown to be co-NP-Complete [Raghavan and Tripathi 1991]. Later [Albini
et al. 2004] the diagnosability of symmetric graphs under the BGM model was also
determined.

An important result in system-level diagnosis was the introduction of adaptive
diagnosis [Nakajima 1981; Hakimi and Nakajima 1984]. Previous models consisted
of initially choosing the set of tests to be executed, then executing those tests, and
finally evaluating the test results in order to identify all faulty units. In adaptive
diagnosis, the set of tests to be executed is dynamically determined, based on the
results of previous tests. The first adaptive diagnosis model was introduced by
Nakajima [1981]. Assuming a system S of N units with no more than t faulty
units, the proposed model adaptively chooses and executes tests, repeating the
process until a fault-free unit is identified. Then this unit is employed as a tester
from which all faulty units are identified. It is proved that (N − 1) + t(t+ 1) tests
are sufficient to identify all faulty units in such a system.

In adaptive diagnosis and all other previous models, test results are collected
and processed by an external entity, which determines the state of all system units.
In distributed system-level diagnosis, proposed by Kuhl and Reddy [1980; 1981;
Kuhl 1980], the fault-free nodes of the system themselves diagnose the state of all
nodes. These nodes execute tests and exchange test results with each other. They
proposed the SELF distributed system-level diagnosis algorithm that, although fully
distributed, is non-adaptive, i.e. each unit has a fixed testing assignment. Later
Hosseini, Kuhl and Reddy [1984] extended the SELF algorithm, introducing the
NEW-SELF algorithm, which allows all fault-free nodes to independently diagnose
the state of all nodes, provided the total number of failures does not exceed a
given bound t. The EVENT-SELF algorithm was then proposed by Bianchini et
al. [1990], which uses event-driven techniques to reduce the amount of network
resources required for diagnosis.

The Adaptive Distributed System-level Diagnosis algorithm, Adaptive-DSD, was
proposed by Bianchini and Buskens [1991; 1992]. Adaptive-DSD is, at the same
time, distributed and adaptive. Adaptive-DSD is executed at each node of the
system at predefined testing intervals. Each node is tested only once per testing
interval. A testing round is defined as the period of time in which all nodes of the
system have executed their assigned tests at least once. All fault-free nodes achieve
consistent diagnosis in at most N testing rounds. Up to N − 1 nodes may be faulty
so that fault-free nodes are still able to diagnose the system.

Each time the algorithm is executed on a fault-free node, it performs tests on
other nodes until another fault-free node is found, or the tester runs out of nodes
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to test. The testing graph is thus a ring connecting fault-free nodes. When the
tester executes a successful test, i.e. the tested node is fault-free, the tester ob-
tains diagnostic information from the tested node. Let the diagnosis latency be
the number of testing rounds required by all fault-free nodes to complete the diag-
nosis of the system. Adaptive-DSD has a worst-case latency of N testing rounds.
Adaptive-DSD was implemented and practical results were presented showing the
effectiveness of the algorithm when used to monitor a real Ethernet network.
Hierarchical diagnosis was proposed in order to reduce the latency of adaptive

distributed diagnosis [Duarte Jr. and Nanya 1995; 1998; Duarte Jr. et al. 2000].
In hierarchical diagnosis, nodes are grouped in progressively larger virtual clusters
so when a fault-free node is tested, the tester obtains information about all nodes
in that cluster. The Hierarchical Adaptive Distributed System-level Diagnosis (Hi-
ADSD) algorithm [Duarte Jr. and Nanya 1998] has a diagnosis latency of at most
log22N testing rounds for a system of N nodes. Another hierarchical diagnosis
algorithm, Hi-ADSD with Timestamps [Duarte Jr. et al. 2000], employs clusters
with size N/2 resulting in an average latency shown to be lower than Hi-ADSD’s.
Although several models and algorithms for system-level diagnosis assume a sub-

jacent fully-connected network, some have been proposed for general topology net-
works including [Bagchi and Hakimi 1991; Stahl et al. 1992; Rangarajan et al. 1995;
Duarte Jr. and Weber 2003]. Subbiah and Blough [2004] define a theoretical frame-
work called bounded correctness in which it is possible to prove the correctness of
distributed diagnosis in the presence of dynamic faults and repairs. They present
both an algorithm for fully connected systems and another for general topology
networks and prove their bounded correctness.

3. COMPARISON-BASED DIAGNOSIS: THE FIRST MODELS

The first comparison-based diagnosis model was proposed by Malek [1980]. This
model assumes that, in a system with N units, it is possible to compare outputs
produced by task executions from some or every pair of units. The unit that per-
forms comparisons is called a comparator. A comparison that results in a mismatch
indicates that one or both units are faulty. Note that it is possible that both units
being compared are faulty, and in this case the comparison must indicate a mis-
match. Thus this model assumes that:

(1) Outputs produced by two fault-free units that execute the same task
are always identical;

(2) The output produced by a faulty unit must be different from the
outputs produced by any other unit (faulty or fault-free) for the
same task.

This model consists of two activities: fault detection and fault location. The
objective of fault detection is only to determine the presence of faulty units in the
system, but it is not possible to determine which units are faulty. Fault location
allows the identification of faulty units. The fault model assumed can be best
described as the incorrect computation fault [Barborak et al. 1993; Laranjeira et al.
1991]. This type of fault occurs when a unit does not produce the correct result in
response to the correct inputs.
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A system with N units is modeled as a graph G = (V,E) that is a connected
graph, i.e. there is a path between any pair of vertices and there may be one or
more edges between any given pair of vertices. In this graph, V is a set of N vertices
and E is a set of edges. Each vertex of set V corresponds to a processor or a system
unit. Each edge in E represents the communication connection or link between a
pair of units.
This model assumes that the tasks are executed by pairs of different units. It

also assumes that a central observer exists which collects and maintains information
about the task outputs. This central observer also performs the diagnosis of the
system based on comparison results, determining which are the system’s faulty
units. The central observer is a trustful reliable unit that never fails. When the
outputs of two units are compared, the possible outcomes are shown in Table I.
The set of possible comparison outcomes is also called the invalidation rule. The
outcome pass indicate that both units are fault-free, while fail indicates that at
least one of the units are faulty. In this case, more comparisons are necessary to
identify the faulty unit.

Unit 1 Unit 2 Comparison Outcome

fault-free fault-free 0 (pass)
fault-free faulty 1 (fail)
faulty fault-free 1 (fail)
faulty faulty 1 (fail)

Table I. Possible comparison outcomes of Malek’s model.

It is proved that, in a system with N units in which comparisons of every pair of
units is possible, the maximum number of faulty units isN−2 for the diagnosis to be
correct, i.e. the diagnosability is N − 2. As an example, Figure 1 shows a complete
graph G with four vertices and six edges. Considering unit 1 as faulty, Table II
shows the comparison outcomes of every possible comparison in this system.

1

34

2

Fig. 1. A graph example representing a system with four units; unit 1 is faulty.

Chwa and Hakimi in [1981b] proposed another comparison-based diagnosis model,
similar to Malek’s model. In this model the system consisting of N units is also rep-
resented by graph G = (V,E). The same task is also sent to the units in pairs. The
units’ states – fault-free or faulty – are determined by the task output comparisons.
If the comparison results in a mismatch, it indicates the presence of at least one
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Unit Id Unit Id Comparison Outcome

1 2 1 (fail)
2 3 0 (pass)
3 4 0 (pass)
1 3 1 (fail)
1 4 1 (fail)
2 4 0 (pass)

Table II. All comparison outcomes for a system with 4 units when unit 1 is faulty.

faulty unit, as shown in Table III. This model also assumes a central observer which
performs the complete diagnosis of the system based on the comparison outcomes.
The difference between this model and the previous one is that when two faulty

units receive the same task to execute, they may produce the same outputs, i.e.
the comparisons of these two tasks outputs may result in a match.

Unit 1 Unit 2 Comparison Outcome

fault-free fault-free 0 (pass)
fault-free faulty 1 (fail)
faulty fault-free 1 (fail)
faulty faulty 0 or 1

Table III. Possible comparison outcomes of Chwa and Hakimi’s model.

In [Barborak et al. 1993] Barborak, Malek and Dahbura survey the first com-
parison-based diagnosis models. This is a key paper in which diagnosis is treated
in a unifying framework together with other distributed problems and algorithms,
including consensus and the Byzantine Generals problem. Among the contribu-
tions of [Barborak et al. 1993], a detailed fault classification is given, including
the specification of the incorrect computation fault model, which best defines the
faults that can be handled by comparison-based diagnosis. This is relevant because
several early diagnosis papers only implicitly present the assumed fault model, by
specifying how faults are detected. The survey also argues that if the frequency
in which two units become faulty is low, then there is a low probability that they
will be faulty at the same time. Thus two units executing the same tasks should
produce identical results unless one, or both, have become faulty.

3.1 Early Models: Extensions and Evaluations

Ammann and Dal Cin in [1981] also investigated the diagnosability of comparison-
based diagnosis, showing that a necessary condition for a system to be t-diagnosable
is that each node in the testing graph has degree at least t; a minimum degree
strictly greater than t is a sufficient condition. The degree – or order – of a node
is the number of edges incident on this node. Later Ammann and Dal Cin also
presented an algorithm for sequential diagnosis of a subset of t-diagnosable systems.
The complexity of the proposed algorithm is O(N2). They also introduced a parallel
algorithm for the diagnosis when the topology is a tree [Dal Cin 1982; Ammann
and Dal Cin 1981].
Yang and Masson in [1987] present a comparison model considering multipro-

cessor fault diagnosis applied for t1/t1-diagnosable systems. The system is said to
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be t/s-diagnosable if, in the presence of at most t faults, all the faulty units can
be identified by replacing at most s units [Friedman 1975]. The t1/t1-diagnosable
systems is a special case of t/s-diagnosable systems when s = t1 [Chwa and Hakimi
1981a]. In a t1/t1-diagnosable system all faulty units, except one or none, can be
correctly identified, i.e. at most one fault-free unit can be incorrectly diagnosed as
faulty. As in Chwa and Hakimi’s model, the model by Yang and Masson assumes
that the comparison of two faulty units may result in a match. They also present
an O(|C|) algorithm under the t1/t1-diagnosis comparison model.
Xu and Huang [1990] characterized the t/(N − 1)-diagnosability of several types

of structures under Chwa and Hakimi’s model. A system with N units is t/(N−1)-
diagnosable if at most t units are faulty and the faulty units are in a set of size
(N −1), i.e. at least one unit exists such that it can be unambiguously identified as
fault-free. They present a synthesis of optimal t/(N−1)-diagnosable configurations
for several topologies, such as chains and loops. In particular it was shown that for
N = 2t + 1, chains are t/(N − 1)-diagnosable if N ≤ 9 and loops are diagnosable
for N ≤ 13. Later Xu and Randell [1997] applied t/(N − 1) diagnosis to the
software design process. They proposed t/(N − 1)-Variant Programming scheme
which diagnoses faults in a redundant software framework.
Kozlowski and Krawczyk [1991] extend Chwa and Hakimi’s diagnosis model for

hybrid fault situations. A hybrid fault situation is defined to be t/m-restricted if the
number of faulty units does not exceed t and the number of misleading comparison
outcomes is less thanm. A misleading comparison outcome occurs when a fault-free
unit evaluates a faulty unit as fault-free. Kozlowski and Krawczyk also present an
O(N |C|) algorithm for comparison-based diagnosis under a hybrid fault situation.
Fuhrman and Nussbaumer in [1996a; 1996b] present the Bounded Symmetric

Comparison (BSC) model for comparison-based system-level diagnosis. This model
is based on Chwa and Hakimi’s model [1981b] but includes a limit on the number
of nodes that can produce identical faulty results. In the BSC model f1 represents
the maximum number of nodes that can be faulty, and f2 is the upper bound on the
number of faulty nodes that can produce identical faulty results. Furthermore, f2 ≤
f1. The authors prove necessary and sufficient conditions for one-step diagnosability
of a system under the BSC model. They show that a system is one-step diagnosable
if and only if for every two distinct sets F1, F2 where F1 ⊂ V, F2 ⊂ V and |F1| ≤
f1, |F2| ≤ f1 one of the following conditions is satisfied:

—There is an edge between a node in V − (F1 ∪ F2) and a node in
(F1 ∪ F2)− (F1 ∩ F2).

—One component of the graph corresponding to either F1 − (F1 ∩ F2)
or F2 − (F1 ∩ F2).

In [Sallay et al. 1999] faults affecting the comparator and the central observer
are considered. In order to try to diagnose the comparators, the authors propose
a strategy to exhaustively run comparisons of fault-free units and comparators.
These tests are performed with different input tasks and it is assumed that a faulty
unit always produces the same response for the same input task. The authors apply
their proposed approach to wafer-scale circuits, presenting a simple cost-effective
wafer design solution.
Kreutzer and Hakimi [Kreutzer and Hakimi 1983; Lombardi 1986] present two
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comparison-based models – called KH1 and KH2 – that consider faults of compara-
tor units apart from faults of other tested units. In the first model the comparison
of task outcomes produced by two faulty units may match, and in the second model
if the task outcomes comparison match, both units are considered fault-free. Pelc
[Pelc 1992] argues that these models are in fact equivalent to those of Chwa and
Hakimi and Malek. Kreutzer and Hakimi also present the characterization for a
system to be (t− tc)-diagnosable under these models, where a (t− tc)-diagnosable
is a system with at most t faulty units and at most tc faulty comparators. They
show that a system S is (t − tc)-diagnosable if and only if S is t-diagnosable and
tc < |Γ(i)|/2, where Γ(i) ≤ Γ(j) | ∀j ∈ V and Γ(i) = {j | i and j are compared}.
Pelc in [1992] performed an algorithmic analysis of both Malek’s and Chwa and

Hakimi’s comparison models, which he calls asymmetric and symmetric models
respectively. In the analysis he presents the worst case number of tests for optimal
algorithms for t-diagnosis, sequential t-diagnosis and one-step t-diagnosis for both
models. He also considers non-adaptive and adaptive testing and shows that using
adaptive testing the number of tests is often smaller.
The minimum number of tests for completing t-diagnosis, t ≤ N , under Malek’s

model is ⌈N/2⌉. In case of sequential t-diagnosis (identifies at least one faulty unit),
where t ≤ N − 2, the minimum number of tests required is MAX(⌊N/2⌋ ∗ t) + 1
when an adaptive testing strategy is employed and N−⌊N/(t+2)⌋ for non-adaptive
diagnosis. In case of adaptive one-step t-diagnosis (identifies all faulty units in one
step), when t ≤ N − 2 the minimum number of tests is θ(N2/(N − t)) and when
N ≥ 2t+1 the number of tests is ⌊N/2⌋+3.5⌈t/2⌉+3. For non-adaptive one-step
t-diagnosis, t ≤ N − 2 the minimum number of tests is θ(Nt).
The minimum number of tests for completing t-diagnosis, where t ≤ N − 1 for

Chwa and Hakimi’s model is N − ⌊N/(t + 1)⌋. In case of sequential t-diagnosis,
where t < N/2 the minimum number of tests required is N −⌈N/(t+1)⌉+1 when
an adaptive testing strategy is employed and N − ⌊N/(2t + 1)⌋ for non-adaptive
diagnosis. In case of one-step adaptive t-diagnosis, when t < N/2 the minimum
number of tests is θ(N) [Kreutzer and Hakimi 1983]. For non-adaptive one-step
t-diagnosis, if t < N/2 the minimum number of tests is θ(Nt).

4. MM AND MM* COMPARISON-BASED DIAGNOSIS MODELS

The MM model was proposed by Maeng and Malek [1981] for systems composed
of multi-processor systems consisting of homogeneous processors. The system is
represented as a graph G = (V,E), where V is the set of units and E is the set
of communication links. Figure 2 shows an example graph for a system with four
units. In the MM Model, the states of the units are determined by comparing the
task output of one unit with the output generated by another unit for the same
task. The main difference of the MM model to the previous models [Malek 1980;
Chwa and Hakimi 1981b] is that it allows the comparisons to be performed by the
units themselves, i.e. units are also comparators. A unit k is a comparator of units
i and j only if (k, i) ∈ E and (k, j) ∈ E; furthermore k 6= i and k 6= j. Comparison
results are still sent to a central observer that achieves the complete diagnosis.
A diagnosable system under the MM model is represented by a multi-graph

M = (V,C) defined over the same set of units of graph G. Each edge (i, j)k ∈ C
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2

3

1

4

Fig. 2. An example graph representing a system with 4 units.

represents the outputs from units i and j compared by another unit k. M is a
multi-graph because the outputs from each pair of units may be compared by more
than one unit of the system, i.e. more than one edge may exist between the same
pair of vertices. Figure 3 shows a multi-graph M defined over the graph in Figure
2. As an example, in this multigraph the comparison (3, 4)1 is performed, i.e. the
outputs of units 3 and 4 are being compared by unit 1. Furthermore, the two edges
between units 1 and 2 show that these units are compared by two other units: unit
3 and unit 4.
The notation r((i, j)k) is used to represent the comparison result of units i and

j by unit k. The result is 0 when the comparison matches and the result is 1 when
the comparison indicates a mismatch. If r((i, j)k) = 1, at least one of the units i,
j or k is faulty. If the result is 0 and the tester k is fault-free, then i and j are also
fault-free. But if the tester k is faulty, the comparison outcomes are not reliable
and it is not possible to obtain any conclusion about the state of units i and j.

2

3

1

4

2

3

1

4

1

4

3 2

1

23

4

Fig. 3. A multi-graph M for a system with 4 units.

The main assumptions of the MM model are:

—Every fault is permanent, i.e. units cannot recover from faults;
—A comparison performed by any faulty unit is unreliable;
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—Two faulty units executing the same task always generate different
outputs;

—Each faulty unit generates incorrect outputs for every input task, i.e.
the comparison of the task outputs by a faulty unit and any other
unit (faulty or fault-free) always results in a mismatch;

—An upper bound t exists, that is the maximum number of units in the
system that may be faulty so the diagnosis can be achieved.

Consider (i, j)k, if unit k is fault-free, a mismatch of the comparison indicates
that at least one unit is faulty and r((i, j)k) = 1. If the comparison matches, both
units are fault-free and r((i, j)k) = 0. If unit k is faulty the comparison outcome
is unreliable. The set of all comparison results is also called the syndrome of the
system, which is represented by σ. All possible comparison outcomes are shown in
Table IV.

Comparator Unit 1 Unit 2 Comparison Outcome

fault-free fault-free fault-free 0 (pass)
fault-free fault-free faulty 1 (fail)
fault-free faulty fault-free 1 (fail)
fault-free faulty faulty 1 (fail)
faulty fault-free fault-free 0 or 1
faulty fault-free faulty 0 or 1
faulty faulty fault-free 0 or 1
faulty faulty faulty 0 or 1

Table IV. Possible comparison outcomes for the MM model.

Figure 4 shows an example set of comparison outcomes for multi-graph M of
Figure 3. Each edge has two labels, one represents the unit that compares the task
outputs from the units connected by each edge, the other represents the result of
each comparison and it is shown within a circle. As an example, units 3 and 4 are
being compared by unit 1 and the comparison output indicates a match.

2

3

1

4

1

23

4
2
1

4
1

1

4 1

1
1

3 1

10

0

3
0

1 0

2 0

Fig. 4. Multi-graph M showing comparison outcomes for the example system.
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Besides presenting the comparison-based diagnosis model, it is shown in [Maeng
and Malek 1981] that in order to correctly diagnose a system with one faulty node
(t = 1) the total number of units in the system (N) must be greater than 3. For
t ≥ 2, N must be greater than or equal to 2t + 1. The necessary and sufficient
conditions for one-step t-diagnosability under this model are: (1) the degree of
every node must be at least t; (2) for every pair of nodes i, j whose distance is 1 or
2 at least t nodes of a set called Wi,j must be removed in order to disconnect any
such pair of nodes and their neighbors from the rest of the graph, furthermore (3)
there is no W ∗

i,j if Wi,j has exactly t nodes. W ∗

i,j is defined as a Wi,j that has at
least a pair of vertices r, s for which Wi,r = (Wi,j − r)∪ j and Wj,s = (Wi,j − s)∪ i.
Maeng andMalek in [1981] also give the procedure below to construct the minimal

graph for diagnosing system St,N , with t ≥ 4 and N = 2t+ 1. For t = 1 or 2, the
minimal graph is the complete graph. For t = 3 the authors show that number of
edges must be at least 14.

(1) If t is even, then let t = 2r. S2r,N has edges connecting vertices
i, j such that i − r ≤ j ≤ i + r, modulo N . Nodes have sequential
identifiers starting from zero.

(2) If t is odd and N is even, then let t = 2r+1. S2r+1,N has and edge
connecting vertex i to vertex i+ (N/2) in S2r,N , 1 ≤ i ≤ N/2.

(3) If t is odd and N is odd, then let t = 2r + 1. S2r+1,N has all
edges in S2r,N plus edges from vertex 0 to vertex (N − 1)/2 and
to vertex (N + 1)/2 and from vertex i to vertex i + (N + 1)/2 for
1 ≤ i < (N − 1)/2.

Figure 5 shows S4,9.

1

2

0

3

45

6

7

8

Fig. 5. The minimal graph S4,9.

A discussion on the diagnosis latency under the MM model is also given. First it
is assumed that each comparator can execute only one comparison per time unit. A
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test cycle is defined as one application of the maximum number of comparisons to
a system, which consist of ⌊N/3⌋ simultaneous comparisons, as each unit is either
a comparator or is compared. It is shown that the lower bound for the minimum
number of test cycles is ⌈⌈Nt/2⌉/⌊N/3⌋⌉, where ⌈Nt/2⌉ is the minimal number of
comparisons when each vertex has degree t.
The MM* model is a special case of the MM model [Maeng and Malek 1981;

Sengupta and Dahbura 1992], the only difference is that each unit compares every
pair of neighbor units with which they are connected. For example, Figure 6 shows
a system where the tester, unit 2, under the MM* model, performs all the following
comparisons (1, 3)2, (1, 5)2 and (3, 5)2. The comparison outcomes are then sent to
the central observer that will complete the diagnosis.

23

1

4 5

Fig. 6. An example system with 5 units.

Sengupta and Dahbura in [1992] generalize the MM model by allowing compara-
tors to be one of the units being compared. They also give a characterization of
diagnosable systems under the MM model. It is worth pointing out that when the
comparator always compares itself with another unit, the comparison assignment
is equivalent to the test assignment of the PMC model when the tester performs a
test on the other unit. In this sense this model generalizes the PMC model.
Furthermore, they present a polynomial time algorithm to identify the faulty

processors in a general system in which each processor carries out comparisons
for every pair of neighbors. Most important, they show that the diagnosability of
general systems under this model is NP-complete.

4.1 t-Diagnosability

Sengupta and Dahbura solve the problem of whether a given system is t-diagnosable
for some integer t under the MM model. Let S1 and S2 be sets of units. A pair
(S1, S2) such that S1, S2 ⊂ V and |S1|, |S2| ≤ t is defined as either distinguishable
or indistinguishable as follows. Let σ(F ) be the set of syndromes which could be
produced if F is the set of faulty nodes. The pair of sets S1, S2 | S1 6= S2 is said to
be indistinguishable if and only if σ(S1)∩σ(S2) 6= ∅; otherwise it is distinguishable.
To prove that a pair (S1, S2) is distinguishable, at least one of the following three

conditions must be satisfied:

(1) ∃i, k ∈ V −S1−S2 and ∃j ∈ (S1−S2)∪(S2−S1) such that (i, j)k ∈ C
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(2) ∃i, k ∈ S1 − S2 and ∃k ∈ (V − S1 − S2) such that (i, j)k ∈ C

(3) ∃i, k ∈ S2 − S1 and ∃k ∈ (V − S2 − S1) such that (i, j)k ∈ C

Sengupta and Dahbura prove that a system S with N nodes is t-diagnosable if
and only if for each pair of sets S1, S2 ∈ V | S1 6= S2 and |S1|, |S2| ≤ t, (S1, S2)
is a distinguishable pair. In other words, considering set σ(S1) which is the set of
syndromes that can be produced if S1 is the set of faulty nodes and considering the
analogously defined set σ(S2), σ(S1) ∩ σ(S2) = ∅.
They also prove that for a system with N nodes to be t-diagnosable, N ≥ 2t+1

and each node has degree at least t, i.e. the output of each node must be compared
to at least t outputs from other nodes. Furthermore, for each set X ⊂ V such that
|X | = N − 2t+ p and 0 ≤ p ≤ t− 1, they prove that |T (X)| ≥ p, where T (X) = {j
| (i, j)k ∈ C and i, k ∈ X} − X . In other words: the number of nodes in subset
V −X that is compared to some node in X and by some node is X is at most t− 1.

4.2 A Polynomial Time Comparison-Based Diagnosis Algorithm

Sengupta and Dahbura propose a polynomial time algorithm, with complexity
O(N5), for comparison-based diagnosis under the MM* model. Given a system
represented by graph G = (V,E) whenever (i, j), (i, k) ∈ E node i compares the
results of nodes j and k.
The algorithm adaptively determines the comparisons to be executed on the basis

of comparison results. A node i running this algorithm starts comparing two nodes
j, k | (i, j), (i, k) ∈ E, i.e. node i performs the comparison (j, k)i. If the comparison
outcome r((j, k)i) = 1 (mismatch), then node i chooses another different pair of
nodes to compare, if there is such a pair. If the comparison outcome r((j, k)i) = 0
(match), then node i uses node j in order to compare all its neighbors, i.e. all
comparisons (j, p)i | (p, i) ∈ E.
The diagnosis algorithm by Sengupta and Dahbura – called DIAGNOSIS – is

shown in Figure 7. The algorithm receives as input the set of all comparison
outcomes, the system’s syndrome (σ). Some definitions are required to understand
the algorithm and are given below.
Given graph G′ = (V ′, E′), K ⊆ V ′ is a vertex cover set of G′ if every edge

in E′ is incident to at least one vertex in K. This concept can be extended to
hypergraphs [Berge 1973], employing hyperedges instead of edges. A vertex cover
set of minimum cardinality is called a minimum vertex cover set.
A subset M ⊆ E′ is called a matching if no vertex in V ′ is incident to more than

one edge in M , without any self-loop. A matching of maximum cardinality is called
a maximum matching.
A set X ⊂ V is called an Allowable Fault Set (AFS) of system S for syndrome

σ, if for any three nodes i, j, k such that (i, j)k ∈ C:

—if k ∈ V −X and i, j ∈ V −X then r((i, j)k) = 0
—if k ∈ V −X and {i, j} ∩X 6= ∅ then r((i, j)k) = 1

For syndrome σ, an AFS of minimum cardinality is called a Minimum AFS of σ
– MAFS(σ), and N(i) = {j | (i, j) ∈ E} is the set of neighbors nodes of i.
In the initialization phase, the set of Faulty nodes (F ) is set to empty, and S(σ) is

computed. S(σ) is the set of comparators that returned mismatches for all executed
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Algorithm DIAGNOSIS

/* Initialization Phase */
F ← ∅;
compute S(σ);

for each node ∈ S(σ) such that |N(i)| = t+ 1 do

/* First Step */
for each k ∈ N(i) do

if N(i) − {k} is an AFS (Allowable Fault Set) then

F ← N(i) − k;
stop the algorithm;

end if

end for

end for

for each node ∈ S(σ) such that |N(i)| = t do
/* Second Step */
for each k ∈ N(i) do

if N(i) is an AFS then

F ← N(i);
stop the algorithm;

end if

end for

/* Third Step */
compute H(s);
for each k ∈ N(i) do

for each h ∈ H(σ) do

if N(i) − k + h is a vertex cover of hypergraph Z = (V,H(σ)) then

F ← N(i) − k + h;
stop the algorithm;

end if

end for

end for

end for

/* Fourth (and Final) Step */
begin

construct graph Y = (V,M(σ));
remove all self-loops in Y ;
compute the maximum matching of Y ;

F ← the minimum vertex cover set Y ;
end

Fig. 7. The DIAGNOSIS algorithm by Sengupta and Dahbura.

comparisons. Please remember from the diagnosability results that every node in
system has degree at least t.
S(σ) cannot have a node i such that |N(i)| > t + 1: these nodes are fault-free

because the number of faulty nodes is at most t. If there are two fault-free nodes j
and k in N(i), then r((j, k)i) = 0.
Now every node i in S(σ) such that |N(i)| = t + 1 is examined. If removing a

node k from N(i) results in an AFS, then the set of faulty nodes F = N(i)− k. If
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this is the case, the algorithm then stops.
In case F has not been determined in the previous step, then every node i in

S(σ) such that |N(i)| = t is examined. First the algorithm checks whether N(i)
is an AFS: in this case F = N(i), and the algorithm stops. Otherwise, there are
nodes outside N(i) that can be faulty. In order to check these nodes, hypergraph
Z = (V,H(σ)) is created, where set H(σ) is as follows. Initially H(σ) = {{i, j, k} |
(i, j)k ∈ C and r((j, k)i) = 1}. Then the following step is executed until H(σ) does
not change: if {i, j, k} ∈ H(σ) and m has tested k as fault-free and {i, j,m} /∈ H(σ)
then {i, j,m} is added to H(σ).
In the next step of the algorithm, each node h ∈ H(σ) replaces one by one

each node k in N(i). The algorithm checks whether the resulting set is a vertex
cover of hypergraph Z = (V,H(σ)). In this case, the set of faulty nodes is found,
F = N(i)− k + h. The algorithm then stops.
Finally, if F has not been found in the previous steps, a new graph Y = (V,M(σ))

is constructed, with M(σ) constructed in five steps:

Step 1: For any i /∈ S(σ), if r((j, k)i) = 1 and i has tested both j
and k as fault-free, then (i, i) ∈ M(σ).

Step 2: For any i /∈ S(σ), if r((j, k)i) = 1 and i has tested j as faulty,
then (i, j) ∈ M(σ), and if r((j, k)i) = 1 and i has tested k as
faulty, then (i, k) ∈ M(σ).

Step 3: For any i ∈ S(σ), if there exists j ∈ N(i) such that j ∈ S(σ)
then (i, j) ∈ M(σ).

Step 4: For any i ∈ S(σ), if there exists j ∈ N(i) such that j /∈ S(σ)
then, if i has tested j as fault-free, then (j, p) ∈ M(σ) for
all p ∈ N(i) − {j}, whereas if i has tested j as faulty, then
(i, j) ∈ M(σ).

Step 5: For any (p, q) ∈ M(σ), if p has tested α as fault-free and q has
tested β as fault-free the (α, β) ∈ M(σ) and (p, β) ∈ M(σ).

All self-loops are removed and an algorithm for computing the maximum match-
ing for general graphs, such as [Micali and Vazirani 1980], is executed on Y . In
the final step the minimum vertex cover set F of Y is found using the labeling
technique in [Dahbura and Masson 1984].

4.2.1 t/x-Diagnosability and t[x]-Diagnosability. Sengupta and Rhee in [1990]
define the t/x-diagnosability and the t[x]-diagnosability. A system is t/x-diagnosable
if all faulty processors can be uniquely identified from the set of comparison results
whenever there are no more than t faulty processors and no more than x missing
comparison results. The authors consider the t/x-diagnosability for cases where
the comparison result can be missing possibly because of faulty transmission of the
input tasks or of the outputs. A system is t[x]-diagnosable if all the faulty pro-
cessors can be uniquely identified from the set of comparison results whenever no
more than t processors are faulty and no more than x comparison results refer to
incorrect identification. This concept is used to represent, for example, nodes with
intermittent failures.
Let two sets of processors S1, S2 ∪ V , X(S1, S2) = {(i, j)k | k ∈ S1 and {i, j} ⊂

S1 ∪ S2 and {i, j} ∩ S2 6= ∅}. In other words, X(S1, S2) denotes the set of com-
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parisons where the comparator is in S1 and one of compared processors is in
S2 and the other compared processor is in S1 ∪ S2. It is proved that a system
is t/x-diagnosable if and only if, for every 1, S2 ⊂ V , such that |S1|, |S2| ≤ t,
CT (V − S1 − S2, S1 − S2) + CT (V − S1 − S2, S2 − S1) > x where CT (S1, S2)
denotes the cardinality of the set X(S1, S2). It is also proved that a system is
t[x]-diagnosable if and only if: (a) for every S1 ⊂ V , such that |S1| = t, and for
every i ∈ S1, CT (V − S1, {i}) > x; and, (b) for every S1, S2, such that S1, S2 ⊂ V ,
and |S1| = |S2| = t, at least one of the following conditions is satisfied.

—CT (V − S1 − S2, S1 − S2) > x
—CT (V − S1 − S2, S2 − S1) > x

4.2.2 Other Extensions to the MM Model. In [Chen et al. 1993] an extension to
the MM model is presented. This model considers both processor and comparator
faults separately. Thus, a processor either executes tasks or performs comparisons.
It is shown that the system diagnosability is t ≤ ⌊δ/2⌋, where δ is the minimum
degree of nodes in the system. However, they also show that if the number of faulty
comparators is less than the number of faulty processors, the diagnosability reaches
t ≤ δ. The authors also present an optimal O(|E∗|) algorithm for the diagnosability
t ≤ ⌊δ/2⌋, and an (|E∗|2) algorithm for the diagnosability t ≤ δ, where E∗ is the
set of comparator.
Wang, Blough and Alkalaj in [Wang et al. 1994a; 1994b] present new necessary

and sufficient conditions for a system to be t-diagnosable under a comparison-based
model based on both the MM model and Sengupta and Dahbura’s model. They
show that a system is t-diagnosable if and only if for all Z ⊆ V with Z 6= ∅, and for
all Z1, Z2 that partition Z, |N1(Z)|+|N2(Z)|+CMV C(G3(Z))+max(|Z1|+|Z2|) >
t, where: N1(Z) = {v ∈ V − Z | ∃z ∈ Z with (v, z)v ∈ C}, i.e. processors in
V − Z that compare themselves with at least one processor in Z; N2(Z1) = {u ∈
V −Z−N1(Z) | ∃v, w ∈ Z1 with (v, w)u ∈ C}, i.e. processors in V −Z−N1(Z) that
compare two processors in Z1; G3(Z) = (N3(Z), E3(Z)) such that N3(Z) = {u ∈
V −Z −N1(Z)−N2(Z) | ∃v ∈ Z and w ∈ V −Z −N1(Z)−N2(Z) with (v, w)u ∈
C or (u, v)w ∈ C}; and, CMV C(G3(Z)) denotes the cardinality of a minimum
vertex cover set of G3(Z). The authors also present an algorithm for this model and
conduce experimental simulations where it is shown that within reduced number of
tests the algorithm diagnosis the system provided the number of faults is relatively
small.
In [Maestrini and Santi 1995] the authors present a correct but incomplete diag-

nosis algorithm based on the MM model. This algorithm can be applied to locate
faults in bi-dimensional processor arrays, where processors are interconnected in
horizontal and vertical meshes.

4.3 An O(N ×∆3 × δ) Comparison-based Diagnosis Algorithm

Yang and Tang in [2007] present a diagnosis algorithm for the MM* model with
time complexity O(N ×∆3× δ), where ∆ and δ are respectively the maximum and
the minimum degrees of a node. This algorithm is introduced as an alternative
to Sengupta and Dahbura’s O(N5) algorithm. The authors argue that realistic
diagnosable systems, such as massive multicomputers, are sparsely interconnected.
When ∆, δ ≪ N Yang and Tang’s algorithm will behave better than Sengupta and
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Dahbura’s.
The algorithm involves not only the comparison-based diagnosis model, but also

the classical PMC model. Initially the comparison syndrome, i.e. that syndrome
that contains comparison outcomes, is evaluated in order to try to find the set of
faulty nodes. If diagnosis does not complete using the comparison syndrome, then
it is converted to a PMC test syndrome, on which a classical diagnosis algorithm
is applied in order to obtain the set of faulty nodes. The following definitions are
required to understand the algorithm.
Let σ be the comparison syndrome of the system. N(i) is the neighborhood of

node i and |N(i)| = d(i) is the degree of i. For two adjacent nodes u and v, v is
an σ-0 son of u if there exists w ∈ N(u) such that r((v, w)u) = 0, i.e. v is a σ-0
son of u if node u evaluates node v as fault-free. A node is an σ-0 comparator if it
has at least one σ-0 son; otherwise, v is a σ-1 son of u. In other words, a node u
is an σ-1 comparator if r((v, w)u) = 1 for every nodes v, w that are compared by
node u. COMP1 denotes the set of all σ-1 comparators. COMP10 denotes the set
of all σ-1 comparators of degree t. COMP11 denotes the set of all σ-1 comparators
of degree t+ 1. COMP12 denotes the set of all σ-1 comparators of degree ≥ t+ 2.
COMP1 = COMP10 ∪ COMP11 ∪ COMP12. SON0(u) denotes the set of all σ-0
sons of node u. Node u is σ-conflicting if u has two σ-0 sons v and w such that
r((v, w)u) = 1. CONF denotes the set of all σ-conflicting nodes.
Node u is an σ-0 parent of v if there exists a node w such that r((v, w)u) = 0.

PARENT0(v) denotes the set of all σ-0 parents of node v, and PARENT0(U) =
⋃

x∈U PARENT0(x). Node u is an σ-0 predecessor of v if there exists a se-
quence of nodes w0 = u,w1, . . . , wp, wp+1 = v such that wi ∈ PARENT0(wi+1),
for i = 0, 1, . . . , p. PRED0(u) denotes the set of all σ-0 predecessors of node u.
PRED0(U) =

⋃

x∈U PRED0(u) and PRED0[U ] = PRED0(U) ∪ U .
A set U ⊂ V is also called an Allowable Fault Set (AFS) of system S, if for any

three nodes u, v, w where (v, w)u ∈ C, u ∈ V − U , v, w ∈ N(u), and v 6= w, such
that:

—if v, w ∈ U −X then r((v, w)u) = 0
—if {v, w} ∩X 6= ∅ then r((v, w)u) = 1

A t-AFS of σ is an AFS of σ with at most t nodes. Let K be a set of nodes
such that K ⊆ V , a K+1 AFS of σ is an AFS of σ that is of the form K ∪ u for
some u ∈ V − K. NODE+1(K) denotes the set of all K+1 nodes of σ. A K+1

group of σ is a set of three nodes u, v, w ∈ V −K such that either r((v, w)u) = 1 or
r((w, u)v) = 1 or r((u, v)w) = 1. GROUP+1(K) denotes the set of all K+1 groups
of σ.
Let σ be the comparison syndrome of a system G and H a subsystem of G, the

restriction of σ on H , denoted as σ|H , is a comparison syndrome on H defined
by (v, w)u for all u, v, w ∈ V (H), v, w ∈ N(u), and v 6= w, where V (H) is the
set of vertices of graph H . The σ-induced test syndrome, denoted by t[σ], is a
test syndrome on G defined in this way: for any two adjacent nodes u and v, let
t[σ](u, v) = 0 or 1 according to whether u is an σ-0 parent of v or not.
The diagnosis algorithm by Yang and Tang – called MM* DIAG – is shown in

Figure 8. Figure 9 shows the procedure CHECK IF that is used by the algorithm.
The algorithm receives as input the graph G(V,E) that represents the t-diagnosable
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Algorithm: MM* DIAG
/* Input: An MM* t-diagnosable system G(V, E)

with t-fault set and a comparison syndrome σ */
/* Output: The faulty set */

begin

/* First Phase */
for every node u of G do determine PARENT0(u) and SON0(u);
calculate COMP1, COMP10 and COMP11;
if there exist u ∈ COMP11 and v ∈ N(u) such that

N(u) − {v} is an AFS of σ then

return (N(u) − {v});
end if

if there exist u ∈ COMP10 such that N(u) is an AFS of σ then

return (N(u));
end if

if there exist u ∈ COMP10 and v ∈ N(u) such that
N(u) − {v} is an AFS of σ then

return (N(u) − {v});
end if

if there exist u ∈ COMP10 and v ∈ N(u) such that
CHECK IF( G, N(u)− {v}, σ) 6= “No.” )
return (CHECK IF( G, N(u) − {v}, σ));

end if

/* Second Phase */
determine CONF;
U ← PRED0[COMP1 ∪CONF];
/* Third Phase */
build the subgraph H = G− U , build the test syndrome t[σ|H ];
find out the minimum AFS U ′ of t[σ|H ] by calling Sullivan’s algorithm

return (U ∪ U ′);
end

Fig. 8. The MM* DIAG diagnosis algorithm.

system and the system’s comparison syndrome. The algorithm produces as output
the node’s faulty set.
The algorithm is divided in three phases. In the first phase the algorithm defines

the sets COMP10, COMP11 and identify the set COMP12, i.e. define all the σ-
1 comparators. The authors prove, by contradiction, that all comparators in set
COMP12 are faulty. For every comparator x in the sets COMP11 or COMP10, the
algorithm checks all possible candidates for the unique t-AFS provided that x is
fault-free.
In this context the procedure CHECK IF is quite important. This procedure

receives as input a system G(V,E), the corresponding comparison syndrome σ,
and a set K ⊂ V that is not an AFS. The procedure returns another set K+1 =
K ∪ {u} | u ∈ V −K, if such set exists. This new set must be an AFS and must
have |K|+ 1 nodes. Otherwise the procedure returns “No”. If a t-AFS is found in
one of these steps, the diagnosis is complete and the AFS set found is returned as
the set of faulty nodes. Otherwise, all COMP1 comparators are considered faulty
and the algorithm goes to the second phase.
In phase 2, the CONF set is identified, i.e. all nodes that have two σ-0 sons v and
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Procedure: CHECK IF
/* Input: A system G(V,E),

A comparison syndrome σ, and
A set K ⊂ V that is not an AFS of σ */

/* Output: An K+1 AFS of σ if there is, or “No” if not */

begin

calculate NODE+1(K);
calculate GROUP+1(K);
if |NODE+1(K)| ≥ 2 then

return (“No”);
end if

if |NODE+1(K)| = 1 and
if K ∪ NODE+1(K) is an AFS of σ then

return (K ∪ NODE+1(K));
else

return (“No”);
end if

end if

if |NODE+1(K)| = 0 then

if ∪c∈GROUP+1(K)c = Φ then

return (“No”);
else

if there is u ∈ ∪c∈GROUP+1(K)c such that K ∪ {u}

is an AFS of σ then

return (K ∪ {u});
else return (“No”);
end if

end if

end if

end

Fig. 9. Procedure CHECK IF employed by algorithm MM* DIAG.

w, but the comparison r((v, w)u) = 1. The authors prove, also by contradiction,
that all nodes in CONF are faulty. Then, the algorithm defines a new set PRED0

based on sets COMP1 and CONF. Set U = PRED0[COMP1 ∪ CONF] represents
all predecessors that tested directly or indirectly some node in the sets COMP1

and CONF. The authors also prove that all nodes in PRED0[COMP1 ∪CONF] are
faulty.

In the third and last phase, the diagnosis task is converted into that of the PMC
model, instead of the MM* model. A subset H = G−U composed of all nodes that
have not yet been identified as faulty in the previous two phases is constructed. In
a key step of the algorithm, an induced test syndrome t[σ|H ] based on H nodes
is constructed from the original comparison syndrome σ. The authors then prove
that H is (t−|U |)-diagnosable under the PMC model and that F −U is the unique
(t − |U |)-AFS possible given the test syndrome t[σ|H ]. Then, the location of the
remaining faulty nodes is equivalent to finding the minimum AFS of the induced
test syndrome. Thus it is possible to find that minimum AFS set applying the
O(δ3 + |E|) algorithm presented by Sullivan [1988].
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5. COMPARISON-BASED DIAGNOSIS FOR HYPERCUBES

The hypercube is a well-known and scalable topology for connecting the nodes of a
system [LaForge et al. 2003]. Many properties of hypercubes allow high performance
and fault-tolerance to be easily incorporated into the system. The diagnosability of
hypercubes and enhanced hypercubes [Tzeng and Wei 1991] under the comparison-
based MM* diagnosis model was presented by Wang [1999]. The topology of the
system is represented by graph G = (V,E), where each node i ∈ V represents
the system nodes and each edge (i, j) ∈ E represents a communication link be-
tween nodes i and j. The comparisons executed in the system are modeled with a
multigraph M = (V,C). V represents the set of system nodes, and a labeled edge
(i, j)k ∈ C, where k is the label, connects i and j and means that node i and node
j are under comparison by node k.
An n-dimensional hypercube – also called an n-hypercube or Hn – can be viewed

as a graph G = (V,E) where V consists of 2n nodes, labeled from 00 . . . 0 to 11 . . .1
(n bits). An edge (i, j) ∈ E if and only if i and j have only one different bit.
Following this fact, all nodes have a connection with exactly n other nodes. If two
nodes i and j from a n-hypercube have d different bits, it is said that these two
nodes have Hamming distance (H) equal to d, denoted as H(i, j) = d. Then, in a
n-hypercube, or simply n-cube, there is a connection between i and j if and only
if H(i, j) = 1. As an example, Figure 10(a) shows a 3-hypercube and Figure 10(b)
shows a 4-hypercube.
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Fig. 10. (a) A 3-hypercube, or simply a 3-cube. (b) A 4-hypercube, or simply a 4-cube.

In [Tzeng and Wei 1991] enhanced hypercubes are defined by adding extra con-
nections links – also known as skips – to regular hypercubes. These structures
improve the internode distance and the diameter of the system, among other char-
acteristics. An enhanced hypercube is denoted by (n, k)-cube and is constructed
by adding 2n−1 extra links to the corresponding n-cube. There is a skip between a
pair of nodes with label bnbn−1 . . . bk+1bkbk−1 . . . b1 and bnbn−1 . . . bk+1b̄k b̄k−1 . . . b̄1
where bi and k ∈ {2, . . . , n} is the Hamming distance between the pairs of nodes
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connected by the skip. Examples of a (3, 2)-cube and a (3, 3)-cube are shown in
Figure 11(a) and 11(b), respectively. In this figure the dotted lines correspond to
the skips of the enhanced hypercubes.
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Fig. 11. (a) A (3, 2)-cube. (b) A (3, 3)-cube. The detours are in dotted lines.

The diagnosability of n-hypercubes is proved to be n under the MM* model, if
n ≥ 5 and considering a system with N = 2n nodes. The diagnosability of enhanced
hypercubes is increased to n+ 1 under the same model, if n ≥ 6.
Wang [1999] first defines the vertex cover, which is a subset K ⊆ V such that

every edge of E is adjacent to one node in K. The order of vertex i is then defined
as the cardinality of the minimum cover of subgraph Gi, built with the subset of
the nodes that are compared with i and the corresponding comparison edges.
The proof is based on the characterization previously proposed by Sengupta and

Dahbura that gives a set of conditions that guarantees a system to be t-diagnosable:

(1) N ≥ 2t+ 1, and

(2) each node has order at least t, and

(3) for each V ′ ⊂ V , such |V ′| = N − 2t + p and 0 ≤ p ≤ t − 1, the
number of nodes that are not in V ′ but are compared to some node
of V ′ by some node of V ′ is greater than p.

Condition 1, 2n ≥ 2n+1 is trivially true when n ≥ 3. This condition is valid for
both hypercubes and enhanced hypercubes. Condition 2, is satisfied by the proof
that every node of an n-cube has order n in a hypercube, and order n + 1 in an
enhanced hypercube in both cases the order of a node is greater than t. Finally
Wang shows that the 5-cube is the least hypercube and the (6, k)-cube are the least
enhanced hypercubes satisfying the third of the conditions stated by Sengupta and
Dahbura.
In both cases, after the diagnosability is known for hypercubes and enhanced

hypercubes, it is possible to apply the O(N5) diagnosis algorithm proposed in
[Sengupta and Dahbura 1992] or the O(N ×∆3 × δ) algorithm proposed in [Yang
and Tang 2007] to find the faulty nodes of the system. Later in [2003] Yang presents
a comparison-based diagnosis algorithm tailored for n-dimensional hypercubes with
n ≥ 9 that has time complexity O(Nlog22N) in the worst case.
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6. COMPARISON-BASED DIAGNOSIS FOR BUTTERFLIES

The butterfly [Rettberg 1986; Leighton 1992] is another topology for interconnection
networks which is advantageous for fault-tolerant computing [Leighton et al. 1998;
Tamaki 1998]. The diagnosability of butterfly networks under the comparison-based
approach is presented by Araki and Shibata [2002a]. This work is also based on
Maeng and Malek’s comparison-based diagnosis model, and its motivation is also
the fact shown by Sengupta and Dahbura that it is algorithmically infeasible to
compute the diagnosability of general topology networks.
A butterfly network, denoted asBF (k, r) – also called wrapped butterfly [Leighton

1992] – is a k-ary r-dimensional butterfly and has rkr nodes. Each node has a label
〈ℓ;x0x1 . . . xr−1〉, where 0 ≤ ℓ ≤ r−1, 0 ≤ xi ≤ k−1, and 0 ≤ i ≤ r−1. The symbol
ℓ in the label represents the level of the nodes. The level ℓ is an abstract notation
to indicate the column of the node in the butterfly topology representation.
Each node 〈ℓ;x0x1 . . . xr−1〉 is adjacent to

〈ℓ + 1;x0 . . . xℓ−1yℓxℓ+1 . . . xr−1〉 for 0 ≤ yℓ ≤ k − 1, and

〈ℓ − 1;x0 . . . xℓ−2yℓ−1xℓ . . . xr−1〉 for 0 ≤ yℓ−1 ≤ k − 1.

As examples, the structure of a BF (2, 3) and the structure of a BF (3, 3) are
shown in Figure 12 and Figure 13 respectively. In these figures the nodes at level
0 are replicated in the 4th column to allow an easier visualization.
In [Araki and Shibata 2002a] the authors propose three schemes for the com-

parison assignment in butterfly networks, the first is called one-way comparison,
then a two-way comparison scheme is defined, which is finally improved in the third
scheme: enhanced two-way comparison (ETWC).
In the one-way comparison scheme, each node u at level ℓ compares every neigh-

bor at level ℓ + 1 in a pairwise way. As an example, in the Figure 12, node b
compares (a, d)b and the node c compares (a, d)c. As another example, in Figure
13 node b compares: (a, e)b, (a, f)b and (e, f)b. Each node executes k(k − 1)/2
comparisons employing the one-way comparison scheme.
In the two-way comparison scheme, each node u at level ℓ compares every pair

of neighbors at level ℓ− 1 and also compares every pair of neighbors at level ℓ+ 1.
In Figure 12, it is possible to notice that node a executes two comparisons: (b, c)a
and (c, f)a. In Figure 13 node a executes six comparisons: (b, c)a, (b, d)a, (c, d)a,
(x, y)a, (x, z)a and (y, z)a. Each node executes k(k−1) comparisons in this scheme.
Araki and Shibata show that the diagnosability of a butterfly network BF (k, r)

in which the one-way comparison scheme is employed is k − 2 for k ≥ 3 and r ≥ 3.
Consider the example in Figure 13, in this BF (3, 3) butterfly there is a total of 81
nodes, but diagnosis can only be assured if only 1 node is faulty. Araki and Shibata
show that the two-way comparison scheme improves the diagnosability of these
networks, which is 2(k − 2). For the same example, the diagnosability is 2. They
then show that the diagnosability of butterflies is at most 2k and propose another
comparison scheme that reaches this limit for k ≥ 2 and r ≥ 5, the enhanced two-
way comparison scheme. In the example, up to 6 nodes may be faulty. Consider
that for a node u = 〈ℓ;x〉, (x is a k-ary r-bit string), N+(U) = {x0, x1, . . . , xk−1}
is the set of k nodes adjacent to u at level ℓ+ 1 and N−(U) = {y0, y1, . . . , yk−1} is
the set of k nodes adjacent to u at level ℓ− 1.
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Fig. 12. A BF (2, 3) butterfly where nodes at level 0 are replicated.

A node u running ETWC performs the following comparisons:

(1) compares every pair of nodes in N+(U),
(2) compares every pair of nodes in N−(U), and
(3) compares xi and yi for each 0 ≤ i ≤ k − 1.

Under the ETWC scheme each node carries out k2 comparisons. For example,
in Figure 13 node a executes the following nine comparisons: (b, c)a, (b, d)a, (c, d)a,
(x, y)a, (x, z)a, (y, z)a, (b, x)a, (c, y)a and (d, z)a.
In another paper Araki and Shibata [2002b] propose an O(k2n) time diagnosis

algorithm for locating all faulty nodes in a BF (k, r). This is better than the
O(N5) algorithm for general graphs proposed by Sengupta and Dahbura and the
O(N ×∆3 × δ) algorithm proposed in [Yang and Tang 2007].

7. COMPARISON-BASED DIAGNOSIS FOR CROSSED CUBES

The model proposed by Fan [2002] evaluates the diagnosability of crossed cubes
under the comparison-based diagnosis model. Crossed cubes are an important
variation of hypercubes [Efe 1991; 1992; Efe et al. 1995]. Both crossed cubes and
hypercubes are regular graphs that have the same number of nodes, number of
edges and connectivity; and both are recursive in nature. But the diameter of a
crossed cube is approximately half the diameter of the corresponding hypercube
[Efe 1991; Chang et al. 2000]. The n-dimensional crossed cube contains a complete
binary tree with 2n − 1 nodes and all cycles of length from 4 to 2n(n ≥ 2); on
the other hand the n-dimensional hypercube does not have these two properties
[Kulasinghe and Bettayeb 1995; Chang et al. 2000].
A node x in the n-dimensional crossed cube is a binary string of length n and

is written as xn−1xn−2 . . . x0. The n-dimensional crossed cube, also called CQn,
is a n-regular graph with N = 2n nodes and n2n−1 edges. Two binary strings
x = x1x0 and y = y1y0 are pair-related, denoted as x ∼ y, if and only if (x, y) ∈
{(00, 00), (10, 10), (01, 11), (11, 01)}; if x and y are not pair-related, it is denoted
x 6∼ y.
A CQn is defined recursively as presented in [Efe 1991; 1992]. CQ1 is the com-

plete graph with two nodes labeled with 0 and 1, respectively. For n > 1, CQn
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Fig. 13. The structure of a BF (3, 3) where nodes at level 0 are replicated.

consists of two sub-cubes CQ0
n−1 and CQ1

n−1. The node u = 0un−2 . . . u0 of CQ0
n−1

and the node v = 1vn−2 . . . v0 of CQ1
n−1 are adjacent, i.e. there is a connection

between them, if and only if:

(1) un−2 = vn−2 if n is even, and

(2) u2i+1u2i ∼ v2i+1v2i, for 0 ≤ i < ⌊n−1
2

⌋.
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As an example, Figure 14 shows a 3-dimensional crossed cube CQ3.
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Fig. 14. A crossed cube 3-dimensional CQ3.

Fan [Fan 2002] shows that a crossed cube with n ≥ 4 satisfies the conditions
stated by Sengupta and Dahbura for a system to be t-diagnosable.

(1) 2n ≥ 2n+ 1, and

(2) each node has degree at least n, and

(3) if n ≥ 4, then for each V ′ ⊂ V (CQn), such that |V ′| = 2n − 2n+ p
for 0 ≥ p ≥ n − 1 the number of nodes that are not in V ′ but are
compared to some node of V ′ by some node of V ′ is greater than p.

Fan also proves that the crossed cube with n = 4 is the least that satisfies those
conditions, showing that CQ3 does not satisfy the third condition, while CQ1 and
CQ2 do not satisfy the second condition. His work concludes that the diagnosability
of n-dimensional crossed cubes is the same as that of n-dimensional hypercubes,
i.e. for all n ≥ 5 crossed cubes are n-diagnosable. Nevertheless, for n = 4, it is
also shown that the diagnosability CQ4 is 4, while a 4-dimensional hypercube is
not 4-diagnosable.
Either the polynomial algorithm presented in [Sengupta and Dahbura 1992] or the

algorithm presented in [Yang and Tang 2007] can be used to diagnose n-dimensional
crossed cubes if the number of faulty nodes is not greater than n. Furthermore,
Yang, Megson and Evans in [2005] present a linear-time comparison-based diag-
nosis algorithm tailored for crossed cubes with n ≥ 11 that has time complexity
O(Nlog22N).

8. COMPARISON-BASED DIAGNOSIS FOR LOCALLY TWISTED CUBES AND
HYPERCUBE-LIKE MULTIPROCESSOR SYSTEMS

Yang and Yang in [2007] applied comparison-based diagnosis for multiprocessor
systems based on locally twisted cubes. An n-dimensional locally twisted cube LTQn

[Yang et al. 2005] is a hypercube variant that has the same number of nodes and
edges as an n-dimensional cube, but has lower diameter and better graph embedding
capabilities when compared to a hypercube of the same size [Yang et al. 2005; 2004;
Ma and Xu 2006].
A LTQn is defined recursively as follows [Yang and Yang 2007; Yang et al. 2005]:
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(1) LTQ2 is a graph consisting of four nodes labeled with: 00, 01,
10, and 11; respectively connected by four edges: (00, 01), (01, 11),
(11, 10), and (10, 00).

(2) For n ≥ 3, LTQn is constructed from two disjoint copies of LTQn−1

according to the following steps:
(a) Let 0LTQn−1 denote the graph obtained from one copy of LTQn−1

by prefixing the label of each node with 0;
(b) Let 1LTQn−1 denote the graph obtained from one copy of LTQn−1

by prefixing the label of each node with 1;
(c) Connect each node 0x2x3 . . . xn of 0LTQn−1 to the node 1(x2⊕

xn)x3 . . . xn of 1LTQn−1 with an edge, where ⊕ represents the
xor binary operation.

As an example, Figure 15 (a) shows a 3-dimensional locally twisted cube LTQ3

and (b) shows a 4-dimensional locally twisted cube LTQ4.
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Fig. 15. (a) A LTQ3 cube; (b) A LTQ4 cube.

Yang and Yang present a comparison-based diagnosis algorithm for systems based
on the locally twisted cube under the MM* model. The algorithm may run in
O(Nlog22N) time if appropriate data structures are employed [Yang and Yang 2007].
Chiang and Tan in [2007] applied the comparison-based diagnosis for hypercube-

like multiprocessor systems. This class of hypercube-like interconnection networks,
also called hypercube-like (HL) graphs, was first introduced by [Vaidya et al. 1993].
Hypercube-like graphs include the classical hypercubes and many well-known hy-
percube variants, such as the the twisted cube [Esfahanian et al. 1991], and the
multi-twisted cube [Efe 1991].
An n-dimensional hypercube-like network, HLn, can be defined recursively as

follows. HL0 is the graph with one node labeled as 0. For n ≥ 1, HLn consists
of two HLn−1 represented by graphs G0 and G1, i.e. HLn = {G0 ∪ G1 | G0, G1

are HLn−1}. HLn has node set V (G0 ∪ G1) = V (G0) ∪ V (G1) and edge set
E(G0∪G1) = E(G0)∪E(G1)∪EM , where EM is an arbitrary and perfect matching
between the node set of G0 and G1 in a one-to-one fashion.
Figure 16 (c) shows an example of an HL3 composed by the two HL2 in Figure

16 (a) and (b).
Chiang and Tan [2007] prove that the diagnosability of an n-dimensional hyper-

cube-like network HLn is n for n ≥ 5.
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Fig. 16. (a) and (b) Examples of HL2. (c) An example of HL3.

To prove whether a system is t-diagnosable, the authors introduce a new concept
called local or node diagnosability, that is defined as follows. A system G(V,E) is
t-diagnosable at node x ∈ V (G) if, for each pair of distinct sets F1, F2 ∈ V (G) such
that |F1|, |F2| ≤ t, F1 6= F2, and x ∈ (F1 − F2) ∪ (F2 − F1), the pair (F1, F2) is
distinguishable. This is proved using the characterization given by Sengupta and
Dahbura [1992]:

For every two distinct subsets of nodes F1 and F2, (F1, F2) is a distin-
guishable pair, if at least one of the following three conditions must be
satisfied:
(1) ∃i, k ∈ V − F1 − F2 and ∃j ∈ (F1 − F2) ∪ (F2 − F1) such that

(i, j)k ∈ C
(2) ∃i, k ∈ F1 − F2 and ∃k ∈ (V − F1 − F2) such that (i, j)k ∈ C
(3) ∃i, k ∈ F2 − F1 and ∃k ∈ (V − F2 − F1) such that (i, j)k ∈ C

Following this definition, it is shown that the local diagnosability tl(x) of a node
x ∈ V (G) in a system G(V,E) is the maximum number of t for G being locally
t-diagnosable at x, i.e.

tl(x) = max{t | G is locally t-diagnosable at x}.

The authors show that there exists a relationship between local t-diagnosability
at node x and the traditional t-diagnosability, presented as: a system G(V,E) is
t-diagnosable if and only if G is locally t-diagnosable at x, for every x ∈ V (G).
Furthermore, the authors prove that a system G(V,E) is t-diagnosable if and only
if min{tl(x) | ∀x ∈ V (G)} = t.
Recently in [2009] Chiang and Tan defined a local structure called extended star

which is used to efficiently compute the node diagnosability under the MM* model.
An extended star, denoted as ES(x;n) of order n at node x, is defined as follows.
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Let x be a node in a graph G(V,E). ES(x;n) = (V (x;n), E(x;n)), where the set
of nodes V (x;n) = {x} ∪ {vij ∈ V | 1 ≤ i ≤ n, 1 ≤ j ≤ 4}, and the set of edges
E(x;n) = {(x, vk1), (vk1, vk2), (vk2, vk3), (vk3, vk4) | 1 ≤ k ≤ n}. In other words,
an extended star of order n at node x ES(x;n), implies that there exists n node-
disjoint paths of lenght four starting from node x in the system. An example that
shows a node x connected in an extended star structure is presented in Figure 17.
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Fig. 17. An extended star structure ES(x;n) at node x.

The authors prove that the node diagnosability of a node x is at least n if there
exists an extended star ES(x;n) ⊆ G at node x. They also present an algorithm to
diagnose the system provided that there is an extended star structure at each node.
The algorithm has time complexity O(N∆), where ∆ is the maximum degree of a
node in the system.

9. COMPARISON-BASED DIAGNOSIS FOR STAR GRAPHS

The star graph is another topology for interconnection networks which has been
used to deploy fault-tolerant multicomputer systems [Kavianpour 1996]. The di-
agnosability of star graphs under the MM* model is presented by Zheng, Latifi,
Regentova, Luo and Wu [2002]. The diagnosis is also based on Maeng and Malek’s
comparison-based diagnosis model.
An n-dimensional star graph, also referred to as an n-star or Sn, is an undirected

graph consisting of n! nodes and (n − 1)n!/2 edges [Akers and Krishnamurthy
1989]. Each node is uniquely assigned a label a1a2 . . . am . . . an, which is a distinct
permutation of the set of symbols {a1, a2, . . . , an}. Without loss of generality, let
symbol set {a1, a2, . . . , an} be the set of integers {1, 2, . . . , n}. One node is linked
by an edge to another node if and only if the label of one node can be obtained from
the label of another node by interchanging the first symbol with the ith symbol, for
2 ≤ i ≤ n. In Sn each node is connected to n− 1 nodes, i.e. each node has degree
n− 1. Furthermore, each Sn can be decomposed into n star graphs, each of which
(n− 1)-dimensional.
For example, in a 4-star containing 4! nodes, two nodes x with label 1234 and y

with label 4231 are neighbors and joined through an edge. A 4-star graph (S4) is
shown as an example in Figure 18.
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Fig. 18. An example of a 4-dimensional star graph, S4.

Zheng, Latifi, Regentova, Luo and Wu [2002] use the three sufficient conditions
given in Sengupta and Dahbura’s characterization [1992] and show that a system
with N nodes is t diagnosable if: (1) N ≥ 2t+1; (2) each node has degree at least t;
(3) for each X ⊂ V such that |X | = N − 2t+ p and 0 ≤ p ≤ t− 1 then |T (X)| > p.
The authors also prove that an n-dimensional star graph is (n − 1)-diagnosable

under the comparison-based model for n ≥ 4. To prove it, they show that Sn

satisfies all three sufficient diagnosability conditions for n ≥ 4 as follows. The first
condition: as the number of nodes N in Sn is n!, then n! ≥ 2(n−1)+1 is true when
n ≥ 3. The second condition follows from the fact that each node of Sn has degree
n−1. They show the third condition in two steps: first they prove, by contradiction,
that for p = n− 2, for an arbitrary X ⊂ V such that |X | = n!− 2(n− 2)+ p where
0 ≤ p ≤ n− 2, then |T (X)| > p is true; then they prove, also by contradiction, that
for p = 0, 1, . . . , n− 3 then |T (X)| > p is true.
Finally, either of the polynomial algorithms presented in [Sengupta and Dahbura

1992] and [Yang and Tang 2007] can be applied to the n-dimensional star graphs
to find the set of faulty nodes of the system if the number of faulty nodes is not
greater than n− 1.

10. COMPARISON-BASED DIAGNOSIS FOR MATCHING COMPOSITION NET-
WORKS

The diagnosability of matching composition networks is presented by [Lai et al.
2004] and is also based on Maeng and Malek’s comparison-based diagnosis model.
A matching composition network (MCN) is a network topology that consists of
two components that are connected by a perfect matching. An MCN includes
many topologies as special cases, such as the hypercube, the crossed cube, the
twisted cube, and the Möbius cube [Cull and Larson 1995; Fan 1998]. MCN’s can
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be recursively constructed. They are constructed from two graphs with the same
number of nodes by adding a perfect matching between the nodes of the two graphs.
An MCN is a graph G = (V,E) defined as follows. Let G1 and G2 be two graphs

with the same number of nodes and every node v in Gi has degreeGi
(v) ≥ t, where

i = 1, 2. Let L be an arbitrary perfect matching between the nodes of G1 and
G2, i.e. L is a set of edges connecting nodes of G1 to nodes in G2 in a one-to-one
manner. The resulting composition graph is an MCN; graphs G1 and G2 are called
the components of the MCN.
Let MCNi denote an i-dimensional MCN. MCN1 is a complete graph with two

vertices. For n ≥ 2, each MCNn consists of two MCNn−1, denoted by MCNa
n−1

and MCN b
n−1 with an arbitrary and perfect matching L. L is a set of edges connect

MCNa
n−1 and MCN b

n−1. The number of vertices in a MCNn is 2n and each one
has n neighbor vertices.
An MCN is represented by G(G1, G2;L) which has node set

V (G(G1, G2;L)) = V (G1) ∪ V (G2)

and edge set

E(G(G1, G2;L)) = E(G1) ∪ V (G2) ∪ L.

An example of an MCN3, G(G1, G2;L) is shown in Figure 19.

G1 G2

Fig. 19. An example of an MCN3, G(G1, G2;L).

Lai, Tan, Tsai and Hsu evaluate the diagnosability of matching composition
networks under the MM* model [Lai et al. 2004]. In their model M = (V,C) is also
the comparison multigraph, and graph G represents the MCN. The notation (u, v)w
also represents a comparison, i.e. node w compares the task outputs produced by
nodes u and v. Let U ∈ V and Ū = V −U , T (G,U) is the set {v | (u, v)w ∈ C and
w, u ∈ U and v ∈ Ū}. They show that an MCN G with N nodes is t-diagnosable
if:

(1) N ≥ 2t+ 1;
(2) degreeG(v) ≥ t for every node v in G;
(3) for any two distinct subsets S1, S2 ∈ V (G) such that |S1| = |S2| = t,

one of the following conditions are satisfied:
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(a) |T (G,U)| > p, where U = V − (S1 ∪ S2), and |S1 ∩ S2| = p, or
(b) ∃i, j ∈ S1 − S2 and ∃k ∈ V − S1 − S2 such that (i, j)k ∈ C, or
(c) ∃i, j ∈ S2 − S1 and ∃k ∈ V − S1 − S2 such that (i, j)k ∈ C.

The authors also prove that an MCN G(G1, G2;L) – such that t ≥ 2, G1 and G2

are two graphs with the same number of nodes N , N ≥ t + 2, every node v in Gi

has degreeGi
≥ t, where i = 1, 2 – is (t+ 1)-diagnosable. They also prove that the

diagnosability of an n-dimensional hypercube, a crossed cube, a twisted cube, and
the Möbius cube are n for n ≥ 4.
Araki and Shibata introduce (t, k)-diagnosis in [2003]. The (t, k)-diagnosis model

is a generalization of the PMC model [Preparata et al. 1967] and of the BGM [Barsi
et al. 1976] model. (t, k)-diagnosis guarantees that at least k faulty units in a system
are identified and repaired in each iteration provided that the number of faulty units
does not exceed t, where k ≤ t. Thus (t, k)-diagnosis allows correct but incomplete
diagnosis. (t, k)-diagnosis is a generalization that also includes both one-step and
sequentially diagnosable systems: in one-step diagnosis t = k and in sequential
diagnosis k = 1.
Chang, Chen and Chang in [2007] applied (t, k)-diagnosis for matching compo-

sition networks under the MM* model. They prove that an MCN of n dimensions
is (Ω(2

nlogn

n
), n)-diagnosable, for n > 5. They extend their result and prove that

hypercubes, crossed cubes, twisted cubes and Möbius cubes of n dimensions are
all (Ω(2

nlogn

n
), n)-diagnosable, for n > 5. In [Chang et al. 2007] the authors also

present a polynomial time O(|E|) algorithm for (t, k)-diagnosis under the MM*
model.

11. COMPARISON-BASED DIAGNOSIS FOR T -CONNECTED AND PRODUCT

NETWORKS

The diagnosability of t-connected networks and product networks under the com-
parison-based diagnosis was presented by Chang, Lai, Tan and Hsu in [2004] also
under the MM* model. A graph G is t-connected if κ(G) ≥ t where κ(G) =
min{|V ′| such that V ′ ⊆ V and G− V ′ is not connected}.
A product network is generated by applying the graph cartesian product op-

eration to factor networks. A cartesian product network G = G1 × G2 [Araki
and Shibata 2000] of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph
G = (V,E). The graphs G1 and G2 are called the factors or component networks
of graph G. The set of nodes V and the set of edges E of G are given by:

(1) V = {〈x, y〉 | x ∈ V1 and y ∈ V2}, and
(2) for u = 〈xu, yu〉 and v = 〈xv, yv〉 in V, (u, v) ∈ E if and only if

(xu, xv) ∈ E1 and yu = yv, or (yu, yv) ∈ E2 and xu = xv.

As an example, Figure 20 shows two network graphs G1 and G2 and the corre-
sponding cartesian product network graph G1 ×G2.
Chang, Lai, Tan and Hsu evaluate the diagnosability of these topologies also

assuming the conditions given by Sengupta and Dahbura [1992]. They show that
a t-regular and t-connected network with N nodes and t > 2 is t-diagnosable if
N ≥ 2t+3. Moreover, the product network of G1 and G2 is shown to be (t1 + t2)-
diagnosable, where Gi is ti-connected with regularity ti for i = 1, 2.
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1
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b

G2

G G1 ´ 2

Fig. 20. Two networks G1 and G2 and the corresponding product network G1 ×G2.

12. STRONG DIAGNOSABILITY FOR COMPARISON-BASED DIAGNOSIS

The strong t-diagnosability of a system under the PMC model was first presented
by Lai, Tan, Chang and Hsu in [2005]. A system is strongly t-diagnosable if it is
(t + 1)-diagnosable and there is no node such that all its neighors are faulty. In
other words: strong diagnosability shows the ability of a t-diagnosable system to
detect an extra faulty node assuming that all neighbors of any node do not become
simultaneously faulty.
Sheu, Huang and Chen [2008] were the first to investigate the strong diagnosabil-

ity of systems under the MM* model. They show that a t-regular and t-connected
network in which N ≥ 2t + 6 and t ≥ 4 is strongly t-diagnosable if the system is
triangle free and the intersection of the sets of neighbors of any two nodes in the
system has at most t− 2 nodes.
Hsieh and Chen [2008a] investigated the strong diagnosability of a class of prod-

uct networks under the MM* model. As defined in Section 11, a product network
is generated by applying the graph cartesian product operation to factor networks.
Product networks include topologies such as the hypercubes, mesh-connected k-
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ary n-cubes, torus-connected k-ary n-cubes, and hyper-Petersen networks. Regular
product networks can be classified in two subclasses: homogeneous product net-
works and heterogeneous product networks. Homogeneous product networks refer
to every factor network of the product that is t-diagnosable and t-regular, while
heterogeneous product networks are comprised of two different factor networks, one
of which is t-diagnosable and the other is t-connected.
For ti > 3, the strong diagnosability of homogeneous product networks G1 ×

G2 × ... × Gk = t1 + t2 + ... + tk, where Gi = (Vi, Ei) is a ti-diagnosable and
ti-regular network with Ni nodes, and i = 1, 2, ..., k. Consider that Gi = (Vi, Ei)
is a ti-diagnosable and ti-regular network with Ni nodes for i = 1, ...,m and let
Gj = (Vj , Ej) be a tj-connected and tj-regular network with Nj ≥ 2tj+1 nodes for
j = m+1, ..., k. For ti > 3, if G = G1×G2× ...×Gk, then the strong diagnosability
of G is t1+t2+...+tk. For the strong diagnosability of nonregular product networks,
consider that G1 = (V1, E1) is t1-diagnosable, Lki

be a ki-node linear array, and
ki ≥ 2 for 1 ≤ i ≤ l. The authors prove that, for ti > 3, the nonregular product
network G = G1× Lk1

× Lk2
× ...× Lkl

is strongly (t1 + l)-diagnosable.
The strong t-diagnosability of four different product network topologies, all of

which are t-regular and t-connected is shown in [Hsieh and Chen 2008a]: the n-
dimensional hypercube, the mesh-connected k-ary n-cube, the torus-connected k-
ary n-cube, and finally the n-dimensional hyper-Petersen network. For all of these
networks, N ≥ 2t+1 nodes, where t > 2; each node v of G has degree of at least t.
The first strong diagnosability result is for the n-dimensional hypercube, which is
n for n ≥ 5. The other three topologies and their strong diagnosability results are
presented below.
A mesh-connected k-ary n-cube [Bettayeb 1995], denoted by Mn

k , is recursively
defined as follows: let Lk be a k-node linear array, (1) M1

k = Lk, for k ≥ 2, and (2)
Mn

k = Mn−1
k × Lk for n ≥ 2. A k-ary n-cube Mn

k has kn nodes. As an example,
Figure 21 shows M2

4 . The authors prove that the strong diagnosability of Mn
k = n

for n ≥ 5.

Fig. 21. An example of M2
4 .

A torus-connected k-ary n-cube [Bettayeb 1995], denoted by T n
k , is recursively

defined as follows: let Rk be a ring (cycle) of length k, where k ≥ 3. Then, (1)
T 1
k = Rk, and (2) T n

k = T n−n
k × Rk for n ≥ 2. A torus-connected k-ary n-cube T n

k
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also has kn nodes. Figure 22 shows an example of T 2
4 . The strong diagnosability

of a torus-connected k-ary n-cube is 2n for k ≥ 3 and n ≥ 4.

Fig. 22. An example of T 2
4 .

A n-dimensional hyper-Petersen network [Das et al. 1995], denoted by HPn for
n ≥ 3, is defined as HPn = P × Qn−3, where P is a Petersen graph. An HPn is
n-connected and n-regular and has 10 ∗ 2n−3 nodes. Figure 23 shows an example
of HP4. The strong diagnosability of a HPn = n for n ≥ 5.

Fig. 23. An example of HP4.

Later Hsieh and Chen presented in [Hsieh and Chen 2008b] the strong diag-
nosability for a class of matching composition networks (MCN’s) under the MM*
model. They evaluated the strong diagnosability of n-dimensional crossed cubes,
Möbius cubes, twisted cubes and locally twisted cubes. An n-dimensional crossed
cube CQn is strongly n-diagnosable for n ≥ 5. An n-dimensional Möbius cube
MQn is strongly n-diagnosable for n ≥ 5. An n-dimensional twisted cube TQn is
strongly n-diagnosable for an odd integer n ≥ 5. Finally, an n-dimensional locally
twisted cube LTQn is strongly n-diagnosable for n ≥ 4.
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13. THE BROADCAST COMPARISON DIAGNOSIS MODEL

The Broadcast Comparison diagnosis model was introduced by Blough and Brown
in [1999]. This model applies distributed diagnosis based on the MM* comparison
model [Maeng and Malek 1981] for systems that have a weak reliable broadcast
[Hadzilacos and Toueg 1993] service available. In this model, a distributed diagnosis
procedure is used which is also based on comparisons of redundant task outputs.
The system is also modeled as a graph G(V,E). Tasks are assigned to pairs of

different nodes. These two nodes execute the task and the task’s outputs are sent
to all nodes using reliable broadcast. After task outputs are received, they are
compared in order to detect faults. The comparisons are performed by all nodes of
the system. Figure 24 shows this procedure. In this figure node 1 sends the same
task to node 2 and to node 3 which execute the task and broadcast their tasks
outputs to all system nodes.

task output
broadcast

1

2

3

4

5

6

a task sent
to two nodes

Fig. 24. A task is sent from node 1 to nodes 2 and 3. The task outputs are broadcast to the whole
system.

All fault-free nodes in the system compare the two produced outputs, including
the nodes that produced the task outputs. The syndrome is the complete collection
of all comparison outcomes. As soon as each node executes all comparisons, it
completes the diagnosis of the system assuming itself as fault-free.
The main assumptions of the Broadcast Comparison model are:

(1) When two fault-free nodes execute the same task, they produce the
same output, and the comparison of these outputs executed by all
fault-free nodes of the system indicates a match.

(2) A faulty node always produce a task output that results in a mis-
match when compared with the outputs produced by any other
faulty or fault-free node.

(3) Any message broadcast from a fault-free processor is correctly re-
ceived by all other fault-free processors in a bounded time.

(4) The time for any task to produce an output is bounded.
(5) Each processor has a unique identifier.
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(6) Fault-free processors can correctly identify the sender of a broadcast
message.

(7) Values sent by faulty processors are correctly received by fault-free
processors, furthermore a fault-free processor comparing a faulty
processor and any other processor always produces a mismatch.

Assumptions (1) and (2) are inherited from MM and MM* models. The other as-
sumptions are made in order to guarantee these two assumptions. Assumption (3)
is the basic assumption of weak reliable broadcast. Weak reliable broadcast [Hadzi-
lacos and Toueg 1993] requires that fault-free processors agree on all messages, even
those sent by faulty processors, but it does not have any message ordering require-
ments. Assumption (7) prevents values from being modified during communication.
Blough and Brown give a polynomial-time algorithm for computing the diagnos-

ability of the system under the Broadcast Comparison model. Five definitions are
necessary to characterize the diagnosability of the system:

(1) An independent set in graph G(V,E) is a subset V ′ ⊆ V such that,
for all u, v ∈ V ′, (u, v) /∈ E.

(2) For graph G(V,E) and processor u ∈ V , N(u) = {v ∈ V | (u, v) ∈
E}, i.e. the neighbor set of processor u. Also, |N(u)| = d(u).

(3) For graph G(V,E) and set Z ∈ V , N(Z) = {v ∈ V − E | ∃u ∈ Z
and (u, v) ∈ E}, i.e. the neighbor set of Z.

(4) For graphG(V,E), PG is the set of partitions of V into four pair wise
disjoint sets (X,Y, Z1, Z2) such that: (1) X 6= ∅; (2) N(X) ⊆ Y ; (3)
Z1 ∪ Z2 6=; and (4) Z1 and Z2 are independent sets.

(5) For graph G(V,E), κ is a function from PG to the set of positive
integers such that, for all p = (X,Y, Z1, Z2) ∈ PG, κ(p) = |Y | +
max(|Z1|, |Z2|).

A system G(V,E) is t-diagnosable if and only if for all p ∈ PG, κ(p) > t.
The diagnosability of a system of N processors given a complete comparison

graph is N − 1. The diagnosability of a system that does not have a complete
comparison graph available is either dmin(G) or dmin(G)−1, where the degree d(u)
of a processor u in G(V,E) is the number of edges of G(V,E) incident on u. The
minimum degree of a system G(V,E) is dmin(G) = minu∈V d(u).
In [1999] Blough and Brown also present polynomial-time algorithms to diagnose

static and dynamic fault situations using the Broadcast Comparison model.
In a static fault situation no faults occur in the system from the time the com-

parisons begin until diagnosis is complete. Blough and Brown present algorithm
Static-Complete for the diagnosis of a system under the static fault situation, given
a complete syndrome.
Figure 25 shows algorithm Static-Complete. The algorithm runs at each system

node x and receives as input the syndrome of the system and the diagnosability t.
Every node assumes itself as fault-free, adding itself to the set of fault-free nodes
FF ; this is represented in Step 1. In Step 2, any processor that has a comparison
outcome that indicates a match is also added to set FF . If the number of remaining
processors (not in FF ) is at most t, Step 3 stops the algorithm. If this is not the
case, Step 4 identifies faulty processors in FF and adds them to set F . Step 5
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Algorithm: Static-Complete
/* Input: The syndrome of the system and the diagnosability t */
/* Output: The set FF (fault-free) and the set F (faulty) */
1) F ← ∅; FF ← {x};
2) for each edge (u, v) with a comparison outcome 0

FF ← FF ∪ {u, v};
3) if |V | − |FF | ≤ t then

F ← V − FF ; stop;
4) for each edge (u, v) with a comparison outcome 1

if u ∈ FF then F ← F ∪ {v};
if v ∈ FF then F ← F ∪ {u};

5) if |F | < t then
F ← F ∪ F ind Remaining(G[V − FF − F ], t− |F |);

6) FF ← V − F ;

Fig. 25. Algorithm Static-Complete.

Function: Find Remaining

/* Input: A graph Ĝ(V̂ , Ê) and an integer t̂ where 0 < t̂ < |V̂ | */

/* Output: A faulty set F̂ F */

1) for each u ∈ V̂ ) with a comparison outcome 0
2) if |N(u)| = t̂ then

3) F̂ F ← {u};

4) for each v ∈ V̂ −N(u)− {u}

5) if N(v) = N(U) then F̂ F ← F̂ F ∪ {v};

6) if |F̂ F | = |V̂ | − t̂ then return N(u);

Fig. 26. Function Find Remaining.

determines if there exists some faulty processors that remain unknown and adds
them to set F using the Find Remaining function that is show in Figure 26.
Finally, in Step 6 the algorithm finishes in which set FF is obtained.
In some situations where the number of faulty nodes is much smaller than t, it

is still possible for fault-free processors to correctly diagnose the system without
performing all comparisons – this situation is referred to as diagnosis with a partial
syndrome. Algorithm Static-Partial is given for situations in which only a partial
syndrome is available. In these cases no algorithm is guaranteed to diagnose the
status of all processors, i.e. the diagnosis is guaranteed to be correct but may be
incomplete.
As in real systems faults can occur during the execution of the diagnosis algo-

rithm, Blough and Brown present algorithm Dynamic to diagnose systems under a
dynamic fault situation. Nevertheless, they assume that, once a processor becomes
faulty, it remains faulty until the next execution of the diagnosis algorithm. Fur-
thermore, this model allows fault-free processors to become faulty, while it is not
allowed for faulty processors to become fault-free during the diagnosis execution.
Task outputs are timestamped before they are broadcast and the clock of fault-free
processors must advance at an approximately correct and bounded rate.
The main difference of the Broadcast Comparison model and the MM* model is

that Broadcast Comparison model is fully distributed while the MM* model relies
on a central observer that receives task outputs and executes all comparisons. In
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the Broadcast Comparison model all fault-free processors produce the same set of
comparison outcomes.
The main purpose of the Broadcast Comparison model is to reduce the latency

and the time one node must remain in a given state, not the number of tests or
comparisons executed. The system must present a built-in primitive (for instance
implemented in hardware) equivalent to weak reliable broadcast. The system was
implemented in the COmmon Spaceborne Multicomputer Operating System (COS-
MOS). They also shown results obtained with a simulator for the JPL MAX mul-
ticomputer system running COSMOS.

14. GENERALIZED MODELS FOR DISTRIBUTED COMPARISON-BASED DIAG-

NOSIS

The generalized distributed comparison-based (GDC) model [Albini et al. 2005;
Albini and Duarte Jr. 2001] assumes a fully connected system S also represented
by a graph G = (V,E), in which ∀i ∈ V and ∀j ∈ V , ∃ (i, j) ∈ E. This model
incorporates all the assumptions of the MMmodel, plus one: the time for a fault-free
node to produce an output for a task is bounded. This model is fully distributed,
i.e. fault-free nodes both execute the comparisons and diagnose the system based
on the comparison syndrome. Although in this sense the Broadcast Comparison
model is also fully distributed, the generalized distributed comparison-based model
does not assume a reliable broadcast system primitive, reliable unicast is enough
to implement the model.
The GDC model defines a multi-graph, M(S), to represent the way tests are

executed in the system. M(S) is a directed multi-graph defined over graph G, when
all nodes of the system are fault-free. Nodes of the system can be either faulty or
fault-free. A node becomes faulty by either crashing or by replying arbitrarily to
a given query. A change of the state of a node is called an event. The states of
the nodes are also determined by comparing the task output of one node with the
output generated by another node for the same task. As the MM model is assumed,
a fault-free node comparing outputs produced by a faulty node and any other faulty
or fault-free node always produces a mismatch.
In [Albini et al. 2005; Albini and Duarte Jr. 2001] a hierarchical comparison-

based adaptive distributed system-level diagnosis algorithm – called Hi-Comp – is
presented based on the generalized model. The algorithm is distributed, i.e. it
runs in every node of the system and every node performs the complete diagnosis.
A testing round is defined as the interval of time that all fault-free nodes need to
diagnose all nodes of the system. An assumption is made that after node i tests
node j in a certain testing round, node j cannot be affected by a new event in this
testing round.
The algorithm employs a testing strategy represented by a graph T (S) which

is a virtual hypercube when the number of nodes is a power of two. Nodes have
sequential identifiers (0..N−1), and each node can thus compute its set of neighbors
in T (S). The diagnostic distance between node i and node j, di,j , is defined as the
shortest distance between node i and node j in T (S). For example, in Figure 27
the diagnostic distance between node 0 and node 2 is 1.
A graph Ti(S) is defined as a directed graph based on T (S) and maintained by
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node i that shows how nodes obtain diagnostic information. Figure 27 shows T0(S)
for a system of 8 nodes; node 0 obtains diagnostic information about (a) nodes
[3, 5, 7] from node 1, (b) nodes [3, 6, 7] from node 2, and (c) nodes [5, 6, 7] from
node 4.
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Fig. 27. T0(S): node 0 obtains diagnostic information from nodes 1, 2 and 4.

In each testing round, a node i running Hi-Comp initially tests pairs of sons
in Ti(S). When the comparison of two distinct nodes p and q indicates a match,
node i classifies the two tested nodes as fault-free. Otherwise, if the comparison
indicates a mismatch, the tested nodes are classified as undefined. If node i had
already tested a pair of nodes as fault-free, now it compares one of those fault-free
nodes with each of the two undefined nodes. On the other hand, if node i has not
yet diagnosed any fault-free node, the two nodes remain undefined. If after node i
tests all its sons it does not identify any fault-free node, i.e. all sons of node i are
classified as undefined, node i proceeds to test the sons if its sons, and so on until
a comparison indicates a match, or node i tests all nodes in Ti(S).
As soon as node i classifies any node p as fault-free, node i obtains from node

p diagnostic information about every node k ∈ V | di,k ≤ di,p + dp,k. Node i can
obtain diagnostic information about a node j through more than one node. As an
example, in Figure 27 node 0 can obtain diagnostic information about node 3 from
node 1 or node 2. To assure that node i has the most recent diagnostic information
about node j the algorithm employs timestamps, implemented as event counters
[Duarte Jr. et al. 2000].
The latency of Hi-Comp is proved to be log2N testing rounds, the maximum

number of tests executed is O(N3), and the algorithm is (N − 1)-diagnosable.
Another general hierarchical comparison-based adaptive distributed diagnosis

(GDC*) model was proposed in [Ziwich et al. 2005]. In this model a fault-free
node tests other nodes and based on test results, classifies the tested nodes in sets.
A test is also performed by sending a task to two nodes. Task outputs are then
compared; if the comparison produces a match, the two nodes are classified in the
same set. On the other hand, if the comparison results in a mismatch, the two
nodes are classified in different sets, according to their task results. One of the sets
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contains all fault-free nodes. If nodes are classified in more than one set, then there
are faulty nodes in the system.
The GDC* model identifies crashed nodes, and also identified nodes that have

not crashed but do not reply the correct and expected data for the tasks. The
following assumptions are made about the system:

(1) a fault-free node comparing outputs produced by two fault-free
nodes always produces a match;

(2) a fault-free node comparing outputs produced by a faulty node and
a fault-free node always produces a mismatch; and,

(3) the time interval required for a fault-free node to produce an output
for a task is bounded.

The proposed model is the first distributed comparison-based model that allows
the task outputs of two faulty nodes to be equal to each other, an early assumption
of Chwa and Hakimi’s model [Chwa and Hakimi 1981b].
In [Ziwich et al. 2005] the authors also propose an algorithm for the GDC*

model called Hi-Dif. The algorithm also employs a testing strategy represented by
a graph T (S) that is a virtual hypercube. The algorithm identifies crashed nodes
in the system and also classifies nodes in sets. These sets allow the identification
of which nodes are returning a given output for the input task. With these sets
it is possible to identify fault-free nodes, crashed nodes and the faulty nodes that
returned different outputs. The latency of Hi-Dif is proved to be log2N testing
rounds, the maximum number of tests executed is O(N2), and the algorithm is
(N − 1)-diagnosable.
The generalized distributed comparison-based models have been applied for de-

tecting non-authorized modifications of replicated data available in the Web [Zi-
wich et al. 2005]. A related work by Martins et. al. [2006a; 2006b] applies
distributed comparison-based diagnosis to tolerate manipulation attacks in com-
putational grids. Comparisons performed on task results allow the detection and
isolation of malicious nodes.

15. PROBABILISTIC COMPARISON-BASED MODELS

Probabilistic comparison-based models were first introduced by Dahbura, Sabnani
and King [1987]. All these models assume a fault probability, i.e. the probability
that a unit produces an incorrect output, and the diagnosability is computed with
this probability. Thus, these models do not impose an upper bound on the number
of faulty units in the system.
There are two basic probabilistic approaches for solving the diagnosis problem.

These approaches were proposed for classical system-level diagnosis, probabilistic
comparison-based diagnosis appeared later. The first approach is to restrict di-
agnosis to a set of faulty units with a sufficiently high probability [Fujiwara and
Kinoshita 1978; Maheshwari and Hakimi 1976]. The other approach is to perform
diagnosis for the whole system, and this is then proved to be correct with a high
probability [Blough et al. 1988; 1988; Blount 1977; Dahbura et al. 1987; Rangarajan
and Fussell 1988]. In many cases these models reflect the actual fault environment
in a more precise way, but they are often more difficult to analyze.

ACM Computing Surveys, Vol. 43, No. 3, Apr. 2011.



A Survey of Comparison-Based System-Level Diagnosis · 43

In the probabilistic comparison-based diagnosis model proposed by Dahbura,
Sabnani and King [1987], the system is also represented by a graph G = (V,E).
Tasks are also sent to pairs of units and the task outputs are compared to identify
faulty units. The collection of all outcomes is also called the syndrome. The basic
assumptions of this system follow:

—m is the total number of possible distinct incorrect results which a
faulty processor can produce for a task;

—Wi | 1 ≤ i ≤ m is one of the m possible incorrect results for a task;

—P (Wi) is the probability that a faulty unit produces the incorrect
results Wi for a task; and,

—p is the probability that a faulty unit produces a correct task output.

The following results are obtained from the evaluation of this model [Dahbura
et al. 1987]:

(1) the probability P1,0 that the comparison of two outputs indicates a
match is equal to p when one of the units that produced the output
is faulty, and

(2) the probability P2,0 that the comparison of two outputs indicates a
match is equal to p2+P (W1)

2+ ...+P (Wm)2 when both units that
produced the outputs are faulty.

The authors assume that the probability distribution for a unit to produce
incorrect results is uniform; then ∀i, P (Wi) = (1 − p)/m. Thus the probabil-
ity that two faulty units that have their outputs compared produce a match is
P2,0 = p2 + ((1 − p)2/m). Furthermore it is assumed that m is extremely large,
thus P2,0 ≈ p2.
Another probabilistic and comparison-based diagnosis model was proposed by

Pelc in [1991]. In this model, also called the (p, k)-probabilistic model, the same
task with k possible outcomes are sent to the units. Each unit has the same
probability p < 1/2 to become faulty and failure of distinct units are independent.
This model assumes that:

—fault-free units always give correct answers; and,

—faulty units give independent random answers with uniform probabil-
ity 1/k each of them, but eventually the outcomes from two faulty
units may match.

Like previous comparison-based models, the task outcomes are compared and
the result, match (0) or mismatch (1), is then used to identify the faulty units
in the system. The probability of a match being produced by the comparison of
the outputs produced by two units, one fault-free and the other faulty, or by two
faulty units is q = 1/k. This is a difference of this model to the model proposed
by Dahbura, Sabnani and King, in which the probability of obtaining an incorrect
answer from a faulty processor is much smaller than that of the correct answer.
Hence, in Dahbura’s model the probability of obtaining a match when comparing
two faulty units is q2 and the probability of obtaining a match when comparing a
faulty unit and a fault-free unit is q.
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A system is called diagnosable in this model if for any possible syndrome, there
exists a unique most probable set of faulty units generating this syndrome. If this
set exists, this is diagnosed as the faulty units in the system. Considering the
(p, k)-probabilistic model, the authors have proved that:

(1) A system with two units is not diagnosable.
(2) Assuming that p < 1/(k + 1), an optimal diagnosable system with

N > 2 units has N − [N/3] edges or connection links.
(3) The diagnosis and the diagnosability problems are NP-hard for

general topology systems.

Blough and Pelc in [1992] present efficient polynomial time diagnosis algorithms
for Pelc’s model [Pelc 1991], considering a large class of systems represented by
bipartite graphs, which includes hypercubes, grids and forests. They also show
that optimal diagnosis for a general topology system is NP-hard. A linear-time
algorithm to perform optimal diagnosis in a ring is also presented.
Another probabilistic comparison-based model is presented by Rangarajan and

Fussel in [1988] which is based on the evaluation of multiple syndromes, instead of
just one. In [Fussell and Rangarajan 1989] the same authors propose an algorithm
for this model, in which the probability of correct diagnosis approaches 1 when the
number of tests performed on each processor is slightly higher than log2N . In [Lee
and Shin 1994] a provably optimal algorithm for the same model is presented. A so-
lution for the probabilistic diagnosis of sparsely interconnected systems is presented
in [Choi and Jung 1990].

16. EVOLUTIONARY COMPARISON-BASED DIAGNOSIS

Evolutionary system-level diagnosis was first introduced by Elhadef and Ayeb in
[2000]. This theoretical work actually investigates how a Genetic Algorithm (GA)
performs when applied to the problem of identifying faults given a system syn-
drome under the PMC model. Several other evolutionary algorithms were also
implemented and compared for this task in [Nassu et al. 2005]. Comparison diag-
nosis based on evolutionary computing was also introduced by Elhadef and Ayeb
in [2001a].
A genetic algorithm has the following components [Elhadef and Ayeb 2001a]:

(1) A representation of potential solutions to the problem, called a chromosome
or individual. This is a binary array of length N that when used for system
diagnosis represents which nodes are faulty and which are fault-free. The chro-
mosome is represented by 〈s1s2s3 . . . sN 〉 where si is the status of node ui ∈ V .
The status si of node ui – also called a gene – can be 0 (fault-free) or 1 (faulty).
For example, for a system with 8 nodes, the chromosome v = 〈01000100〉 rep-
resents a potential solutions where node 2 and node 6 are faulty. A set of
individuals is called a population.

(2) A procedure to create an initial population of solutions.

(3) An evaluation function which gives the fitness of each individual. The evalua-
tion function can be seen as the probability that a potential solution is correct.

(4) Genetic operators, which are employed to modify individuals within a pop-
ulation to produce new individuals. Genetic operators include, for instance,
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Algorithm: Genetic-Comparison-Diagnosis
/* Input: A graph G(V, E) and syndrome σ */
/* Output: A fault set F and a fault-free set FF */

begin

Generate initial population of solutions Pop;
for each v ∈ Pop do

compute FT (v);
end for

Elite← solution in Pop with the highest fitness;
while (∀v ∈ Pop, FT (v) 6= 1) do

Selection(Pop);
Mutation(Pop);
Crossover(Pop);
for each v ∈ Pop do

compute FT (v);
end for

Elitism(Pop,Elite);
end while

F ← F(v) such that v ∈ Pop and FT (v) = 1;
FF ← V − F ;

end

Fig. 28. The Genetic-Comparison-Diagnosis algorithm.

selection, crossover and mutation, defined as follows. Selection forms a new
generation by choosing those individuals from the old population that have the
highest fitness. Crossover takes two individuals – called parents – and produces
new individuals – called children – which inherit genetic material – bits – from
their parents. Mutation toggles random bits within a population.

(5) Parameters employed by the genetic algorithm, such as the population size P
and the probabilities of applying genetic operators.

Each of these components has a direct impact on the solution obtained as well as
the performance of the genetic algorithm. Elhadef and Ayeb present an GA-based
algorithm – called Genetic-Comparison-Diagnosis – for system fault diagnosis under
the comparison model. The algorithm is presented in Figure 28. The algorithm
receives as input a graph G(V,E) and the comparison syndrome σ and produces as
output the set of faulty nodes F and the set of fault-free nodes FF .
The fitness function of a chromosome v, FT (v), is given below. Some definitions

are necessary to understand it. Let N(ui) be the neighborhood set of node ui. Con-
sidering the multigraph M = (V,C), Sσ(ui) = {r((ui, uj)uk

) ∈ σ such that uj ∈
N(ui) and (ui, uj)uk

∈ C}. In other words, Sσ(ui) is the subset of syndrome σ
corresponding to comparisons between unit ui and its neighbors N(ui). Consider-
ing chromosome v, v[i] denotes the ith bit of the binary array v, and σ∗ denotes
its corresponding comparison syndrome. The fitness value of node ui is given by
f(v[i]), i.e. f(v[i]) is the probability of status correctness of node ui.

FT (v) =
Σn

i=1f(v[i])

N
, where f(v[i]) =

|Sσ(ui) ∩ Sσ∗(ui)|

|N(ui)|
.

This genetic algorithm has a slight modification compared to standard GAs
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[Elhadef and Ayeb 2001a]: the mutation process is performed before crossover. This
is made because the mutation operator used in the Genetic-Comparison-Diagnosis
algorithm is based on fitness values. In standard mutation process, each bit has an
equal chance to suffer mutation. Instead, the authors consider each bit fitness value
f(v[i]) as its probability to be toggled. Hence, chromosomes should not suffer a
crossover before the mutation. The authors present experimental results comparing
the standard (equal chance) mutation operator to the new mutation process in sys-
tem with nodes varying from 8 to 500 nodes. The results show that the algorithm
under the new mutation process completes the diagnosis within fewer generations.
The Genetic-Comparison-Diagnosis algorithm uses the elitism strategy, i.e. at

the end of each iteration, the best chromosome is always compared with an elite
chromosome – that is the best chromosome so far and has a copy of it stored
separately from the population. If the best chromosome is better than elite chro-
mosome, a copy of it becomes the elite chromosome. On the other hand, if the best
chromosome is not better than elite’s one, a copy of the elite chromosome replaces
the worst chromosome in the population. Elitism guarantees that the quality of
the best solution found over generation is always increasing.
Finally, F(v) denotes the set of faulty nodes according to the chromosome v,

which are the nodes with a gene value equal to 1. In the fitness function FT , if the
chromosome v corresponds to the optimal solution, i.e. F(v) is the set of all faulty
nodes in the system, then FT (v) = 1 and v is the system diagnosis.
The time complexity of the Genetic-Comparison-Diagnosis algorithm is O((|E|P

ln P 2)/ ln r) in the worst case and O((|E|P ln P )/ ln r) in the average case, where
P is the population size and r is the fitness ratio. Elhadef and Ayeb also proposed
in [Elhadef and Ayeb 2002; 2001b] other comparison-based diagnosis algorithms,
including a serial genetic algorithm. Abrougui and Elhadef in [2005] present a
parallel version of the existing evolutionary diagnosis models, and also present a
parallel genetic diagnosis algorithm.

16.1 Artificial-Immune-System Comparison-Based Diagnosis

An artificial immune system (AIS) is designed to mimic the operations of the human
immune system which protects the body from the attacks of foreign organisms such
as bacteria and viruses. The design of an AIS is quite similar to the design of
other traditional computational intelligence approaches, such as genetic algorithms.
These systems have been used in many applications, including classical system-level
diagnosis [Amaral et al. 2004; Dasgupta et al. 2004; Ishida 1997].
Elhadef, Das and Nayak in [2006] argue that the genetic diagnosis algorithm

suffers from a loss in population diversity due especially to the use of an adap-
tive mutation operator. This characteristic causes a very large worst case running
time compared to the average case. The authors solve this problem under the
comparison-based diagnosis model by presenting an artificial-immune-system-based
approach, which preserves the population diversity avoiding the worst case of the
GA-based algorithm.

17. COMPARISON-BASED DIAGNOSIS APPLIED TO AD HOC NETWORKS

Mobile ad hoc networks (MANETs) implement a distributed cooperative environ-
ment, consisting of different wireless and mobile devices (nodes), ranging from little
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hand-held devices to laptops. These networks are based on a peer-to-peer paradigm.
Given the limited range of wireless communication, the network is generally multi-
hop, since direct communication between nodes is generally not available. Commu-
nications are based on the one-to-many paradigm, i.e. when a node transmits, all
nodes in its transmission range receive the message. A major problem arises from
the mobility of nodes causing the network topology to be variable and to some
extent unpredictable. In fact, communication links between nodes may be broken,
nodes may fail and possibly recover from failures and new links may appear [Basile
et al. 2003; Hollick et al. 2004; Albini et al. 2006]. Furthermore, nodes rely on
on-board batteries for energy supply and the effect of battery depletion is similar
to a crash fault.
Comparison-based diagnosis has been applied for mobile ad hoc networks by

Chessa and Santi in [2001] and Elhadef, Boukerche and Elkadiki in [2006a; 2007].
Protocols for both models are able to identify hard (permanent) and soft (tempo-
rary) faults. A node suffers a hard fault when it ceases completely to communicate
with other nodes. On the other hand a node affected by a soft fault continues
to operate and communicate, but with altered behavior. The description of both
models follows.

17.1 Chessa and Santi’s Diagnostic Model

The model proposed by Chessa and Santi [2001] is based on the MM* model. They
present two implementations of the model. In the first, the network topology does
not change during diagnosis. In the second, the network topology is allowed to
change during diagnosis.
The topology of system at time τ is modelled as a direct graph G(τ) = (V, L(τ)),

where V is the set of nodes and L(τ) is the set of logical links at time τ . Given
any two nodes u, v ∈ V , there is an edge (u → v ∈ L(τ)) if and only if v is in the
transmition range of u at time τ . The model considers only bidirectional links, thus
if (u → v ∈ L(τ)) then (v → u ∈ L(τ)), and Gτ = (V, L(τ)) is undirected. The
set of nodes inside the transmition range of a given node u at time τ is called the
neighbor set of u at time τ , denoted by N(u, τ) or simply N(u).
This model makes the following assumptions:

(1) Each node has a unique identifier;

(2) There is a link-level protocol that provides the following:

(a) Solves contentions;

(b) Provides one-hop reliable broadcast, called 1 rb(·);

(c) Identifies the sender of a received message.

Comparisons between units take advantage of the shared nature of the commu-
nication link. A fault-free unit u (the tester) sends test requests to its neighbors
and waits for their responses. As the responses are received, units are diagnosed
based on the comparison assumptions of the MM* model.
Depending on the assumptions regarding the network topology, different decisions

on the state (faulty or fault-free) of the units that did not reply to the test request
can be taken, as described below.
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17.1.1 Fixed Topology Comparison Protocol. This protocol, also called Static
Distributed Self-Diagnosis Protocol (Static-DSDP), assumes that the network topol-
ogy does not change during test execution, i.e. if unit u sends a test request at time
τ , and Tout is the timeout for this test, then N(u, τ ′) = N(u, τ) = N(u) for any
τ < τ ′ ≤ τ+Tout. This assumption does not mean that the network is static, rather
that its topology does not change during diagnosis: nodes are allowed to move, but
they cannot migrate out of their neighbors transmitting ranges.
Comparisons are performed based on the following protocol:

—Test request generation: at time τ , unit u generates a test sequence number i, a
task Ti, the expected result Ru,i and sends the message m = (u, i, Ti) to N(u, τ)
using the primitive 1 rb(m).

—Test request reception: any unit v ∈ N(u), upon receiving m, generates the result
Rv,i for Ti and invokes 1 rb(m′) at time τ ′, with τ < τ ′ ≤ τ + Tout. Message
m′ = (u, i, Rv,i) is the test response, and (u, i) is the header of the test response.

—Test response reception: every unit w ∈ N(v) receives m′. As u ∈ N(v), u
also receives m′, and compares Ru,i and Rv,i: v is diagnosed as fault-free if the
outcome is 0, and as faulty otherwise. For w ∈ N(v) but w 6= u, either w ∈ N(u)
or w /∈ N(u). In case w ∈ N(u), as shown in Figure 29(a), w compares Rv,i

and Rw,i: v is diagnosed as fault-free if the comparison outcome is 0, as faulty
otherwise. In case w /∈ N(u), as shown in Figure 29(b), if w has also received
another message m′′ about the same task from node z ∈ N(u), w compares Rz,i

and Rv,i. If the comparison indicates a match, then nodes v and z are diagnosed
as fault-free. If the comparison results in a mismatch, and z has been diagnosed
as fault-free, then v is diagnosed as faulty. Finally in case w /∈ N(u) and w
has not received another message about the same task, then Rv,i is just stored
locally.

—Timeout: At time τ + Tout node u diagnoses all other nodes that did not reply
the test request as faulty.

(a)

(b)

v w

u

m
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v z

u

mm’
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m’’

task request

task output

Fig. 29. (a) Unit w received a test request m from u. (b) Unit w received test responses m′ and
m′′ to test request m.
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Authors show that assuming a fixed network topology, if a fault-free node u
generates a test request at time τ , then at time τ + Tout:

—Node u has correctly diagnosed the state of all nodes in N(u).
—Any fault-free unit v ∈ N(u) has correctly diagnosed the state of
fault-free and “soft-faulted” units in N(u) ∩N(v).

—Any fault-free unit z ∈ N2(u), where N2(u) = {z ∈ V − N(u) such
that |N(u) ∩ N(z)| ≥ 2}, has correctly diagnosed the state of the
fault-free and “soft-faulted” units in N(u)∩N(z) if at least two units
in N(u) ∩N(z) are fault-free.

17.1.2 Time-varying Topology Comparison Protocol. Assume now that nodes
are allowed to migrate during test execution. Comparisons are performed according
to the following dynamics, i.e. time varying, topology protocol:

—Test request generation: at time τ , unit u (tester) generates a test sequence
number i, a task Ti, the expected result Ru,i and sends message m = (u, i, Ti) to
N(u, τ) using 1 rb(m).

—Test request reception: any unit v ∈ N(u, τ), upon receiving m, generates the
result Rv,i for Ti and invokes 1 rb(m′) at time τ ′, with τ < τ ′ ≤ τ + Tout, where
m′ = (u, i, Rv,i).

—Test response reception: any unit w ∈ N(v, τ), upon receiving m′, does the
following: if w = u, it compares Rv,i with the expected result Ru,i and generates
the comparison outcome. Unit v is diagnosed as fault-free if the outcome is 0,
and as faulty otherwise. If w 6= u, the following cases arise: (a) w ∈ N(u, τ). In
this case, unit w received the test request m from u, hence it can compare Rv,i

with Rw,i. Unit v is diagnosed as fault-free if the comparison outcome is 0, and
as faulty otherwise. (b) w /∈ N(u, τ). Unit v is not “hard-faulted”, and its test
response is compared to test responses received for the same task, if one exists.
If there is some z ∈ N(u) such that Rz,i = Rv,i then both nodes are diagnosed
as fault-free; otherwise, if z has been diagnosed as fault-free, then v is diagnosed
as faulty. Otherwise, the test result Rv,i is stored.

—Timeout: At time τ + Tout node u diagnoses all other nodes that did not reply
the test request as faulty.

Since the topology of the network varies with time, in general N(u, τ) 6= N(u, τ+
Tout). As a consequence, “hard-faulted” units cannot be distinguished from fault-
free units that migrated out of the testing units transmitting range. For this reason,
the tester can only classify the units that did not reply to its test request.
The authors show that if fault-free node u generates a test request at time τ ,

and the network topology can change during diagnosis, then, at time τ + Tout,
node u has correctly diagnosed the state of all fault-free or “soft-faulted” nodes in
N(u, τ) ∩N(u, τ + Tout).

17.2 Elhadef, Boukerche and Elkadiki’s Diagnostic Model

In [Elhadef et al. 2007; 2006a] Elhadef, Boukerche and Elkadiki present comparison-
based diagnosis protocols for mobile ad hoc networks. Two protocols are presented:
the Adaptive Distributed Self-Diagnosis Protocol (Adaptive-DSDP) for fixed topol-
ogy networks, and the Mobile Distributed Self-Diagnosis Protocol (Mobile-DSDP)
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for time-varying topology networks. The key idea of both protocols is that a node,
when replying to a test request should also provide the test task along with its out-
put for that test. Thus any receiver would be able to diagnose its state by simply
comparing this output to similar outputs for the same test, or even by comparing
the received result to its own output after performing the same test.
Besides the fact that nodes forward tasks with test responses, the fixed-topology

diagnosis model on which Adaptive-DSDP is based also differs from Chessa and
Santi’s model [2001] in their dissemination strategies. In Chessa and Santi’s model,
once a node collects all its neighbors responses, it forwards its local view to all
other nodes in the MANET using a flooding-based dissemination phase. On the
other hand, Adaptive-DSDP uses a spanning tree and a gossip style dissemination
strategy [Elhadef et al. 2007].
The new time-varying topology comparison protocol is described below. In this

protocol, a node’s neighbors are classified as either stable or dynamic. Dynamic
neighbors are those that have just moved to the node’s neighborhood.

—Test request generation: node u transmits test requests to its neighbors at a given
time τ . The test request includes a task, Ti, where i is a sequence number. After
sending the test request, 〈Test, Tu〉, a timer is set to Tout. In addition, a second
timer is set to TDiagnosisSession , which refers to the worst-case diagnosis latency
if all nodes are fault-free. This second timer is used to identify “hard-faulted”
dynamic nodes that did not reply to test requests or that may have moved enough
so that their states was not diagnosed by other nodes.

—Test request reception: when node v receives a test request from one of its neigh-
bors, u, it behaves in the following way. If it already knows the outcome R of
the test task Tu, then it sets Rv

u = R; Otherwise, it performs the task Tu and
generates its result Rv

u. Then, it transmits to all its neighbors the test response
message 〈Response, Tu, R

v
u〉, which contains the test task Tu and the result Rv

u.
The test response is stored in a response set, denoted by V alidatedv, in which all
correct test responses, either generated by the node itself or deduced during the
diagnosis session, are maintained. At this stage, node v generates its own test
request, if not done yet, and sends it to all its neighbors. Each node is required
to reply to at most t+ 1 test requests, if the system is t-diagnosable.

—Test response reception: when dealing with test responses different scenarios
should be considered. In fact node w may receive test responses from its stable
and dynamic neighbors. Whether they are stable or dynamic neighbors, the fact
that w has received the tasks outputs provided by these neighbors along with the
test tasks that have been computed to generate these results, node w will be able
to diagnose their status. All test responses received by w for which it is unable
to classify as correct are stored in a pending set, called Pendingw.

—Timeout: upon the occurrence of the first timeout, Tout, node u is able to diagnose
the status of its stable neighbors as well as that of dynamic neighbors from
which it has already received at least one test response. At this stage, node
u disseminates its local diagnostic view to all its neighbors. When the second
timeout occurs, TDiagnosisSession , node u will consider all remaining nodes to be
faulty.
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Elhadef, Boukerche and Elkadiki present in [2006b] another distributed compari-
son-based self-diagnosis protocol for wireless ad hoc networks based on Chessa and
Santi’s model. The proposed protocol is called Dynamic-DSDP which also identifies
hard and soft faults.
They compare the Dynamic-DSDP protocol with Chessa and Santi’s Static-

DSDP protocol. Consider the following three definitions. (1) Tgen is the elapsed
time upper bound between the reception of the first diagnostic message and the
generation of the corresponding test request. (2) A diagnostic message can be a
test request, a test response, a timeout message or a dissemination message. (3) Tf

is an upper bound to the time needed to propagate a dissemination message. The
Dynamic-DSDP protocol has time complexity O(Λ(Tgen+dSTTf)+Tout) while the
Static-DSDP protocol is O(Λ(Tgen + Tf ) + Tout), where Λ denotes the diameter of
graph G and dST is the depth of the spanning tree used to disseminate messages.
Furthermore, Dynamic-DSDP has communication complexity O(NkG) ≃ O(Nt)
while Static-DSDP requires O(N(N + 1 +∆)) ≃ O(N2) messages, where ∆ is the
maximum node degree and kG denote the connectivity of G.
The authors also prove the complexity of Mobile-DSDP in [Elhadef et al. 2006a]

and present the analysis of Adaptive-DSDP in [Elhadef et al. 2007]. Mobile-DSDP

has time complexity O(∆̂(Tgen + Tf) + Tout) and requires O(N(N + k̂)) messages,

where ∆̂ and k̂ denote respectively the maximum diameter and the minimum con-
nectivity of graph G. Adaptive-DSDP has time complexity O(ΛTgen +(dST +N −
1)Tf + Tout) and has communication complexity O(N∆).

18. A SUMMARY OF COMPARISON-BASED DIAGNOSIS RESULTS

This section summarizes relevant comparison-based diagnosis results presented in
this survey. The three graphs in Figure 30, Figure 31 and Figure 32 show the
relationship among the several results. A vertex of any of these graphs represents
either a model, an algorithm or other relevant result. Each vertex has two labels,
the inside label listing the authors and the outside label listing contributions of
the respective work. A directed edge from vertex a to vertex b denotes that the
result identified by vertex b is based on, is an extension of, or is related to vertex
a’s result. Furthermore, the graphs in those figures are ordered in a chronological
fashion. The three graphs are related to each other.
Four vertices appear in all three graphs, namely [Malek 1980], [Chwa and Hakimi

1981b], [Maeng and Malek 1981], and [Sengupta and Dahbura 1992], which are
drawn with dots. These four vertices represent intersections of the timelines in the
three figures. The first Figure 30 shows the results derived from early comparison-
based models – both Malek’s and Chwa and Hakimi’s models. Figure 31 shows the
results based on the MM model; and, subsequently Figure 32 shows results based
on the MM* model.
Table V contains a more detailed summary of all comparison-based results. All

results are grouped by the model they are based on. The table has three columns.
The first column indicates the comparison-based model. The next two columns
give respectively the reference and contributions.
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1980’s

1990’s

2000’s

[Malek 1980]

- first comparison-based model

[Chwa and Hakimi 1981]

- a comparisons of two
faulty units may result
in a mismatch

[Ammann and Dal Cin 1981]

- necessary and sufficient conditions
for -diagnosabilityt

[Kozlowski and Krawczyk 1991]

- / -restricted hybrid fault situations
- algorithm for hybrid fault situations

t m

[Yang and Masson 1987]

- comparison-based
/ -diagnosis modelt t1 1

[Sallay et al. 1999]

- faults affecting comparators
for wafer-scale circuits

[Xu and Huang 1990]

- / -1 -diagnosability
- syntesis of optimal configurations

t (N )

[Xu and Randell 1997]

- applies / -1 -diagnosis to
software design process

t (N )

[Fuhrman and Nussbaumer 1996a; 1996b]

- Bounded Symmetric Comparison (BSC) model

[Kreutzer and Hakimi 1983; Lombardi 1986]

- models considering comparator faults
apart from faults of other tested units

[Pelc 1992]

- algorithmic analysis of both Malek's
and Chwa and Hakimi's models

[Sengupta and Dahbura 1992]

- characterization of the MM model
- ( ) diagnosis algorithm

for MM* model
O N 5

- generalizes MM model: allowing
comparators to be one of the
units being compared

[Maeng and Malek 1981]

- MM and MM* models

[Barborak, Dahbura and Malek 1993]

- surveys first models

Fig. 30. Comparison-based diagnosis timeline: results based on early models.
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[Sengupta and Dahbura 1992]

- characterization of the MM model
- allows comparators to be one

of the units being compared
- diagnosability of general system

is NP-complete

1980’s

1990’s

2000’s

[Malek 1980]

- first comparison-based model

[Chwa and Hakimi 1981][Maeng and Malek 1981]

- MM model

[Chen, Bucken and Echtle 1993]

[Wang, Blough and Alkalaj 1994a; 1994b]

[Maestrini and Santi 1995]

[Elhadef and Ayeb 2001a]

[Blough and Pelc 1992]

[Pelc 1991]

[Choi and Jung 1990]

[Fussel and Rangarajan 1989]

[Rangarajan and Fussel 1988]

[Dahbura, Sabnani and King 1987]

[Araki and Shibata 2002b]

[Araki and Shibata 2002a]

[Ziwich, Duarte Jr. and Albini 2005]

[Albini, Duarte Jr. and Ziwich 2005]

[Sengupta and Rhree 1990]

[Elhadef, Das and Nayak 2006]

[Abrougui and Elhadef 2005]

[Lee and Shin 1994]

- probabilistic comparison-based model

- considers multiple syndromes

- diagnosis algorithm for
multiple syndromes

- provably optimal algorithm
for multiple syndromes

- diagnosis algorithm for
sparsely interconnected systems

- ( , )-probabilistic modelp  k

- diagnosis algorithms for bipartite graphs
- linear-time algorithm for rings

- evolutionary
comparison-based
diagnosis

- evolutionary models in parallel version
- parallel genetic algorithm

- artificial-immune-system-based diagnosis

- / -diagnosability and
[ ]-diagnosability
t x
t x

- generalized distributed model
- comparisons of faulty units
outputs may match

- diagnosability of butterfly networks

- correct but incomplete diagnosis algorithm
applied to bi-dimensional processor arrays

- diagnosis algorithm for buterflies

- another characterization for MM model
and Sengupta and Dahbura’s model

- considers processor and
comparator faults separately

- a comparisons of two
faulty units may result
in a mismatch

- generalized distributed model

Fig. 31. Comparison-based diagnosis timeline: results based on the MM model.
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[Malek 1980]

[Maeng and Malek 1981]

- MM* model

1980’s

1990’s

2000’s

[Yang 2003]

[Blough and Brown 1999]
[Wang 1999]

- first comparison-based model

- Broadcast Comparison model
- diagnosability of hypercubes
and enhanced hypercubes

- diagnosis algorithm for
-dimensional hypercubesn

[Fan 2002]

-
crossed cubes
diagnosability of

[Yang, Megson and Evans 2005]

- diagnosis algorithm for crossed cubes

[Yang and Yang 2007]

- locally twisted cubes
- diagnosis algorithm for locally twisted cubes

diagnosability of

- ( ) algorithm
for the MM* model
O N 3

xx D d

[Yang and Tang 2007]

[Chiang and Tan 2007]

- hypercube-like networksdiagnosability of

[Zheng, Latifi, Regentova,
Luo and Wu 2002]

- star graphsdiagnosability of

[Lai, Tan, Tsai and Hsu 2004]

- matching
composition networks
diagnosability of

[Chang, Chen and Chang 2007]

- ( , )-diagnosis for matching composition networkst  k

[Chang, Lai, Tan and Hsu 2004]

- -connected
networks and product networks

tdiagnosability of

[Sheu, Huang and Chen 2008]

- strong diagnosability of -regular
and -connected networks

t
t

[Hsieh and Chen 2008a]

- strong diagnosability of product networks

[Hsieh and Chen 2008b]

- strong diagnosability of
matching composition networks

[Chessa and Santi 2001]

- mobile ad hoc networks
- Static-DSDP protocol

diagnosis of

[Elhadef, Boukerche and Elkadiki 2006b]

- Dynamic-DSDP protocol
for mobile ad hoc networks

[Elhadef, Boukerche and Elkadiki 2006a; 2007]

- Adaptive-DSDP and Mobile-DSDP protocols
for mobile ad hoc networks

[Chwa and Hakimi 1981]

[Sengupta and Dahbura 1992]

- a comparisons of two fauty
units may result in a mismatch

- ( ) diagnosis algorithm
for MM* model

- diagnosability of general system
is NP-complete

O N 5

[Chiang and Tan 2009]

- node diagnosability based on
extended star structures

Fig. 32. Comparison-based diagnosis timeline: results based on the MM* model.

ACM Computing Surveys, Vol. 43, No. 3, Apr. 2011.



A Survey of Comparison-Based System-Level Diagnosis · 55

Model Reference Main Contributions

Malek’s model [Malek 1980] - first comparison-based model
- compared units are different
- the comparison of one or two faulty units re-
sults in a mismatch
- central observer is a trusted unit that executes
comparisons and performs the diagnosis
- the diagnosability is N − 2

[Ammann and Dal
Cin 1981]

- necessary and sufficient conditions for t-
diagnosability

[Sallay et al. 1999] - strategy to identify faults affecting comparators
- application for wafer-scale circuits

[Pelc 1992] - algorithmic analysis of both Malek’s and Chwa
and Hakimi’s models
- worst case number of tests for optimal algo-
rithms for t-diagnosis, sequential t-diagnosis and
one-step t-diagnosis for both models, under non-
adaptive and adaptive testing

[Barborak et al.
1993]

- surveys early models

Chwa and
Hakimi’s model

[Chwa and Hakimi
1981b]

- the comparison of two faulty units may result
in a match

[Fuhrman and
Nussbaumer
1996b; 1996a]

- Bounded Symmetric Comparison model, con-
siders a limit on the number of faulty units that
can produce identical results

[Kozlowski and
Krawczyk 1991]

- extension of Chwa and Hakimi’s model for t/m-
restricted hybrid fault situations

[Yang and Masson
1987]

- comparison-based t1/t1-diagnosis model

[Xu and Huang
1990]

- characterization of t/(N−1)-diagnosability un-
der Chwa and Hakimi’s model
- synthesis of optimal t/(N−1)-diagnosable con-
figurations for topologies such as chains and
loops

[Xu and Randell
1997]

- application of t/(N − 1) diagnosis to the soft-
ware design process

[Kreutzer and
Hakimi 1983;
Lombardi 1986]

- models considering comparator faults apart
from faults of other tested units
- characterization of the proposed models, (t −
tc)-diagnosability

Table V. Summary of comparison-based results.
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Model Reference Main Contributions

MM model [Maeng and Malek
1981]

- comparison diagnosis model in which units are
also comparators
- comparison outputs when at least one unit is
faulty always results in a mismatch
- central observer is a trusted unit that performs
diagnosis
- necessary and sufficient conditions for one-step
t-diagnosability
- procedure to construct minimal graph for di-
agnosable systems
- evaluation of diagnosis latency in terms of test
cycles

[Sengupta and
Dahbura 1992]

- generalization of the MM model: allows com-
parators to be one of the units being compared
- characterization of diagnosable systems under
the MM model
- diagnosability of general systems is NP-
complete

[Sengupta and
Rhee 1990]

- t/x-diagnosability and t[x]-diagnosability

[Chen et al. 1993] - extension of MM model considering processor
and comparator faults separately; diagnosability
evaluation

[Wang et al.
1994a; 1994b]

- new necessary and sufficient diagnosability con-
ditions for both the MM model and Sengupta
and Dahbura’s model

[Maestrini and
Santi 1995]

- correct but incomplete diagnosis algorithm ap-
plied to locate faults in bi-dimensional processor
arrays

[Araki and Shibata

2002a]

- diagnosability of k-ary r-dimensional butterfly

networks
[Araki and Shibata
2002b]

- O(k2n) diagnosis algorithm for butterfly net-
works

MM* Model [Maeng and Malek
1981]

- MM* model is a special case of the MM model:
each unit compares all pairs of neighbors

[Sengupta and
Dahbura 1992]

- diagnosis algorithm with time complexity
O(N5) under the MM* model
- diagnosability of general systems under the
MM* model is NP-complete

[Yang and Tang
2007]

- diagnosis algorithm with time complexity
O(N × ∆3 × δ) under the MM* model, where
∆ and δ are respectively the maximum and the
minimum degrees of a node

[Wang 1999] - diagnosability of hypercubes and enhanced hy-
percubes

[Yang 2003] - worst case O(Nlog22N) diagnosis algorithm for
hypercubes

[Fan 2002] - diagnosability of crossed cubes
[Yang et al. 2005] - O(Nlog22N) diagnosis algorithm for crossed

cubes

Table V. (Continued) Summary of comparison-based results.
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Model Reference Main Contributions

MM* Model
(continued)

[Yang and Yang
2007]

- diagnosability of locally twisted cubes
- O(Nlog22N) diagnosis algorithm for locally
twisted cubes

[Chiang and Tan
2007]

- diagnosability of hypercube-like networks

[Zheng et al. 2002] - diagnosability of star graphs
[Lai et al. 2004] - diagnosability of matching composition net-

works
[Chang et al. 2007] - (t, k)-diagnosis for matching composition net-

works
[Chang et al. 2004] - diagnosability of t-connected networks

- diagnosability of product networks
[Sheu et al. 2008] - strong diagnosability of t-regular and t-

connected networks
[Hsieh and Chen
2008a]

- strong diagnosability of product networks: hy-
percubes, mesh-connected k-ary n-cubes, torus-
connected k-ary n-cubes, hyper-Petersen net-
works

[Hsieh and Chen
2008b]

- strong diagnosability of matching composition
networks: n-dimensional crossed cubes, Möbius
cubes, twisted cubes and locally twisted cubes

[Chessa and Santi
2001]

- comparison-based diagnosis applied for mobile
ad hoc networks
- Static-DSDP protocol for fixed topology

[Elhadef et al.
2006b]

- protocol Dynamic-DSDP for ad hoc networks
based on Chessa and Santi’s model

[Elhadef et al.
2006a; 2007]

- comparison-based diagnosis applied for mobile
ad hoc networks
- Adaptive-DSDP Protocol for fixed topology
networks

- Mobile-DSDP protocol for time-varying topol-
ogy networks

[Chiang and Tan
2009]

- node diagnosability based on extended star
structures

Broadcast
Comparison Model

[Blough and
Brown 1999]

- fully distributed comparison model
- based on MM* for systems with reliable broad-
cast
- polynomial-time algorithms to diagnose static
and dynamic fault situations

Generalized
Distributed models

[Albini et al. 2005;
Albini and Duarte
Jr. 2001]

- the generalized distributed comparison-based
model: a hierarchical, adaptive and distributed
model based on Sengupta and Dahbura’s model
- Hi-Comp diagnosis algorithm: requires at most
O(N3) comparisons and has worst-case latency
of O(log2N) rounds

[Ziwich et al. 2005] - generalized distributed comparison-based
model assuming the comparison of faulty units

outputs may match
- Hi-Dif diagnosis algorithm that requires at
most O(N2) comparisons and has worst-case
latency of O(log2N) latency

Table V. (Continued) Summary of comparison-based results.
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Model Reference Main Contributions

Probabilistic
model

[Dahbura et al.
1987]

- probabilistic comparison based model
- considers probabilities for a match or a mis-
match when comparing units

[Rangarajan and
Fussell 1988]

- strategy based on the evaluation of multiple
syndromes

[Fussell and
Rangarajan 1989]

- O(log2N) for the evaluation of multiple syn-
dromes

[Lee and Shin
1994]

- probably optimal algorithm for the evaluation
of multiple syndromes

[Choi and Jung
1990]

- diagnosis algorithm for sparsely interconnected
systems

(p, k)-Probabilistic
model

[Pelc 1991] - a task has k possible outcomes
- each unit has the same probability p < 1/2
- probability of obtaining a match when com-
paring a faulty unit and a fault-free unit or two
faulty units is q = 1/k

- diagnosis and the diagnosability problems are
NP-hard for general topology

[Blough and Pelc
1992]

- polynomial time diagnosis algorithms for bi-
partite graphs (includes hypercubes, grids and
forests)
- linear-time algorithm to perform optimal diag-
nosis of rings

Evolutionary
Comparison-Based
models

[Elhadef and Ayeb
2001a]

- evolutionary comparison-based diagnosis

[Abrougui and
Elhadef 2005]

- parallel evolutionary diagnosis models

[Elhadef et al.
2006]

- comparison-based diagnosis model with an
artificial-immune-system-based approach

Table V. (Continued) Summary of comparison-based results.

CONCLUSIONS

This work presented a comprehensive and integrated view of comparison-based
diagnosis results including models, algorithms, diagnosability bounds, and appli-
cations. These results have been published for a period that spans the past three
decades. It is important to highlight that both theoretical results and promising
new applications have been proposed recently. A uniform notation for describing all
those results was employed. In comparison-based system-level diagnosis tasks are
assigned to and executed by pairs of units. The task outputs are returned and then
compared. Depending on the comparison outcomes, units are classified as faulty or
fault-free.
This survey described how the several models for comparison-based diagnosis

differ, i.e. in terms of assumptions, on how tasks are assigned, how outcomes are
returned, where task outputs are compared, and how results are interpreted. Models
either assume that only the task execution is distributed or, alternatively that
also comparisons and the diagnosis itself are distributed among the system units.
Some models work under probabilistic assumptions. The diagnosability of several
popular interconnection network topologies under comparison-based models was
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also presented. The objective was to describe not only models but also algorithms in
a way to help readers to understand each contribution and how it relates to the field
as a whole. A range of applications have been described, including the detection
of unauthorized modifications for replicated data, determining faulty processors in
parallel architectures, monitoring task outcomes in grid systems, and the diagnosis
of mobile ad hoc networks.
Besides integrating and clarifying comparison-based diagnosis results, the main

objective of the survey is to ignite the potential of these models, methods and
technology, which we believe can bring novel contributions to diverse fields. In
security for instance, comparison-based diagnosis can be used for checking the in-
tegrity of data and services; in software engineering, a framework for comparisons
can be employed in several variations of software testing [Pressman 2004], such
as mutation, perturbation and regression testing. Furthermore, in multicore and
cloud computing systems, innovative ways to diagnosis and fault tolerance can be
pursued.
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